JP2009503321A - Compressor, especially piston type compressor - Google Patents

Compressor, especially piston type compressor Download PDF

Info

Publication number
JP2009503321A
JP2009503321A JP2008523163A JP2008523163A JP2009503321A JP 2009503321 A JP2009503321 A JP 2009503321A JP 2008523163 A JP2008523163 A JP 2008523163A JP 2008523163 A JP2008523163 A JP 2008523163A JP 2009503321 A JP2009503321 A JP 2009503321A
Authority
JP
Japan
Prior art keywords
compressor
pressure
chamber
volume
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008523163A
Other languages
Japanese (ja)
Other versions
JP5065267B2 (en
Inventor
アドラー、ロベルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of JP2009503321A publication Critical patent/JP2009503321A/en
Application granted granted Critical
Publication of JP5065267B2 publication Critical patent/JP5065267B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/005Multi-stage pumps with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/18Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use for specific elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/16Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by adjusting the capacity of dead spaces of working chambers

Abstract

ガス状媒体を圧縮するための特にピストン形圧縮機であって、ガス状媒体を入口圧から中間圧に圧縮するための低圧段(5)と該媒体を中間圧から高圧に圧縮するための高圧段(6)とを有する圧縮機(1)。比較的低コストで構成でき、種々の入口圧に適応可能な圧縮機を提供するために、調整可能な死容積を形成する容積補償室(20a;20b)が高圧段(6)の上流側に接続されている。  A piston type compressor for compressing a gaseous medium, in particular a low pressure stage (5) for compressing the gaseous medium from inlet pressure to intermediate pressure and a high pressure for compressing the medium from intermediate pressure to high pressure A compressor (1) having a stage (6). A volume compensation chamber (20a; 20b) forming an adjustable dead volume is provided upstream of the high pressure stage (6) in order to provide a compressor that can be configured at a relatively low cost and can be adapted to various inlet pressures. It is connected.

Description

本発明は、ガス状媒体を圧縮するための圧縮機、特にピストン形圧縮機であって、前記媒体を入口圧から中間圧に圧縮するための低圧段及び該媒体を中間圧から高圧に圧縮するための高圧段とを有する圧縮機に関するものである。   The present invention relates to a compressor for compressing a gaseous medium, in particular a piston-type compressor, which compresses the medium from an inlet pressure to an intermediate pressure and compresses the medium from an intermediate pressure to a high pressure. And a high-pressure stage for the compressor.

ピストン形圧縮機として構成されるガス状媒体用圧縮機では圧縮圧力比がシリンダ寸法によって決まる。低圧段と高圧段とからなる2つの圧縮段を圧縮圧力比約17で作動させるピストン形圧縮機では、例えば入口圧1バールのガス状媒体を圧縮圧力比17の低圧段において17バールの中間圧に圧縮し、圧縮圧力比17.6の高圧段において300バールの高圧に圧縮することができる。   In a compressor for a gaseous medium configured as a piston type compressor, the compression pressure ratio is determined by the cylinder size. In a piston type compressor in which two compression stages consisting of a low pressure stage and a high pressure stage are operated at a compression pressure ratio of about 17, for example, a gaseous medium having an inlet pressure of 1 bar is subjected to an intermediate pressure of 17 bar in a low pressure stage having a compression pressure ratio of 17. And compressed to a high pressure of 300 bar in a high pressure stage with a compression pressure ratio of 17.6.

このようなピストン形圧縮機は特定の入口圧に合せて設計されており、その場合、ガス状媒体の入口圧の変動は僅かな範囲内でしか許容されない。1バールの入口圧に合せて設計されたピストン形圧縮機が1バールの入口圧よりも高い例えば5バールの入口圧で作動されると、低圧段による圧縮圧力比17の圧縮で85バールの中間圧が生じ、その結果、低圧段の過熱を招くことになる。   Such piston type compressors are designed for a specific inlet pressure, in which case the variation of the inlet pressure of the gaseous medium is only allowed to a small extent. When a piston-type compressor designed for an inlet pressure of 1 bar is operated at an inlet pressure higher than the inlet pressure of 1 bar, for example 5 bar, the compression pressure ratio of 17 by the low-pressure stage is compressed to an intermediate of 85 bar. A pressure is generated, resulting in overheating of the low pressure stage.

特許文献1には、種々の入口圧に適応する2段式ピストン形圧縮機が開示されている。このために、この公知のピストン形圧縮機には低圧段用と高圧段用に別々の駆動装置が設けられている。しかしながら、低圧段用の駆動装置と高圧段用の駆動装置とを個々に備えたこのような2段式ピストン形圧縮機は構造が複雑で高価とならざるを得ない。
独国特許出願公開第19933989号明細書
Patent Document 1 discloses a two-stage piston compressor adapted to various inlet pressures. For this purpose, this known piston compressor is provided with separate drive units for the low-pressure stage and the high-pressure stage. However, such a two-stage piston compressor provided with a low-pressure stage driving device and a high-pressure stage driving device must be complicated and expensive.
German Patent Application Publication No. 19933989

本発明の課題は、比較的低コストで構成でき、種々の入口圧に適応可能な冒頭に記載した形式の圧縮機を提供することである。   An object of the present invention is to provide a compressor of the type described at the beginning which can be constructed at a relatively low cost and can be adapted to various inlet pressures.

この課題は、本発明によれば、調整可能な死容積を形成する容積補償室を高圧段の上流側に接続した構成とすることによって解決される。高圧段の上流側に接続されたこのような容積補償室により、調整可能な死容積を高圧段に付設することが簡単に可能となる。この場合、容積補償室には圧縮工程中の低圧段からガス状媒体の一部が供給されて蓄積される。この容積補償室に蓄積されたガス状媒体は、次いで後続の高圧段の吸入行程で高圧段へ供給され、このときガス状媒体の断熱膨張により圧縮機が低圧段の吸入温度以下に冷却される。容積補償室の死容積が調整可能であるので高圧段の吸入容積を簡単に変更することができ、しかも同時に圧縮機の付加的な冷却を果たすこともできる。これにより、種々の入口圧において圧縮機を作動させることが簡単に可能となるだけでなく、圧縮機の過熱も回避することが可能となる。   According to the present invention, this problem is solved by adopting a configuration in which a volume compensation chamber that forms an adjustable dead volume is connected to the upstream side of the high-pressure stage. Such a volume compensation chamber connected to the upstream side of the high pressure stage makes it easy to attach an adjustable dead volume to the high pressure stage. In this case, a part of the gaseous medium is supplied and accumulated in the volume compensation chamber from the low pressure stage in the compression process. The gaseous medium accumulated in the volume compensation chamber is then supplied to the high-pressure stage in the subsequent suction stroke of the high-pressure stage. At this time, the compressor is cooled below the suction temperature of the low-pressure stage by adiabatic expansion of the gaseous medium. . Since the dead volume of the volume compensation chamber can be adjusted, the suction volume of the high-pressure stage can be easily changed, and at the same time, additional cooling of the compressor can be achieved. This makes it possible not only to easily operate the compressor at various inlet pressures, but also to avoid overheating of the compressor.

本発明の好ましい実施形態として、容積補償室によって形成される死容積を入口圧に応じて調整可能とすることにより更に格別な利点を得ることができる。即ち、容積補償室の死容積の調整により入口圧に応じた高圧段の死空間の制御が僅かなコスト負担で達成可能である。   As a preferred embodiment of the present invention, an extra advantage can be obtained by making it possible to adjust the dead volume formed by the volume compensation chamber in accordance with the inlet pressure. That is, by adjusting the dead volume of the volume compensation chamber, control of the dead space of the high-pressure stage according to the inlet pressure can be achieved with a small cost burden.

本発明の別の好ましい実施形態として、容積補償室を最高入口圧のときに最小死容積に設定し、入口圧の低下に伴って最大死容積へ向けて調整可能とすることによっても更に格別な諸利点を得ることができる。即ち、入口圧の低下に応じて容積補償室による付加的な冷却効果を簡単に増大可能である。入口圧の低下に応じて高圧段の圧縮圧力比が増加し、同時に圧縮機の熱負荷が増加するが、本実施形態に従って容積補償室が高圧段に接続されて高圧段用の死容積を形成していると、入口圧の低下に応じて死容積が増大することにより容積補償室の冷却効果が対応して増大し、従って種々の入口圧において使用される圧縮機の機体温度を簡単に下げることができる。   As another preferred embodiment of the present invention, the volume compensation chamber is set to the minimum dead volume at the maximum inlet pressure, and can be adjusted toward the maximum dead volume as the inlet pressure is reduced. Various advantages can be obtained. That is, the additional cooling effect by the volume compensation chamber can be easily increased as the inlet pressure decreases. As the inlet pressure decreases, the compression pressure ratio of the high pressure stage increases and at the same time the heat load of the compressor increases. According to this embodiment, the volume compensation chamber is connected to the high pressure stage to form a dead volume for the high pressure stage. As a result, the dead volume increases as the inlet pressure decreases, thereby correspondingly increasing the cooling effect of the volume compensation chamber and thus easily lowering the compressor body temperature used at various inlet pressures. be able to.

本発明の更に別の好ましい実施形態によれば、容積補償室が補償シリンダとして構成され、この補償シリンダは補償室ケーシング内で長手方向に往復移動可能な補償ピストンを有する。このように、補償ピストンで容積を変化可能な補償シリンダで容積補償室を構成することにより、調整可能な死容積を簡単に実現することができる。   According to a further preferred embodiment of the invention, the volume compensation chamber is configured as a compensation cylinder, which has a compensation piston that is reciprocally movable in the longitudinal direction within the compensation chamber casing. In this way, by configuring the volume compensation chamber with a compensation cylinder whose volume can be changed by the compensation piston, an adjustable dead volume can be easily realized.

この場合、補償ピストンは、容積補償室内で中間圧の作用を受ける第1制御面及びこれと対向する方向に入口圧の作用を受ける第2制御面を有する段付きピストンによって構成し、この段付きピストンを、入口圧の低下時に容積補償室の死容積を自動的に増加するように変位可能とすることが好ましい。補償ピストンをこのような段付きピストンとして構成し、その第1制御面と第2制御面の各受圧面積を相応に選択することにより、補償ピストンを最大入口圧のときは最小死容積へ向けて、また入口圧の低下に応じて最大死容積へ向けて付勢することが簡単に可能となる。   In this case, the compensation piston is constituted by a stepped piston having a first control surface that receives an action of an intermediate pressure in the volume compensation chamber and a second control surface that receives an action of an inlet pressure in a direction opposite thereto. The piston is preferably displaceable so as to automatically increase the dead volume of the volume compensation chamber when the inlet pressure decreases. By configuring the compensation piston as such a stepped piston and selecting the pressure receiving areas of the first control surface and the second control surface accordingly, the compensation piston is directed to the minimum dead volume when the maximum inlet pressure is reached. In addition, it is possible to easily bias toward the maximum dead volume as the inlet pressure decreases.

本発明の好ましい一実施形態によれば、容積補償室は冷却機構を備えており、これにより容積補償室内にあるガス状媒体を簡単に冷却でき、係る冷却機構によって容積補償室による冷却効果を更に高めることが可能である。   According to a preferred embodiment of the present invention, the volume compensation chamber is provided with a cooling mechanism, whereby the gaseous medium in the volume compensation chamber can be easily cooled, and the cooling effect by the volume compensation chamber is further improved by such a cooling mechanism. It is possible to increase.

この場合、好適な一実施形態によれば冷却機構は容積補償室を構成する補償シリンダの補償室ケーシングに配置された冷却フィンによって形成され、このような容積補償室の冷却機構は僅かな構造コストで製作することが可能である。   In this case, according to a preferred embodiment, the cooling mechanism is formed by cooling fins arranged in the compensation chamber casing of the compensation cylinder constituting the volume compensation chamber, and the cooling mechanism of such a volume compensation chamber has a small structural cost. It is possible to make with.

本発明の好適な一実施形態による圧縮機は、液圧駆動によって圧縮機ケーシング内で長手方向に往復移動可能な圧縮ピストンを備えている。   A compressor according to a preferred embodiment of the present invention includes a compression piston capable of reciprocating in a longitudinal direction within a compressor casing by hydraulic drive.

低圧段は好ましくは第1加圧室と第2加圧室とを有し、これら低圧段の2つの加圧室の容積は1つの圧縮ピストンによって相補的に制御される。これにより、圧縮機内部にこれら2つの加圧室のための僅かな占有空間を確保するだけで圧力伝達通路内における圧力の脈動を低減することが可能となる。   The low pressure stage preferably has a first pressurization chamber and a second pressurization chamber, and the volumes of the two pressurization chambers of these low pressure stages are complementarily controlled by one compression piston. As a result, it is possible to reduce pressure pulsation in the pressure transmission passage only by securing a small occupied space for these two pressurizing chambers inside the compressor.

本発明の好適な一実施形態によれば、高圧段も第1加圧室と第2加圧室との2つの加圧室を有している。この場合も高圧段の2つの加圧室の容積は1つの圧縮ピストンによって相補的に制御され、従って圧縮機内部にこれら2つの加圧室のための僅かな占有空間を確保するだけで吐出圧力の脈動を低減することが可能となる。   According to a preferred embodiment of the present invention, the high pressure stage also has two pressure chambers, a first pressure chamber and a second pressure chamber. Again, the volume of the two pressure chambers of the high-pressure stage is complementarily controlled by a single compression piston, so that only a small space for these two pressure chambers is required inside the compressor. It becomes possible to reduce the pulsation.

低圧段と高圧段の領域における圧縮機の冷却は、圧縮機ケーシングに外部冷却構造を設けることによって簡単に達成することができる。   Cooling of the compressor in the region of the low pressure stage and the high pressure stage can be easily achieved by providing an external cooling structure in the compressor casing.

冷却効率の向上のために、更に圧縮ピストンに内部冷却構造を設けておくことも好ましいことである。   In order to improve the cooling efficiency, it is also preferable to provide an internal cooling structure in the compression piston.

この場合、圧縮ピストンは内部冷却構造として少なくとも1つの長手穴を備えていることが好ましく、この長手穴は液圧駆動のための加圧室に連通させておけばよい。これにより、圧縮ピストンの内部冷却を圧縮機の駆動液圧媒体との熱交換によって簡単に果たすことが可能となる。   In this case, the compression piston is preferably provided with at least one longitudinal hole as an internal cooling structure, and the longitudinal hole may be communicated with a pressurizing chamber for hydraulic drive. As a result, the internal cooling of the compression piston can be easily achieved by heat exchange with the drive hydraulic medium of the compressor.

高圧段が第1加圧室と第2加圧室との2つの加圧室を備えている場合、高圧段の各加圧室にはそれぞれ容積補償室が個別に接続されていることが好ましい。   When the high-pressure stage includes two pressurization chambers, ie, a first pressurization chamber and a second pressurization chamber, it is preferable that a volume compensation chamber is individually connected to each pressurization chamber of the high-pressure stage. .

本発明による圧縮機は、特に水素燃料供給スタンドにおける水素燃料の圧縮に好適に使用され、その場合、前述の諸利点が一層格別な効果を発揮する。   The compressor according to the present invention is preferably used particularly for compressing hydrogen fuel in a hydrogen fuel supply station, and in this case, the above-described advantages exhibit more remarkable effects.

本発明の上述及びその他の特徴と利点を、添付図面に概略構成を示した具体的実施形態に基づいて詳述すれば以下の通りである。   The above and other features and advantages of the present invention will be described in detail below based on a specific embodiment schematically shown in the accompanying drawings.

図1には、本発明に従って構成された直線往復動ピストン形式の圧縮機1の構成が概略縦断面図の様式で示されている。   FIG. 1 shows the configuration of a linear reciprocating piston type compressor 1 constructed according to the invention in the form of a schematic longitudinal section.

このピストン形圧縮機1は、筒状の圧縮機ケーシング3内の中空穴2内で長手方向に直線往復移動可能な段付き形状の圧縮ピストン4を有し、圧縮ピストン4と圧縮機ケーシングの中空穴2との間に低圧段5と高圧段6との二つの圧縮段が構成されている。   This piston type compressor 1 has a stepped compression piston 4 that can linearly reciprocate in a longitudinal direction within a hollow hole 2 in a cylindrical compressor casing 3, and the compression piston 4 and the compressor casing are hollow. Between the hole 2, two compression stages of a low pressure stage 5 and a high pressure stage 6 are formed.

高圧段6はピストン形圧縮機1の中央領域に配置され、一端側と他端側とに分けられた第1と第2の2つの加圧室6a、6bを備えている。これら加圧室は、圧縮機ケーシング3の中央領域に配置された密封要素7によって仕切られた高圧段における圧縮ピストン4の両端部の領域に形成されている。高圧段を低圧段から仕切るために段付部から大径部側の圧縮ピストン4の両端部にはピストン部8a、8bが固定されており、高圧段6の加圧室6a、6bは圧縮ピストン4の大径部の領域内に形成されている。図1においては、圧縮ピストン4は液圧による駆動操作で右方向の移動端に位置しており、このときの左側の第1加圧室6aは最小押しのけ容積、右側の第2加圧室6bは最大押しのけ容積となっている。   The high pressure stage 6 is disposed in the central region of the piston compressor 1 and includes first and second pressurizing chambers 6a and 6b which are divided into one end side and the other end side. These pressurizing chambers are formed in regions at both ends of the compression piston 4 in the high pressure stage partitioned by the sealing element 7 disposed in the central region of the compressor casing 3. Piston portions 8a and 8b are fixed to both ends of the compression piston 4 on the large diameter side from the stepped portion to partition the high pressure stage from the low pressure stage, and the pressurizing chambers 6a and 6b of the high pressure stage 6 are compression pistons. 4 is formed in the region of the large diameter portion. In FIG. 1, the compression piston 4 is positioned at the moving end in the right direction by the driving operation by the hydraulic pressure. At this time, the left first pressurizing chamber 6 a is the minimum displacement volume, and the right second pressurizing chamber 6 b. Is the maximum displacement volume.

低圧段5は高圧段6の両端部の更に外側で段付き形状の圧縮ピストン4の小径部側に配置され、一端側の第1加圧室5aと他端側の第2加圧室5bとの2つの加圧室を備えている。これら加圧室は、圧縮ケーシングの中空穴2と圧縮ピストン4に固定されたピストン部8a、8bとによって圧縮ピストン4の小径部の領域内に形成されている。   The low pressure stage 5 is arranged on the outer side of both ends of the high pressure stage 6 and on the small diameter side of the stepped compression piston 4, and includes a first pressurizing chamber 5a on one end side and a second pressurizing chamber 5b on the other end side. These two pressure chambers are provided. These pressurizing chambers are formed in the area of the small diameter portion of the compression piston 4 by the hollow hole 2 of the compression casing and the piston portions 8 a and 8 b fixed to the compression piston 4.

圧縮ピストン4が図1に示す位置にあるとき、低圧段の左側の第1加圧室5aは最大押しのけ容積、右側の第2加圧室5bは最小押しのけ容積となっている。   When the compression piston 4 is in the position shown in FIG. 1, the first pressurizing chamber 5a on the left side of the low pressure stage has a maximum displacement volume, and the second pressurizing chamber 5b on the right side has a minimum displacement volume.

図示のピストン形圧縮機1は液圧操作で駆動され、このために圧縮ピストン4の両端で低圧段5の外側に隣接して液圧で交互に加圧可能な駆動用加圧室9a、9bが設けられている。圧縮ピストン4が図1に示す位置にあるときは駆動加圧室9aに駆動用の液圧が印加されている状態である。これに代えて、他端側の駆動加圧室9bに駆動用の液圧が印加されると、それに応じて圧縮ピストン4は図1で左方向に付勢される。   The illustrated piston type compressor 1 is driven by a hydraulic pressure operation. For this purpose, driving pressurizing chambers 9a and 9b capable of alternately pressurizing with hydraulic pressure adjacent to the outside of the low pressure stage 5 at both ends of the compression piston 4. Is provided. When the compression piston 4 is at the position shown in FIG. 1, the drive hydraulic pressure is applied to the drive pressurizing chamber 9a. Instead, when a driving hydraulic pressure is applied to the driving pressurizing chamber 9b on the other end side, the compression piston 4 is urged leftward in FIG.

ピストン形圧縮機1を制御するために低圧段5の加圧室5a、5bに各々1つずつ対となった低圧吸込弁10a、10bと低圧吐出弁11a、11bが付設されている。同様に高圧段6の加圧室6a、6bにも各々1つずつ対となった高圧吸込弁と高圧吐出弁が付設されているが、図1に現れているのは加圧室6aに付設された高圧吸込弁12aと高圧吐出弁13aの対だけである。   In order to control the piston type compressor 1, a pair of low pressure suction valves 10a, 10b and low pressure discharge valves 11a, 11b are attached to the pressurizing chambers 5a, 5b of the low pressure stage 5, respectively. Similarly, a pair of high-pressure suction valve and high-pressure discharge valve are also attached to the pressurizing chambers 6a and 6b of the high-pressure stage 6, respectively, but what appears in FIG. 1 is attached to the pressurizing chamber 6a. It is only a pair of the high-pressure suction valve 12a and the high-pressure discharge valve 13a.

ケーシング2の外周面には、低圧段5及び高圧段6の領域に外部冷却構造15a、15bが設けられている。   External cooling structures 15 a and 15 b are provided in the area of the low pressure stage 5 and the high pressure stage 6 on the outer peripheral surface of the casing 2.

図示のピストン形圧縮機では、更なる冷却機能のための内部冷却構造として、圧縮ピストン4が盲孔、即ち圧縮ピストンの端面にのみ開口した有底穴からなる長手穴16a、16bを備えている。これらの長手穴は、それぞれ圧縮ピストン端面の開口で液圧駆動用加圧室9a、9bに連通しており、これにより圧縮ピストンの移動に際して液圧駆動用加圧室と長手穴との間で給排される駆動用液圧媒体によりピストン形圧縮機1の内部冷却が果たされるようになっている。   In the illustrated piston type compressor, as an internal cooling structure for further cooling function, the compression piston 4 is provided with blind holes, that is, longitudinal holes 16a and 16b each having a bottomed hole opened only at the end face of the compression piston. . These longitudinal holes communicate with the hydraulic pressure pressurizing chambers 9a and 9b at the openings of the end surfaces of the compression pistons, respectively, so that the hydraulic piston is moved between the hydraulic pressure pressurizing chamber and the longitudinal holes. The piston-type compressor 1 is internally cooled by the drive hydraulic medium supplied and discharged.

このピストン形圧縮機1はまた、圧縮ピストンの変位量を電気的に出力する位置センサー17も装備している。   The piston compressor 1 is also equipped with a position sensor 17 that electrically outputs the displacement amount of the compression piston.

本発明の基本理念に従って、高圧段の各加圧室6a、6bの上流側には死容積を調整可能な容積補償室20a、20bが接続されている。   In accordance with the basic idea of the present invention, volume compensation chambers 20a and 20b capable of adjusting the dead volume are connected upstream of the pressurizing chambers 6a and 6b of the high-pressure stage.

尚、図1及び図2には第1加圧室6aの上流側に接続されているほうの容積補償室20aのみを縦断面で示し、その構成を以下に詳述するが、第2加圧室6bに接続されているほうの容積補償室20bも同様の構成である。   In FIGS. 1 and 2, only the volume compensation chamber 20a connected to the upstream side of the first pressurizing chamber 6a is shown in a longitudinal section, and the configuration will be described in detail below. The volume compensation chamber 20b connected to the chamber 6b has the same configuration.

容積補償室20aは補償シリンダ21として構成され、ケーシング22のケーシング穴28内で長手摺動可能な補償ピストン23を備えている。ケーシング22のケーシング穴28と補償ピストン23の先端面との間に、容積補償室20aとして調整可能な死容積が形成されている。この死容積は、通路26によって高圧段6の加圧室6aの入口側、特に高圧段6における加圧室6aの高圧吸込弁12aの下流側で、低圧段5の加圧室5aと高圧段6の加圧室6aとの接続通路に連結されている。補償ピストン23は段付きピストンとして構成され、容積補償室20a内に位置する先端面が第1制御面24を構成する。この制御面は、低圧段によって生成されて容積補償室20a内に蓄積される中間圧力の受圧面である。補償ピストン23の尾端面は第2制御面25を構成し、これは低圧段の入口圧力の受圧面である。ここで、第2制御面25は第1制御面24よりも大なる受圧面積を有する。   The volume compensation chamber 20 a is configured as a compensation cylinder 21 and includes a compensation piston 23 that can slide longitudinally in a casing hole 28 of the casing 22. Between the casing hole 28 of the casing 22 and the front end surface of the compensation piston 23, a dead volume that can be adjusted as the volume compensation chamber 20a is formed. This dead volume is caused by the passage 26 on the inlet side of the pressurizing chamber 6a of the high-pressure stage 6, particularly on the downstream side of the high-pressure suction valve 12a of the pressurizing chamber 6a in the high-pressure stage 6 and the high-pressure stage 5a. 6 is connected to a connecting passage to the pressurizing chamber 6a. The compensation piston 23 is configured as a stepped piston, and the front end surface located in the volume compensation chamber 20 a constitutes the first control surface 24. This control surface is a pressure receiving surface for intermediate pressure generated by the low pressure stage and accumulated in the volume compensation chamber 20a. The tail end surface of the compensation piston 23 constitutes a second control surface 25, which is a pressure receiving surface for the inlet pressure of the low pressure stage. Here, the second control surface 25 has a larger pressure receiving area than the first control surface 24.

この場合、ケーシング穴28内の補償ピストン23を移動させて押しのけ容積を相応に調整し、以て容積補償室20aにより高圧段6の加圧室6aのための調整可能な死容積を形成している。   In this case, the compensation piston 23 in the casing hole 28 is moved to adjust the displacement volume accordingly, so that the volume compensation chamber 20a forms an adjustable dead volume for the pressurizing chamber 6a of the high pressure stage 6. Yes.

容積補償室20aの領域でケーシング22に配置されている冷却機構27は、本例ではケーシング22の外周面に形成された冷却フィンからなる。   The cooling mechanism 27 disposed on the casing 22 in the area of the volume compensation chamber 20a is formed of cooling fins formed on the outer peripheral surface of the casing 22 in this example.

図2に示す状態では圧縮機1の入口圧力が最小であり、このときの容積補償室20aは、補償ピストン23が上方の移動端に位置していて最大の死容積を形成している。段付きピストンからなる補償ピストン23の第2制御面25に作用する低圧段5の入口圧力が増加するに伴って補償ピストン23は図2で下方へ付勢され、これにより容積補償室20aの容積は、圧縮機1の入口圧力が最大のときの最小死容積へ向けて減少する。   In the state shown in FIG. 2, the inlet pressure of the compressor 1 is minimum, and the volume compensation chamber 20a at this time has the compensation piston 23 positioned at the upper moving end to form the maximum dead volume. As the inlet pressure of the low pressure stage 5 acting on the second control surface 25 of the compensation piston 23 formed of a stepped piston increases, the compensation piston 23 is urged downward in FIG. 2, and thereby the volume of the volume compensation chamber 20a. Decreases toward the minimum dead volume when the inlet pressure of the compressor 1 is maximum.

圧縮機1の作動中は、吸入行程の後の圧縮行程でガス状媒体が低圧段5の加圧室5aから吐出弁11a及び吸込弁13aを介して吸入行程中にある高圧段6の加圧室6aに導入される。高圧段6の高圧吸込弁13aの下流側で、低圧段5から高圧段6に至る接続通路に容積補償室20aを連結することで、やはり低圧段5によって中間圧力に圧縮された媒体が調整可能な死容積の容積補償室20a内に導入され、冷却機構27によって冷却される。高圧段6の次の吸入行程では容積補償室20aから高圧段6の加圧室6aへと媒体が吸入され、その間に死容積を形成している容積補償室20aから出てくるガス状媒体は断熱膨張して吸入温度以下に冷却される。   During the operation of the compressor 1, in the compression stroke after the suction stroke, the gaseous medium is pressurized from the pressure chamber 5 a of the low pressure stage 5 through the discharge valve 11 a and the suction valve 13 a to the high pressure stage 6. It is introduced into the chamber 6a. By connecting the volume compensation chamber 20a to the connection passage from the low pressure stage 5 to the high pressure stage 6 on the downstream side of the high pressure suction valve 13a of the high pressure stage 6, the medium compressed to the intermediate pressure by the low pressure stage 5 can be adjusted. The dead volume is introduced into the volume compensation chamber 20 a and cooled by the cooling mechanism 27. In the next suction stroke of the high pressure stage 6, the medium is sucked from the volume compensation chamber 20a into the pressurization chamber 6a of the high pressure stage 6, and the gaseous medium coming out of the volume compensation chamber 20a forming a dead volume therebetween is Adiabatic expansion and cooling below the intake temperature.

このように、圧縮機の入口圧力に依存して死容積が調整される容積補償室20aによって高圧段6の吸入容積が変化され、従って圧縮機をさまざまな入口圧力において作動させることが可能となり、加えて容積補償室20a自体の放熱及び付加的な冷却機構27によって媒体が冷却されることにより、圧縮機の温度を特に低圧段5で圧縮後に段間圧力比、従って高圧段6の熱負荷が増加する入口圧力減少時に従来よりも低下させることが可能である。   Thus, the volume compensation chamber 20a, whose dead volume is adjusted depending on the compressor inlet pressure, changes the suction volume of the high pressure stage 6, thus allowing the compressor to operate at various inlet pressures, In addition, the medium is cooled by the heat dissipation of the volume compensation chamber 20a itself and the additional cooling mechanism 27, so that the compressor temperature is reduced particularly after compression in the low pressure stage 5, and thus the heat load of the high pressure stage 6 is increased. When the inlet pressure is increased, the pressure can be lowered than before.

本発明の一実施形態による直線往復動ピストン形圧縮機の構成を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the structure of the linear reciprocating piston type compressor by one Embodiment of this invention. 図1の圧縮機における容積補償室部分の拡大断面図である。It is an expanded sectional view of the volume compensation chamber part in the compressor of FIG.

Claims (15)

ガス状媒体を圧縮するための特にピストン形圧縮機であって、前記媒体を入口圧から中間圧まで圧縮するための低圧段及び該媒体を中間圧から高圧まで圧縮するための高圧段を有するものにおいて、調整可能な死容積を形成する容積補償室(20a;20b)が高圧段(6)の上流側に接続されていることを特徴とする圧縮機。   A piston type compressor for compressing a gaseous medium, comprising a low pressure stage for compressing the medium from inlet pressure to intermediate pressure and a high pressure stage for compressing the medium from intermediate pressure to high pressure The compressor is characterized in that a volume compensation chamber (20a; 20b) forming an adjustable dead volume is connected to the upstream side of the high-pressure stage (6). 容積補償室(20a;20b)によって形成される死容積が入口圧に応じて調整可能であることを特徴とする請求項1に記載の圧縮機。   The compressor according to claim 1, characterized in that the dead volume formed by the volume compensation chamber (20a; 20b) can be adjusted according to the inlet pressure. 容積補償室(20a;20b)が、最高入口圧のときは最小死容積に設定され、入口圧の低下に伴って最大死容積へ向けて調整可能であることを特徴とする請求項2に記載の圧縮機。   The volume compensation chamber (20a; 20b) is set to a minimum dead volume at the maximum inlet pressure and can be adjusted toward the maximum dead volume as the inlet pressure decreases. Compressor. 容積補償室(20a;20b)が補償シリンダ(21)として構成され、該補償シリンダが補償室ケーシング(22)内で長手方向に往復移動可能な補償ピストン(23)を有することを特徴とする請求項1〜3のいずれか1項に記載の圧縮機。   The volume compensation chamber (20a; 20b) is configured as a compensation cylinder (21), the compensation cylinder having a compensation piston (23) reciprocally movable in the longitudinal direction within the compensation chamber casing (22). Item 4. The compressor according to any one of Items 1 to 3. 補償ピストン(23)が段付きピストンからなり、該段付きピストンが容積補償室(20a;20b)内で中間圧の作用を受ける第1制御面(24)及びこれと対向する方向に入口圧の作用を受ける第2制御面(25)を有し、入口圧の低下時に容積補償室の死容積を自動的に増加するように変位可能であることを特徴とする請求項4記載の圧縮機。   The compensation piston (23) comprises a stepped piston, and the stepped piston is subjected to intermediate pressure in the volume compensation chamber (20a; 20b) and the inlet pressure is adjusted in a direction opposite to the first control surface (24). 5. The compressor according to claim 4, wherein the compressor has a second control surface (25) to be actuated and is displaceable to automatically increase the dead volume of the volume compensation chamber when the inlet pressure is reduced. 容積補償室(20a;20b)が冷却機構(27)を備えていることを特徴とする請求項1〜5のいずれか1項に記載の圧縮機。   The compressor according to any one of claims 1 to 5, wherein the volume compensation chamber (20a; 20b) includes a cooling mechanism (27). 冷却機構(27)が補償室ケーシング(22)に配置された冷却フィンによって形成されていることを特徴とする請求項6に記載の圧縮機。   The compressor according to claim 6, characterized in that the cooling mechanism (27) is formed by cooling fins arranged in the compensation chamber casing (22). 液圧駆動によって圧縮機ケーシング(3)内で長手方向に往復移動可能な圧縮ピストン(4)を備えたことを特徴とする請求項1〜7のいずれか1項に記載の圧縮機。   The compressor according to any one of claims 1 to 7, further comprising a compression piston (4) capable of reciprocating in the longitudinal direction in the compressor casing (3) by hydraulic drive. 低圧段(5)が第1加圧室(5a)と第2加圧室(5b)とを有することを特徴とする請求項1〜8のいずれか1項に記載の圧縮機。   The compressor according to any one of claims 1 to 8, wherein the low-pressure stage (5) has a first pressurizing chamber (5a) and a second pressurizing chamber (5b). 高圧段(6)が第1加圧室(6a)と第2加圧室(6b)とを有することを特徴とする請求項1〜9のいずれか1項に記載の圧縮機。   The compressor according to any one of claims 1 to 9, wherein the high-pressure stage (6) has a first pressurizing chamber (6a) and a second pressurizing chamber (6b). 圧縮機ケーシング(3)に外部冷却構造(15a;15b)が設けられていることを特徴とする請求項1〜10のいずれか1項に記載の圧縮機。   The compressor according to any one of claims 1 to 10, wherein the compressor casing (3) is provided with an external cooling structure (15a; 15b). 圧縮ピストン(4)に内部冷却構造が設けられていることを特徴とする請求項8〜11のいずれか1項に記載の圧縮機。   The compressor according to any one of claims 8 to 11, wherein the compression piston (4) is provided with an internal cooling structure. 圧縮ピストン(4)が少なくとも1つの長手穴(16a;16b)を備え、該長手穴が液圧駆動用加圧室(9a;9b)に連通していることを特徴とする請求項12に記載の圧縮機。   13. The compression piston (4) comprises at least one longitudinal hole (16a; 16b), the longitudinal hole being in communication with a pressurizing chamber (9a; 9b) for hydraulic drive. Compressor. 高圧段(6)の各加圧室(6a;6b)に個別の容積補償室(20a;20b)が接続されていることを特徴とする請求項10〜13のいずれか1項に記載の圧縮機。   14. Compression according to any one of claims 10 to 13, characterized in that an individual volume compensation chamber (20a; 20b) is connected to each pressurization chamber (6a; 6b) of the high-pressure stage (6). Machine. 請求項1〜14のいずれか1項記載の圧縮機の特に水素燃料供給スタンドにおける水素燃料の圧縮への使用。   Use of the compressor according to any one of claims 1 to 14, particularly for compression of hydrogen fuel in a hydrogen fuel supply station.
JP2008523163A 2005-07-26 2006-07-04 Compressor, especially piston type compressor Expired - Fee Related JP5065267B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005034907.2 2005-07-26
DE102005034907A DE102005034907A1 (en) 2005-07-26 2005-07-26 Compressor, in particular reciprocating compressor
PCT/EP2006/006520 WO2007012384A1 (en) 2005-07-26 2006-07-04 Compressor, in particular piston compressor

Publications (2)

Publication Number Publication Date
JP2009503321A true JP2009503321A (en) 2009-01-29
JP5065267B2 JP5065267B2 (en) 2012-10-31

Family

ID=36992587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008523163A Expired - Fee Related JP5065267B2 (en) 2005-07-26 2006-07-04 Compressor, especially piston type compressor

Country Status (8)

Country Link
US (1) US20080199327A1 (en)
EP (1) EP1907701B1 (en)
JP (1) JP5065267B2 (en)
KR (1) KR20080025059A (en)
CN (1) CN101233318B (en)
AU (1) AU2006274301A1 (en)
DE (1) DE102005034907A1 (en)
WO (1) WO2007012384A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106988989A (en) * 2017-05-24 2017-07-28 安徽寅时压缩机制造有限公司 A kind of anti-reversing clutch for split-compressor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20120395A1 (en) * 2012-05-03 2012-08-02 Electro Power Systems Spa BOOSTER DEVICE FOR GAS COMPRESSION
DE102014217897A1 (en) 2014-09-08 2016-03-10 Pressure Wave Systems Gmbh A compressor device, a cooling device equipped therewith, and a method of operating the compressor device and the cooling device
CN104595155B (en) * 2014-12-30 2016-06-15 成都烃源科技有限责任公司 A kind of long stroke hydraulic control natural gas compressor
US20190145395A1 (en) * 2017-11-10 2019-05-16 Haskel International, Llc Method of Construction for High Cycle Fatigue Resistant Pressure Vessels in Hydrogen Service

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138176A (en) * 1984-07-27 1986-02-24 タイドウオ−タ− コンプレツシヨン サ−ビス,インコ−ポレ−テツド Fluid pressure type compressor and fluid pressure control-power device of said compressor
US4976591A (en) * 1990-03-02 1990-12-11 Intevep, S.A. Self lubricating, two stage variable compressor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1677369A (en) * 1927-06-13 1928-07-17 Edward A Rix Fluid compressor
US1939424A (en) * 1931-06-23 1933-12-12 Chicago Pneumatic Tool Co Variable volume control mechanism for compressors
US2456386A (en) * 1946-05-07 1948-12-14 Howell C Cooper Cascade refrigeration unit with controls therefor
US2593316A (en) * 1946-12-23 1952-04-15 Dole Valve Co Reciprocating pump assembly
US2698576A (en) * 1951-10-06 1955-01-04 Du Pont Automatic control of interstage pressures in pumps
US3084847A (en) * 1960-09-07 1963-04-09 Nordberg Manufacturing Co Automatic clearance pockets for compressors
DE1195427B (en) * 1961-07-05 1965-06-24 Basf Ag Three-stage high pressure gas compressor with a piston seal
US3804125A (en) * 1972-09-28 1974-04-16 Bendix Corp Pump pulsation dampener
US4173433A (en) * 1978-02-06 1979-11-06 Anderson John M Two-stage gas compressor
US4390322A (en) * 1981-02-10 1983-06-28 Tadeusz Budzich Lubrication and sealing of a free floating piston of hydraulically driven gas compressor
US4369633A (en) * 1981-09-03 1983-01-25 Snyder David A Multiple stage compressor with flash gas injection assembly
US4811558A (en) * 1981-10-13 1989-03-14 Baugh Benton F System and method for providing compressed gas
US4479377A (en) * 1983-03-24 1984-10-30 Arcstart, Inc. Method and apparatus for measuring gas flow
DE3410911A1 (en) * 1983-04-06 1984-10-11 Ernst Dipl.-Ing. 4600 Dortmund Korthaus PISTON PUMP
US4705460A (en) * 1985-02-26 1987-11-10 Anton Braun Bounce chambers for multi-cylinder linear engine compressors
US5209647A (en) * 1992-06-17 1993-05-11 Dresser-Rand Company Straight cylinder gas compressor with a reduced diameter compression chamber
CN2202804Y (en) * 1994-01-26 1995-07-05 陈永江 Nitrogen hydrogen compressor
US5863186A (en) * 1996-10-15 1999-01-26 Green; John S. Method for compressing gases using a multi-stage hydraulically-driven compressor
US6659730B2 (en) * 1997-11-07 2003-12-09 Westport Research Inc. High pressure pump system for supplying a cryogenic fluid from a storage tank
BR0103443A (en) * 2001-08-21 2004-03-09 Petroleo Brasileiro Sa Multiphase Pumping System and Method
US7711901B2 (en) * 2004-02-13 2010-05-04 Intel Corporation Method, system, and apparatus for an hierarchical cache line replacement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138176A (en) * 1984-07-27 1986-02-24 タイドウオ−タ− コンプレツシヨン サ−ビス,インコ−ポレ−テツド Fluid pressure type compressor and fluid pressure control-power device of said compressor
US4976591A (en) * 1990-03-02 1990-12-11 Intevep, S.A. Self lubricating, two stage variable compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106988989A (en) * 2017-05-24 2017-07-28 安徽寅时压缩机制造有限公司 A kind of anti-reversing clutch for split-compressor
CN106988989B (en) * 2017-05-24 2019-12-03 安徽寅时压缩机制造有限公司 A kind of anti-reversing clutch for split-compressor

Also Published As

Publication number Publication date
JP5065267B2 (en) 2012-10-31
EP1907701B1 (en) 2017-01-25
AU2006274301A1 (en) 2007-02-01
CN101233318B (en) 2011-10-19
CN101233318A (en) 2008-07-30
EP1907701A1 (en) 2008-04-09
KR20080025059A (en) 2008-03-19
DE102005034907A1 (en) 2007-02-01
WO2007012384A1 (en) 2007-02-01
US20080199327A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5065267B2 (en) Compressor, especially piston type compressor
JP5030242B2 (en) Bellows pump and operation method of bellows pump
KR20060089088A (en) 2-stage reciprocating compressor and refrigerator with this
US8061179B2 (en) High pressure dual-action hydraulic pump
US8186972B1 (en) Multi-stage expansible chamber pneumatic system
US20230146011A1 (en) Hydraulic drive for diaphragm compressor
US6530761B1 (en) Double-acting, two-stage pump
US7955058B1 (en) Reciprocating piston to piston energy pump
AU2004233525A1 (en) Multi-directional pump
CN100460674C (en) Reciprocating compressor with enlarged valve seat area
US20050013716A1 (en) High-pressure generating device
US7367785B2 (en) Reduced icing valves and gas-driven motor and reciprocating pump incorporating same
US20190383279A1 (en) Fluid pumps and related systems and methods
JP4435743B2 (en) Reciprocating compressor
CN108561344B (en) Double-acting reciprocating hydraulic pressure booster
RU2220323C1 (en) Compressor with hydraulic drive
KR200152631Y1 (en) Pressure intensifying system
US3638441A (en) Device for producing cold at low temperatures
RU2156383C1 (en) Pneumatic hydraulic pump-booster
KR101016399B1 (en) Bellows pump and driving method therefor
KR20230002126U (en) Vibration valve assembly oscillating directly connected fluid cylinder
US265585A (en) Gas-compressing pump
JP3558416B2 (en) Pump discharge pressure pulsation reduction mechanism
US791896A (en) Valve-motion for air-compressors.
JP2015113786A (en) Bellows pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5065267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees