JP2009302302A - Heatsink for electronic component and method of manufacturing the same - Google Patents

Heatsink for electronic component and method of manufacturing the same Download PDF

Info

Publication number
JP2009302302A
JP2009302302A JP2008155304A JP2008155304A JP2009302302A JP 2009302302 A JP2009302302 A JP 2009302302A JP 2008155304 A JP2008155304 A JP 2008155304A JP 2008155304 A JP2008155304 A JP 2008155304A JP 2009302302 A JP2009302302 A JP 2009302302A
Authority
JP
Japan
Prior art keywords
heat
electronic component
conductive resin
heat sink
heatsink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008155304A
Other languages
Japanese (ja)
Inventor
Tetsuo Tsujiguchi
哲男 辻口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippo Ltd
Original Assignee
Nippo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippo Ltd filed Critical Nippo Ltd
Priority to JP2008155304A priority Critical patent/JP2009302302A/en
Publication of JP2009302302A publication Critical patent/JP2009302302A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heatsink for an electronic component, which has a reduced size and a simple structure, and to provide a method of manufacturing the same. <P>SOLUTION: A heatsink 10 for an electronic component includes: a heat-conductive member 12 having a surface which is to be in contact with an electronic component 11; a heat dissipating fin 13 joined to the heat-conductive member 12; and heat-conductive resin members 14 which are integrated with the heat dissipating fin 13 to cover almost the whole of the heat dissipating fin 13 except for the area joined to the heat-conductive member 12, and absorb heat accumulated in the heat-dissipating fin 13 and dissipate the heat into the atmosphere. As the heat-conductive resin members 14 cover almost the whole of the heat dissipating fin 13, the electronic component 11 can be cooled by heat absorption. Cooling effect is enhanced without the need to increase the size of the heat dissipating fin 13, so that the size of the heatsink 10 itself can be reduced. All that is required is to cover the heat dissipating fin 13 with the heat conductive resin members 14, so that the heatsink 10 can have a simple structure. The heatsink 10 using a resin (heat-conductive resin members 14) can be reduced in weight in comparison with a heatsink using a metal. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、比較的短時間で発熱量が多くなる半導体装置等のような電子部品から熱を吸収して発散させる電子部品用ヒートシンクおよびその製造方法に関する。   The present invention relates to a heat sink for an electronic component that absorbs and dissipates heat from an electronic component such as a semiconductor device that generates a large amount of heat in a relatively short time, and a method for manufacturing the same.

従来では、支柱の垂直断面形状を支柱の長手方向の各断面において同一形状とし、当該支柱の側面にピン状フィンを備えた電子部品用ヒートシンクの一例が開示されている(例えば特許文献1を参照)。また、冷媒を用いて間接的に電子部品を冷却する半導体素子用放熱構造体の一例が開示されている(例えば特許文献2を参照)。
特開2001−326307号公報 特開2001−168256号公報
Conventionally, an example of a heat sink for an electronic component has been disclosed in which the vertical cross-sectional shape of the column is the same in each cross section in the longitudinal direction of the column, and a pin-shaped fin is provided on the side of the column (see, for example, Patent Document 1). ). In addition, an example of a heat dissipation structure for a semiconductor element that indirectly cools an electronic component using a refrigerant is disclosed (see, for example, Patent Document 2).
JP 2001-326307 A JP 2001-168256 A

しかし、特許文献1の電子部品用ヒートシンクについて冷却効果を高めようとすると、ピン状フィンの数を多くしたり、放熱するための表面積を大きく確保する必要がある。この場合、ヒートシンク自体が大きくなるという問題がある。
また、ヒートシンクのみを空気冷却しようとしても、熱を大気中に発散する速さには限界がある。すなわち、電子部品から吸収できる熱量は大気中に発散可能な熱量にほぼ等しい。したがって、大気中に発散可能な熱量を超えて電子部品から熱を吸収することができないという問題がある。
However, in order to enhance the cooling effect of the heat sink for electronic parts disclosed in Patent Document 1, it is necessary to increase the number of pin-shaped fins or to secure a large surface area for heat dissipation. In this case, there is a problem that the heat sink itself becomes large.
Even if only the heat sink is air-cooled, there is a limit to the speed at which heat can be dissipated into the atmosphere. That is, the amount of heat that can be absorbed from the electronic component is approximately equal to the amount of heat that can be dissipated into the atmosphere. Therefore, there is a problem that heat cannot be absorbed from the electronic component beyond the amount of heat that can be dissipated into the atmosphere.

ヒートシンクの大きさを抑え、かつ大気中に発散可能な熱量を超えて電子部品から熱を吸収するには、特許文献2のように冷媒を用いればよい。ところが、冷却効果を維持するには冷媒の温度を維持するための機構(例えば特許文献2の図9に表すラジエータ等)が必要となる。したがって、ヒートシンクの構成が複雑になるという問題がある。   In order to reduce the size of the heat sink and to absorb heat from the electronic component beyond the amount of heat that can be dissipated in the atmosphere, a refrigerant may be used as in Patent Document 2. However, in order to maintain the cooling effect, a mechanism for maintaining the temperature of the refrigerant (for example, a radiator shown in FIG. 9 of Patent Document 2) is required. Therefore, there is a problem that the configuration of the heat sink becomes complicated.

本発明はこのような点に鑑みてなしたものであり、比較的短時間で発熱量が多くなる電子部品について冷却効果を高めるため、ヒートシンク自体の大きさを抑え、かつ簡単な構成とした電子部品用ヒートシンクおよびその製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and in order to enhance the cooling effect of an electronic component that generates a large amount of heat in a relatively short time, the size of the heat sink itself is suppressed and the electronic device has a simple configuration. An object of the present invention is to provide a heat sink for components and a method for manufacturing the same.

(1)課題を解決するための手段(以下では単に「解決手段」と呼ぶ。)1は、電子部品用ヒートシンクであって、電子部品と接触する面を備えた熱伝導部材と、前記熱伝導部材に接合された放熱フィンと、前記熱伝導部材と接合する部位を除いて前記放熱フィンのほぼ全体を覆って一体化され、前記放熱フィンに蓄えられた熱を吸収して大気中に発散させる熱伝導樹脂とを有することを要旨とする。 (1) Means for solving the problem (hereinafter, simply referred to as “solution means”) 1 is a heat sink for an electronic component, and includes a heat conduction member having a surface in contact with the electronic component, and the heat conduction. Except for the heat radiating fin joined to the member and the part to be joined to the heat conducting member, the heat radiating fin is integrated so as to cover almost the whole, and the heat stored in the heat radiating fin is absorbed and diffused into the atmosphere. The gist is to have a heat conductive resin.

「電子部品」は通電時や稼働時に発熱する発熱体であれば任意であり、例えばトランジスタ,IC,LSI,CPU等のような半導体装置が該当する。
「熱伝導部材」および「放熱フィン」は熱を伝導したり放熱する部材であれば、材質は任意である。すなわち、金属には限定されず、樹脂その他の材質であってもよい。
「電子部品」と「熱伝導部材」との界面は、熱伝導グリスを用いて密着させる構成としてもよく、熱伝導部材の上面に絶縁膜を形成してさらに電子部品の回路を形成する構成としてもよい。
「熱伝導樹脂」は熱を吸収して大気中に発散させる樹脂であれば任意である。例えば、ポリフェニルサルファイド(PPS),液晶ポリマー(LCP),ポリエーテルイミド(PEI),ポリエーテルエーテルケトン(PEEK),ポリアミド(PA),ポリブチレンテレフタレート(PBT),アクリロニトリル・ブタジエン・スチレン共重合体(ABS),アクリロニトリル・スチレン共重合体(AS)等の樹脂が該当する。
「放熱フィン」と「熱伝導樹脂」との界面は、材質が異なる場合に線膨張係数の差を吸収するような接着剤で接着してもよく、表面に有機薄膜を形成した放熱フィンと熱伝導樹脂との接触面で界面結合を起こして接合してもよい。
The “electronic component” is arbitrary as long as it is a heating element that generates heat during energization or operation, and corresponds to a semiconductor device such as a transistor, IC, LSI, CPU, or the like.
The “thermal conducting member” and “radiating fin” may be any material as long as they are members that conduct or dissipate heat. That is, the material is not limited to metal and may be a resin or other material.
The interface between the “electronic component” and the “heat conducting member” may be configured to be in close contact with the heat conducting grease, or an insulating film is formed on the upper surface of the heat conducting member to further form a circuit for the electronic component. Also good.
The “thermal conductive resin” is arbitrary as long as it is a resin that absorbs heat and dissipates it into the atmosphere. For example, polyphenyl sulfide (PPS), liquid crystal polymer (LCP), polyether imide (PEI), polyether ether ketone (PEEK), polyamide (PA), polybutylene terephthalate (PBT), acrylonitrile butadiene styrene copolymer Resins such as (ABS) and acrylonitrile / styrene copolymer (AS) are applicable.
The interface between the “radiation fin” and the “thermal conductive resin” may be bonded with an adhesive that absorbs the difference in linear expansion coefficient when the materials are different, and the heat radiation fin with the organic thin film formed on the surface and the heat Bonding may be performed by causing interfacial bonding at the contact surface with the conductive resin.

解決手段1によれば、電子部品で発生した熱はまず熱伝導部材に伝わり、さらに放熱フィンに伝わる。この放熱フィンは、熱伝導樹脂によって接合部位を除くほぼ全体が覆われて一体化されているので、大気中に熱を発散するよりも早く吸熱される。言い換えれば、熱伝導樹脂は吸熱量から大気中に発散する熱量を減じた分が蓄積されてゆくので、全体で蓄積可能な熱量に達するまでは吸熱が進行する。よって、熱伝導樹脂全体で蓄積可能な熱量に達するまでは、吸熱により電子部品を冷却することができる。すなわち、比較的短時間で発熱量が多くなる電子部品を冷却するのに最適である。また、冷却効果を高めるために放熱フィンを大きくする必要が無いので、ヒートシンク自体の大きさが抑えられる。さらに、放熱フィンのほぼ全体を熱伝導樹脂で覆えばよいので、簡単な構成とすることができる。そして、熱伝導樹脂に相当する部位を樹脂で形成するので、金属で形成する場合に比べて軽量化することができる。   According to the solution 1, the heat generated in the electronic component is first transmitted to the heat conducting member and further to the heat radiating fins. Since these heat radiation fins are almost entirely covered and integrated with the heat conductive resin, they are absorbed faster than heat is released into the atmosphere. In other words, the heat conductive resin accumulates the amount of heat absorbed by subtracting the amount of heat released into the atmosphere, so that the heat absorption proceeds until the heat amount that can be accumulated as a whole is reached. Therefore, the electronic component can be cooled by absorbing heat until the amount of heat that can be accumulated in the entire heat conductive resin is reached. That is, it is optimal for cooling an electronic component that generates a large amount of heat in a relatively short time. Moreover, since it is not necessary to increase the size of the heat dissipating fins in order to enhance the cooling effect, the size of the heat sink itself can be suppressed. Furthermore, since it is sufficient to cover almost the entire radiating fin with the heat conductive resin, a simple configuration can be achieved. And since the site | part corresponded to heat conductive resin is formed with resin, it can reduce in weight compared with the case where it forms with a metal.

(2)解決手段2は、解決手段1に記載した電子部品用ヒートシンクであって、放熱フィンの断面形状を櫛状または梯子状に形成することを要旨とする。 (2) Solution 2 is a heat sink for electronic components described in Solution 1, and the gist is that the cross-sectional shape of the radiation fin is formed in a comb shape or a ladder shape.

解決手段2によれば、放熱フィンの断面形状を櫛状または梯子状に形成することにより、放熱フィンから熱伝導樹脂に熱を伝導できる接触面の面積が増え、接触する部位で熱伝導樹脂に素早く吸熱させることができる。また、櫛状または梯子状の先端部を熱伝導樹脂で覆わずに露出させる構成とした場合には、露出した部位の放熱フィンから熱を直接的に大気中に発散させることができるので放熱効率が向上する。   According to Solution 2, by forming the cross-sectional shape of the radiating fin in a comb shape or a ladder shape, the area of the contact surface capable of conducting heat from the radiating fin to the heat conducting resin is increased, and the heat conducting resin is formed at the contact portion. Can absorb heat quickly. Also, when the comb-shaped or ladder-shaped tip is exposed without being covered with the heat conductive resin, heat can be directly dissipated from the exposed fins to the atmosphere, so that the heat dissipation efficiency Will improve.

(3)解決手段3は、解決手段1または2に記載した電子部品用ヒートシンクであって、熱伝導部材および放熱フィンのうちで一方または双方は、アルミニウムまたはアルミニウム合金で形成することを要旨とする。 (3) Solution means 3 is the heat sink for electronic components described in Solution means 1 or 2, and one or both of the heat conducting member and the heat radiating fin is formed of aluminum or an aluminum alloy. .

解決手段3によれば、アルミニウムやアルミニウム合金は熱伝導率が高く、軽量(アルミニウムの比重は2.7)である。これらで熱伝導部材や放熱フィンを形成すれば、電子部品の熱を吸収しやすく、軽いヒートシンクを構成することができる。   According to Solution 3, aluminum or an aluminum alloy has high thermal conductivity and is lightweight (the specific gravity of aluminum is 2.7). If a heat conducting member or a heat radiating fin is formed with these, it is easy to absorb the heat of the electronic component, and a light heat sink can be configured.

(4)解決手段4は、解決手段1から3のいずれか一項に記載した電子部品用ヒートシンクであって、熱伝導部材は電子部品のヒートスプレッダに接触させることを要旨とする。 (4) The solving means 4 is the heat sink for electronic parts described in any one of the solving means 1 to 3, and the gist is that the heat conducting member is brought into contact with the heat spreader of the electronic parts.

解決手段4によれば、特に半導体装置のパッケージに金属プレート等からなるヒートスプレッダが添付され、当該ヒートスプレッダを通じて半導体装置を冷却することで熱伝導効率を高める傾向にある。よって、熱伝導部材を電子部品のヒートスプレッダに接触(より好ましくは密着)させて、当該電子部品を効率良く冷却することができる。   According to the solution 4, a heat spreader made of a metal plate or the like is particularly attached to the package of the semiconductor device, and the heat conduction efficiency tends to be improved by cooling the semiconductor device through the heat spreader. Accordingly, the electronic component can be efficiently cooled by bringing the heat conducting member into contact with the heat spreader of the electronic component (more preferably, closely contacting).

(5)解決手段5は、解決手段1から4のいずれか一項に記載した電子部品用ヒートシンクであって、熱伝導樹脂と放熱フィンとは、表面に有機薄膜を形成した放熱フィンを熱伝導樹脂に対してインサートし、成型中に熱伝導樹脂と放熱フィンとの接触面で界面結合を起こして接合することを要旨とする。 (5) Solving means 5 is the heat sink for electronic components according to any one of solving means 1 to 4, wherein the heat conducting resin and the heat radiating fin are heat conducting heat radiating fins having an organic thin film formed on the surface. The gist is that the resin is inserted into the resin and bonded by causing interfacial bonding at the contact surface between the heat conductive resin and the heat radiation fin during molding.

解決手段5によれば、予め表面に有機薄膜(例えばトリアジンジチオール等)を形成した放熱フィンを、熱伝導樹脂に対してインサートする。金型内では、成型中に熱伝導樹脂と放熱フィンとの接触面で界面結合を起こして接合させる。この界面結合による結合力は、金属と樹脂とを接着剤で接着する結合力よりも強固になる。金属と樹脂とは線膨張係数が相違するために接着剤による接着では剥離する可能性があるのに対し、金属と樹脂との間で界面結合するので剥離しない。したがって、ヒートシンク自体が熱くなったり冷えても放熱フィンと熱伝導樹脂は剥離せず、電子部品の冷却を確実に行うことができる。   According to the solution means 5, the radiation fin which formed the organic thin film (for example, triazine dithiol etc.) in the surface previously is inserted with respect to heat conductive resin. In the mold, during bonding, an interface bond is caused at the contact surface between the heat conductive resin and the heat radiating fins to bond them. The bonding force due to the interface bonding is stronger than the bonding force for bonding the metal and the resin with an adhesive. Since metal and resin have different linear expansion coefficients, they may be peeled off by bonding with an adhesive, whereas they are not peeled because they are interface-bonded between metal and resin. Therefore, even if the heat sink itself becomes hot or cool, the radiating fin and the heat conductive resin do not peel off, and the electronic component can be reliably cooled.

本発明による電子部品用ヒートシンクは、比較的短時間で発熱量が多くなる電子部品について冷却効果を高めるため、ヒートシンク自体の大きさを抑え、かつ簡単な構成とすることができる。   The heat sink for an electronic component according to the present invention enhances the cooling effect for an electronic component that generates a large amount of heat in a relatively short period of time, so that the size of the heat sink itself can be suppressed and the configuration can be simplified.

本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

まず、図1にはヒートシンクの外観例を斜視図で表し、図2には分解斜視図で表す。図1および図2において、電子部品11用のヒートシンク10は熱伝導部材12,放熱フィン13,熱伝導樹脂14などを有する。電子部品11は例えばトランジスタ,IC,LSI,CPU等のような半導体装置が該当し、本例では部品本体11aに対してヒートスプレッダ11bが設ける構成となっている。   First, FIG. 1 shows an example of the appearance of the heat sink in a perspective view, and FIG. 2 shows an exploded perspective view. 1 and 2, the heat sink 10 for the electronic component 11 includes a heat conductive member 12, a heat radiating fin 13, a heat conductive resin 14, and the like. The electronic component 11 corresponds to a semiconductor device such as a transistor, IC, LSI, CPU, and the like. In this example, the heat spreader 11b is provided on the component main body 11a.

熱伝導部材12および放熱フィン13は、いずれも熱を伝導したり放熱する部材であれば材質は任意である。本例では金属(例えばアルミニウムやアルミニウム合金等)を加工してそれぞれの所定形状に形成する。熱伝導部材12は電子部品11(特にヒートスプレッダ11b)と接触可能な面を有し、電子部品11との界面は例えば熱伝導グリスを用いて密着させる。放熱フィン13は当該熱伝導部材12に接合され、放熱し易くするために断面形状を例えば櫛状に形成する(特に図2を参照)。接合方法は任意であって、例えばハンダ付けやロウ付け等が該当する。放熱フィン13は、上述したように熱伝導部材12と接合する部位や、後述するように熱伝導樹脂14で覆われる部位を除けば露出する。この露出部位(例えば図示する先端部13a)から熱を直接的に大気中に発散させる。   The material of the heat conducting member 12 and the heat radiating fins 13 is arbitrary as long as they are members that conduct heat or dissipate heat. In this example, a metal (for example, aluminum or aluminum alloy) is processed and formed into a predetermined shape. The heat conducting member 12 has a surface that can come into contact with the electronic component 11 (particularly the heat spreader 11b), and the interface with the electronic component 11 is brought into close contact with, for example, heat conducting grease. The heat radiating fins 13 are joined to the heat conducting member 12 and have a cross-sectional shape, for example, a comb shape to facilitate heat dissipation (see particularly FIG. 2). The joining method is arbitrary, for example, soldering or brazing. The radiating fins 13 are exposed except for the part joined to the heat conducting member 12 as described above and the part covered with the heat conducting resin 14 as described later. Heat is directly diffused into the atmosphere from this exposed portion (for example, the tip portion 13a shown in the figure).

熱伝導樹脂14は、放熱フィン13のほぼ全体(すなわち放熱フィン13と熱伝導部材12とが接合する部位を除く)を覆って一体化され、当該放熱フィン13に蓄えられた熱を吸収して大気中に発散させる。この熱伝導樹脂14は熱を吸収して大気中に発散させる樹脂であれば任意であるが、例えばポリフェニルサルファイド(PPS)としては出光興産株式会社製の「NT−783」が適している。なお図2に表す熱伝導樹脂14は複数の立方体で構成されるように見えるが、先端部13aが露出するようにインサート成型で接合した結果を分解斜視図で示したに過ぎない。   The heat conductive resin 14 is integrated so as to cover almost the whole of the heat radiating fin 13 (that is, excluding the portion where the heat radiating fin 13 and the heat conductive member 12 are joined), and absorbs heat stored in the heat radiating fin 13. Vent into the atmosphere. The heat conductive resin 14 is optional as long as it absorbs heat and dissipates into the atmosphere. For example, “NT-783” manufactured by Idemitsu Kosan Co., Ltd. is suitable as polyphenyl sulfide (PPS). Although the heat conductive resin 14 shown in FIG. 2 appears to be composed of a plurality of cubes, the result of joining by insert molding so that the tip portion 13a is exposed is merely shown in an exploded perspective view.

熱伝導樹脂14と放熱フィン13との接合方法は任意であるが、例えば金型を用いた接合方法がある。具体的には、まず放熱フィン13の表面に有機薄膜(例えばトリアジンジチオール等)を形成する処理を行う。次に、有機薄膜を形成した放熱フィン13を熱伝導樹脂14に対してインサートする。インサート成型中に熱伝導樹脂14と放熱フィン13との接触面で有機薄膜が作用して界面結合が起こり、両者が接合する。   Although the joining method of the heat conductive resin 14 and the radiation fin 13 is arbitrary, for example, there is a joining method using a mold. Specifically, first, a process of forming an organic thin film (for example, triazine dithiol) on the surface of the radiation fin 13 is performed. Next, the heat radiating fins 13 on which the organic thin film is formed are inserted into the heat conductive resin 14. During the insert molding, the organic thin film acts on the contact surface between the heat conductive resin 14 and the heat radiating fin 13 to cause interface bonding, and both are joined.

上述のように構成されたヒートシンク10を用いて、電子部品11が発熱した場合の放熱過程について図3および図4を参照しながら説明する。まず電力(電圧や電流)を供給したり信号を流す等して電子部品11を稼働させると、図3(A)に表すように電子部品11自体が熱くなる。こうして電子部品11で発生した熱は、図3(B)に表すようにヒートスプレッダ11bを通じて熱伝導部材12に伝わる。熱伝導部材12に伝わった熱は、さらに図3(C)に表すように放熱フィン13に伝わる。放熱フィン13に伝わった熱は、図4(A)に表すように熱伝導樹脂14に伝わる。放熱フィン13は熱伝導樹脂14によってほぼ全体が覆われて一体化されているので、大気中に熱を発散するよりも早く吸熱される。言い換えれば、熱伝導樹脂14は吸熱量から大気中に発散する熱量を減じた分が蓄積されてゆくので、熱伝導樹脂14の全体で蓄積可能な熱量に達するまでは吸熱が進行する。最終的には図4(B)に表すように、熱伝導樹脂14および放熱フィン13の露出部位(本例では先端部13a)から熱が大気中に発散する。   A heat dissipation process when the electronic component 11 generates heat using the heat sink 10 configured as described above will be described with reference to FIGS. First, when the electronic component 11 is operated by supplying power (voltage or current) or passing a signal, the electronic component 11 itself becomes hot as shown in FIG. Thus, the heat generated in the electronic component 11 is transmitted to the heat conducting member 12 through the heat spreader 11b as shown in FIG. The heat transferred to the heat conducting member 12 is further transferred to the heat radiating fins 13 as shown in FIG. The heat transmitted to the radiation fin 13 is transmitted to the heat conductive resin 14 as shown in FIG. Since the heat radiating fins 13 are almost entirely covered and integrated by the heat conductive resin 14, they are absorbed faster than heat is radiated into the atmosphere. In other words, the heat conducting resin 14 accumulates the amount of heat absorbed by subtracting the amount of heat dissipated in the atmosphere, so that the heat absorption proceeds until the heat conducting resin 14 reaches the amount of heat that can be accumulated. Eventually, as shown in FIG. 4B, heat is dissipated into the atmosphere from the exposed portions of the heat conductive resin 14 and the radiation fins 13 (the tip portion 13a in this example).

電子部品11に対して100[W]の電力を300秒間印加して発熱させる試験を行ってみると、ヒートスプレッダ11bの最高温度は図5の通りになる。図5では左側から順番に、放熱フィン13および熱伝導樹脂14に相当する部位(すなわち直方体形状)を金属で構造したヒートシンク(構造α)、図1に表すヒートシンク10(放熱フィン13の断面形状が櫛状;構造β)、後述する図6に表すヒートシンク20(放熱フィン21の断面形状が梯子状;構造γ)に対応したそれぞれの最高温度を棒グラフで表す。   When a test for applying heat of 100 [W] to the electronic component 11 for 300 seconds to generate heat is performed, the maximum temperature of the heat spreader 11b is as shown in FIG. In FIG. 5, in order from the left side, a heat sink (structure α) in which the portions corresponding to the heat radiation fins 13 and the heat conductive resin 14 (that is, a rectangular parallelepiped shape) are made of metal, and the heat sink 10 shown in FIG. The maximum temperature corresponding to each of the comb shape (structure β) and the heat sink 20 shown in FIG. 6 described later (the cross-sectional shape of the radiation fin 21 is a ladder shape; structure γ) is represented by a bar graph.

構造αの最高温度は120[℃]であるのに対し、構造βの最高温度は125[℃]であり、構造γの最高温度は115[℃]である。放熱フィンを金属(例えばアルミダイキャスト)のみで形成すると、構造βでは生じ得る放熱フィン13から熱伝導樹脂14への熱伝導ロスが少なくなるため、最高温度が抑えられると考えられる。ところが、構造αの放熱フィンを金型で形成する場合には、およそ10万ショットの耐久性能しか得られない。
一方、構造β(ヒートシンク10)を作製する際、金型内で放熱フィン13を熱伝導樹脂14に対してインサートして形成する場合には、およそ60万〜100万ショットの耐久性能が得られる。すなわち、一面の金型で6倍以上の個数の構造βを作製することができるので、構造αに比べて全体の作製コストを低く抑えることが可能になる。
The maximum temperature of the structure α is 120 [° C.], whereas the maximum temperature of the structure β is 125 [° C.], and the maximum temperature of the structure γ is 115 [° C.]. If the heat radiating fins are made of only metal (for example, aluminum die cast), the heat conduction loss from the heat radiating fins 13 to the heat conductive resin 14 that may occur in the structure β is reduced, so that the maximum temperature is considered to be suppressed. However, when the heat dissipating fin having the structure α is formed by a mold, only a durability performance of about 100,000 shots can be obtained.
On the other hand, when the structure β (heat sink 10) is produced, when the heat dissipating fins 13 are inserted into the heat conductive resin 14 in the mold, durability performance of about 600,000 to 1,000,000 shots can be obtained. . That is, since the number of structures β can be made six times or more with a single-sided mold, the overall production cost can be kept lower than that of the structure α.

上述した実施の形態によれば、以下に表す各効果を得ることができる。
(1)電子部品11用のヒートシンク10は、熱伝導部材12と、放熱フィン13と、熱伝導樹脂14とを有する構成とした(図1を参照)。この構成によれば、電子部品11で発生した熱はまず熱伝導部材12に伝わり、さらに放熱フィン13に伝わる。この放熱フィン13は、熱伝導樹脂14によって接合部位を除くほぼ全体が覆われて一体化されているので、大気中に熱を発散するよりも早く吸熱される。言い換えれば、熱伝導樹脂14は吸熱量から大気中に発散する熱量を減じた分が蓄積されてゆくので、全体で蓄積可能な熱量に達するまでは吸熱が進行する。よって、熱伝導樹脂14全体で蓄積可能な熱量に達するまでは、吸熱により電子部品11を冷却することができる。すなわち、比較的短時間で発熱量が多くなる電子部品11を冷却するのに最適である。また、冷却効果を高めるために放熱フィン13を大きくする必要が無いので、ヒートシンク10自体の大きさが抑えられる。さらに、放熱フィン13のほぼ全体を熱伝導樹脂14で覆えばよいので、簡単な構成とすることができる。そして、熱伝導樹脂14に相当する部位を樹脂で形成するので、金属で形成する場合に比べて軽量化(重量で10%程度)することができる。
なお、図1の例では1個の電子部品11を冷却する構成としたが、複数個の電子部品11を冷却する構成としてもよい。個数が増えるにつれて、ヒートシンク10を構成する要素(熱伝導部材12,放熱フィン13,熱伝導樹脂14等)を大きくする必要がある。
According to the embodiment described above, the following effects can be obtained.
(1) The heat sink 10 for the electronic component 11 is configured to include a heat conductive member 12, a heat radiating fin 13, and a heat conductive resin 14 (see FIG. 1). According to this configuration, the heat generated in the electronic component 11 is first transmitted to the heat conducting member 12 and further transferred to the heat radiating fins 13. Since the heat radiating fins 13 are substantially covered and integrated by the heat conductive resin 14 except for the joining portion, the heat radiating fins 13 are absorbed faster than heat is released into the atmosphere. In other words, since the heat conductive resin 14 accumulates the amount of heat absorbed by subtracting the amount of heat dissipated into the atmosphere, the heat absorption proceeds until the heat amount that can be accumulated as a whole is reached. Therefore, the electronic component 11 can be cooled by heat absorption until the amount of heat that can be accumulated in the entire heat conductive resin 14 is reached. That is, it is optimal for cooling the electronic component 11 that generates a large amount of heat in a relatively short time. Moreover, since it is not necessary to enlarge the radiation fin 13 in order to enhance the cooling effect, the size of the heat sink 10 itself can be suppressed. Furthermore, since it is sufficient to cover almost the entire heat radiation fin 13 with the heat conductive resin 14, a simple configuration can be achieved. And since the site | part corresponded to the heat conductive resin 14 is formed with resin, it can reduce in weight (about 10% by weight) compared with the case where it forms with a metal.
In the example of FIG. 1, one electronic component 11 is cooled, but a plurality of electronic components 11 may be cooled. As the number increases, it is necessary to increase the elements constituting the heat sink 10 (the heat conducting member 12, the heat radiation fin 13, the heat conducting resin 14, etc.).

(2)放熱フィン13の断面形状を櫛状に形成した(図2を参照)。この構成によれば、放熱フィン13から熱伝導樹脂14に熱を伝導できる接触面の面積が増え、熱伝導樹脂14に素早く吸熱させることができる。また、櫛状の先端部13aを熱伝導樹脂14で覆わずに露出させているので、露出した部位の放熱フィン13から熱を直接的に大気中に発散させることができるので放熱効率が向上する。 (2) The cross-sectional shape of the radiation fin 13 was formed in a comb shape (see FIG. 2). According to this configuration, the area of the contact surface that can conduct heat from the radiation fins 13 to the heat conductive resin 14 is increased, and the heat conductive resin 14 can quickly absorb heat. Further, since the comb-shaped tip portion 13a is exposed without being covered with the heat conductive resin 14, heat can be directly dissipated from the radiation fins 13 in the exposed portion to the atmosphere, so that the heat radiation efficiency is improved. .

(3)熱伝導部材12および放熱フィン13の双方をアルミニウムまたはアルミニウム合金で形成した。この構成によれば、電子部品11の熱を吸収しやすく、軽いヒートシンク10を構成することができる。 (3) Both the heat conducting member 12 and the heat radiating fins 13 are made of aluminum or an aluminum alloy. According to this configuration, it is easy to absorb the heat of the electronic component 11, and the light heat sink 10 can be configured.

(4)熱伝導部材12は電子部品11のヒートスプレッダ11bに密着させる構成とした(図1を参照)。この構成によれば、電子部品11(すなわち半導体装置としての部品本体11a)を効率良く冷却することができる。なお、熱伝導部材12を電子部品11のヒートスプレッダ11bに接触させる構成としても冷却することは可能である。 (4) The heat conducting member 12 is configured to be in close contact with the heat spreader 11b of the electronic component 11 (see FIG. 1). According to this configuration, the electronic component 11 (that is, the component main body 11a as a semiconductor device) can be efficiently cooled. In addition, it is possible to cool the heat conducting member 12 as a configuration in which the heat conducting member 12 is brought into contact with the heat spreader 11 b of the electronic component 11.

(5)熱伝導樹脂14と放熱フィン13とは、表面に有機薄膜を形成した放熱フィン13を熱伝導樹脂14に対してインサートし、成型中に熱伝導樹脂14と放熱フィン13との接触面で界面結合を起こして接合する構成とした。この構成による界面結合の結合力は、金属と樹脂とを接着剤で接着する結合力よりも強固になる。したがって、ヒートシンク10自体が熱くなったり冷えても放熱フィン13と熱伝導樹脂14は剥離せず、電子部品11の冷却を確実に行うことができる。 (5) The heat conductive resin 14 and the heat radiating fin 13 are formed by inserting a heat radiating fin 13 having an organic thin film formed on the surface thereof into the heat conductive resin 14, and a contact surface between the heat conductive resin 14 and the heat radiating fin 13 during molding. In this configuration, the bonding is performed by causing interfacial bonding. The bond strength of the interface bond by this configuration is stronger than the bond force that bonds the metal and the resin with an adhesive. Therefore, even if the heat sink 10 itself becomes hot or cool, the radiating fins 13 and the heat conductive resin 14 do not peel off, and the electronic component 11 can be reliably cooled.

〔他の実施の形態〕
以上では本発明を実施するための最良の形態について説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
[Other Embodiments]
Although the best mode for carrying out the present invention has been described above, the present invention is not limited to this mode. In other words, various forms can be implemented without departing from the scope of the present invention. For example, the following forms may be realized.

(1)上述した実施の形態では、放熱フィン13の断面形状を櫛状に形成した(図2を参照)。この形態に代えて、放熱フィン13の断面形状を梯子状に形成してもよく、放熱フィン13からの熱を伝導できる接触面の面積が増えるような他の形状(例えば剣山のような多数の針状部位を備えた形状等)に形成してもよい。 (1) In embodiment mentioned above, the cross-sectional shape of the radiation fin 13 was formed in the comb shape (refer FIG. 2). Instead of this form, the cross-sectional shape of the radiating fin 13 may be formed in a ladder shape, and other shapes that increase the area of the contact surface that can conduct heat from the radiating fin 13 (for example, a large number such as Kenzan) You may form in the shape provided with the acicular part etc.).

前者の一例を図6に表す。当該図6に表すヒートシンク20は、熱伝導部材12,放熱フィン21,熱伝導樹脂14などを有する。図1に表すヒートシンク10との違いは、次の二点である。第1に、放熱フィン21は放熱フィン13と異なる形状で形成する。第2に、複数個(図6の例では2個)の電子部品11を冷却するために、熱伝導部材12等の平面形状にかかる面積を大きくする。放熱フィン21の断面形状を梯子状に形成したことにより、熱伝導樹脂14に熱を伝導できる接触面の面積が増え、熱伝導樹脂14に素早く吸熱させることができる。また、熱伝導樹脂14で覆わずに露出する部位(図6では放熱フィン21の下面部位が相当する)は、当該露出部位から熱を直接的に大気中に発散させて放熱効率を向上できる。このような要因によって、図6に表す構造γに相当するヒートシンク20は、1個の電子部品11に対して電力を印加して発熱させた場合の最高温度が他の構造α,βよりも低い115[℃]として現れている。   An example of the former is shown in FIG. The heat sink 20 shown in FIG. 6 includes a heat conductive member 12, a heat radiating fin 21, a heat conductive resin 14, and the like. The difference from the heat sink 10 shown in FIG. 1 is the following two points. First, the radiation fins 21 are formed in a shape different from that of the radiation fins 13. Secondly, in order to cool a plurality of (two in the example of FIG. 6) electronic components 11, the area of the planar shape of the heat conducting member 12 and the like is increased. By forming the cross-sectional shape of the radiating fins 21 in a ladder shape, the area of the contact surface that can conduct heat to the heat conducting resin 14 increases, and the heat conducting resin 14 can quickly absorb heat. Further, the portion exposed without being covered with the heat conductive resin 14 (corresponding to the lower surface portion of the heat radiation fin 21 in FIG. 6) can radiate heat directly from the exposed portion to the atmosphere to improve the heat radiation efficiency. Due to such factors, the heat sink 20 corresponding to the structure γ shown in FIG. 6 has a maximum temperature lower than those of the other structures α and β when power is applied to one electronic component 11 to generate heat. It appears as 115 [° C.].

(2)上述した実施の形態では、熱伝導部材12および放熱フィン13の双方をアルミニウムまたはアルミニウム合金で形成した。この形態に代えて、熱伝導部材12および放熱フィン13のいずれか一方のみをアルミニウムまたはアルミニウム合金で形成したり、熱を伝導したり放熱する他の部材で形成してもよい。当該他の部材は、金属には限定されず、樹脂その他の材質であってもよい。いずれにせよ、ヒートシンク10から熱伝導部材12および放熱フィン13を経て熱伝導樹脂14に熱が伝わり、放熱される。よって上述した実施の形態と同様の作用効果が得られる。 (2) In the above-described embodiment, both the heat conducting member 12 and the heat radiation fin 13 are formed of aluminum or an aluminum alloy. Instead of this form, only one of the heat conducting member 12 and the heat radiating fin 13 may be formed of aluminum or an aluminum alloy, or may be formed of another member that conducts heat or dissipates heat. The other member is not limited to a metal, and may be a resin or other material. In any case, heat is transmitted from the heat sink 10 to the heat conductive resin 14 through the heat conductive member 12 and the heat radiating fins 13, and is radiated. Therefore, the same effect as the above-described embodiment can be obtained.

(3)上述した実施の形態では、電子部品11(具体的にはヒートスプレッダ11b)と熱伝導部材12との界面は熱伝導グリスを用いて密着させる構成とした(図1を参照)。この形態に代えて、熱伝導部材12の上面に絶縁膜を形成し、さらに電子部品11の回路を形成する構成(すなわち一体化する構成)としてもよい。この構成でも図1と同等の構成になるので、上述した実施の形態と同様の作用効果が得られる。 (3) In the above-described embodiment, the interface between the electronic component 11 (specifically, the heat spreader 11b) and the heat conducting member 12 is configured to be in close contact using heat conducting grease (see FIG. 1). Instead of this form, an insulating film may be formed on the upper surface of the heat conducting member 12, and a circuit of the electronic component 11 may be formed (that is, an integrated structure). Since this configuration is the same as that shown in FIG. 1, the same effects as those of the above-described embodiment can be obtained.

(4)上述した実施の形態では、ポリフェニルサルファイド(PPS)を用いて熱伝導樹脂14を形成した。この形態に代えて、熱を吸収して大気中に発散させる他の樹脂を用いて熱伝導樹脂14を形成してもよい。当該他の樹脂としては、例えば、液晶ポリマー(LCP),ポリエーテルイミド(PEI),ポリエーテルエーテルケトン(PEEK),ポリアミド(PA),ポリブチレンテレフタレート(PBT),アクリロニトリル・ブタジエン・スチレン共重合体(ABS),アクリロニトリル・スチレン共重合体(AS)等が該当する。他の樹脂を用いて熱伝導樹脂14を形成した場合でも、放熱フィン13から熱を吸収して大気中に放すので、上述した実施の形態と同様の作用効果が得られる。 (4) In the above-described embodiment, the heat conductive resin 14 is formed using polyphenyl sulfide (PPS). Instead of this form, the heat conductive resin 14 may be formed using another resin that absorbs heat and diffuses it into the atmosphere. Examples of the other resin include liquid crystal polymer (LCP), polyetherimide (PEI), polyetheretherketone (PEEK), polyamide (PA), polybutylene terephthalate (PBT), acrylonitrile / butadiene / styrene copolymer. (ABS), acrylonitrile / styrene copolymer (AS), and the like are applicable. Even when the heat conductive resin 14 is formed using another resin, heat is absorbed from the radiating fins 13 and released into the atmosphere, so that the same effect as the above-described embodiment can be obtained.

(5)上述した実施の形態では、放熱フィン13と熱伝導樹脂14とは金型内で界面結合を起こして接合する構成とした。この形態に代えて、線膨張係数の差を吸収するような接着剤を用いて接着することで接合する構成としてもよい。界面結合よりは結合力が劣るものの、放熱フィン13と熱伝導樹脂14は剥離しがたくなり、電子部品11の冷却を確実に行うことができる。 (5) In the above-described embodiment, the heat dissipating fins 13 and the heat conductive resin 14 are configured to be joined by causing interfacial bonding in the mold. It replaces with this form, and it is good also as a structure joined by adhere | attaching using the adhesive agent which absorbs the difference of a linear expansion coefficient. Although the bonding force is inferior to the interface bonding, the heat radiation fins 13 and the heat conductive resin 14 are difficult to peel off, and the electronic component 11 can be reliably cooled.

ヒートシンクの外観例を表す斜視図である。It is a perspective view showing the example of appearance of a heat sink. ヒートシンクの構成例を説明する分解斜視図である。It is a disassembled perspective view explaining the structural example of a heat sink. 電子部品が発熱した場合の放熱過程を説明する図である。It is a figure explaining the heat dissipation process when an electronic component heat | fever-generates. 図3に続く放熱過程を説明する図である。It is a figure explaining the heat dissipation process following FIG. ヒートスプレッダの最高温度を説明する図である。It is a figure explaining the maximum temperature of a heat spreader. ヒートシンクの他の構成例を表す斜視図である。It is a perspective view showing the other structural example of a heat sink.

符号の説明Explanation of symbols

10,20 ヒートシンク
11 電子部品
11a 部品本体
11b ヒートスプレッダ
12 熱伝導部材
13,21 放熱フィン
13a 先端部
14 熱伝導樹脂
DESCRIPTION OF SYMBOLS 10,20 Heat sink 11 Electronic component 11a Component main body 11b Heat spreader 12 Thermal conductive member 13, 21 Radiation fin 13a Tip part 14 Thermal conductive resin

Claims (5)

電子部品と接触する面を備えた熱伝導部材と、
前記熱伝導部材に接合された放熱フィンと、
前記熱伝導部材と接合する部位を除いて前記放熱フィンのほぼ全体を覆って一体化され、前記放熱フィンに蓄えられた熱を吸収して大気中に発散させる熱伝導樹脂とを有する電子部品用ヒートシンク。
A heat conducting member having a surface in contact with the electronic component;
Radiating fins joined to the heat conducting member;
For an electronic component having a heat conductive resin that covers and integrates substantially the whole of the heat radiating fin except for a portion to be joined to the heat conductive member, and absorbs heat stored in the heat radiating fin and dissipates it in the atmosphere. heatsink.
請求項1に記載した電子部品用ヒートシンクであって、
放熱フィンの断面形状を櫛状または梯子状に形成する電子部品用ヒートシンク。
The heat sink for electronic components according to claim 1,
A heat sink for electronic components in which the cross-sectional shape of the heat dissipating fin is formed in a comb shape or a ladder shape.
請求項1または2に記載した電子部品用ヒートシンクであって、
熱伝導部材および放熱フィンのうちで一方または双方は、アルミニウムまたはアルミニウム合金で形成する電子部品用ヒートシンク。
A heat sink for an electronic component according to claim 1 or 2,
One or both of the heat conduction member and the heat radiation fin is a heat sink for electronic parts formed of aluminum or an aluminum alloy.
請求項1から3のいずれか一項に記載した電子部品用ヒートシンクであって、
熱伝導部材は電子部品のヒートスプレッダに接触させる電子部品用ヒートシンク。
A heat sink for an electronic component according to any one of claims 1 to 3,
The heat conducting member is a heat sink for electronic components that is brought into contact with the heat spreader of the electronic component.
請求項1から4のいずれか一項に記載した電子部品用ヒートシンクであって、
熱伝導樹脂と放熱フィンとは、表面に有機薄膜を形成した放熱フィンを熱伝導樹脂に対してインサートし、成型中に熱伝導樹脂と放熱フィンとの接触面で界面結合を起こして接合する電子部品用ヒートシンク。
A heat sink for an electronic component according to any one of claims 1 to 4,
Thermally conductive resin and radiating fins are electrons that are bonded to each other by forming an interface thin film at the contact surface between the thermal conductive resin and the radiating fin during molding by inserting a radiating fin with an organic thin film on the surface into the thermal conductive resin. Heat sink for parts.
JP2008155304A 2008-06-13 2008-06-13 Heatsink for electronic component and method of manufacturing the same Withdrawn JP2009302302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008155304A JP2009302302A (en) 2008-06-13 2008-06-13 Heatsink for electronic component and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008155304A JP2009302302A (en) 2008-06-13 2008-06-13 Heatsink for electronic component and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009302302A true JP2009302302A (en) 2009-12-24

Family

ID=41548899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008155304A Withdrawn JP2009302302A (en) 2008-06-13 2008-06-13 Heatsink for electronic component and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009302302A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030597A (en) * 2011-07-28 2013-02-07 Sumitomo Bakelite Co Ltd Heat generation device
WO2013120346A1 (en) * 2012-02-16 2013-08-22 中兴通讯股份有限公司 Radiator and terminal
JP2017019115A (en) * 2015-07-07 2017-01-26 富士通株式会社 Conjugate, manufacturing method of conjugate, cooling system and information processor
JP2018508110A (en) * 2015-03-20 2018-03-22 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Plastic heat sink for luminaire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030597A (en) * 2011-07-28 2013-02-07 Sumitomo Bakelite Co Ltd Heat generation device
WO2013120346A1 (en) * 2012-02-16 2013-08-22 中兴通讯股份有限公司 Radiator and terminal
JP2018508110A (en) * 2015-03-20 2018-03-22 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Plastic heat sink for luminaire
US10480768B2 (en) 2015-03-20 2019-11-19 Sabic Global Technologies B.V. Plastic heat sink for luminaires
JP2017019115A (en) * 2015-07-07 2017-01-26 富士通株式会社 Conjugate, manufacturing method of conjugate, cooling system and information processor

Similar Documents

Publication Publication Date Title
WO2011096218A1 (en) Heat radiation device and electronic equipment using the same
TW201334679A (en) Heat dissipating module
US20100180441A1 (en) Method of brazing heat sink
JP2011091088A (en) Heat radiation structure of heating element and semiconductor device using the heat radiation structure
JP2011155118A (en) Heat sink mount, and heat sink mounting method
JP2007067007A (en) Heat dissipation base member and heat dissipation structure applying it
JP2009302302A (en) Heatsink for electronic component and method of manufacturing the same
US9772143B2 (en) Thermal module
JP2006093546A (en) Heat sink sheet, heat radiating cylinder and heat radiating structure employing it
JP2009200258A (en) Semiconductor module
JP2004247684A (en) Heat sink and heat radiating device
JP2009081246A (en) Semiconductor mounting substrate, and manufacturing method thereof
WO2019156018A1 (en) Heat sink and assembly method for heat sink
JP2010021241A (en) Thermoelectric conversion device
JP2006210611A (en) Heat sink equipped with radiation fin, and manufacturing method thereof
JPH1168360A (en) Cooling structure for semiconductor element
JP2007165486A (en) Heat sink and semiconductor device
US10352625B2 (en) Thermal module
TWI514120B (en) Cooling module
JP5935330B2 (en) Semiconductor device, manufacturing method thereof, and electronic device
JP5669657B2 (en) Semiconductor device
JP2003152368A (en) Electronic equipment
JP2010182855A (en) Cooling structure for semiconductor, and method of manufacturing same
JP3162275U (en) Heat dissipation module
JP2011014837A (en) Electronic apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906