JP2009504967A - Gas turbine operating method and gas turbine according to this operating method - Google Patents

Gas turbine operating method and gas turbine according to this operating method Download PDF

Info

Publication number
JP2009504967A
JP2009504967A JP2008525566A JP2008525566A JP2009504967A JP 2009504967 A JP2009504967 A JP 2009504967A JP 2008525566 A JP2008525566 A JP 2008525566A JP 2008525566 A JP2008525566 A JP 2008525566A JP 2009504967 A JP2009504967 A JP 2009504967A
Authority
JP
Japan
Prior art keywords
gas
turbine
gas turbine
combustor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008525566A
Other languages
Japanese (ja)
Inventor
ベンツ・エリベルト
ヴィルズム・マンフレート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of JP2009504967A publication Critical patent/JP2009504967A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/003Gas-turbine plants with heaters between turbine stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

【課題】効率を高めるとともにコストを抑えることが可能な、石炭ガス化複合発電プラントに統合させたガスタービンの作動方法と、この作動方法によるガスタービンを提供すること。
【解決手段】石炭ガス化によって得られる合成ガスによるガスタービン11の作動方法において、第1及び第2の燃焼器18,19並びに第1及び第2のタービン16,17を設けてガスタービン11を二段燃焼再燃方式として構成し、合成ガスを第1の燃焼器18内に直接導入して該第1の燃焼器18内で圧縮空気と合成ガスを混合して燃焼させる。さらに、この際発生する高温ガスを第1のタービン16で膨張させ、第2の燃焼器19内で第1のタービン16の出口からのガスを合成ガスと混合してこれを燃焼させるとともに、この際発生する高温ガスを第2のタービン17で膨張させる。
A method of operating a gas turbine integrated in a coal gasification combined power plant capable of increasing efficiency and reducing costs, and a gas turbine according to this method of operation are provided.
In a method of operating a gas turbine 11 using synthesis gas obtained by coal gasification, first and second combustors 18 and 19 and first and second turbines 16 and 17 are provided, and the gas turbine 11 is provided. It is configured as a two-stage combustion reburning method, and the synthesis gas is directly introduced into the first combustor 18 and the compressed air and the synthesis gas are mixed and burned in the first combustor 18. Further, the hot gas generated at this time is expanded by the first turbine 16, and the gas from the outlet of the first turbine 16 is mixed with the synthesis gas in the second combustor 19 to burn it, and this The hot gas generated at this time is expanded by the second turbine 17.

Description

本発明は、発電プラント技術の分野に属し、請求項1の上位概念に係る(内燃型)ガスタービンの作動方法及び請求項6の上位概念に係るガスタービンに関するものである。   The present invention belongs to the field of power plant technology, and relates to a method for operating a (internal combustion) gas turbine according to the superordinate concept of claim 1 and a gas turbine according to the superordinate concept of claim 6.

従来から、二段燃焼再燃方式のサイクル(再熱サイクル)を有し、フレキシブルな作動と低い排ガス放出値を達成するガスタービンが知られている(例えば特許文献1、非特許文献1)。   Conventionally, a gas turbine having a two-stage combustion recombustion cycle (reheat cycle) and achieving a flexible operation and a low exhaust gas emission value is known (for example, Patent Document 1 and Non-Patent Document 1).

GT26型ガスタービンの構造は、固有のものであるとともに、本発明が対象とするコンセプトを達成するのに優れている。その理由として、
1)中圧レベルの圧縮空気を分岐する構造を有している点
2)連続的な燃焼により燃焼の安定性が得られるとともに酸素過多を防止することが可能である点
3)圧縮機からの圧縮空気を分岐させるとともに冷却し、この冷却された空気を燃焼器及びタービンの冷却に使用する二次空冷システムを備えている点
が挙げられる。
The structure of the GT26 gas turbine is unique and excellent in achieving the concept targeted by the present invention. The reason is
1) It has a structure that branches compressed air at medium pressure level 2) It is possible to obtain combustion stability by continuous combustion and to prevent excessive oxygen 3) From the compressor It includes a secondary air cooling system that diverts and cools the compressed air and uses the cooled air to cool the combustor and turbine.

しかして、従来の二段燃焼再燃方式のガスタービンの概要が図1に示されており、複合発電プラント10の一部を構成するガスタービン11は、互いに前後して配置された低圧圧縮機13及び高圧圧縮機14、高圧燃焼器18、低圧燃焼器19、高圧タービン16、低圧タービン17並びにこれらに共通の軸15を含んで構成されている。なお、軸15により発電機12が駆動される。   Thus, an outline of a conventional two-stage combustion reburning type gas turbine is shown in FIG. 1, and a gas turbine 11 constituting a part of the combined power plant 10 includes a low-pressure compressor 13 disposed in front of and behind each other. The high-pressure compressor 14, the high-pressure combustor 18, the low-pressure combustor 19, the high-pressure turbine 16, the low-pressure turbine 17, and the common shaft 15 are configured. The generator 12 is driven by the shaft 15.

ここで、このガスタービンの動作を説明すると、まず、空気が空気導入配管20を通って低圧圧縮機13へ吸入され、ここで中圧レベル(約20bar)まで圧縮される。次に、この中圧レベルの圧縮空気は、高圧圧縮機14によって更に圧縮され、高圧レベル(約32bar)まで圧縮される。この際、冷却用の空気が中圧レベル段階及び高圧レベル段階において分岐され、それぞれ第1の冷却器(OTC冷却器、OTC:Once Through Cooler)23及び第2の冷却器(OTC冷却器)24で冷却された後、それぞれ第1の冷却空気配管26及び第2の冷却空気配管25を通って高圧燃焼器18、低圧燃焼器19、高圧タービン16及び低圧タービン17へ導入されてこれらの冷却に使用される。   Here, the operation of the gas turbine will be described. First, air is sucked into the low-pressure compressor 13 through the air introduction pipe 20, and is compressed to an intermediate pressure level (about 20 bar). This medium pressure level of compressed air is then further compressed by the high pressure compressor 14 and compressed to a high pressure level (about 32 bar). At this time, the cooling air is branched in the intermediate pressure level stage and the high pressure level stage, and a first cooler (OTC cooler, OTC: Once Through Cooler) 23 and a second cooler (OTC cooler) 24 are respectively obtained. After being cooled at the same time, they are introduced into the high-pressure combustor 18, the low-pressure combustor 19, the high-pressure turbine 16 and the low-pressure turbine 17 through the first cooling air pipe 26 and the second cooling air pipe 25, respectively. used.

そして、高圧圧縮機14の出口における冷却空気以外の圧縮空気は、高圧燃焼器18へ導入され、第1の燃料供給配管21から供給される燃料の燃焼により高温ガスとなる。この高温ガスは、後流側の高圧タービン16で膨張し、仕事をする。仕事をして圧力の下がったガスは、低圧タービン17に導入される前に、更に低圧燃焼器19において第2の燃料供給配管22から供給される燃料の燃焼によって再び高温ガスとなる。   The compressed air other than the cooling air at the outlet of the high-pressure compressor 14 is introduced into the high-pressure combustor 18 and becomes high-temperature gas by the combustion of the fuel supplied from the first fuel supply pipe 21. This hot gas expands and works in the high pressure turbine 16 on the wake side. The gas that has been reduced in pressure through work becomes high-temperature gas again by combustion of fuel supplied from the second fuel supply pipe 22 in the low-pressure combustor 19 before being introduced into the low-pressure turbine 17.

ところで、第1及び第2の冷却空気配管26,25を通過した冷却空気は高圧燃焼器18、低圧燃焼器19、高圧タービン16及び低圧タービン17の適当な箇所に噴射され、これら高圧燃焼器18、低圧燃焼器19、高圧タービン16及び低圧タービン17が異常な高温とならないようになっている。また、低圧タービン17から排出されたガスは排熱回収ボイラ(HRSG、HRSG:Heat Recovery Steam Generator)27へ導入され、ここで蒸気が発生し、この蒸気は、復水サイクル内における蒸気タービン29で仕事をする。低圧タービン17から排出された上記ガスは、排熱回収ボイラ27を通過した後、最終的には排気路28から外部へ放出される。なお、第1及び第2の冷却器23,24は復水サイクルの一部を構成しており、これら第1及び第2の冷却器23,24の出口では、過熱蒸気が生成されるようになっている。   By the way, the cooling air that has passed through the first and second cooling air pipes 26, 25 is injected into appropriate portions of the high-pressure combustor 18, the low-pressure combustor 19, the high-pressure turbine 16, and the low-pressure turbine 17. The low-pressure combustor 19, the high-pressure turbine 16, and the low-pressure turbine 17 are prevented from becoming abnormally high temperatures. Further, the gas discharged from the low-pressure turbine 17 is introduced into a heat recovery steam generator (HRSG, HRSG) 27 where steam is generated, and this steam is generated by the steam turbine 29 in the condensate cycle. I do the work. The gas discharged from the low-pressure turbine 17 passes through the exhaust heat recovery boiler 27 and is finally discharged to the outside from the exhaust path 28. The first and second coolers 23 and 24 form part of the condensate cycle, and superheated steam is generated at the outlets of the first and second coolers 23 and 24. It has become.

また、高圧燃焼器18及び低圧燃焼器19での互いに独立した燃焼によって、ガスタービンの作動が非常にフレキシブルとなる。すなわち、燃焼器内の温度をその限界温度内における最大効率を得ることが可能である。そして、連続的な二段燃焼再燃方式によれば、有害ガスの放出の低減を図ることが可能である(所定の条件においては、再燃時にNOXを消費させることも可能である。)。 Also, the combustion of the gas turbine is very flexible due to the independent combustion in the high pressure combustor 18 and the low pressure combustor 19. That is, it is possible to obtain the maximum efficiency within the limit temperature of the temperature in the combustor. Further, according to the continuous two-stage combustion reburning method, it is possible to reduce the emission of harmful gas (in a predetermined condition, it is possible to consume NO x during reburning).

なお、石炭をガス化して得られる合成ガスの形でガスタービンに必要な燃料を供給するために、石炭ガス化炉と統合され、かつ、一段燃焼方式として構成されたガスタービンを備えた複合発電プラントが従来公知であり(例えば特許文献2,3)、このような複合発電プラントは石炭ガス化複合発電プラント(IGCC、IGCC:Integrated Gasification Combined Cycle)と呼ばれている。
米国特許第5,577,378号明細書 米国特許第4,785,622号明細書 米国特許第6,513,317号明細書 "State-of-the-art gas turbines - a brief update", ABB Review 02/1997, Fig. 15, Turbinentyp GT26
In addition, in order to supply the necessary fuel to the gas turbine in the form of synthesis gas obtained by gasifying coal, combined power generation with a gas turbine integrated with a coal gasification furnace and configured as a one-stage combustion system A plant is conventionally known (for example, Patent Documents 2 and 3), and such a combined power plant is called an integrated gasification combined cycle (IGCC, IGCC).
US Pat. No. 5,577,378 U.S. Pat. No. 4,785,622 US Pat. No. 6,513,317 "State-of-the-art gas turbines-a brief update", ABB Review 02/1997, Fig. 15, Turbinentyp GT26

本発明は、石炭ガス化複合発電プラントにおいて二段燃焼再燃方式のガスタービンを使用することで、このガスタービンの利点を石炭ガス化複合発電に有効利用しようとするものであり、その目的とするところは、効率を高めるとともにコストを抑えることが可能な、石炭ガス化複合発電プラントに統合させたガスタービンの作動方法と、この作動方法によるガスタービンを提供することにある。   The present invention intends to effectively utilize the advantages of this gas turbine for coal gasification combined power generation by using a two-stage combustion recombustion type gas turbine in a coal gasification combined power generation plant. However, an object of the present invention is to provide a method for operating a gas turbine integrated into a coal gasification combined power plant that can increase efficiency and reduce costs, and a gas turbine using this method.

上記目的は、請求項1及び請求項6記載の発明によって達成される。すなわち、本発明は、石炭ガス化によって得られる合成ガスによるガスタービンの作動方法において、第1及び第2の燃焼器並びに第1及び第2のタービンを設けてガスタービンを二段燃焼再燃方式として構成し、第1の燃焼器内で圧縮空気と合成ガスを混合してこれを燃焼させるとともに、この際発生する高温ガスを第1のタービンで膨張させ、第2の燃焼器内で第1のタービンの出口からのガスを合成ガスと混合してこれを燃焼させるとともに、この際発生する高温ガスを第2のタービンで膨張させ、合成ガスを直接第1の燃焼器内に供給することを特徴としている。   The above object is achieved by the inventions according to claims 1 and 6. That is, according to the present invention, in a gas turbine operating method using synthesis gas obtained by coal gasification, the first and second combustors and the first and second turbines are provided to make the gas turbine a two-stage combustion reburning system. In the first combustor, the compressed air and the synthesis gas are mixed and combusted, and the generated high temperature gas is expanded in the first turbine, and the first combustor is expanded in the first combustor. The gas from the turbine outlet is mixed with the synthesis gas and combusted, and the high-temperature gas generated at this time is expanded in the second turbine, and the synthesis gas is supplied directly into the first combustor. It is said.

また、本発明によるガスタービンの作動方法は、更に空気の分離を40barより大きな圧力下で行うか、合成ガスの生成を40barより大きな圧力下で行うか、合成ガスを40barよりも大きな圧力下で除塵装置を通過させるか、又は40barよりも大きな圧力下で合成ガスから二酸化炭素(CO2)を除去することを特徴としている。 In addition, the method of operating a gas turbine according to the present invention further provides for air separation at a pressure greater than 40 bar, synthesis gas generation at a pressure greater than 40 bar, or synthesis gas at a pressure greater than 40 bar. It is characterized by removing carbon dioxide (CO 2 ) from the synthesis gas under a pressure greater than 40 bar or through a dust remover.

さらに、本発明によるガスタービンは、石炭ガス化部を40barより大きな圧力下で動作する空気分離装置を含んで構成するか、石炭ガス化部を40barより大きな圧力下で動作する石炭ガス化炉を含んで構成するか、石炭ガス化部を40barより大きな圧力下で動作する除塵装置を含んで構成するか、又は石炭ガス化部を40barより大きな圧力下で動作する二酸化炭素分離装置を含んで構成したことを特徴としている。   Furthermore, the gas turbine according to the present invention comprises an air separation device that operates the coal gasification section under a pressure greater than 40 bar, or a coal gasification furnace that operates the coal gasification section under a pressure greater than 40 bar. Or a coal gasification unit including a dust removing device that operates under a pressure greater than 40 bar, or a coal gasification unit including a carbon dioxide separator that operates under a pressure greater than 40 bar. It is characterized by that.

効率を高めるとともにコストを抑えることが可能な、石炭ガス化複合発電プラントに統合させたガスタービンの作動方法と、この作動方法によるガスタービンを提供することが可能である。   It is possible to provide a method of operating a gas turbine integrated into a coal gasification combined power plant that can increase efficiency and reduce costs, and a gas turbine according to this method of operation.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1にはGT26型に代表されるような二段燃焼再燃方式のガスタービンが図示されており、空気は、低圧圧縮機13及び高圧圧縮機14それぞれにおいて中圧(11〜20bar)と高圧(>30bar)まで圧縮される。また、高圧燃焼器18には、低圧圧縮機13及び高圧圧縮機14による圧縮空気の圧力に管路内と燃焼器内における損失圧力を加えた圧力で合成ガスが供給される。   FIG. 1 shows a gas turbine of a two-stage combustion recombustion system typified by the GT26 type, and air is supplied at medium pressure (11 to 20 bar) and high pressure (in the low pressure compressor 13 and high pressure compressor 14 respectively). > 30 bar). Further, the high-pressure combustor 18 is supplied with the synthesis gas at a pressure obtained by adding the pressure of the compressed air generated by the low-pressure compressor 13 and the high-pressure compressor 14 to the loss pressure in the pipeline and the combustor.

ところで、唯一の燃焼器と1つのガスタービンを備えた従来の石炭ガス化複合発電プラントにおいては、石炭ガス化炉での圧力が約30barであった。そのため、このような石炭ガス化複合発電プラントにおいて1つの燃焼器に代えて二段燃焼再燃方式とする場合には、石炭ガス化炉からの合成ガス(約30bar)を少なくとも1つの圧縮機によって45barより大きな圧力レベルに圧縮する必要がある。   By the way, in the conventional coal gasification combined power plant provided with only one combustor and one gas turbine, the pressure in the coal gasification furnace was about 30 bar. Therefore, in such a coal gasification combined power plant, when a two-stage combustion reburning system is used instead of one combustor, synthesis gas (about 30 bar) from the coal gasification furnace is 45 bar by at least one compressor. It is necessary to compress to a greater pressure level.

一方、1つの燃焼器を備えた石炭ガス化複合発電プラントにおいて石炭ガス化炉内の圧力を例えば約60barとすると、この圧力を燃焼器内における圧力レベルまで減圧するために膨張機関を設ける必要がある。   On the other hand, if the pressure in the coal gasification furnace is, for example, about 60 bar in a coal gasification combined power plant equipped with one combustor, it is necessary to provide an expansion engine in order to reduce this pressure to the pressure level in the combustor. is there.

そこで、本発明の中心理念は、二段燃焼再燃方式のガスタービンと組み合わされた石炭ガス化複合発電プラントにおいて、空気分離装置32、石炭ガス化炉34、除塵装置36及び二酸化炭素(CO2)分離装置37を含んで構成される石炭ガス化部を40〜65bar程度の高圧燃焼器と同等の圧力レベルとすることで、1つの燃焼器を備えたものの圧力レベルを相当超えた圧力レベルでこの石炭ガス化部を作動させることにある。これにより、合成ガスを圧縮する圧縮機を不要とすることが可能となる。 Therefore, the central idea of the present invention is that in a coal gasification combined power plant combined with a gas turbine of a two-stage combustion reburning system, an air separation device 32, a coal gasification furnace 34, a dust removal device 36, and carbon dioxide (CO 2 ). By setting the coal gasification section including the separation device 37 to a pressure level equivalent to that of a high-pressure combustor of about 40 to 65 bar, this pressure level substantially exceeds the pressure level of the one equipped with the combustor. It is to operate the coal gasification section. As a result, a compressor for compressing the synthesis gas can be eliminated.

図2には本実施形態による二段燃焼再燃方式のガスタービンと組み合わされた石炭ガス化複合発電プラントの概略が示されており、複合発電プラント30は、低圧圧縮機13、高圧圧縮機14、高圧燃焼器18、高圧タービン16、低圧燃焼器19及び低圧タービン17から成るガスタービン11を含んで構成されている。低圧圧縮機13、高圧圧縮機14、高圧タービン16及び低圧タービン17は軸15上に設けられており、発電機12がこの軸15によって駆動される。   FIG. 2 shows an outline of a coal gasification combined power plant combined with a gas turbine of the two-stage combustion reburning system according to the present embodiment. The combined power plant 30 includes a low-pressure compressor 13, a high-pressure compressor 14, The gas turbine 11 includes a high pressure combustor 18, a high pressure turbine 16, a low pressure combustor 19, and a low pressure turbine 17. The low-pressure compressor 13, the high-pressure compressor 14, the high-pressure turbine 16, and the low-pressure turbine 17 are provided on the shaft 15, and the generator 12 is driven by the shaft 15.

また、高圧燃焼器18及び低圧燃焼器19には、石炭供給配管33から供給される石炭をガス化した合成ガスが燃料として合成ガス供給配管31から供給される。ここで、石炭ガス化炉34、合成ガス冷却器35、除塵装置36及び二酸化炭素分離装置37は直列に接続されており、二酸化炭素分離装置37には更に二酸化炭素(CO2)排出路38が設けられている。 The high-pressure combustor 18 and the low-pressure combustor 19 are supplied with a synthesis gas obtained by gasifying coal supplied from the coal supply pipe 33 from the synthesis gas supply pipe 31 as fuel. Here, the coal gasification furnace 34, the synthesis gas cooler 35, the dust removal device 36 and the carbon dioxide separator 37 are connected in series, and the carbon dioxide separator 37 further has a carbon dioxide (CO 2 ) discharge path 38. Is provided.

ところで、空気分離装置32には低圧圧縮機13及び高圧圧縮機14によって圧縮された空気が導入され、ここで酸素(O2)と窒素(N2)に分離される。そして、酸素は酸素供給路32aを通って石炭ガス化炉34へ供給され、窒素は窒素供給路32bを通って低圧燃焼器19へ供給される。 By the way, the air compressed by the low-pressure compressor 13 and the high-pressure compressor 14 is introduced into the air separation device 32, where it is separated into oxygen (O 2 ) and nitrogen (N 2 ). Then, oxygen is supplied to the coal gasifier 34 through the oxygen supply path 32a, and nitrogen is supplied to the low-pressure combustor 19 through the nitrogen supply path 32b.

また、高圧燃焼器18、低圧燃焼器19、高圧タービン16及び低圧タービン17における高温ガスにされされる箇所を冷却するために、低圧圧縮機13及び高圧圧縮機14からの空気を第1及び第2の冷却器(OTC冷却器)23,24を通過させて冷却し、この冷却空気を第1及び第2の冷却空気配管26,25を介して上記高温箇所に導入するようになっている。   In addition, in order to cool the portions of the high pressure combustor 18, the low pressure combustor 19, the high pressure turbine 16, and the low pressure turbine 17 that are converted to the high temperature gas, the air from the low pressure compressor 13 and the high pressure compressor 14 is first and second. 2 coolers (OTC coolers) 23 and 24 are passed through and cooled, and this cooling air is introduced into the high-temperature location via first and second cooling air pipes 26 and 25.

しかして、低圧タービン19の出口側には排熱回収ボイラ27が配置されており、該排熱回収ボイラ27は、これに接続された蒸気タービン29と共に復水サイクルの一部を構成している。なお、排熱回収ボイラ27からの排気は、排気路28を通って外部に放出される。   Thus, an exhaust heat recovery boiler 27 is disposed on the outlet side of the low-pressure turbine 19, and the exhaust heat recovery boiler 27 constitutes a part of the condensate cycle together with the steam turbine 29 connected thereto. . The exhaust from the exhaust heat recovery boiler 27 is released to the outside through the exhaust path 28.

空気分離装置32、石炭ガス化炉34、除塵装置36及び二酸化炭素分離装置37を含んで構成され、かつ、合成ガスを生成する上記石炭ガス化部は、合成ガスが高圧燃焼器18に直接供給されるよう構成されている。この際、空気分離装置32、石炭ガス化炉34、除塵装置36及び二酸化炭素分離装置37のいずれかが40barよりも大きな圧力で動作するよう設定することが考えられる。また、この石炭ガス化部を通過するガスを必要な圧力レベルまで更に昇圧できるよう、適当な箇所に第3の圧縮機を設けることも考えられる。   The coal gasification unit that includes the air separation device 32, the coal gasification furnace 34, the dust removal device 36, and the carbon dioxide separation device 37 and generates synthesis gas supplies the synthesis gas directly to the high-pressure combustor 18. It is configured to be. At this time, it can be considered that any one of the air separation device 32, the coal gasification furnace 34, the dust removal device 36, and the carbon dioxide separation device 37 is set to operate at a pressure higher than 40 bar. It is also conceivable to provide a third compressor at an appropriate location so that the gas passing through the coal gasification section can be further boosted to a required pressure level.

従来技術による二段燃焼再燃方式のガスタービンを備えた複合発電プラントの概要を示す図である。It is a figure which shows the outline | summary of the combined power plant provided with the gas turbine of the two-stage combustion recombustion system by a prior art. 本発明の実施形態に係る二段燃焼再燃方式のガスタービンを備えた石炭ガス化複合発電プラントの概要を示す図である。It is a figure which shows the outline | summary of the coal gasification combined cycle power plant provided with the gas turbine of the two-stage combustion recombustion system which concerns on embodiment of this invention.

符号の説明Explanation of symbols

10 複合発電プラント
11 ガスタービン
12 発電機
13 低圧圧縮機
14 高圧圧縮機
15 軸
16 高圧タービン
17 低圧タービン
18 高圧燃焼器
19 低圧燃焼器
20 空気導入配管
21 第1の燃料供給配管
22 第2の燃料供給配管
23 第1の冷却器(OTC冷却器)
24 第2の冷却器(OTC冷却器)
25 第2の冷却空気配管
26 第1の冷却空気配管
27 排熱回収ボイラ(HRSG)
28 排気路
29 蒸気タービン
30 複合発電プラント
31 合成ガス供給配管
32 空気分離装置
32a 酸素(O2)供給路
32b 窒素(N2)供給路
33 石炭供給配管
34 石炭ガス化炉
35 合成ガス冷却器
36 除塵装置
37 二酸化炭素(CO2)分離装置
38 二酸化炭素(CO2)排出路
39 第3の圧縮機
DESCRIPTION OF SYMBOLS 10 Combined power plant 11 Gas turbine 12 Generator 13 Low pressure compressor 14 High pressure compressor 15 Shaft 16 High pressure turbine 17 Low pressure turbine 18 High pressure combustor 19 Low pressure combustor 20 Air introduction piping 21 First fuel supply piping 22 Second fuel Supply piping 23 1st cooler (OTC cooler)
24 Second cooler (OTC cooler)
25 Second cooling air piping 26 First cooling air piping 27 Waste heat recovery boiler (HRSG)
28 exhaust path 29 steam turbine 30 combined cycle power plant 31 synthesis gas supply line 32 air separation unit 32a oxygen (O 2) supply path 32b nitrogen (N 2) supply passage 33 coal supply pipe 34 the coal gasification furnace 35 syngas cooler 36 Dust removal device 37 Carbon dioxide (CO 2 ) separation device 38 Carbon dioxide (CO 2 ) discharge passage 39 Third compressor

Claims (10)

ガスタービン(11)によって空気が吸入及び圧縮され、石炭から生成された合成ガスの燃焼のためにこの圧縮空気が第1の燃焼器(18,19)に供給され、この燃焼によって発生する高温ガスが第1のタービン(16,17)において膨張して仕事をする、特に複合発電プラント(30)用の前記ガスタービン(11)の作動方法であって、前記圧縮空気の一部が酸素と窒素に分離されるとともに、この分離された酸素が前記合成ガスの生成に使用され、かつ、前記圧縮空気の他の一部は、前記ガスタービン(11)における高温ガスにさらされる箇所の冷却に使用される前記ガスタービンの作動方法において、
第2の燃焼器及び第2のタービンを更に設けて前記ガスタービン(11)を二段燃焼再燃方式として構成し、
前記第1の燃焼器(18)内で前記圧縮空気と前記合成ガスを混合してこれを40〜65barの圧力下で燃焼させるとともに、この際発生する高温ガスを前記第1のタービン(16)で膨張させ、
前記第2の燃焼器(19)内で前記第1のタービン(16)の出口からのガスを前記合成ガスと混合してこれを燃焼させるとともに、この際発生する高温ガスを前記第2のタービン(17)で膨張させ、
前記合成ガスを直接前記第1の燃焼器(18)内に供給する
ことを特徴とするガスタービンの作動方法。
Air is sucked and compressed by the gas turbine (11), and this compressed air is supplied to the first combustor (18, 19) for the combustion of the synthesis gas generated from the coal, and the hot gas generated by this combustion. Is a method of operating the gas turbine (11), particularly for a combined power plant (30), which expands and works in a first turbine (16, 17), wherein a part of the compressed air is oxygen and nitrogen And the separated oxygen is used to generate the synthesis gas, and the other part of the compressed air is used to cool a portion of the gas turbine (11) that is exposed to the hot gas. In the gas turbine operating method,
The gas turbine (11) is configured as a two-stage combustion reburning system by further providing a second combustor and a second turbine,
The compressed air and the synthesis gas are mixed in the first combustor (18) and combusted under a pressure of 40 to 65 bar, and the generated high temperature gas is mixed with the first turbine (16). Inflated with
In the second combustor (19), the gas from the outlet of the first turbine (16) is mixed with the synthesis gas to burn it, and the hot gas generated at this time is mixed with the second turbine. Inflated with (17),
A method for operating a gas turbine, characterized in that the synthesis gas is fed directly into the first combustor (18).
空気の分離を40barより大きな圧力下で行うことを特徴とする請求項1記載のガスタービンの作動方法。   2. A method according to claim 1, wherein the separation of the air takes place under a pressure greater than 40 bar. 前記合成ガスの生成を40barより大きな圧力下で行うことを特徴とする請求項1記載のガスタービンの作動方法。   The method for operating a gas turbine according to claim 1, wherein the synthesis gas is generated under a pressure greater than 40 bar. 前記合成ガスを、40barよりも大きな圧力下で除塵装置を通過させることを特徴とする請求項1記載のガスタービンの作動方法。   2. The method of operating a gas turbine according to claim 1, wherein the synthesis gas is passed through a dust removing device under a pressure greater than 40 bar. 40barよりも大きな圧力下で前記合成ガスから二酸化炭素(CO2)を除去することを特徴とする請求項1記載のガスタービンの作動方法。 The method according to claim 1, wherein carbon dioxide (CO 2 ) is removed from the synthesis gas under a pressure greater than 40 bar. 二段燃焼再燃方式として構成され、かつ、空気を圧縮する圧縮機(13,14)と、第1及び第2の燃焼器(18,19)と、第1及び第2のタービン(16,17)とを備えて成る請求項1記載の作動方法によるガスタービン(11)であって、前記第1の燃焼器(18)内で前記圧縮空気と前記合成ガスが混合されてこれが40〜65barの圧力下で燃焼させられるともに、この際発生する高温ガスが前記第1のタービン(16)で膨張し、前記第2の燃焼器(19)内で前記第1のタービン(16)の出口からのガスが前記合成ガスと混合されてこれが燃焼させられるとともに、この際発生する高温ガスが前記第2のタービン(17)で膨張する前記ガスタービンにおいて、
出口側を前記第1及び第2の燃焼器(18,19)に接続させた石炭ガス化部(32〜39)を設けるとともに、これら第1及び第2の燃焼器(18,19)に前記石炭ガス化部で生成された合成ガスを燃料として供給し、前記石炭ガス化部(32〜39)の出口を前記第1の燃焼器(18)に直結させたことを特徴とするガスタービン。
Compressor (13, 14) configured as a two-stage combustion recombustion system, compresses air, first and second combustors (18, 19), and first and second turbines (16, 17) The gas turbine (11) according to claim 1, wherein the compressed air and the synthesis gas are mixed in the first combustor (18) so that the gas turbine has a pressure of 40 to 65 bar. While being combusted under pressure, the hot gas generated at this time is expanded in the first turbine (16) and is discharged from the outlet of the first turbine (16) in the second combustor (19). In the gas turbine, a gas is mixed with the synthesis gas and burned, and a high-temperature gas generated at this time is expanded in the second turbine (17).
While providing the coal gasification part (32-39) which connected the exit side to the 1st and 2nd combustors (18, 19), the above-mentioned 1st and 2nd combustors (18, 19) have the above-mentioned A gas turbine characterized in that the synthesis gas generated in the coal gasification section is supplied as fuel, and the outlet of the coal gasification section (32-39) is directly connected to the first combustor (18).
前記石炭ガス化部を、40barより大きな圧力下で動作する空気分離装置(32)を含んで構成したことを特徴とする請求項6記載のガスタービン。   The gas turbine according to claim 6, wherein the coal gasification unit includes an air separation device (32) operating under a pressure greater than 40 bar. 前記石炭ガス化部を、40barより大きな圧力下で動作する石炭ガス化炉(34)を含んで構成したことを特徴とする請求項6記載のガスタービン。   The gas turbine according to claim 6, wherein the coal gasification section includes a coal gasification furnace (34) operating under a pressure greater than 40 bar. 前記石炭ガス化部を、40barより大きな圧力下で動作する除塵装置(36)を含んで構成したことを特徴とする請求項6記載のガスタービン。   The gas turbine according to claim 6, wherein the coal gasification unit includes a dust removing device (36) that operates under a pressure greater than 40 bar. 前記石炭ガス化部を、40barより大きな圧力下で動作する二酸化炭素分離装置(37)を含んで構成したことを特徴とする請求項6記載のガスタービン。   The gas turbine according to claim 6, wherein the coal gasification unit includes a carbon dioxide separator (37) that operates under a pressure greater than 40 bar.
JP2008525566A 2005-08-10 2006-08-07 Gas turbine operating method and gas turbine according to this operating method Withdrawn JP2009504967A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US70677505P 2005-08-10 2005-08-10
CH20232005 2005-12-20
PCT/EP2006/065110 WO2007017490A1 (en) 2005-08-10 2006-08-07 Method for operating a gas turbine, and gas turbine for carrying out the method

Publications (1)

Publication Number Publication Date
JP2009504967A true JP2009504967A (en) 2009-02-05

Family

ID=37137117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008525566A Withdrawn JP2009504967A (en) 2005-08-10 2006-08-07 Gas turbine operating method and gas turbine according to this operating method

Country Status (5)

Country Link
JP (1) JP2009504967A (en)
CN (1) CN101238341B (en)
CA (1) CA2618030C (en)
DE (1) DE112006002028B4 (en)
WO (1) WO2007017490A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290202A1 (en) * 2009-07-13 2011-03-02 Siemens Aktiengesellschaft Cogeneration plant and cogeneration method
CN102337936A (en) * 2011-09-13 2012-02-01 华北电力大学 Flue gas reheating combined cycle power system
CN102337937B (en) * 2011-09-13 2014-08-20 华北电力大学 Coal integrally-gasified smoke reheating combined-cycle power system
CN102305109B (en) * 2011-09-13 2014-03-26 华北电力大学 Oxygen enrichment-coal gasification flue gas reheating combined cycle power system
CN104314704B (en) * 2013-09-22 2016-04-27 摩尔动力(北京)技术股份有限公司 Velocity profile heat engine
CN109854382A (en) * 2019-03-13 2019-06-07 上海发电设备成套设计研究院有限责任公司 Zero carbon emission heat power generating system of one kind and method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL63476C (en) *
DE947843C (en) * 1954-09-11 1956-08-23 Henschel & Sohn G M B H Method for using the lock gas produced by pressurized gasifiers in gas turbine operation
US4896499A (en) 1978-10-26 1990-01-30 Rice Ivan G Compression intercooled gas turbine combined cycle
US4785622A (en) * 1984-12-03 1988-11-22 General Electric Company Integrated coal gasification plant and combined cycle system with air bleed and steam injection
US4785621A (en) * 1987-05-28 1988-11-22 General Electric Company Air bottoming cycle for coal gasification plant
DE4118062A1 (en) 1991-06-01 1992-12-03 Asea Brown Boveri COMBINED GAS / VAPOR POWER PLANT
CH687269A5 (en) * 1993-04-08 1996-10-31 Abb Management Ag Gas turbine group.
US5388395A (en) * 1993-04-27 1995-02-14 Air Products And Chemicals, Inc. Use of nitrogen from an air separation unit as gas turbine air compressor feed refrigerant to improve power output
US5406786A (en) * 1993-07-16 1995-04-18 Air Products And Chemicals, Inc. Integrated air separation - gas turbine electrical generation process
US5740673A (en) * 1995-11-07 1998-04-21 Air Products And Chemicals, Inc. Operation of integrated gasification combined cycle power generation systems at part load
GB2335953A (en) * 1998-03-30 1999-10-06 Magnox Electric Plc Air extraction from a power generation turbine
DE19832294C1 (en) 1998-07-17 1999-12-30 Siemens Ag Gas-and-steam turbine installation with integrated fossil fuel gasification
US6148602A (en) 1998-08-12 2000-11-21 Norther Research & Engineering Corporation Solid-fueled power generation system with carbon dioxide sequestration and method therefor
US6314715B1 (en) * 1999-06-03 2001-11-13 General Electric Co. Modified fuel gas turbo-expander for oxygen blown gasifiers and related method
DE10002084C2 (en) 2000-01-19 2001-11-08 Siemens Ag Gas and steam turbine plant
US6513317B2 (en) 2001-01-11 2003-02-04 General Electric Company Apparatus for controlling nitrogen injection into gas turbine
CN100504053C (en) * 2003-01-27 2009-06-24 中国科学院工程热物理研究所 Inside and outside burning coal integrative combined cycle generation system and method

Also Published As

Publication number Publication date
CA2618030C (en) 2014-07-08
CA2618030A1 (en) 2007-02-15
CN101238341A (en) 2008-08-06
DE112006002028A5 (en) 2008-06-19
WO2007017490A1 (en) 2007-02-15
CN101238341B (en) 2012-04-18
DE112006002028B4 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP5415276B2 (en) How to operate a gas turbine
US6101983A (en) Modified gas turbine system with advanced pressurized fluidized bed combustor cycle
US7584599B2 (en) Method for operating a gas turbine as well as a gas turbine for implementing the method
US6824575B1 (en) Integrated coal gasification combined cycle power generator
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
US7584598B2 (en) Method for operating a gas turbine and a gas turbine for implementing the method
US7574855B2 (en) Method for operating a gas turbine and a gas turbine for implementing the method
AU2016202047B2 (en) Method and system for use with an integrated gasification combined cycle plant
JP2009504967A (en) Gas turbine operating method and gas turbine according to this operating method
US7513118B2 (en) Method for operating a gas turbine and a gas turbine for implementing the method
JP2870232B2 (en) Coal gasification power plant
US20120285176A1 (en) Integration of coal fired steam plants with integrated gasification combined cycle power plants
US6314715B1 (en) Modified fuel gas turbo-expander for oxygen blown gasifiers and related method
JPH074210A (en) Steam-cooled gas turbine combined plant
JP2002129977A (en) Gas turbine equipment
CA2618007C (en) A method for operating a gas turbine and a gas turbine for implementing the method
JP2009504964A (en) Method for operating a gas turbine and gas turbine implementing this method
CA2618016C (en) A method for operating a gas turbine as well as a gas turbine for implementing the method
JPH10231736A (en) Gasification composite power plant
JP2617089B2 (en) Integrated coal gasification combined cycle power plant
JP5412205B2 (en) Gas turbine plant and gasification fuel power generation facility equipped with the same
JP2000291411A (en) Coal gasification combined cycle power generation plant
JP2005325739A (en) Dual fluid gas turbine
JP2004162616A (en) Gasification combined power plant
JPH06117274A (en) Power generating device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110