JP2009510444A - タイミングオフセットを有する送信機を用いた位置特定 - Google Patents

タイミングオフセットを有する送信機を用いた位置特定 Download PDF

Info

Publication number
JP2009510444A
JP2009510444A JP2008533541A JP2008533541A JP2009510444A JP 2009510444 A JP2009510444 A JP 2009510444A JP 2008533541 A JP2008533541 A JP 2008533541A JP 2008533541 A JP2008533541 A JP 2008533541A JP 2009510444 A JP2009510444 A JP 2009510444A
Authority
JP
Japan
Prior art keywords
transmitter
determining
receiver
timing
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008533541A
Other languages
English (en)
Inventor
ムクカビリー、クリシュナ・キラン
リング、フユン
ウォーカー、ゴードン・ケント
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2009510444A publication Critical patent/JP2009510444A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Abstract

ワイヤレスネットワークにおける位置場所情報を決定するシステムおよび方法を提供する。1つの実施形態では、タイミングオフセット情報が、複数の送信機と1つの受信機との間で通信される。このような情報によって、ネットワーク全体にわたったタイミング差に対処するように正確な位置または場所の決定を行うことができる。別の実施形態では、受信機における潜在的なタイミング差に対処するために、送信機からの送信を前進または遅延させる送信機位相調整を行う。さらに別の実施形態では、位置場所決定を容易にするために、タイミングオフセット通信および/または送信機位相調整の組み合わせをワイヤレスネットワークにおいて使用することができる。
【選択図】 図7

Description

関連出願の相互参照
本出願は、“タイミングオフセットを有する送信機を用いた位置特定”と題する2005年9月27日に出願された米国仮出願第60/721,505号の利益を主張している。これは、本発明の譲受人に譲渡され、ここに参照により組み込まれている。
分野
本技術は、一般的に、通信システムおよび方法に関する。さらに詳細に説明すると、ネットワーク内のタイミングオフセットまたは送信機位相調整技術を使用することによって、ワイヤレスネットワークにしたがって位置場所を決定するシステムおよび方法に関する。
背景
優位を占めるワイヤレスシステムを有する1つの技術は、コード分割多元接続(CDMA)デジタルワイヤレス技術である。CDMAに加えて、無線インターフェイス仕様は、ワイヤレスプロバイダの産業先導グループによって開発されているFLO(フォワードリンクオンリー)技術(登録商標)を規定する。一般的に、FLOは、コーディングおよびシステム設計において利用可能かつ使用され、最も進んでいるワイヤレス技術の最も効果的な機能に影響を及ぼし、最高品質の性能を一貫して達成している。1つの目的は、FLOをグローバル的に採用される標準規格とすることである。
移動体マルチメディアの1つのケースにおいてFLO技術は設計されてきた。そして、FLO技術は、セルラハンドセット上での使用に典型的に適している性能特性を示している。リアルタイムコンテンツストリーミングおよび他のデータサービス双方の高品質の受信を常に実現するために、コーディングおよびインターリービングする際に最新で進歩したものを使用する。FLO技術は、消費電力を損なわずに、強固な移動性能および高容量を提供することができる。また、配備する必要がある送信機の数を劇的に減らすことによって、技術はマルチメディアコンテンツを配信するネットワークコストを減少させる。さらに、FLO技術ベースのマルチメディアのマルチキャスティングは、ワイヤレスオペレータのセルラネットワークデータおよび音声サービスを補足し、3Gネットワーク上で使用される同じセルラハンドセットにコンテンツを配信する。
FLOワイヤレスシステムは、非リアルタイムサービスに加えて、移動体ユーザに対して、リアルタイムオーディオおよびビデオ信号をブロードキャストするように設計されている。所定の地理的エリア中のワイドカバレージを保証するために、各FLO送信は、高くて高出力の電力送信機を使用して実行される。さらに、所定のマーケットにおける人口のかなりの部分にFLO信号が確実に到達するように、大半の市場において3〜4つの送信機を配備することが一般的である。FLO送信機カバレージのために、例えば、三角測量技術に基づいて、位置場所を決定することが可能である。従来の位置決定技術では、距離範囲測定のために、衛星ベースのGPS信号を利用する。しかしながら、衛星ベースの信号に伴う問題は、例えば、衛星に対する見通線が見られない屋内環境における信号の利用可能性の欠如である。
概要
以下では、いくつかの観点の実施形態の基本的な理解を提供するために、さまざまな実施形態の簡略化した概要を示している。この概要は、多彩な概略ではない。重要な/不可欠なエレメントを識別することや、ここで開示した実施形態の範囲を詳細に述べることに向けられていない。この唯一の目的は、後に示す詳細な説明の前置きとして、いくつかの概念を簡単な形態で示すことである。
従来のグローバルポジショニングシステム(GPS)技術に代わって(または、ともに)、ワイヤレスネットワーク全体にわたって、位置または場所の情報を決定するシステムおよび方法を提供する。1つの実施形態では、ブロードキャストネットワークにおける位置場所は、送信機間のタイミング差に対処する複数の送信機を使用して決定される。多くの位置場所アルゴリズムは、例えば、距離範囲測定に使用される信号を発する送信機が、GPSのような共通中央クロックを使用して、時間的に整列されると仮定している。しかしながら、ネットワーク全体にわたる信号の受信および品質を向上させるために、送信機のうちのいくつかの送信機からの送信を中央クロックに関して前進/遅延させることが、あるブロードキャストシステムにおいていくつかの利点となる。このようなケースでは、位置場所アルゴリズムは、送信機のタイミングオフセット情報を利用し、結果的に、従来の位置場所コンポーネントよりも、より正確に距離範囲測定を行うことになる。したがって、いくつかの実施形態では、この付加的な情報を受信機で使用するとともに、オーバーヘッドパラメータ情報(例えば、タイミングオフセット情報)を送信し、結果的に正確な距離範囲測定とすることができる。
別の実施形態では、受信機でのタイミングオフセットに対処する必要性を軽減するために、信号送信タイミングを各送信機において前進または遅延させることができる。送信される信号のタイミングにおいて送信機を調整することによって、オフセット計算を減らしつつも、正確な位置情報を各送信機で決定することができる。その理由は、中央クロックからのタイミング不整合は送信機ですでに対処されているからである。正しく認識できるように、正確な位置場所決定を容易にするために、いくつかのシステムは、受信機に通信されるタイミングオフセット、および/または送信機におけるタイミング調整を組み合わせたものを含むことができる。
先述の関連した目的の達成のために、詳細な説明および添付した図面とともに、ある実例的な実施形態をここに記述する。これらの観点は、実施形態が実施されてもよいさまざまな方法を示しており、これらすべてを網羅するように意図されている。
詳細な説明
ワイヤレスネットワークにおける位置場所情報を決定するシステムおよび方法を提供する。1つの実施形態では、タイミングオフセット情報は、複数の送信機と1つ以上の受信機との間で通信される。このような情報によって、ネットワーク全体にわたるタイミング差に対処する、正確な位置または場所の決定を行うことができる。別の実施形態では、受信機での潜在的なタイミング差に対処するために、送信機からの送信を前進または遅延させる送信機位相調整が行われる。この方法において、受信機ではさらにタイミング計算をせずに位置場所の決定を行うことができる。さらなる別の観点では、位置場所の計算または決定を容易にするように、ワイヤレスネットワークにおいてタイミングオフセット通信および/または送信機位相調整の組み合わせを用いることができる。
本出願において使用されているような、用語「コンポーネント」、「ネットワーク」、「システム」およびこれらに類似するものは、コンピュータ関連エンティティ、ハードウェア、ハードウェアとソフトウェアとを組み合わせたもの、ソフトウェア、または実行中のソフトウェアのいずれかを参照することに向けられている。例えば、コンポーネントは、プロセッサ上で実行するプロセス、プロセッサ、オブジェクト、実行ファイル、実行のスレッド、プログラムおよび/またはコンピュータであってもよいが、これらに限定されるものではない。実例によって、通信デバイス上で実行しているアプリケーションおよびデバイスの双方がコンポーネントであってもよい。1つ以上のコンポーネントは、実行のプロセスおよび/またはスレッド内に存在していてもよく、コンポーネントは、1つのコンピュータ上でローカライズおよび/または2つ以上のコンピュータ間に分散されてもよい。さらに、これらのコンポーネントは、記憶されたさまざまなデータ構造を有するさまざまなコンピュータ読取可能な媒体から実行することができる。コンポーネントは、1つ以上のデータパケット(例えば、ローカルシステム中で、分散システム中で、および/またはインターネットのようなワイヤまたはワイヤレスネットワークによって、別のコンポーネントと対話する1つのコンポーネントからのデータ)を有する信号にしたがうようなローカルおよび/またはリモートプロセスによって通信してもよい。
図1は、ワイヤレスネットワークポジショニングシステム100を図示している。システム100は1つ以上の送信機110を含み、送信機110は、ワイヤレスネットワーク全体にわたって1つ以上の受信機120と通信する。受信機120は、携帯電話機、コンピュータ、パーソナルアシスタント、ハンドヘルドまたはラップトップデバイス等のような、何らかのタイプの通信デバイスを実質的に含むことができる。システム100では、受信機120の位置または場所を決定することを容易にする1つ以上の位置場所コンポーネント130が使用されている。一般的に、ここで記述するさまざまな実施形態において、送信機110と受信機120との間のタイミング同期情報を調整して、受信機での正確な位置場所決定を容易にすることが必要であるかもしれない。1つのケースでは、タイミングオフセットコンポーネント140は、送信機110と受信機120との間で通信し、位置場所決定コンポーネントまたはアルゴリズムにおいて対処すべき、ワイヤレスネットワークにおけるタイミング差または調整を示すことができる。別のケースでは、位相調整コンポーネント150を送信機110で使用して、信号を前進または遅延させ、これはシステム100で生じるかもしれないタイミング不整合または差を補償する効果がある。他の実施形態では、タイミングオフセットコンポーネント140および/または位相調整コンポーネント150のさまざまな組み合わせを同時に使用して、ワイヤレスネットワークポジショニングシステム100中での位置場所決定を容易にすることができる。
一般的に、従来の位置場所技術は、衛星ベースのGPS信号の距離範囲測定に利用される。しかしながら、衛星ベースの信号が有する1つの問題は、衛星に対する見通線が得られない屋内環境でのように信号の利用可能性が欠如することである。一方、フォワードリンクオンリー(FLO)送信の高出力の性質によって、GPS信号が利用不可能である屋内環境においてFLO波形を利用することが容易になる。したがって、複数の送信機からFLO信号が利用可能であるとき、FLO信号からなされる測定値に基づいて位置特定する代替物が存在する。以下の説明では、FLO受信機は少なくとも3つの異なった(他の構成も可能な)FLO送信機からの信号にアクセスすることができるが、これらのFLO送信機は、同じ情報内容を送信してもよいし、送信しなくてもよいことを仮定する。
一般的に、FLOネットワークは、単一周波数ネットワーク(SFN)動作モードに対して配備され、そこでは送信機は共通クロック源に同期される。例えば、GPSからの1PPS信号からクロック源を取り出すことができる。FLO波形は、直交周波数分割多重化(OFDM)シグナリングに基づいている。そして、例えば、チャネルの遅延拡散が約135usよりも小さいという想定のもとで、FLO波形を設計することができる。複数の送信機110が受信機120に対して可視的であるときに、受信機によって認識される遅延拡散は、さまざまな送信機からの、受信機の相対位置の関数である。いくつかのケースでは、受信機120は、送信機110のうちの1つの近くにあり、また他の1つの送信機から遠く離れているので、結果的に、大きな遅延拡散となる可能性がある。結果的に生じる遅延拡散が135us(または他の基準)の設計仕様を超える場合、システム性能上に重大なペナルティをこうむる可能性がある。しかしながら、中央クロックからの同期化パルスに対してスーパフレーム境界を遅延または前進させることによって、ネットワークでのさまざまなポイントの受信機120によって認識される遅延拡散を制御することが可能である。したがって、最適化されたFLOネットワーク配置では、固定されたタイミングオフセットが異なる送信機110間で存在するとの仮定を現実的なものとすることができる。
FLOネットワークのSFN配置では、中央クロックに対して固定されたタイミングオフセットで動作するように送信機110を(したがって、互いに)調整して、受信機120において見られる遅延拡散が、したがってシステム性能が最適化されるだろう。対処されない場合、送信機における相対的なタイミングオフセットは、位置特定に対する距離範囲測定に悪影響を及ぼす可能性がある。しかしながら、移動ベースの位置特定およびネットワークベースの位置特定では、距離範囲計算を修正することによって送信機タイミングオフセットに対処することができる。これは、移動ベースの位置特定システム中で受信機120に対して送信機タイミングオフセット情報をFLOネットワークに提供させることや、送信タイミングおよび位相信号を調整することや、または信号調整とタイミングオフセットとを組み合わせたものを含むことができる。
図2は、位置決定のためにタイミングオフセットを使用する例示的なシステム200を図示している。この例では、210における送信機A、BおよびCは、FLO信号を搬送する3つの異なるFLO送信機とすることができ、FLO信号は、ある所定の時点で、受信機220の受信範囲内に存在する。さらに、da、dbおよびdcは、共通クロック源240に対する各送信機のタイミングオフセット230を指す。ここでは、正オフセットが、中央クロック240に対して送信を前進させることを指す一方で、負オフセットは、中央クロックに対して送信を遅延させることを指す。位相および周波数において、受信機クロックを共通クロック源240と同期させることを仮定することができる。
一般的に利用可能である無線FLOインターフェイス仕様によって、(ポジショニングパイロットチャネルとして知られている)送信機に特有なシンボルをそれぞれの送信機210が挿入することができる。受信機220が送信機210のそれぞれからの伝播遅延を推定できるように、これらのシンボルを設計することができる。弱いエネルギーとともに長い遅延拡散も有するチャネルでも依然として受信機220において検出することができるように、ポジショニングパイロットチャネルは、実質的に、それぞれの送信機に特有な1組のパイロットトーンであり、高処理利得で設計されている。送信機210から受信機220への著しい分散のない見通線伝播のケースでは、一般的に、ポジショニングパイロットによって得られるチャネル推定は、単一パスからなる。送信機210から受信機220の距離は、チャネル推定の際に、チャネルパスの場所に基づいて決定される。
システム例200における、送信機Aからのポジショニングパイロットチャネルの基づくチャネル推定では、τaを、単一パス(または、複数のパスのケースでは、最初に到達するパス)の場所とする。同様に、送信機BおよびCからのそれぞれのチャネル推定では、τbおよびτcを、最初に到達するパスの遅延とする。3つの送信機210とともに受信機220におけるクロックが周波数とともに位相で同期されている場合、チャネル推定によって測定された伝播遅延によって乗算された光の速度として、送信機からの受信機の距離が計算される。しかしながら、送信機210におけるタイミングオフセットの存在で、受信機220において測定された遅延は、送信機と受信機との間のタイミングオフセット230によって訂正されるべきである。したがって、送信機Aからの受信機の距離は、
Figure 2009510444
によって与えられ、ここで、cは、光の速度である。
同様に、
Figure 2009510444
である。3つの既知の場所からの受信機220の相対的な距離が決定される(このケースでは、既知の場所がFLO送信機である)とき、受信機の場所は、よく知られている方法である三角測量によって得ることができる。三角測量の方法は、それぞれ半径Sa、Sb、Scを有する3つの送信機A、BおよびCの周りに描かれた円の単一の交差点を実質的に決定することである。したがって、送信機210における相対的なタイミングオフセットのケースにおいて、タイミングオフセット値230に受信機220が気付いて、位置または場所を正確に決定すると有用であることが明らかである。
図3は、タイミング情報を通信する例示的な方法300を図示している。正しく認識できるように、タイミングオフセット情報300を受信機に送信するためのいくつかの実行可能な技術がある。GPSクロックまたは他の共通クロックのような共通中央クロックに対する、送信機のそれぞれのタイミングオフセットに受信機が気付いたら十分であることに留意すべきである。
310において、1つの実行可能な送信メカニズムでは、オーバーヘッドシンボルを使用して、タイミングオフセットについての情報を送信機がブロードキャストする。例えば、FLOシステムにおいて、所定のローカルエリア中のすべての送信機からのタイミング情報を、ローカルエリアOIS(オーバーヘッド情報シンボル)フィールド中に含むことができる。そして、ローカルエリアOISフィールドは、所定のローカルエリアに特有であるが、所定のワイドエリア中の異なるローカルエリア全体にわたって変化する。このようなアプローチの1つの効果は、送信機タイミング情報がローカライズされることである。その送信機からポジショニングパイロットチャネルを受信することができない送信機についての、受信機間のタイミングオフセット情報には利点は提供されないことに留意すべきである。一方で、ローカルOISフィールドは、ポジショニングパイロットチャネルよりも、カバレージの境界でいっそう干渉され易いかもしれない。結果として、受信機は、ポジショニングパイロットチャネルのデコーディングに成功することができるものの、ローカルOISチャネルからタイミング情報を得ることはできないかもしれない。このアプローチの1つの変形は、ワイドエリアOISにおいてタイミング情報を含むことであり、さらに幅広い地理的エリア(そしてしたがって有効帯域幅)にわたって送信機タイミングをブロードキャストするという犠牲をはらう、カバレージのエッジ問題を取り除く。
320において、タイミング情報を送信する別の実行可能な技術は、送信機タイミング情報をポジショニングパイロットチャネル(PPC)に埋め込むことである。このケースでは、受信機は、送信機からのPPCを使用して、所定の送信機からのチャネルを最初に推定し、そしてPPCに埋め込まれたタイミング情報をデコードすることができる。PPCの検出確率が、シンボルに埋め込まれた追加的な情報の存在下で影響されにくくするこのケースでは、PPCの処理利得を十分に増加させなければならないかもしれない。
330において、タイミング情報を送信する第3の実行可能な技術は、非リアルタイムMLC(移動体ロケーションセンター)として送信機の暦を定期的にブロードキャストして、受信機がこの特定の情報MLCをデコードすることを容易にすることである。340において、別の魅力的な技術は、図4に関して以下で説明するようにタイミングオフセットを考慮に入れることによりPPCシンボルに対する送信機波形を修正することによって、送信機におけるタイミングオフセット情報を軽減させる。
図4は、ワイヤレスポジショニングシステムにおいてタイミング情報を調整する例示的なシステム400を図示している。この例では、2つの送信機AおよびBを410で示している。システムにおいて可能性あるタイミング差に対処するために、420において、送信機410からの信号を前進または遅延させることができる。したがって、受信機430は、先に記述したように中央クロックからのオフセットを決定する必要なく、位置場所を決定することができるかもしれない。受信機430によって認識されるような有効チャネル遅延拡散を調整するために、420において送信機タイミングを前進または遅延させる概念がFLOシステムに取り入れられる。1つのケースにおいて、OFDMシステムでは、OFDM信号によって使用されるサイクリック・プレフィックスよりもチャネルの遅延拡散が小さい場合、送信信号とのチャネルの線形畳み込みを巡回畳み込みとして取り扱うことができる。
この例において、タイミングオフセットdaおよびdbを有する410における送信機AおよびBについて考える。τ’aを、送信機Aと受信機430との間の距離に基づく見通線伝播成分によって認識される実際の遅延とする。同様に、τ’bを、送信機Bから受信機430への見通線成分によって認識される実際の遅延とする。(送信機のそれぞれから1つの見通線成分を仮定して)遅延拡散τ’b−τ’aがサイクリック・プレフィックスを超えたときに、追加的な遅延daおよびdbが送信機において導入されることに留意すべきである。送信機における遅延daおよびdbにより、受信機で受信される信号は、
Figure 2009510444
によって与えられる。
ここで、ha(n)およびxa(n)は、送信機Aに対するチャネルおよび信号であり、*は線形畳み込み演算を表し、w(n)は受信機で追加されるノイズである。ワイドエリアネットワークにおけるトラフィックチャネルのケースでは、xa(n)およびxb(n)は、一般的に同一(すなわちx(n))である。
線形畳み込みのプロパティを使用すると、上記の数式を、
Figure 2009510444
として記すことができる。
認識されるチャネル遅延拡散は
Figure 2009510444
によって与えられるので、送信機においてタイミングオフセットを導入することによって制御することができる。有効な遅延拡散がサイクリック・プレフィックスよりも小さいときに、数式1中の受信信号は、線形畳み込みの代わりに巡回畳み込みとして記すことが可能である。したがって、
Figure 2009510444
ここでは、
Figure 2009510444
は、巡回畳み込みを示す。サイクリック・プレフィックスが十分長い場合、結果的に数式3となる数式1におけるdaだけ信号xa(n)を遅延させる演算は、数式3においてdaによるxa(n)の巡回回転によって実現することができる。
上記のケースに基づいて、以下では、規則的なトラフィックチャネルに対するパイロットポジショニングチャネルについて提案する。規則的なトラフィックチャネル中、使用されるサイクリック・プレフィックスは、一般的に、短い(FLOのケースでは512チップである)ので、チャネルの有効な遅延拡散を調整するために、数式3で説明した巡回シフト技術を使用することができない。したがって、各送信機からの送信は、サイクリック・プレフィックス要求を満たすために物理的に遅延される(この例では、送信機AおよびBはdaおよびdbだけ)であろう。一方、ポジショニングパイロットチャネルについては、遠く離れた弱い送信機からの遅延の推定を可能にするように、(FLO中の2500チップのオーダーの)ロングサイクリック・プレフィックスが使用されてもよい。さらに、トラフィックチャネルに対して送信機により導入された遅延daおよびdbは、ポジショニングパイロットチャネルで行われる遅延観察に影響を与えるので、先に説明したように、このオーバーヘッド情報が受信機において必要になる。
パイロットポジショニングチャネルに対するロングサイクリック・プレフィックスの利用可能性を想定すると、送信機は、ポジショニング信号の巡回シフトによって、実際の物理遅延daおよびdbの影響を取り消すことができる。xa,p(n)が送信機Aからの、タイミング遅延daを有する意図されたポジショニング信号である場合、送信機は、
Figure 2009510444
によって与えられる巡回的にシフトされたバージョンを送り出すことができる。同様に、送信機Bからの信号を巡回的にシフトさせる。ロングサイクリック・プレフィックスの存在のために、数式3は、依然として有効であり、したがって、
Figure 2009510444
であるので、送信機遅延情報を受信機に送り出す必要性を軽減する。この技術は、ネットワークプランニングの一部分として導入された遅延とともに、例えば、フィルタ、ケーブルおよび他のこのようなコンポーネントが原因で生じるかもしれない、他のタイミング遅延から結果的に生じる送信機タイミングオフセットに対処するために使用することができる。
別の実施形態に関して、上記の説明において、移動体受信機で距離範囲測定が計算されていることを仮定してもよい。しかしながら、タイミング情報をオフラインで利用できるネットワーク中で計算を行うことが可能である。このケースでは、受信機は、送信機タイミングオフセットを考慮せずに、擬似距離範囲S’a、S’b、およびS’cを測定することができ、ここでは、例えば、
Figure 2009510444
である。受信機が、擬似距離範囲S’aをネットワークに中継すると、ネットワークにおいて暦全体が利用可能になるので、タイミングオフセットによるさらなる訂正をネットワークにおいて容易に実行することができる。
図5は、ワイヤレスポジショニングシステム向けの例示的なネットワーク層500を図示している。フォワードリンクオンリー(FLO)無線インターフェイスプロトコル基準モデルを図5において示している。一般的に、FLO無線インターフェイス仕様は、層1(物理層)と層2(データリンク層)とを有するOSI6に対応するプロトコルおよびサービスをカバーしている。データリンク層は、2つのサブ層、すなわちメディアアクセス(MAC)サブ層とストリームサブ層とにさらに細分化される。上位層には、制御情報のコンテンツとフォーマッティング化とともに、マルチメディアコンテンツの圧縮と、マルチメディアに対するアクセス制御とを含めることができる。
FLO無線インターフェイス仕様は、一般的に、さまざまなアプリケーションおよびサービスのサポートにおける設計の柔軟性を実現するために、上位層を特定しない。状況を提供するためにこれらの層が示されている。ストリーム層は、上位層パケットをそれぞれの論理チャネルのストリームに結合する、1つの論理チャネルへの3つまでの上位層フローの多重を含み、パケット化と残留のエラー取り扱い機能とを提供する。メディアアクセス制御(MAC)層の機能は、物理層へのアクセス制御を含み、論理チャネルと物理チャネルとの間でマッピングを実行し、物理チャネルによる送信のために論理チャネルを多重化し、移動体デバイスで論理チャネルを多重分離化し、および/またはサービス品質(QOS)要求を強制する。物理層の機能は、フォワードリンクに対するチャネル構造を提供することと、周波数、変調およびエンコーディングの要求を規定することとを含む。
一般的に、FLO技術は、直交周波数分割多重化(OFDM)に利用される。また、これは、デジタルオーディオブロードキャスティング(DAB)7、衛星デジタルビデオブロードキャスティング(DAB−T)8、および衛星統合サービスデジタルブロードキャスティング(ISDB−T)9にも利用される。一般的に、OFDM技術は、高スペクトル効率を実現する一方で、広いセルSFNにおける可動性要求を効果的に満たすことができる。さらに、OFDMは、適切な長さのサイクリック・プレフィックス、すなわち、直交性を容易にして搬送波間干渉を軽減するために、(データシンボルの最後の部分のコピーである)シンボルの前に追加されるガードインターバルによって、複数の送信機からの長い遅延を取り扱うことができる。この間隔の長さが最大チャネル遅延より大きい限り、前のシンボルの反射は取り除かれて、直交性が保たれる。
図6に進むと、FLO物理層600が図示されている。FLO物理層は、(4096副搬送波のトランスフォームサイズを発生させる)4Kモードを使用し、かなり広いSFNセルに有用な十分に長いガードインターバルを保持しながら、8Kモードと比較して優れた移動体性能を提供する。最適化されたパイロットおよびインターリーバ構造設計によって、迅速なチャネル捕捉を実現することができる。FLO無線インターフェイスに組み込まれているインターリーブスキームは、時間ダイバーシティを容易にする。パイロット構造およびインターリーバ設計は、長い捕捉時間でユーザを困らせないようにチャネル利用を最適化する。600において図示されているように、一般的に、FLO送信される信号は、スーパフレームに組織化される。それぞれのスーパフレームは、4つのフレームのデータからなり、TDM(時間分割多重化)パイロットと、オーバーヘッド情報シンボル(OIS)と、ワイドエリアおよびローカルエリアデータを含むフレームとを含む。TDMパイロットは、OISの迅速な捕捉を可能にするために提供される。OISは、スーパフレームにおけるそれぞれのメディアサービスに対するデータの場所を記述する。
一般的に、割り振られた帯域幅のMHzあたり200のOFDMシンボル(6MHzで1200シンボル)からなり、それぞれのシンボルは、7つのインタレースアクティブ副搬送波を含む。それぞれのインタレースは、周波数的に均一に分散されるので、利用可能な帯域幅内で完全な周波数ダイバーシティを実現することができる。これらのインタレースは、使用される実際のインタレース数および持続期間の点で変化する論理チャネルに割り当てられる。これは、任意の所定のデータ源によって実現される時間ダイバーシティにおいて柔軟性を提供する。時間ダイバーシティを向上させるために、より低いデータレートチャネルに対してより少ないインタレースを割り当てることができるが、無線のオン時間を最小にして消費電力を減少させるために、より高いデータレートチャネルは、より多くのインタレースを利用する。
低および高データレートチャネルの双方に対する捕捉時間は、一般的に同じである。したがって、捕捉時間を損なわずに、周波数および時間ダイバーシティを維持することができる。FLO論理チャネルは、リアルタイム(ライブストリーミング)コンテンツを可変レートで搬送して、可変レートコデック(一体になった圧縮器および復元器)によって実行可能な統計的多重化利得を得るのに使用されることが多い。それぞれの論理チャネルは、異なるコーディングレートおよび変調を持ち、異なるアプリケーションに対する、さまざまな信頼性およびサービス品質に関する要求をサポートする。FLO多重化スキームによって、関心がある単一論理チャネルのコンテンツをデバイス受信機が復調して電力消費を最小にできるようになる。ビデオおよび関係するオーディオを異なるチャネル上で送ることができるように、移動体デバイスは複数の論理チャネルを同時に復調することができる。
エラー訂正およびコーディング技術も使用することができる。一般的に、FLOは、ターボインナコード13とリードソロモン(RS)アウタコード14とを組み込んでいる。一般的に、ターボコードパケットは、巡回冗長検査(CRC)を含む。正しく受信されたデータに対して計算する必要がないRSコードは良好な信号状態のもとで、結果的に、追加的な電力節約となる。別の観点は、FLO無線インターフェイスは、5、6、7および8MHzの周波数帯域幅をサポートするように設計されていることである。非常に望ましいサービス提供は、単一無線周波数チャネルで実現することができる。
図7は、ワイヤレスシステムのための位置および場所プロセス700を図示している。説明の簡略化の目的のために、方法論は一連のまたは多数の行為として示されて記述されているが、ここで示して記述したものと異なる順序でおよび/または他の行為と同時に、いくつかの行為は行われるかもしれないので、ここで記述したプロセスは行為の順序によって限定されないことを理解して正しく認識すべきである。例えば、状態図におけるように、一連の相互関係のある状態またはイベントとして方法論を代替的に提示できることを、当業者は理解して正しく認識するだろう。さらに、図示したすべての行為が、ここで開示した主題の方法論にしたがった方法論を実現するために必要であるとは限らない。
710に進むと、さまざまなタイミング訂正が決定される。これは、送信機、受信機および/または中央クロック源間のタイミング差を決定するために計算を行うことを含むことができる。このような差は、クロックとの差を訂正するために受信機で使用されてもよいタイミングオフセットを決定するために使用することができ、また、このような計算は、タイミング差に対処するために、送信機ブロードキャストをどのくらい前進または遅延させるかを決定するために使用することができる。テストデバイスを使用して、潜在的なシステム変更を監視することができ、ここで、オフセットの決定または送信機信号調整を容易にするために、このようなデバイスからフィードバックが受け取られる。720において、潜在的な受信機が位置または場所の計算をどのくらい調整しなければならないかを示すために、データパケットの一部分として、1つ以上の時間オフセットが送信される。代わりに、ワイヤレスネットワーク中における、中央クロックに関するタイミング差に対処するために、730において信号を前進または遅延させることができる。正しく認識できるように、720および730での双方のアプローチを同時に適用することができる。例えば、720において一定の時間オフセットを送信して、環境的または電気的状態の変化の際に730において前進または遅延に調整可能な信号を利用することが効果的であるかもしれない。これらの変化を監視することができ、また閉ループメカニズムを使用して、システム送信またはタイミングを自動的に調整することができる。別の観点では、潜在的に検出された変化に対処するために、720において動的に計算されて送信された定数および時間オフセットとして、送信タイミングにおける前進または遅延を適用することができる。
740において、訂正または調整された信号、ならびに/あるいは時間オフセットが受信される。先に述べたように、時間オフセットが受信されてもよく、クロックに対して調整された信号が受信されてもよく、また時間オフセットと調整された信号とを組み合わせたものが受信されてもよい。750において、時間オフセット、および/または位相調整された信号が、1つ以上の受信機における位置を決定するために利用される。クロックと基準源との間で生じるかもしれない差に対処する位置場所情報を自動的に計算するために、このような情報を使用することができる。例えば、時間オフセット、または位相調整された信号を屋内で受信して、受信機の位置を決定することができる。
図8は、ここで述べた1つ以上の観点にしたがったワイヤレス通信環境で使用されるユーザデバイス800の実例である。ユーザデバイス800は受信機802を具備し、受信機802は、例えば、(示されていない)受信アンテナから信号を受け取り、一般的な動作(例えば、フィルタリング、増幅、ダウンコンバート等)を受信信号に実行し、調整された信号をデジタル化してサンプルを得る。受信機802は、最大寿命(ML)−MMSE受信機またはこれに類するような非線形受信機であってもよい。チャネル推定のために、復調器804は、受信されたパイロットシンボルを復調して、プロセッサ806に提供することができる。前に記述したように、FLO信号を処理するために、FLOチャネルコンポーネント810が設けられている。これは、他のプロセスの中でとりわけデジタルストリーム処理および/またはポジショニング場所計算を含むことができる。プロセッサ806は、受信機802によって受信された情報を解析する、および/または送信機816による送信用の情報を発生させるのに専用のプロセッサとすることができ、ユーザデバイス800の1つ以上のコンポーネントを制御するプロセッサとすることができ、ならびに/あるいは受信機802によって受信された情報を解析し、送信機816による送信用の情報を発生させて、かつユーザデバイス800の1つ以上のコンポーネントを制御するプロセッサとすることができる。
また、ユーザデバイス800はメモリ808をさらに具備しており、メモリ808は、プロセッサ806に動作可能に結合されており、ユーザデバイス800に対して計算されたランクに関する情報と、ランク計算プロトコルと、それに関する情報を含むルックアップテーブルと、ここで記述されたようなワイヤレス通信システムにおける非線形受信機でランクを計算するためにリスト球面デコーディングをサポートするための他の何らかの適切な情報とを記憶する。ここで記述したように、ユーザデバイス800が、記憶されたプロトコルおよび/またはアルゴリズムを使用して、非線形受信機においてランク決定を実現することができるように、メモリ808は、さらに、ランク計算や、行列発生等に関係付けられたプロトコルを記憶することができる。
ここで記述したデータ記憶(例えば、メモリ)コンポーネントは、揮発性メモリまたは不揮発性メモリのいずれかであってもよく、または揮発性メモリおよび不揮発性メモリの双方を含んでもよいことを正しく認識すべきである。例示のために、そして限定ではなく、実例の方法によって、不揮発性メモリは、リードオンリーメモリ(ROM)、プログラム可能なROM(PROM)、電気的にプログラム可能なROM(EPROM)、電気的に消去可能なROM(EEPROM)、またはフラッシュメモリ(登録商標)を含むことができる。揮発性メモリは、ランダムアクセスメモリ(RAM)を含むことができ、これは外的キャシュメモリとして機能する。例示のために、そして限定ではなく、RAMは、シンクロナスRAM(SRAM)、ダイナミックRAM(DRAM)、シンクロナス型DRAM(SDRAM)、二重データレートSDRAM(DDR SDRAM)、拡張型SDRAM(ESDRAM)、シンクリンクRAM(SLDRAM)およびダイレクトラムバスDRAM(DRRAM)のような多くの形態で利用可能である。本件のシステムおよび方法のメモリ808は、これらの、および他の何らかの適切なタイプのメモリを具備することに向けられているが、これらに限定されていない。ユーザデバイス808は、FLOデータを処理するためのバックグラウンドモニタ814と、シンボル変調器814と、変調された信号を送信する送信機816とをさらに具備する。
図9は、例示的なシステム900を図示している。システム900は、複数の受信アンテナ906によって1つ以上のユーザデバイス904から信号を受信する受信機910と、送信アンテナ908によって1つ以上のユーザデバイス904に送信する送信機924とを備えた基地局902を具備する。受信機910は、受信アンテナ906から情報を受け取ることができ、受け取った情報を復調する復調器912と動作可能に関係している。復調されたシンボルは、図8について先に記述したプロセッサに類似しているプロセッサ914によって解析され、プロセッサ914はメモリ916に結合されている。メモリ916は、ユーザランクに関連する情報、それに関連するルックアップテーブル、および/またはここで述べたさまざまな動作および機能を実行することに関連する他の任意の適切な情報を記憶する。プロセッサ914は、さらにFLOチャネルコンポーネント918に結合されており、FLOチャネルコンポーネント918は、1つ以上の各ユーザデバイス904に関係するFLO情報の処理を容易にする。
変調器922は、送信アンテナ908を通してのユーザデバイス904への送信機924による送信用信号を多重化することができる。FLOチャネルコンポーネント918は、ユーザデバイス904と通信する所定の送信ストリーム用の更新されたデータストリームに関連する信号に対して情報を付加することができ、そして、新しい最適チャネルが識別されて肯定応答されたことの表示を提供するために、ユーザデバイス904に対してこの情報を送信することができる。この方法において、基地局902は、ユーザデバイス904と対話することができ、ユーザデバイス904は、FLO情報を提供し、ML−MIMO受信機等のような非線形受信機とともに、デコーディングプロトコルを使用する。
図10は、例示的なワイヤレス通信システム1000を示している。簡潔にするために、ワイヤレス通信システム1000は、1つの基地局および1つの端末を図示している。しかしながら、システムは1つより多い基地局および/または1つより多い端末を含むことができ、ここでは、追加的な基地局および/または端末は、以下で記述する例示的な基地局および端末に実質的に類似または相違してもよいことを正しく認識すべきである。
ここで図10を参照すると、ダウンリンク上では、アクセスポイント1015において、送信(TX)データプロセッサ1010が、トラフィックデータを受け取り、フォーマット化、コード化、インターリーブ、および変調(またはシンボルマッピング)して、変調シンボル(“データシンボル”)を提供する。シンボル変調器1015は、データシンボルおよびパイロットシンボルを受け取って処理し、シンボルのストリームを提供する。シンボル変調器1015は、データおよびパイロットシンボルを多重化して、これらを送信機ユニット(TMTR)1015に提供する。それぞれの送信シンボルは、データシンボル、パイロットシンボル、あるいはゼロの信号値であってもよい。パイロットシンボルは、それぞれのシンボル期間に連続して送られてもよい。パイロットシンボルは、周波数分割多重化(FDM)、直交周波数分割多重化(OFDM)、時間分割多重化(TDM)、周波数分割多重化(FDM)、あるいはコード分割多重化(CDM)であってもよい。
TMTR1020は、シンボルのストリームを受け取り、1つ以上のアナログ信号に変換して、アナログ信号をさらに調整(例えば、増幅、フィルタリング、および周波数アップコンバート)して、ワイヤレスチャネルに対して送信するのに適したダウンリンク信号を発生させる。次に、ダウンリンク信号は、アンテナ1025によって端末に送信される。端末1030では、アンテナ1035がダウンリンク信号を受信し、受信信号を受信機ユニット(RCVR)1040に提供する。受信機ユニット1040は、受信信号を調整(例えば、フィルタリング、増幅、および周波数ダウンコンバート)して、調整された信号をデジタル化して、サンプルを取得する。シンボル復調器1045は、受信されたパイロットシンボルを復調して、チャネル推定のためにプロセッサ1050に提供する。シンボル復調器1045は、プロセッサ1050からダウンリンクに対する周波数応答推定をさらに受け取り、受信されたデータシンボル上でデータ復調を実行して(送信されたデータシンボルの推定値である)データシンボル推定を取得し、RXデータプロセッサ1055にデータシンボル推定を提供して、RXデータプロセッサ1055は、データシンボル推定を復調(すなわち、シンボルデマッピング)し、デインターリーブしてデコードし、送信されたトラフィックデータを復元する。シンボル復調器1045およびRXデータプロセッサ1055による処理は、アクセスポイント1005におけるシンボル復調器1015およびTXデータデータプロセッサ1010によるプロセスに対して相補関係にある。
アップリンク上では、TXデータプロセッサ1060がトラフィックデータを処理してデータシンボルを提供する。シンボル変調器1065は、データシンボルを受け取ってパイロットシンボルと多重化し、変調を行い、シンボルのストリームを提供する。送信機ユニット1070は、シンボルのストリームを受け取って処理し、アップリンク信号を発生させる。アップリンク信号は、アンテナ1035によってアクセスポイント1005に送信される。
アクセスポイント1005では、端末1030からのアップリンク信号が、アンテナ1025によって受信され、受信機ユニット1075によって処理され、サンプルが取得される。シンボル復調器1080は、サンプルを処理し、受信されたパイロットシンボルおよびデータシンボル推定値をアップリンクに提供する。RXデータプロセッサ1085は、データシンボル推定値を処理して、送信機1030によって送信されたトラフィックデータを復元する。プロセッサ1090は、アップリンク上で送信する、それぞれのアクティブ端末に対するチャネル推定を行う。複数の端末が、各割り当てられた組のパイロット副帯域のアップリンク上でパイロットを同時に送信してもよく、ここで、パイロット副帯域の組がインタレースされてもよい。
プロセッサ1090および1050は、それぞれ、アクセスポイント1005および端末1030における動作を指示(例えば、制御、調整、管理、等)する。各プロセッサ1090および1050は、プログラムコードおよびデータを記憶する(示されていない)メモリユニットに関係付けることができる。プロセッサ1090および1050は、それぞれ、計算を行い、アップリンクおよびダウンリンクに対する周波数およびインパルス応答推定値を導出することができる。
多元接続システム(例えば、FDMA、OFDMA、CDMA、TDMA等)については、複数の端末がアップリンク上で同時に送信することができる。このようなシステムのために、パイロット副帯域が、異なる端末間で共有されてもよい。それぞれの端末に対するパイロット副帯域が動作帯域全体にわたる(おそらく、帯域境界は除く)ケースでは、チャネル推定技術を使用してもよい。このようなパイロット副帯域構成は、それぞれの端末に対して周波数ダイバーシティを得るには望ましい。ここで記述した技術は、さまざまな手段によって実現されてもよい。例えば、これらの技術は、ハードウェア、ソフトウェア、あるいはこれらを組み合わせたもので実現されてもよい。ハードウェア実現のために、1つ以上の特定用途向け集積回路(ASIC)、デジタル信号プロセッサ(DSP)、デジタル信号処理デバイス(DSPD)、プログラム可能ロジックデバイス(PLD)、フィールドプログラム可能ゲートアレイ(FPGA)、プロセッサ、制御装置、マイクロ制御装置、マイクロプロセッサ、ここで記述した機能を実行するように設計されている他の電子ユニット、あるいはこれらを組み合わせたもの内で、チャネル推定のために使用される処理ユニットを実現してもよい。ソフトウェアとともに、ここで記述した機能を実行するモジュール(例えば、手順、関数等)で実現されてもよい。ソフトウェアコードはメモリユニット中に記憶させて、プロセッサ1090および1050によって実行されてもよい。
ソフトウェアの実現のために、ここで記述した機能を実行するモジュール(例えば、手順、関数等)により、ここで記述した技術を実現してもよい。ソフトウェアコードはメモリユニット中に記憶させて、プロセッサによって実行してもよい。メモリユニットをプロセッサ内部またはプロセッサの外部で実現してもよく、どちらのケースにおいても、技術的に知られているさまざまな手段によって、プロセッサと通信可能にプロセッサと結合することができる。
上記に記述したことは、例示的な実施形態を含む。もちろん、実施形態を記述する目的のために、コンポーネントまたは方法のすべての考えられる組み合わせを記述することは当然不可能であるが、当業者は、さらなる多くの組み合わせ、および置換が可能であることを認識するかもしれない。したがって、これらの実施形態は、特許請求の範囲の精神および範囲内にあるすべてのこのような変更、修正およびバリエーションを含むことを意図しており、さらに、用語「含む」が詳細な説明または特許請求の範囲のいずれかで使用される限り、このような用語は、用語「具備する」が請求項中で移行語として使用されるときに解釈されるように用語「具備する」とある意味、類似して包括的であることが意図されている。
図1は、ワイヤレスネットワークポジショニングシステムを図示している概略ブロック図である。 図2は、位置場所決定のためのタイミングオフセット情報を使用する例示的なシステムである。 図3は、タイミングオフセット情報を送信するための例示的な技術を図示している。 図4は、ワイヤレスポジショニングシステム中でタイミング情報を調整するための例示的なシステムを図示している。 図5は、ワイヤレスポジショニングシステムの例示的なネットワーク層を図示している図である。 図6は、ワイヤレスポジショニングシステムの例示的なデータ構造および信号を図示している図である。 図7は、ワイヤレスポジショニングシステムの例示的なタイミングプロセスを図示している。 図8は、ワイヤレスシステム用の例示的なユーザデバイスを図示している図である。 図9は、ワイヤレスシステム用の例示的な基地局を図示している図である。 図10は、ワイヤレスシステム用の例示的な送信機を図示している図である。

Claims (98)

  1. ワイヤレスネットワークにおける位置情報を決定する方法において、
    共通クロックと少なくとも1つの他のクロックとの間の時間オフセット情報を決定することと、
    ワイヤレスネットワークにわたって少なくとも1つの受信機に時間オフセット情報を送信することと、
    時間オフセット情報に部分的に基づいて、受信機の位置を決定することとを含む方法。
  2. 共通クロックは、グローバルポジショニングシステム信号に基づいている請求項1記載の方法。
  3. セル電話機、コンピュータ、パーソナルアシスタント、またはラップトップデバイスに時間オフセット情報を通信することをさらに含む請求項1記載の方法。
  4. フォワードリンクオンリー(FLO)ネットワーク中でタイミングオフセット情報を送信することをさらに含む請求項1記載の方法。
  5. FLOネットワークは、単一周波数ネットワーク(SFN)動作モードに対して配備され、そこでは送信機は共通クロックに同期される請求項4記載の方法。
  6. FLOネットワーク中で約135usマイクロ秒の遅延拡散を使用することをさらに含む請求項4記載の方法。
  7. 共通クロックからの同期パルスに対して、スーパフレーム境界を遅延または前進させることによって遅延拡散を制御することをさらに含む請求項6記載の方法。
  8. 少なくとも2つの送信機間の固定されたタイミングオフセットを設定することをさらに含む請求項4記載の方法。
  9. FLOネットワークにおける共通クロックに対する送信の前進または遅延を示す、正または負のパラメータを送ることをさらに含む請求項4記載の方法。
  10. 位相および周波数に対して、少なくとも1つの受信機クロックを共通クロック源と同期させることをさらに含む請求項4記載の方法。
  11. 送信機に対する伝播遅延を推定するために、パイロットシンボルを使用することをさらに含む請求項4記載の方法。
  12. 三角測量方法によって、3つの既知の場所から受信機の相対距離を決定することをさらに含む請求項1記載の方法。
  13. ワイヤレスネットワークシステムにおけるオフセット情報を通信する方法において、
    ワイヤレスネットワークシステムにおける共通クロック源を考慮して受信機と送信機との間の少なくとも1つのタイミングオフセットを決定することと、
    時間オフセットを受信機に送信することと、
    時間オフセットに基づいて、受信機において位置を計算することとを含む方法。
  14. オーバーヘッドシンボルを使用して、タイミングオフセットをブロードキャストすることをさらに含む請求項13記載の方法。
  15. ローカルエリアオーバーヘッド情報シンボルフィールド中で、タイミングオフセットをブロードキャストすることをさらに含む請求項14記載の方法。
  16. ワイドエリアオーバーヘッド情報シンボルフィールド中で、タイミングオフセットをブロードキャストすることをさらに含む請求項14記載の方法。
  17. ポジショニングパイロットチャネル(PPC)にタイミングオフセットを埋め込むことをさらに含む請求項13記載の方法。
  18. PPCに対する利得パラメータを増加させることをさらに含む請求項17記載の方法。
  19. タイミングオフセットを有する送信機の暦をブロードキャストすることをさらに含む請求項13記載の方法。
  20. ワイヤレスポジショニングシステムにおいて、
    ワイヤレスネットワークにおける共通クロックと少なくとも1つの他のクロックとの間のタイミングオフセットを決定する手段と、
    ワイヤレスネットワークにおけるタイミングオフセットを送信する手段と、
    タイミングオフセットに少なくとも部分的に基づいて、デバイスの場所を決定する手段とを具備するシステム。
  21. 少なくとも1つの送信機と少なくとも1つの受信機との間のタイミング差を調整する手段をさらに具備する請求項20記載のシステム。
  22. データパケット中のタイミングオフセットをエンコーディングする手段をさらに具備する請求項20記載のシステム。
  23. ワイヤレスネットワークのコンポーネントを実行するために記憶されているコンピュータ実行可能な命令を有するコンピュータ読取り可能な媒体において、
    送信機クロックのうちのサブセットに対して、共通クロック間のタイミング差を決定することと、
    少なくとも1つの受信機にタイミング差を通信することと、
    送信機クロックのうちのサブセットと、決定されたタイミング差とに基づいて、受信機の場所を決定することとを含むコンピュータ読取可能な媒体。
  24. 送信機クロックのうちのサブセットによる三角測量技術を使用して、場所を決定することをさらに含む請求項23記載のコンピュータ読取可能な媒体。
  25. 少なくとも1つのスーパフレームパラメータを決定することをさらに含む請求項23記載のコンピュータ読取可能な媒体。
  26. ワイヤレスネットワークのコンポーネントを実行するために記憶されているデータ構造を有するコンピュータ読取可能な媒体において、
    送信機クロックのうちのサブセットに対して、共通クロック間のタイミングオフセットを決定することと、
    少なくとも1つのデータフィールド中にタイミングオフセットを記憶させることと
    データフィールド中のタイミングオフセットに基づいて、少なくとも1つのデバイスの場所を決定することとを含むコンピュータ読取可能な媒体。
  27. 物理層、ストリーム層、メディアアクセス層、および上位層のうちの少なくとも1つを有する層コンポーネントをさらに含む請求項26記載のコンピュータ読取可能な媒体。
  28. 物理層は、フレームフィールド、パイロットフィールド、オーバーヘッド情報フィールド、ワイドエリアフィールドおよびローカルエリアフィールドのうちの少なくとも1つをさらに含む請求項27記載のコンピュータ読取可能な媒体。
  29. エラー訂正フィールドをさらに含む請求項27記載のコンピュータ読取可能な媒体。
  30. タイミングオフセットを物理層の少なくとも1つのフィールドに埋め込むことをさらに含む請求項27記載のコンピュータ読取可能な媒体。
  31. ワイヤレス通信装置において、
    ワイヤレスネットワークを通して受信した時間オフセットパラメータから調整された時間ベースを決定するためのコンポーネントを含むメモリと、
    少なくとも1つのワイヤレス装置の場所を決定するために時間オフセットパラメータを考慮して、ローカルクロックと共通クロックとの間のタイミング差を決定するプロセッサとを含む装置。
  32. フォワードリンクオンリーデータストリームと、時間オフセットパラメータとをデコードするための1つ以上のコンポーネントをさらに具備する請求項31記載の装置。
  33. プロセッサは、層のグループ中の少なくとも1つの通信層を処理するために使用される請求項31記載の装置。
  34. ワイヤレスネットワーク中で基地局リソースを動作させる装置において、
    1組の送信機に対するタイミングオフセット決定する手段と
    タイミングオフセットを少なくとも1つの受信機に通信する手段と、
    受信機と連関し、タイミングオフセットに基づいて受信機の位置を決定する手段とを具備する装置。
  35. ワイヤレスネットワークにおける位置情報を調整する方法において、
    共通クロックと少なくとも1つの他のクロックとの間の時間差情報を決定することと、
    時間差情報を考慮して、少なくとも1つの送信機クロックの位相を調整することと、
    送信機クロックの調整された位相に部分的に基づいて、少なくとも1つの受信機の位置を決定することとを含む方法。
  36. ワイヤレスネットワークにおけるタイミング差に対処するために、前進または遅延される少なくとも2つの送信機から信号を発生させることをさらに含む請求項35記載の方法。
  37. フォワードリンクオンリーネットワークにおける送信機タイミングを前進または遅延させて、受信機によって認識されるような有効なチャネル遅延拡散を調節することをさらに含む請求項35記載の方法。
  38. 直交周波数分割多重化(OFDM)信号によって使用されるサイクリック・プレフィックスよりもチャネルの遅延拡散が小さい場合、巡回畳込として処理される送信信号とのチャネルの線形畳み込みを実行することをさらに含む請求項37記載の方法。
  39. aおよびdbとして示される少なくとも2つのタイミングオフセットを発生させることをさらに含む請求項35記載の方法。
  40. 第1の送信機Aと受信機との間の距離に基づく見通線伝播成分によって認識される実際の遅延である、第1のパラメータτ’aを決定することと、
    第2の送信機Bから受信機への見通線成分によって認識される実際の遅延である、第2のパラメータτ’bを決定することとをさらに含む請求項39記載の方法。
  41. 遅延拡散τ’b−τ’aがサイクリック・プレフィックスを超えたときに、第1および第2の送信機での追加的な遅延daおよびdbを処理することをさらに含む請求項40記載の方法。
  42. 数式
    Figure 2009510444
    を処理することをさらに含み、ここで、
    Figure 2009510444
    は、第1の送信機Aに対するチャネルおよび信号であり、*は、線形畳み込み演算を表し、w(n)は受信機で追加されるノイズである請求項41記載の方法。
  43. 数式
    Figure 2009510444
    を処理することをさらに含み、ここで、認識されるチャネル遅延拡散は、
    Figure 2009510444
    によって与えられ、送信機においてタイミングオフセットを導入することによって制御される請求項42記載の方法。
  44. 数式
    Figure 2009510444
    のように、有効遅延拡散がサイクリック・プレフィックスよりも小さいときに、巡回畳み込みを決定することをさらに含み、ここで、
    Figure 2009510444
    は、巡回畳み込みを示す請求項42記載の方法。
  45. サイクリック・プレフィックス要求を満たすために、送信機からの送信を遅延させることをさらに含む請求項44記載の方法。
  46. ロングサイクリック・プレフィックスを使用して、遠くにある弱い送信機からの遅延の推定を可能にすることをさらに含む請求項44記載の方法。
  47. ポジショニング信号の巡回シフトによる物理遅延の影響を取り消すことをさらに含み、xa,p(n)が送信機Aからの、タイミング遅延daを有する意図されたポジショニング信号である場合、送信機は、
    Figure 2009510444
    によって与えられる巡回的にシフトされたバージョンを送る請求項46記載の方法。
  48. 数式
    Figure 2009510444
    を処理し、送信機遅延情報を受信機に送ることを軽減することをさらに含む請求項47記載の方法。
  49. 送信機タイミング調整をオフラインネットワーク源から決定することをさらに含む請求項35記載の方法。
  50. 送信機のタイミングに対する擬似距離範囲を測定することをさらに含む請求項49記載の方法。
  51. 擬似距離範囲をネットワーク暦に中継することをさらに含む請求項50記載の方法。
  52. ワイヤレスネットワークにおける位置情報を調整するシステムにおいて、
    ワイヤレスネットワークにおける少なくとも2つの送信機と少なくとも1つの受信機との間のタイミング差を決定する手段と、
    タイミング差を考慮して、信号位相または信号周波数にしたがって送信機を調整する手段とを具備するシステム。
  53. 調整された信号位相または信号周波数を考慮して、受信機において位置を決定する手段をさらに具備する請求項52記載のシステム。
  54. ワイヤレスポジショニングネットワークのコンポーネントを実行させるために記憶されているコンピュータ実行可能な命令を有するコンピュータ読取可能な媒体において、
    送信機クロックのうちのサブセットに対して、共通クロック間のタイミング差を決定することと、
    決定されたタイミング差を考慮して、少なくとも1つの送信機クロックの位相または周波数を調整することとを含むコンピュータ読取可能な媒体。
  55. 調整された送信機の位相または周波数に基づいて、少なくとも1つの受信機の場所を決定することをさらに含む請求項54記載のコンピュータ読取可能な媒体。
  56. 送信機クロックのうちのサブセットによる三角測量技術を使用して、場所を決定することをさらに含む請求項54記載のコンピュータ読取可能な媒体。
  57. 少なくとも1つのフォワードリンクオンリーパラメータを決定することをさらに含む請求項54記載のコンピュータ読取可能な媒体。
  58. 物理層、ストリーム層、メディアアクセス層、および上位層のうちの少なくとも1つを有する層コンポーネントをさらに含む請求項54記載のコンピュータ読取可能な媒体。
  59. 物理層は、フレームフィールド、パイロットフィールド、オーバーヘッド情報フィールド、ワイドエリアフィールドおよびローカルエリアフィールドのうちの少なくとも1つをさらに含む請求項58記載のコンピュータ読取可能な媒体。
  60. エラー訂正フィールドをさらに含む請求項59記載のコンピュータ読取可能な媒体。
  61. ワイヤレス通信装置において、
    ワイヤレスネットワークを通して、受信機と送信機との間で調整された時間ベースを決定するためのコンポーネントを含むメモリと、
    少なくとも1つのワイヤレス装置の場所を決定するために、信号位相または周波数を調整するプロセッサとを具備する装置。
  62. ワイヤレス装置の場所を決定するためのコンポーネントをさらに具備する請求項61記載の装置。
  63. フォワードリンクオンリーデータストリームをデコードするための1つ以上のコンポーネントをさらに具備する請求項61記載の装置。
  64. ワイヤレスネットワーク中で基地局リソースを動作させる装置において、
    送信機のうちのサブセットと少なくとも1つの受信機とに対するタイミング差を決定する手段と、
    送信機のうちのサブセットにおける信号によって時間差を調整する手段と、
    受信機の位置を信号から決定する手段とを具備する装置。
  65. 前進または遅延させる少なくとも2つの送信機のサブセットから信号を発生させて、ワイヤレスネットワークにおけるタイミング差に対処する手段をさらに具備する請求項64記載の装置。
  66. 送信信号とのチャネルの線形畳み込みを計算する手段をさらに具備する請求項65記載の装置。
  67. ワイヤレスネットワークにおける位置情報を決定する方法において、
    共通クロックと少なくとも1つの他のクロックとの間の時間オフセット情報を決定することと、
    時間オフセット情報に部分的に基づいて、少なくとも1つの送信機クロックの位相または周波数を調整することと、
    時間オフセット情報または送信機クロックの調整された位相に部分的に基づいて、受信機の位置を決定することとを含む方法。
  68. 共通クロックは、グローバルポジショニングシステム信号に基づいている請求項67記載の方法。
  69. 時間オフセット情報を少なくも1つの受信機に通信することをさらに含む請求項67記載の方法。
  70. フォワードリンクオンリー(FLO)ネットワーク中でタイミングオフセット情報を送信することと、
    フォワードリンクオンリーネットワーク中で送信機タイミングを前進または遅延させて、受信機によって認識されるような有効チャネル遅延拡散を調整することとを含む請求項69記載の方法。
  71. FLOネットワークは、単一周波数ネットワーク(SFN)動作モードに対して配備され、そこでは送信機は共通クロック源に同期され、または、送信信号とのチャネルの線形畳み込みを実行する請求項70記載の方法。
  72. 少なくとも2つのタイミングオフセットを発生させることをさらに含む請求項67記載の方法。
  73. 共通クロックからの同期パルスに対して、信号を遅延または前進させることによって遅延拡散を制御することをさらに含む請求項72記載の方法。
  74. 少なくとも2つの送信機間で、固定されたタイミングオフセットを設定することをさらに含む請求項72記載の方法。
  75. サイクリック・プレフィックス要求を満たすために、共通クロックに対する送信の前進または遅延、あるいは送信機からの送信の遅延を示す正または負のパラメータを送ることをさらに含む請求項72記載の方法。
  76. ロングサイクリック・プレフィックスを使用して、遠くにある送信機からの遅延の推定を可能にすることをさらに含む請求項75記載の方法。
  77. 三角測量方法によって、3つの既知の場所からの受信機の相対距離を決定することをさらに含む請求項67記載の方法。
  78. ワイヤレスネットワークシステムにおける位置情報を決定する方法において、
    ワイヤレスネットワークシステムにおける共通のクロック源を考慮して、受信機と送信機との間の少なくとも1つのタイミングオフセットを決定することと、
    受信機に時間オフセットを受信機に送信すること、または共通クロック源を考慮して送信機において信号をシフトさせることと、
    時間オフセットまたはシフトされた信号に基づいて、受信機における位置を計算することとを含む方法。
  79. ローカルエリアオーバーヘッド情報シンボルフィールド、またはワイドエリアオーバーヘッド情報シンボルフィールド中のオーバーヘッドシンボルを使用して、タイミングオフセットをブロードキャストすることをさらに含む請求項78記載の方法。
  80. タイミングオフセットをポジショニングパイロットチャネル(PPC)に埋め込むことをさらに含む請求項78記載の方法。
  81. タイミングオフセットを有する送信機の暦をブロードキャストすること、または1つ以上の擬似距離範囲を送信機の暦に中継することをさらに含む請求項79記載の方法。
  82. ワイヤレスポジショニングシステムにおいて、
    ワイヤレスネットワークにおける共通クロックと少なくとも1つの他のクロックとの間のタイミングオフセットを決定する手段と、
    ワイヤレスネットワーク中でタイミングオフセットを送信する手段と、
    タイミングオフセットに部分的に基づいて、送信機信号位相または送信機信号周波数を変える手段とを具備するシステム。
  83. タイミングオフセット、送信機信号位相、または送信機信号周波数に少なくとも部分的に基づいて、デバイスに対する場所を決定する手段をさらに具備する請求項82記載のシステム。
  84. ワイヤレスポジショニングネットワークのコンポーネントを実行するために記憶されているコンピュータ実行可能な命令を有するコンピュータ読取り可能な媒体において、
    送信機クロックのうちのサブセットに対して共通クロック間のタイミング差を決定することと、
    タイミング差を少なくとも1つの受信機に通信することと、
    タイミング差に部分的に基づいて、送信機クロックを調整することとを含むコンピュータ読取り可能な媒体。
  85. 調整された送信機クロックまたは決定されたタイミング差に基づいて、受信機の場所を決定することをさらに含む請求項84記載のコンピュータ読取り可能な媒体。
  86. 送信機クロックのうちのサブセットによる三角測量技術を使用して、場所を決定することをさらに含む請求項84記載のコンピュータ読取可能な媒体。
  87. 送信機、受信機、またはグローバルポジショニングクロック源との間のタイミング差を決定する計算を実行するためのコンポーネントをさらに含む請求項84記載のコンピュータ読取可能な媒体。
  88. タイミング差に対処するために、送信機ブロードキャストをどれくらい前進または遅延させるかを決定するためのコンポーネントをさらに含む請求項87記載のコンピュータ読取可能な媒体。
  89. 潜在的なシステム変化を監視するために、1つ以上のテストデバイスを提供することをさらに含み、このデバイスでは、オフセットの決定または送信機信号調整を容易にするために、テストデバイスからフィードバックが受け取られる請求項84記載のコンピュータ読取可能な媒体。
  90. 一定時間オフセットを送信して、環境または電子状態が変化したときにタイミングを前進または遅延させる調整可能な信号源を利用するためのコンポーネントをさらに含む請求項84記載のコンピュータ読取可能な媒体。
  91. 閉ループメカニズムに基づいて、時間オフセットまたは信号タイミングを変化させることをさらに含む請求項90記載のコンピュータ読取可能な媒体。
  92. ワイヤレスポジショニングネットワークのコンポーネントを実行するために記憶されているデータ構造を有するコンピュータ読取可能な媒体において、
    送信機クロックのうちのサブセットに対する共通クロック間のタイミングオフセットを決定することと、
    少なくとも1つのデータフィールド中にタイミングオフセットを記憶させることと、
    データフィールド中のタイミングオフセットに部分的に基づいて、少なくとも1つのデバイスに対する送信機信号位相または周波数調整を決定することとを含むコンピュータ読取可能な媒体。
  93. 物理層、ストリーム層、メディアアクセス層、および上位層のうちの少なくとも1つを有する層コンポーネントをさらに含み、物理層は、フレームフィールド、パイロットフィールド、オーバーヘッド情報フィールド、ワイドエリアフィールド、およびローカルエリアフィールドのうちの少なくとも1つをさらに含む請求項92記載のコンピュータ読取可能な媒体。
  94. 少なくとも1つのワイヤレスデバイスの位置を決定するためのコンポーネントをさらに含む請求項93記載のコンピュータ読取可能な媒体。
  95. ワイヤレス通信装置において、
    ワイヤレスネットワークを通して受信した時間オフセットパラメータから時間ベースを決定するためのコンポーネントを含むメモリと、
    少なくとも1つの送信機から受信した時間オフセットパラメータに基づいて、信号または位相調整から、少なくとも1つの受信機の位置を決定するプロセッサとを具備する装置。
  96. フォワードリンクオンリーデータストリーム、時間オフセットパラメータ、または調整された送信機信号をデコードするための1つ以上のコンポーネントをさらに具備する請求項95記載の装置。
  97. ワイヤレスポジショニングネットワーク中で基地局リソースを動作させる装置において、
    1組の送信機に対するタイミングオフセットを決定する手段と、
    タイミングオフセットを少なくとも1つの受信機に通信する手段と、
    タイミングオフセットから考慮して、1組の送信機に対する信号位相または信号周波数を調整する手段とを具備する装置。
  98. タイミングオフセットに、または調整された信号位相および信号周波数に基づいて、受信機と連関して、受信機の位置を決定する手段をさらに具備する請求項97記載の装置。
JP2008533541A 2005-09-27 2006-09-26 タイミングオフセットを有する送信機を用いた位置特定 Pending JP2009510444A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US72150505P 2005-09-27 2005-09-27
US11/327,536 US20070072621A1 (en) 2005-09-27 2006-01-05 Position location using transmitters with timing offset
PCT/US2006/037561 WO2007038550A1 (en) 2005-09-27 2006-09-26 Position location using transmitters with timing offset

Publications (1)

Publication Number Publication Date
JP2009510444A true JP2009510444A (ja) 2009-03-12

Family

ID=37684037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008533541A Pending JP2009510444A (ja) 2005-09-27 2006-09-26 タイミングオフセットを有する送信機を用いた位置特定

Country Status (9)

Country Link
US (1) US20070072621A1 (ja)
EP (1) EP1938649A1 (ja)
JP (1) JP2009510444A (ja)
KR (2) KR20080066725A (ja)
BR (1) BRPI0616427A2 (ja)
CA (1) CA2623724A1 (ja)
RU (1) RU2008116600A (ja)
TW (1) TWI333355B (ja)
WO (1) WO2007038550A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271183A (ja) * 2009-05-21 2010-12-02 Gnss Technologies Inc 屋内送信機、位置情報提供システム、情報管理装置、および、コンピュータを情報管理装置として機能させるためのプログラム

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126536B2 (en) * 2001-02-02 2006-10-24 Rosum Corporation Position location using terrestrial digital video broadcast television signals
US7813383B2 (en) * 2005-03-10 2010-10-12 Qualcomm Incorporated Method for transmission of time division multiplexed pilot symbols to aid channel estimation, time synchronization, and AGC bootstrapping in a multicast wireless system
US9354297B2 (en) 2005-09-27 2016-05-31 Qualcomm Incorporated Position location using phase-adjusted transmitters
US8981996B2 (en) 2005-09-27 2015-03-17 Qualcomm Incorporated Position location using transmitters with timing offset and phase adjustment
US20070177492A1 (en) * 2006-01-27 2007-08-02 Qualcomm Incorporated Methods and tools for expanding coverage of an ofdm broadcast transmitter via transmit timing advance
US7782806B2 (en) * 2006-03-09 2010-08-24 Qualcomm Incorporated Timing synchronization and channel estimation at a transition between local and wide area waveforms using a designated TDM pilot
US7844280B2 (en) * 2006-12-12 2010-11-30 Trueposition, Inc. Location of wideband OFDM transmitters with limited receiver bandwidth
US7797000B2 (en) * 2006-12-01 2010-09-14 Trueposition, Inc. System for automatically determining cell transmitter parameters to facilitate the location of wireless devices
JP4672063B2 (ja) * 2007-01-09 2011-04-20 株式会社エヌ・ティ・ティ・ドコモ 移動局、通信制御方法及び移動通信システム
IL181399A0 (en) * 2007-02-18 2007-07-04 Zion Hadad Dr Wimax communication system and method
US20080261623A1 (en) * 2007-04-18 2008-10-23 Kamran Etemad Techniques to enhance location estimation in an ofdma based system
US8050690B2 (en) 2007-08-14 2011-11-01 Mpanion, Inc. Location based presence and privacy management
US8489111B2 (en) 2007-08-14 2013-07-16 Mpanion, Inc. Real-time location and presence using a push-location client and server
US8583079B2 (en) 2007-08-14 2013-11-12 Mpanion, Inc. Rich presence status based on location, activity, availability and transit status of a user
US8588087B2 (en) * 2008-01-29 2013-11-19 Alcatel Lucent Method for positioning mobile devices and apparatus for positioning mobile devices
ES2616514T3 (es) * 2008-04-01 2017-06-13 Telefonaktiebolaget L M Ericsson (Publ) Tiempo de activación para cambio de celda de servicio de alta velocidad basado en destino
US20090296866A1 (en) * 2008-06-03 2009-12-03 Hsiang-Tsuen Hsieh Efficient mechanisms for local cluster network synchonization
WO2010038998A2 (en) * 2008-10-01 2010-04-08 Electronics And Telecommunications Research Institute Apparatus and method for determining position
CN102273283B (zh) 2009-01-05 2014-06-11 富士通株式会社 通信装置、移动台以及通信控制方法
TWI499792B (zh) * 2009-01-21 2015-09-11 Univ Nat Taiwan 以行動裝置結合定位技術之資料處理系統與方法
KR101476205B1 (ko) * 2009-03-17 2014-12-24 엘지전자 주식회사 무선 통신 시스템에서 위치 기반 서비스를 위한 참조 신호 송신 방법 및 이를 위한 장치
JP5706750B2 (ja) * 2011-04-15 2015-04-22 京セラ株式会社 携帯通信端末およびプログラム
KR20130085855A (ko) * 2012-01-20 2013-07-30 한국전자통신연구원 셀룰러 시스템에서 매크로 다이버시티 이득을 위한 동적 mbs 영역 구성 장치 및 방법
US9859993B2 (en) 2012-09-30 2018-01-02 Intel Corporation Apparatus, system and method of communicating filter information
EP2904832B1 (en) * 2012-10-04 2018-08-22 Telefonaktiebolaget LM Ericsson (publ) A node and method for uplink detection with an assigned uplink physical layer identity
TWI479853B (zh) * 2012-12-12 2015-04-01 Mstar Semiconductor Inc 訊號處理裝置與訊號處理方法
US11394248B2 (en) 2018-11-30 2022-07-19 Ossia Inc. Distributed wireless power transmission system
US11528176B2 (en) * 2019-09-13 2022-12-13 Samsung Electronics Co., Ltd Apparatus and method for symbol time recovery using feedback loop
US11677480B2 (en) * 2021-04-13 2023-06-13 Samsung Electronics Co., Ltd. Systems, methods, and apparatus for symbol timing recovery based on machine learning

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002027533A (ja) * 2000-07-10 2002-01-25 Hitachi Ltd Cdma方式の携帯電話システムを用いた位置測定サービス提供方法、位置測定方法、位置測定システム
JP2002031675A (ja) * 2000-07-17 2002-01-31 Hitachi Ltd 無線通信基地局、無線位置測定システム、送信タイミング測定装置ならびに位置測定センタ装置
JP2004109139A (ja) * 2001-02-02 2004-04-08 Rosum Corp 放送デジタルテレビジョン信号を使用する位置確認
JP2004208274A (ja) * 2001-02-02 2004-07-22 Rosum Corp 放送用デジタルテレビジョン信号を使用する位置確認に基づいたサービス
JP2004279409A (ja) * 2003-02-28 2004-10-07 Seiko Epson Corp 測位システム
WO2005043829A2 (en) * 2003-10-24 2005-05-12 Qualcomm Incorporated Local and wide-area transmissions in a wireless broadcast network
WO2005047922A1 (en) * 2003-11-07 2005-05-26 Global Locate, Inc. Method and apparatus for managing time in a satellite positioning system
WO2005074217A1 (en) * 2004-01-28 2005-08-11 Qualcomm Incorporated Time filtering for excess delay mitigation in ofdm systems

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499032A (en) * 1992-12-22 1996-03-12 Terrapin Corporation Navigation and positioning system and method using uncoordinated beacon signals
US6850734B1 (en) * 1994-12-23 2005-02-01 Itt Manufacturing Enterprises, Inc. Position enhanced communication system including system for embedding CDMA navigation beacons under the communications signals of a wireless communication system
US5638379A (en) * 1995-06-06 1997-06-10 Symmetricom, Inc. Encoding system for distribution of synchronization
US6522890B2 (en) * 1995-12-22 2003-02-18 Cambridge Positioning Systems, Ltd. Location and tracking system
JP2954070B2 (ja) * 1997-03-26 1999-09-27 日本電気アイシーマイコンシステム株式会社 デジタルpll回路
US6597914B1 (en) * 1997-05-09 2003-07-22 Nokia Corporation Method for determining timing differences between radio transmitters and a radio network incorporating the same
US6054950A (en) * 1998-01-26 2000-04-25 Multispectral Solutions, Inc. Ultra wideband precision geolocation system
EP1074100A1 (en) * 1998-04-24 2001-02-07 Telefonaktiebolaget Lm Ericsson Absolute time synchronization for mobile positioning in a cellular communications system
US6731622B1 (en) * 1998-05-01 2004-05-04 Telefonaktiebolaget Lm Ericsson (Publ) Multipath propagation delay determining means using periodically inserted pilot symbols
US6266367B1 (en) * 1998-05-28 2001-07-24 3Com Corporation Combined echo canceller and time domain equalizer
US6785553B2 (en) * 1998-12-10 2004-08-31 The Directv Group, Inc. Position location of multiple transponding platforms and users using two-way ranging as a calibration reference for GPS
US6721299B1 (en) * 1999-03-15 2004-04-13 Lg Information & Communications, Ltd. Pilot signals for synchronization and/or channel estimation
US7496132B2 (en) * 1999-03-15 2009-02-24 Kg Electronics Inc. Pilot signals for synchronization and/or channel estimation
US6377632B1 (en) * 2000-01-24 2002-04-23 Iospan Wireless, Inc. Wireless communication system and method using stochastic space-time/frequency division multiplexing
US7183942B2 (en) * 2000-01-26 2007-02-27 Origin Technologies Limited Speed trap detection and warning system
US6590524B1 (en) * 2000-05-10 2003-07-08 Rockwell Collins, Inc. Method and means for precise time synchronization
JP3462471B2 (ja) * 2001-01-19 2003-11-05 株式会社日立製作所 無線基地局の送信タイミングのオフセット測定方法及びオフセット測定装置
US6753812B2 (en) * 2001-02-02 2004-06-22 Rosum Corporation Time-gated delay lock loop tracking of digital television signals
US6861984B2 (en) * 2001-02-02 2005-03-01 Rosum Corporation Position location using broadcast digital television signals
US6952182B2 (en) * 2001-08-17 2005-10-04 The Rosom Corporation Position location using integrated services digital broadcasting—terrestrial (ISDB-T) broadcast television signals
US7962162B2 (en) * 2001-08-07 2011-06-14 At&T Intellectual Property Ii, L.P. Simulcasting OFDM system having mobile station location identification
US6882315B2 (en) * 2001-10-18 2005-04-19 Multispectral Solutions, Inc. Object location system and method
US6856282B2 (en) * 2002-02-08 2005-02-15 Qualcomm Incorporated Directly acquiring precision code GPS signals
US7418240B2 (en) * 2002-05-03 2008-08-26 Broadcom Corporation Dynamic adaptation of impaired RF communication channels in a communication system
US7551546B2 (en) * 2002-06-27 2009-06-23 Nortel Networks Limited Dual-mode shared OFDM methods/transmitters, receivers and systems
US20040081131A1 (en) * 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US7756002B2 (en) * 2003-01-30 2010-07-13 Texas Instruments Incorporated Time-frequency interleaved orthogonal frequency division multiplexing ultra wide band physical layer
US7307666B2 (en) * 2003-01-30 2007-12-11 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through The Communications Research Centre Canada Transmitter identification system
US7307665B2 (en) * 2003-02-24 2007-12-11 Rosum Corporation Method and system for generating reference signals with improved correlation characteristics for accurate time of arrival or position determination
US8599764B2 (en) * 2003-09-02 2013-12-03 Qualcomm Incorporated Transmission of overhead information for reception of multiple data streams
US7440762B2 (en) * 2003-12-30 2008-10-21 Trueposition, Inc. TDOA/GPS hybrid wireless location system
US7339999B2 (en) * 2004-01-21 2008-03-04 Qualcomm Incorporated Pilot transmission and channel estimation for an OFDM system with excess delay spread
US7668199B2 (en) * 2004-06-17 2010-02-23 Texas Instruments Incorporated Methods and systems for communicating using transmitted symbols associated with multiple time durations
US7684753B2 (en) * 2004-07-21 2010-03-23 Nokia Corporation Method and device for transmission parameter selection in mobile communications
US7339526B2 (en) * 2004-07-30 2008-03-04 Novariant, Inc. Synchronizing ranging signals in an asynchronous ranging or position system
US7643595B2 (en) * 2004-09-13 2010-01-05 Nortel Networks Limited Method and apparatus for synchronizing clock timing between network elements
US7564775B2 (en) * 2005-04-29 2009-07-21 Qualcomm, Incorporated Timing control in orthogonal frequency division multiplex systems based on effective signal-to-noise ratio

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002027533A (ja) * 2000-07-10 2002-01-25 Hitachi Ltd Cdma方式の携帯電話システムを用いた位置測定サービス提供方法、位置測定方法、位置測定システム
JP2002031675A (ja) * 2000-07-17 2002-01-31 Hitachi Ltd 無線通信基地局、無線位置測定システム、送信タイミング測定装置ならびに位置測定センタ装置
JP2004109139A (ja) * 2001-02-02 2004-04-08 Rosum Corp 放送デジタルテレビジョン信号を使用する位置確認
JP2004208274A (ja) * 2001-02-02 2004-07-22 Rosum Corp 放送用デジタルテレビジョン信号を使用する位置確認に基づいたサービス
JP2004279409A (ja) * 2003-02-28 2004-10-07 Seiko Epson Corp 測位システム
WO2005043829A2 (en) * 2003-10-24 2005-05-12 Qualcomm Incorporated Local and wide-area transmissions in a wireless broadcast network
WO2005047922A1 (en) * 2003-11-07 2005-05-26 Global Locate, Inc. Method and apparatus for managing time in a satellite positioning system
WO2005074217A1 (en) * 2004-01-28 2005-08-11 Qualcomm Incorporated Time filtering for excess delay mitigation in ofdm systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271183A (ja) * 2009-05-21 2010-12-02 Gnss Technologies Inc 屋内送信機、位置情報提供システム、情報管理装置、および、コンピュータを情報管理装置として機能させるためのプログラム

Also Published As

Publication number Publication date
TW200723764A (en) 2007-06-16
US20070072621A1 (en) 2007-03-29
BRPI0616427A2 (pt) 2011-06-21
EP1938649A1 (en) 2008-07-02
TWI333355B (en) 2010-11-11
KR20080066725A (ko) 2008-07-16
CA2623724A1 (en) 2007-04-05
RU2008116600A (ru) 2009-11-10
WO2007038550A1 (en) 2007-04-05
KR20100133026A (ko) 2010-12-20

Similar Documents

Publication Publication Date Title
JP4927850B2 (ja) タイミングオフセットを有する送信機を用いた位置特定
JP2009510444A (ja) タイミングオフセットを有する送信機を用いた位置特定
JP5749286B2 (ja) 位相調整された送信器を用いる位置特定
JP4990916B2 (ja) 送信タイミングを進めることによって、ofdmブロードキャスト送信機の有効範囲を拡張する方法およびツール
CN101310555B (zh) 使用具有定时偏移及相位调整的发射机的位置定位
RU2411680C2 (ru) Способы и инструментальные средства для расширения охвата передатчика широковещания системы ofdm через сдвиг с опережением синхронизации передачи
MX2008004044A (en) Position location using transmitters with timing offset and phase adjustment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213