JP2009300180A - Straightness measuring device - Google Patents

Straightness measuring device Download PDF

Info

Publication number
JP2009300180A
JP2009300180A JP2008153250A JP2008153250A JP2009300180A JP 2009300180 A JP2009300180 A JP 2009300180A JP 2008153250 A JP2008153250 A JP 2008153250A JP 2008153250 A JP2008153250 A JP 2008153250A JP 2009300180 A JP2009300180 A JP 2009300180A
Authority
JP
Japan
Prior art keywords
straightness
housing
light
measuring apparatus
straightness measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008153250A
Other languages
Japanese (ja)
Inventor
Masayuki Nara
正之 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2008153250A priority Critical patent/JP2009300180A/en
Publication of JP2009300180A publication Critical patent/JP2009300180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a straightness measuring device capable of measuring straightness efficiently. <P>SOLUTION: This straightness measuring device 10 is equipped with: a case 11 which is self-travelable on a measuring object M, and on which a reflecting mirror is placed; an auto-collimator 12 installed separately from the case 11; and a computer 13 for analysis for processing mileage data of the case 11 and inclination data from the auto-collimator 12, and calculating straightness of the measuring object M. The case 11 has tires 8a, 8b on the bottom surface side, and the mileage of the case 11 is determined by rotation of the tire 8b, and the mileage is input into the computer 13 for analysis, to thereby calculate the casing 11 position on the measuring object M. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は真直度測定装置、特に連続的で容易な測定を可能ならしめるための改良に関する。   The present invention relates to a straightness measuring device, and more particularly to an improvement for enabling continuous and easy measurement.

一般に長尺物の真直度の測定にはオートコリメータが用いられることが多い。オートコリメータによる真直度測定は、測定対象物の上に反射ミラーを載せ、反射ミラーを支持する脚の間隔だけ反射ミラーの位置を変えながら、各位置における測定対象物表面の傾きを観察する。そして、得られた各位置での傾斜角を積分することにより真直度を算出するものである(非特許文献1を参照)。   In general, an autocollimator is often used for measuring the straightness of a long object. In the straightness measurement by the autocollimator, a reflection mirror is placed on the measurement object, and the inclination of the measurement object surface at each position is observed while changing the position of the reflection mirror by the distance between the legs supporting the reflection mirror. Then, the straightness is calculated by integrating the obtained inclination angles at the respective positions (see Non-Patent Document 1).

新版計量技術ハンドブック、コロナ社(1987)、637〜638頁、New edition measurement technology handbook, Corona (1987), pages 637-638,

しかしながら、このような真直度測定装置によれば反射ミラーの位置を変えながらの測定は手動で行われるため、その作業には多大な時間と手間を要する。また、測定位置を所定位置に合わせるためには別途スケールを用意する必要もある。例えば直定規の作成は、真直度の測定と、その測定値を参照とする加工(ラッピング)との繰り返しにより行われるが、真直度の測定に多大な時間を要するために生産性が非常に悪い。   However, according to such a straightness measuring apparatus, since the measurement while changing the position of the reflecting mirror is performed manually, the work requires a lot of time and labor. Further, it is necessary to prepare a separate scale in order to adjust the measurement position to a predetermined position. For example, the creation of a straight ruler is performed by repeating the measurement of straightness and the processing (wrapping) with reference to the measured value, but the productivity is very poor because it takes a long time to measure the straightness. .

本発明は上記の問題に鑑みなされたものであり、その目的は真直度を効率よく測定することができる真直度測定装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a straightness measuring device capable of efficiently measuring straightness.

上記の目的を達成するための本発明の請求項1に係る真直度測定装置は、自走可能な筐体と、筐体の走行距離を測定する走行距離計と、筐体の傾きを計測する傾斜計と、走行距離計の出力する走行距離および傾斜計の出力する傾きから走行ラインの真直度を算出する真直度算出器と、を備えたものであることを特徴とする。
このような真直度測定装置は測定機構を自走可能な筐体に搭載しているので、測定作業を簡易にし、かつ効率的にする。
In order to achieve the above object, a straightness measuring apparatus according to claim 1 of the present invention measures a self-propelled casing, a odometer for measuring a mileage of the casing, and a tilt of the casing. An inclinometer and a straightness calculator for calculating straightness of a travel line from a travel distance output from the odometer and a tilt output from the inclinometer are provided.
Since such a straightness measuring device has the measuring mechanism mounted in a self-propellable casing, the measuring operation is simplified and efficient.

請求項1の真直度測定装置において、走行距離計は筐体に設置された車輪の回転数、或いは周速より算出するものであることが好適である。
このような真直度測定装置は自走用の車輪を走行距離計として兼用できる。
In the straightness measuring apparatus according to claim 1, it is preferable that the odometer is calculated from the number of rotations of a wheel installed in the housing or a peripheral speed.
Such a straightness measuring device can also use a self-propelled wheel as an odometer.

また、請求項1の真直度測定装置において、走行距離計は筐体に搭載した光源からの光を被測定物に大きい入射角度で入射し、上方への反射光を画像センサで検出する位置検出機構によるものであってもよい。
このような真直度測定装置は車輪がタイヤであって、真円度に欠けるような場合においても、走行距離を正確に測定する。
Further, in the straightness measurement apparatus according to claim 1, the odometer makes light from a light source mounted on the housing incident on the object to be measured at a large incident angle, and detects the reflected light upward by the image sensor. It may be due to a mechanism.
Such a straightness measuring device accurately measures the travel distance even when the wheel is a tire and lacks roundness.

請求項1から請求項3までの何れかに記載の真直度測定装置において、傾斜計は筐体とは別途設けられた発光部、受光部、およびコリメートレンズを有するオートコリメータと、筐体に載置された反射ミラーとを有し、オートコリメータの発光部からコリメートレンズを経て照射された光を反射ミラーで反射し、筐体の傾きに伴う帰還光がコリメートタレンズを経て受光部に至る系の発光位置と帰還光位置との変位を測定するものであることが好適である。
このような真直度測定装置はオートコリメータにおいて使用する反射ミラーを自走可能な筐体に載置していることから、真直度の測定を簡易化させる。
The straightness measuring apparatus according to any one of claims 1 to 3, wherein the inclinometer is mounted on a housing, an autocollimator having a light emitting unit, a light receiving unit, and a collimating lens provided separately from the housing. A system that reflects the light emitted from the light-emitting part of the autocollimator through the collimator lens by the reflection mirror, and the return light accompanying the tilt of the housing reaches the light-receiving part through the collimator lens It is preferable to measure the displacement between the light emission position and the return light position.
Such a straightness measuring apparatus simplifies the measurement of straightness because the reflecting mirror used in the autocollimator is mounted on a self-propellable casing.

上記の反射ミラーは筐体に対して揺動可能なミラー支持体に設置され、該ミラー支持体の下端部は筐体下に突出して被測定物に常に接しており、被測定物の傾斜をミラー支持体の揺動を介して反射ミラーの角度変化に変換するものであってもよい。
このような真直度測定装置は、車輪の真円度とは無関係に、ミラー支持体が常に被測定物に接しているので、車輪の真円度、すなわち筐体の傾斜とは無関係に被測定物の傾斜を忠実に捕捉する。
The reflection mirror is installed on a mirror support that can swing with respect to the housing, and the lower end of the mirror support projects below the housing and is always in contact with the object to be measured. It may be converted into a change in the angle of the reflecting mirror through the swinging of the mirror support.
In such a straightness measuring device, since the mirror support is always in contact with the object to be measured regardless of the roundness of the wheel, the roundness of the wheel, that is, regardless of the inclination of the housing, is measured. Faithfully capture the inclination of objects.

請求項1から請求項3までの何れかに記載の真直度測定装置において、傾斜計は筐体に載置されたオートコリメータ発光部と第1コリメートレンズ、および筐体とは別途に設けられた第2コリメートレンズとオートコリメータ受光部とからなり、発光部と受光部が水平な位置関係にある場合の受光位置を基準位置として、測定時における受光位置の基準位置からの変位を測定するものであってもよい。
このような真直度測定装置は反射ミラーを必要とせず、筐体の傾斜をそのまま被測定物の傾斜とすることができる。
The straightness measuring apparatus according to any one of claims 1 to 3, wherein the inclinometer is provided separately from the autocollimator light-emitting unit, the first collimating lens, and the casing placed on the casing. It consists of a second collimating lens and an autocollimator light receiving part, and measures the displacement of the light receiving position from the reference position during measurement with the light receiving position when the light emitting part and the light receiving part are in a horizontal positional relationship as the reference position. There may be.
Such a straightness measuring device does not require a reflecting mirror, and the inclination of the casing can be used as it is as the inclination of the object to be measured.

請求項1から請求項3までの何れかに記載の真直度測定装置において、傾斜計は筐体とは別途に設けられた発光部および受光部を有するオートコリメータと、筐体に載置されたペンタプリズムとを有し、発光部から水平方向に照射される光がペンタプリズムの一方の入出射面に入射し、ペンタプリズムの他方の入出射面から出射する垂直方向に偏光された光が被測定物で反射されてペンタプリズムの他方の入出射面へ入射し、一方の入出射面から出射する受光部へ帰還する帰還角度を測定するものであってもよい。
このような真直度測定装置はオートコリメータに変えてペンタプリズムを傾斜計として使用するものであり、ペンタプリズムへの水平な入射光は垂直な出射光となって被測定物に至って反射させることができ、筐体の傾斜とは無関係に被測定物の傾斜を忠実に捕捉するほか、筐体のピッチングをキャンセルする。
4. The straightness measuring apparatus according to claim 1, wherein the inclinometer is mounted on an autocollimator having a light emitting unit and a light receiving unit provided separately from the housing, and the housing. The light that is irradiated in the horizontal direction from the light-emitting unit is incident on one incident / exit surface of the pentaprism, and the vertically polarized light that is emitted from the other incident / exit surface of the pentaprism is covered. It may be one that measures the feedback angle that is reflected by the measurement object, enters the other incident / exit surface of the pentaprism, and returns to the light receiving section that exits from the one incident / exit surface.
Such a straightness measuring device uses a pentaprism as an inclinometer instead of an autocollimator, and horizontal incident light on the pentaprism becomes vertical outgoing light and can be reflected back to the object to be measured. In addition to faithfully capturing the tilt of the object to be measured regardless of the tilt of the casing, the pitching of the casing is canceled.

上記のペンタプリズムは、上記他方の入出射面から出射する垂直方向に偏光された出射光が、筐体下に設けられ被測定物に常に接している反射体であり、被測定物の傾斜に応じて傾斜する反射体の上面によって反射され、ペンタプリズムを経由して受光部へ入射する帰還光の角度変化を測定するものであってもよい。
このような真直度測定装置は被測定物が反射性に劣る場合に好適である。
The pentaprism is a reflector in which vertically polarized outgoing light that exits from the other entrance / exit surface is provided under the casing and is always in contact with the object to be measured. The angle change of the return light reflected by the upper surface of the reflector inclined according to the incident light and incident on the light receiving unit via the pentaprism may be measured.
Such a straightness measuring device is suitable when the object to be measured is inferior in reflectivity.

請求項1から請求項3までの何れかに記載の真直度測定装置において、傾斜計は筐体に載置された電気式水準器であり、垂下された振り子の下端の検出体が該検出体の前後に設けられた2個の近接センサの何れかへの近接度から被測定物の傾斜角度を算出するものであってもよい。
このような真直度測定装置は、オートコリメータに変えて電気式水準器を傾斜計として使用するものであり、被測定物の傾斜をオートコリメータと同等以上の精度で検出することが可能である。
The straightness measuring apparatus according to any one of claims 1 to 3, wherein the inclinometer is an electric level mounted on a casing, and a detection body at a lower end of a suspended pendulum is the detection body. The tilt angle of the object to be measured may be calculated from the proximity to any one of the two proximity sensors provided before and after.
Such a straightness measuring device uses an electric level as an inclinometer instead of an autocollimator, and can detect the inclination of the object to be measured with an accuracy equal to or higher than that of the autocollimator.

請求項1の真直度測定装置において、走行距離を計測する車輪が前後の車軸の何れか一方に取り付けられた車輪であり、かつ筐体の傾斜によって被測定物の傾斜を計測する場合において、前後の車軸は間隔が変更可能とされていることが望ましい。
このような真直度測定装置は、車軸の間隔と被測定物の傾斜曲線のピッチが一致しており被測定物の傾斜が正確に測定されない場合において、車軸の間隔を変更することにより、被測定物の傾斜の測定が可能になる。
2. The straightness measuring apparatus according to claim 1, wherein the wheel for measuring the travel distance is a wheel attached to either one of the front and rear axles and the inclination of the object to be measured is measured by the inclination of the housing. It is desirable that the distance between the axles can be changed.
Such a straightness measuring device changes the axle distance when the distance between the axles and the pitch of the inclination curve of the object to be measured match and the inclination of the object to be measured cannot be measured accurately. Measurement of the inclination of an object becomes possible.

そのほか、真直度測定装置によって平面を縦方向と横方向との格子状に、好ましくは更に放射状に真直度を測定し、得られる測定データを解析しスムージング処理し接続して平面形状を推定することができ、その推定された形状から平面度を求めることができる。   In addition, the straightness is measured by a straightness measuring device in a grid pattern in the vertical and horizontal directions, preferably in a radial direction, and the obtained measurement data is analyzed, smoothed and connected to estimate the planar shape. The flatness can be obtained from the estimated shape.

以上説明したように本発明にかかる真直度測定装置によれば、測定対象物上を自走可能な筐体に自位置検出機構を設けたので、該筐体を走行させ、随時傾斜データを取得すれば、極めて効率よく真直度測定を行うことができる。   As described above, according to the straightness measuring apparatus according to the present invention, since the self-position detecting mechanism is provided in the case capable of self-running on the measurement object, the case is caused to travel and the tilt data is acquired at any time. Then, the straightness measurement can be performed very efficiently.

以下、図面に基づいて本発明の好適な実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

<実施形態1>
図1は実施形態1の真直度測定装置10の構成を概略的に示す図である。この真直度測定装置10は、被測定物M上を自走可能であり反射ミラーを載置した筐体11と、筐体11とは別に設置されたオートコリメータ12と、筐体11の走行距離データ、及びオートコリメータ12からの傾斜データを処理し被測定物Mの真直度を算出する解析用コンピュータ13とを備えている。
<Embodiment 1>
FIG. 1 is a diagram schematically illustrating a configuration of a straightness measuring apparatus 10 according to the first embodiment. The straightness measuring apparatus 10 is capable of self-propelling on the object M to be measured, and includes a housing 11 on which a reflecting mirror is placed, an autocollimator 12 installed separately from the housing 11, and a travel distance of the housing 11. And an analysis computer 13 for processing the data and the inclination data from the autocollimator 12 and calculating the straightness of the object M to be measured.

筐体11は、その底面側に設けられたタイヤ8a、8bを有し、タイヤ8bの回転が不図示のカウンタから解析用コンピュータ13に入力されて走行距離が求められ、その走行距離から被測定物M上における筐体11の位置が算出される。   The housing 11 has tires 8a and 8b provided on the bottom surface side thereof, and the rotation of the tire 8b is input from a counter (not shown) to the computer 13 for analysis to determine the travel distance, and the measured distance is measured from the travel distance. The position of the housing 11 on the object M is calculated.

オートコリメータ12は発光部1と受光部2、およびコリメートレンズ4とを有しており、発光部1の発光位置Pから発光され,コリメートレンズ4で平行化された光は、筐体11内に固定された反射ミラー6で反射され、その反射光はコリメートレンズ4を経て受光部2に帰還して受光されるが、被測定物Mの傾斜によって筐体11が傾斜すると反射ミラー6も傾斜することから、受光部2における帰還光の位置Pは発光部1における発光位置Pと変位する。その変位は解析用コンピュータ13に入力されて、反射ミラー6が存在する位置、すなわち筐体11が存在する位置における傾斜角度が算出される。 The autocollimator 12 includes a light emitting unit 1, a light receiving unit 2, and a collimating lens 4. Light emitted from the light emitting position P 1 of the light emitting unit 1 and collimated by the collimating lens 4 is contained in the housing 11. The reflected light is reflected by the reflecting mirror 6 fixed to the light beam and returned to the light receiving unit 2 through the collimator lens 4 to be received. However, when the housing 11 is inclined due to the inclination of the object M, the reflecting mirror 6 is also inclined. since the position P 2 of the feedback light on the light-receiving unit 2 is displaced emission position P 1 in the light emitting portion 1. The displacement is input to the analysis computer 13, and the inclination angle at the position where the reflection mirror 6 exists, that is, the position where the housing 11 exists is calculated.

上記のような測定が、筐体11を走行させて、タイヤ8aとタイヤ8bとの間隔毎に繰り返され、それらの計測結果である被測定物Mの真直度が解析用コンピュータ13のモニタに表示される。   The above measurement is repeated for each interval between the tire 8a and the tire 8b by running the casing 11, and the straightness of the object M to be measured, which is the measurement result, is displayed on the monitor of the analysis computer 13. Is done.

<実施形態2>
上記の真直度測定装置10は、タイヤ8a、タイヤ8bが真円度に劣るものであると、被測定物Mの真直度とは無関係に反射ミラー6が傾斜するという欠点がある。そのような欠点を克服するものが次の実施形態2に示す真直度測定装置20である。
<Embodiment 2>
The straightness measuring device 10 described above has a drawback that the reflecting mirror 6 is inclined regardless of the straightness of the object M to be measured if the tires 8a and 8b are inferior in roundness. The straightness measuring apparatus 20 shown in the following embodiment 2 overcomes such drawbacks.

図2は実施形態2の真直度測定装置20の構成を概略的に示す図である。なお、図1に示した解析用コンピュータ13の図示は省略している。なお、解析用コンピュータ13の図示の省略は以降の図においても同様である。そして実施形態2の真直度測定装置20の構成要素において、図1の真直度測定装置10の構成要素と同一のものには同じ符号を付しているので、それらの説明は省略する。実施形態2の真直度測定装置20が実施形態1の真直度測定装置10と異なるところは、反射ミラー6が筐体11に固定されずに、筐体11に揺動可能に設けたミラー支持体21に取り付けられていることにある。   FIG. 2 is a diagram schematically showing the configuration of the straightness measuring apparatus 20 of the second embodiment. The illustration of the analysis computer 13 shown in FIG. 1 is omitted. The illustration of the analysis computer 13 is omitted in the following drawings. In the straightness measuring apparatus 20 according to the second embodiment, the same components as those in the straightness measuring apparatus 10 in FIG. The straightness measuring device 20 according to the second embodiment is different from the straightness measuring device 10 according to the first embodiment in that the reflecting mirror 6 is not fixed to the housing 11 and is provided on the housing 11 so as to be swingable. 21 is attached.

そのミラー支持体21の取り付けを詳しく説明するに、筐体11下に突出されているミラー支持体21の下端に設けられた平板部22の上面と筐体11の底面との間にはスプリング24が介装されている。すなわち、平板部22の下面の接触端子23はスプリング24によって押圧されており, 筐体11の停止中は勿論、走行中も常に被測定物Mの面と接触しているように構成されている。   In order to explain the mounting of the mirror support 21 in detail, a spring 24 is provided between the upper surface of the flat plate portion 22 provided at the lower end of the mirror support 21 protruding below the housing 11 and the bottom surface of the housing 11. Is intervening. That is, the contact terminal 23 on the lower surface of the flat plate portion 22 is pressed by the spring 24, and is configured so as to be always in contact with the surface of the object M to be measured not only when the housing 11 is stopped but also during traveling. .

上記のように構成されており、被測定物Mの面の傾斜はミラー支持体61の揺動を介して反射ミラー6の傾斜に変換されるので、タイヤ8a、タイヤ8bが真円度に劣るものであっても、それに影響されることはなく、換言すれば、筐体11の傾斜とは無関係に被測定物Mの真直度が計測されるようになっている。   Since it is configured as described above, the inclination of the surface of the object M to be measured is converted into the inclination of the reflection mirror 6 through the swinging of the mirror support 61, so that the tire 8a and the tire 8b are inferior in roundness. Even if it is a thing, it is not influenced by it, in other words, the straightness of the to-be-measured object M is measured irrespective of the inclination of the housing | casing 11.

<実施形態3>
図3は図1の真直度測定装置10における走行距離を計測するためのタイヤ8bに替えて、光学式面内位置検出機構31を使用した真直度測定装置30の構成を概略的に示す図である。光学式面内位置検出機構31以外の構成要素は図1の構成要素と同様であるから、それらには同一の符号を付して説明は省略した。
<Embodiment 3>
FIG. 3 is a diagram schematically showing a configuration of a straightness measuring device 30 using an optical in-plane position detecting mechanism 31 instead of the tire 8b for measuring the travel distance in the straightness measuring device 10 of FIG. is there. Since the constituent elements other than the optical in-plane position detection mechanism 31 are the same as the constituent elements in FIG. 1, they are denoted by the same reference numerals and description thereof is omitted.

光学式面内位置検出機構31はパソコンで使用される光学式マウスと同様な原理に基づくものであり、図4は光学式面内位置検出機構31の一例を示す断面図である。光源32からの光がレンズ・プリズム体33によって屈曲され被測定物Mに大きい入射角度αで入射点Qへ入射される。そして入射点Qから直上への反射光がレンズ・プリズム体33のレンズを経て所定の画素数、解像度の画像センサ34に至り、入射点Pおよびその周辺部の画像が認識される。入射角度が大きいので、入射点Qおよびその周辺部の凹凸は長い影の像に強調されて認識される。画像センサ34は例えば1秒間に2000回以上で画像を捉えるので、一定の速度で移動する画像センサ34の画像には新旧の画像の共通点が存在し、新旧の画像を比較することにより光学式面内位置検出機構31の移動距離を把握することができる。   The optical in-plane position detection mechanism 31 is based on the same principle as an optical mouse used in a personal computer, and FIG. 4 is a cross-sectional view showing an example of the optical in-plane position detection mechanism 31. The light from the light source 32 is bent by the lens / prism body 33 and is incident on the measured object M at the incident point Q at a large incident angle α. Then, the reflected light directly above the incident point Q reaches the image sensor 34 having a predetermined number of pixels and resolution through the lens of the lens / prism body 33, and the incident point P and its peripheral image are recognized. Since the incident angle is large, the unevenness at the incident point Q and its peripheral part is recognized as being emphasized by a long shadow image. Since the image sensor 34 captures an image at, for example, 2000 times or more per second, the image of the image sensor 34 moving at a constant speed has a common point between the old and new images, and the optical type is obtained by comparing the old and new images. The moving distance of the in-plane position detection mechanism 31 can be grasped.

<実施形態4>
図5は、反射ミラー6を筐体11に載置しない真直度測定装置40を示す断面図である。図1の真直度測定装置10と異なるところは筐体11に発光部1と第1コリメートレンズ6aとが載置され、筐体11とは別に受光部2と第2コリメートレンズ6bが設けられていることにある。被測定物Mが傾斜している場合、筐体11内の発光部1からの光は第1コリメートレンズ6aで平行光とされ、第2コリメートレンズ6bで絞られて受光部2の受光位置Qで受光される。これに対し、被測定物Mが水平である場合には、発光部1からの一点鎖線で示す光は第1コリメートレンズ6a、第2コリメートレンズ6bを経て受光部2の受光位置Qに受光される。すなわち、被測定物Mが傾斜している場合の受光位置Qの受光位置Qからの変位の大きさによって被測定物Mの傾斜の度合いが算出される。
<Embodiment 4>
FIG. 5 is a cross-sectional view showing a straightness measuring device 40 in which the reflecting mirror 6 is not placed on the housing 11. 1 differs from the straightness measuring apparatus 10 of FIG. 1 in that the light emitting unit 1 and the first collimating lens 6a are placed on the housing 11, and the light receiving unit 2 and the second collimating lens 6b are provided separately from the housing 11. There is to be. When the object to be measured M is inclined, the light from the light emitting unit 1 in the housing 11 is converted into parallel light by the first collimating lens 6a, and is narrowed by the second collimating lens 6b to receive the light receiving position Q of the light receiving unit 2. 2 is received. In contrast, when the object to be measured M is horizontal, the light indicated by the dashed line from the light-emitting portion 1 includes first collimating lens 6a, through the second collimator lens 6b received by the light receiving position to Q 1 light receiving portion 2 Is done. That is, the degree of inclination of the object M by the magnitude of the displacement from the light receiving position to Q 1 light receiving position Q 2 when the object to be measured M is tilted is calculated.

<実施形態5>
図6は傾斜計として例えば図1に示したオートコリメータ12に替えてペンタプリズム51を使用した真直度測定装置50を示す断面図である。すなわち、真直度測定装置50はペンタプリズム51を載置した自走可能な筐体11と、筐体11とは別体の発光部1と受光部2とを備えたオートコリメータ12とからなる。
<Embodiment 5>
FIG. 6 is a cross-sectional view showing a straightness measuring apparatus 50 using a pentaprism 51 as an inclinometer instead of the autocollimator 12 shown in FIG. That is, the straightness measuring device 50 includes a self-propelled casing 11 on which a pentaprism 51 is mounted, and an autocollimator 12 including a light emitting unit 1 and a light receiving unit 2 that are separate from the casing 11.

図6の左側の水平な筐体11に載置されているペンタプリズム51は、図6に示すように、発光部1からペンタプリズム51の一方の入出射面52へ水平方向に入射される光はペンタプリズム51の反射面53、54で順に反射され、入射光とは直角な垂直方向に偏光されて、他方の入出射面55から出射されて被測定物Mに至って反射される。その反射光は、再び他方の入出射面55からペンタプリズム51へ入射され、反射面54、53で反射されて、一方の入出射面52から出射され、水平線とは角度βをなす光となって受光部2で受光される。 The pentaprism 51 placed on the horizontal casing 11 on the left side of FIG. 6 is light that is incident in the horizontal direction from the light emitting unit 1 to one of the incident / exit surfaces 52 of the pentaprism 51 as shown in FIG. Are sequentially reflected by the reflecting surfaces 53 and 54 of the pentaprism 51, are polarized in the vertical direction perpendicular to the incident light, are emitted from the other incident / exit surface 55, and are reflected by the object M to be measured. And the reflected light is again incident from the other input-output face 55 to the pentagonal prism 51, is reflected by the reflecting surface 54 and 53, it is emitted from one entry and exit surface 52, and the light forms an angle beta 1 is a horizontal line The light receiving unit 2 receives the light.

これに対し、図6の右側に示す傾斜した筐体11の場合、同様に、発光部1からの光は一方の入出射面52から入射され、反射面53、54で反射され、同じく垂直方向に偏光されて被測定物Mに至って反射される。その反射光は再び他方の入出射面55から入射され、反射面54、53で反射されて、一方の入出射面52から出射されるが、筐体11と共にペンタプリズム51が傾斜していることにより、帰還光は水平線とは角度βをなす光となって受光部2で受光される。このように帰還光の帰還角度の変化から被測定物Mの傾斜角度が求められる。 On the other hand, in the case of the inclined casing 11 shown on the right side of FIG. 6, similarly, the light from the light emitting unit 1 enters from one incident / exit surface 52, is reflected by the reflecting surfaces 53 and 54, and is also in the vertical direction. And is reflected by the object to be measured M. The reflected light is incident again from the other incident / exit surface 55, reflected by the reflecting surfaces 54, 53, and emitted from one incident / exit surface 52, but the pentaprism 51 is inclined together with the housing 11. the feedback light is received by the light receiving section 2 becomes light at an angle beta 2 is a horizontal line. In this way, the inclination angle of the object M to be measured is obtained from the change in the feedback angle of the feedback light.

上記したように、また図7に示すようにペンタプリズム51は被測定物Mの傾斜によって回転して水平面の角度が変わっても他方の入出射面55から垂直方向に出射されることから筐体11のピッチングがキャンセルされるという特性を有する。また図6ではペンタプリズム51から垂直方向に下方へ出射される光を被測定物Mで反射させる場合を説明したが、図8に示すように、筐体1の底面にスプリング57を介して反射体58を設け、常に接触端子59が被測定物Mと接触している反射体58の上面で反射させるようにしてもよい。被測定物Mの反射性が充分でない場合に好適である。   As described above, and as shown in FIG. 7, the pentaprism 51 is rotated by the inclination of the object to be measured M and is emitted from the other incident / exit surface 55 in the vertical direction even if the angle of the horizontal plane is changed. 11 pitching is cancelled. Further, FIG. 6 illustrates the case where the light emitted downward from the pentaprism 51 in the vertical direction is reflected by the object to be measured M. However, as shown in FIG. A body 58 may be provided so that the contact terminal 59 is always reflected by the upper surface of the reflector 58 in contact with the DUT M. This is suitable when the measurement object M is not sufficiently reflective.

<実施形態6>
図9は傾斜計として電気式水準器61を使用した真直度測定装置60を示す断面図である。電気式水準器61は筐体11に設置された箱62の天井部から垂下された振り子63の前後に近接センサ65a、65bを配置したものであり、振り子63の下端の金属からなる検出体64が近接センサ65a、65bの何れに接近しているかによって筐体11の傾斜、すなわち被測定物Mの傾斜を計測するものである。近接センサとしては高周波発振型、磁石型、静電容量型など各種のものを使用し得るが、一般的には高周波発振型が使用される。
<Embodiment 6>
FIG. 9 is a cross-sectional view showing a straightness measuring device 60 using an electric level 61 as an inclinometer. The electric level 61 has proximity sensors 65a and 65b arranged before and after a pendulum 63 suspended from the ceiling of a box 62 installed in the casing 11, and a detection body 64 made of metal at the lower end of the pendulum 63. , The inclination of the casing 11, that is, the inclination of the object to be measured M is measured depending on which of the proximity sensors 65 a and 65 b is approaching. As the proximity sensor, various types such as a high frequency oscillation type, a magnet type, and a capacitance type can be used, but a high frequency oscillation type is generally used.

高周波発振型の近接センサを説明すれば、近接センサ65a、65bに高周波磁界を発生させる検出コイルが設けられており、振り子63の検出体64が近接すると、検出体64に渦電流が発生し、その電流によって検出コイルのインピーダンスが変化することを利用するものである。   A high-frequency oscillation type proximity sensor will be described. A detection coil for generating a high-frequency magnetic field is provided in the proximity sensors 65a and 65b. When the detection body 64 of the pendulum 63 approaches, an eddy current is generated in the detection body 64. This utilizes the fact that the impedance of the detection coil changes due to the current.

なお、筐体11の傾斜によって被測定物Mの傾斜を求める手法では、被測定物Mの傾斜が正弦波状であって、その周期が図9に示す筐体11の前後の車軸間隔と同じである場合には、筐体11の傾斜によって被測定物Mの傾斜を求めることはできない。従って筐体11は、図10A、図10B、図10Cに示すように、車軸間隔をl、l、lの如く調整可能としたものであることが好ましい。なお、図6に示したように、傾斜計としてペンタプリズム51を使用し、被測定物Mに直接に光を入射させ、その反射光から被測定物Mの傾斜を求める場合や、図2に示したように、常に被測定物Mに接触している反射ミラー支持体21の平板部22の傾斜によって反射ミラー6を傾斜させる場合など、被測定物Mの傾斜を直接に計測する場合は車軸間隔の調整は不要である。 In the method of obtaining the inclination of the object M to be measured by the inclination of the casing 11, the inclination of the object M is a sine wave, and the cycle thereof is the same as the axle interval before and after the casing 11 shown in FIG. In some cases, the inclination of the object to be measured M cannot be obtained by the inclination of the housing 11. Therefore, it is preferable that the casing 11 be configured such that the axle interval can be adjusted as l 1 , l 2 , and l 3 as shown in FIGS. 10A, 10B, and 10C. As shown in FIG. 6, when a pentaprism 51 is used as an inclinometer, light is directly incident on the measurement object M, and the inclination of the measurement object M is obtained from the reflected light. As shown, when measuring the inclination of the measuring object M directly, such as when the reflecting mirror 6 is inclined by the inclination of the flat plate portion 22 of the reflecting mirror support 21 that is always in contact with the measuring object M, an axle is used. There is no need to adjust the spacing.

<実施形態7>
図11は定盤の平面度の測定に本発明の真直度測定装置を適用した場合を説明する図である。図11Aは広い面積を有する定盤に対して、実施形態1から実施形態6までの何れかの真直度測定装置を適用して、平面を縦横の格子状に、更に放射状(対角方向)に真直度を測定して平面度を求める場合を示す。得られた真直度の測定データの傾斜角に自由度を与え、これらの全てに対して滑らかな曲面が得られるように曲面関数(例えば、2次元のスプライン関数、多項式、ないしはフーリエ関数など)を適用することにより測定面の形状を算出することができる。図11Bは算出された形状であり、この算出形状から平面度を求めることができる。
<Embodiment 7>
FIG. 11 is a diagram for explaining a case where the straightness measuring apparatus of the present invention is applied to the measurement of flatness of a surface plate. In FIG. 11A, the straightness measuring device according to any one of Embodiments 1 to 6 is applied to a surface plate having a large area, and the plane is formed into a vertical and horizontal grid, and further radially (diagonal direction). The case where flatness is obtained by measuring straightness is shown. Gives a degree of freedom to the inclination angle of the obtained straightness measurement data, and uses a curved surface function (for example, a two-dimensional spline function, polynomial, or Fourier function) so that a smooth curved surface can be obtained for all of them. By applying, the shape of the measurement surface can be calculated. FIG. 11B shows a calculated shape, and the flatness can be obtained from this calculated shape.

平面度を測定するには真直度を格子状に、更に放射状に測定することを要し、真直度の測定に比して測定回数が多大になるが、本発明の自走可能は筐体11を使用する真直度測定装置を利用すれば、平面度の測定は大幅に簡易化される。   In order to measure the flatness, it is necessary to measure the straightness in a grid pattern and further in a radial pattern, and the number of times of measurement is larger than that of the straightness measurement. If a straightness measuring device using a flat plate is used, the flatness measurement is greatly simplified.

なお、上記の実施形態では筐体11自体が走行可能であるものとして説明したが、筐体11が自走可能な駆動車に牽引されて走行するものであってもよい。   In the above-described embodiment, the case 11 has been described as being capable of traveling, but the case 11 may be driven by being driven by a drive vehicle capable of self-propelling.

本発明の真直度測定装置は定盤や直定規における真直度の測定に限らず、円筒体の円筒母線、円筒体の軸心線、テーパ状物体のテーパ母線の真直度測定に使用されるほか、定盤などの平面度の測定にも利用することができる。   The straightness measuring device of the present invention is not limited to measuring straightness on a surface plate or a straight ruler, but is used for measuring straightness of a cylindrical bus of a cylindrical body, an axis of a cylindrical body, and a tapered bus of a tapered object. It can also be used to measure the flatness of a surface plate.

被測定物上を自走可能な筐体にオートコリメータの反射ミラーを載置した真直度測定装置を示す図である。It is a figure which shows the straightness measuring apparatus which mounted the reflective mirror of the autocollimator in the housing | casing which can be self-propelled on a to-be-measured object. 筐体に揺動可能に設けたミラー支持体に反射ミラーを取り付けた真直度測定装置を示す図である。It is a figure which shows the straightness measuring apparatus which attached the reflective mirror to the mirror support body provided in the housing | casing so that rocking | fluctuation was possible. 筐体の走行距離の計測に光学式面内位置検出機構を設けた真直度測定装置を示す図である。It is a figure which shows the straightness measuring apparatus which provided the optical in-plane position detection mechanism for measurement of the travel distance of a housing | casing. 光学式面内位置検出機構の一例の断面図である。It is sectional drawing of an example of an optical in-plane position detection mechanism. 反射ミラーを筐体に載置しない真直度測定装置を示す図である。It is a figure which shows the straightness measuring apparatus which does not mount a reflective mirror in a housing | casing. 傾斜計としてペンタプリズムを使用した真直度測定装置を示す図である。It is a figure which shows the straightness measuring apparatus which uses a pentaprism as an inclinometer. ペンタプリズムは筐体のピッチングがキャンセルされるという特性を示す図である。The pentaprism is a diagram showing a characteristic that the pitching of the casing is canceled. ペンタプリズムからの出射光を反射体によって反射させる場合を示す図である。It is a figure which shows the case where the emitted light from a pentaprism is reflected by a reflector. 傾斜計として電気式水準器を使用した真直度測定装置を示す図である。It is a figure which shows the straightness measuring apparatus which uses an electric level as an inclinometer. 前後の車軸の間隔を調整可能とした筐体を示す図である。It is a figure which shows the housing | casing which enabled adjustment of the space | interval of the front-back axle. 本発明の真直度測定装置を適用して算出された平面度を示す図である。It is a figure which shows the flatness calculated by applying the straightness measuring apparatus of this invention.

符号の説明Explanation of symbols

1・・・発光部、 2・・・受光部、
4・・・コリメートレンズ、 6・・・反射ミラー
8・・・タイヤ、 10・・・真直度測定装置、
11・・・筐体、 12・・・オートコリメータ、
13・・・解析用コンピュータ、 20・・・真直度測定装置、
21・・・ミラー支持体、 22・・・平板部、
23・・・接触端子、 24・・・スプリング、
30・・・真直度測定装置、 31・・・光学式面内位置検出機構、
32・・・光源、 33・・・レンズ・プリズム体、
34・・・画像センサ、 40・・・真直度測定装置、
50・・・真直度測定装置、 51・・・ペンタプリズム、
52・・・一方の入出射面、 53・・・反射面、
54・・・反射面、 55・・・他方の入出射面、
60・・・真直度測定装置、 61・・・電気式水準器、
63・・・振り子、 64・・・検出体、
65・・・近接センサ、 M・・・被測定物、
1 ... light emitting part, 2 ... light receiving part,
4 ... Collimating lens 6 ... Reflecting mirror 8 ... Tire, 10 ... Straightness measuring device,
11 ... Case, 12 ... Autocollimator,
13 ... computer for analysis, 20 ... straightness measuring device,
21 ... Mirror support, 22 ... Flat plate part,
23 ... Contact terminal, 24 ... Spring,
30 ... Straightness measuring device, 31 ... Optical in-plane position detection mechanism,
32 ... Light source, 33 ... Lens / prism body,
34 ... image sensor, 40 ... straightness measuring device,
50 ... Straightness measuring device, 51 ... Penta prism,
52... One incident / exit surface, 53.
54 ... reflective surface, 55 ... the other entrance / exit surface,
60 ... Straightness measuring device, 61 ... Electric level,
63 ... Pendulum, 64 ... Detector,
65: Proximity sensor, M: Object to be measured,

Claims (11)

自走可能な筐体と、
前記筐体の走行距離を測定する走行距離計と、
前記筐体の傾きを計測する傾斜計と、
前記走行距離計の出力する走行距離および前記傾斜計の出力する傾きから走行ラインの真直度を算出する真直度算出器と、を備えたことを特徴とする真直度測定装置。
A self-propelled housing,
An odometer for measuring the mileage of the housing;
An inclinometer for measuring the inclination of the housing;
A straightness measurement device comprising: a straightness calculator that calculates straightness of a travel line from a travel distance output from the odometer and an inclination output from the inclinometer.
請求項1に記載の真直度測定装置において、
前記走行距離計は、前記筐体に設置された車輪の回転数、或いは周速より算出することを特徴とする真直度測定装置。
The straightness measuring apparatus according to claim 1,
The straightness measuring device, wherein the odometer is calculated from a rotation speed of a wheel installed in the housing or a peripheral speed.
請求項1に記載の真直度測定装置において、
前記走行距離計は、筐体に搭載した光源からの光を被測定物に大きい入射角度で入射し、上方への反射光を画像センサで検出する位置検出機構によって算出することを特徴とする真直度測定装置。
The straightness measuring apparatus according to claim 1,
The odometer is calculated by a position detection mechanism in which light from a light source mounted on a housing is incident on an object to be measured at a large incident angle, and upward reflected light is detected by an image sensor. Degree measuring device.
請求項1から請求項3までの何れかに記載の真直度測定装置において、
前記傾斜計は、前記筐体とは別途設けられた発光部、受光部、およびコリメータレンズを有するオートコリメータと、前記筐体に載置された反射ミラーとを有し、前記オートコリメータの発光部からコリメータレンズを経て照射された光を前記反射ミラーで反射し、前記筐体の傾きに伴う帰還光が前記コリメータレンズを経て受光部に至る系の発光位置と受光位置の変位を測定することを特徴とする真直度測定装置。
In the straightness measuring apparatus according to any one of claims 1 to 3,
The inclinometer includes a light emitting unit, a light receiving unit, and an autocollimator having a collimator lens provided separately from the housing, and a reflecting mirror placed on the housing, and the light emitting unit of the autocollimator The light irradiated through the collimator lens is reflected by the reflection mirror, and the light emission position of the system where the return light accompanying the tilt of the housing reaches the light receiving unit through the collimator lens is measured. A straightness measuring device.
請求項4に記載の真直度測定装置において、
前記反射ミラーは、前記筐体に対して揺動可能なミラー支持体に設置され、該ミラー支持体の下端部は前記筐体下に突出して前記被測定物に常に接しており、前記被測定物の傾斜をミラー支持体の揺動を介して反射ミラーの角度変化に変換することを特徴とする真直度測定装置。
In the straightness measuring apparatus according to claim 4,
The reflection mirror is installed on a mirror support that can swing with respect to the housing, and a lower end of the mirror support projects below the housing and is always in contact with the object to be measured. A straightness measuring apparatus that converts an inclination of an object into an angle change of a reflecting mirror through a swing of a mirror support.
請求項1から請求項3までの何れかに記載の真直度測定装置において、
前記傾斜計は、前記筐体に載置されたオートコリメータ発光部と第1コリメートレンズ、および前記筐体とは別途に設けられた第2コリメートレンズとオートコリメータ受光部とからなり、前記発光部と前記受光部が水平な位置関係にある場合の受光位置を基準位置として、測定時における受光位置の前記基準位置からの変位を測定することを特徴とする真直度測定装置。
In the straightness measuring apparatus according to any one of claims 1 to 3,
The inclinometer includes an autocollimator light emitting unit and a first collimating lens mounted on the housing, and a second collimating lens and an autocollimator light receiving unit provided separately from the housing, and the light emitting unit A straightness measuring apparatus that measures a displacement of the light receiving position from the reference position at the time of measurement, with the light receiving position when the light receiving unit is in a horizontal positional relationship as a reference position.
請求項1から請求項3までの何れかに記載の真直度測定装置において、
前記傾斜計は、前記筐体とは別途に設けられた発光部および受光部を有するオートコリメータと、前記筐体に載置されたペンタプリズムとを有し、前記発光部から水平方向に照射される光が前記ペンタプリズムの一方の入出射面に入射し、前記ペンタプリズムの他方の入出射面から出射する垂直方向に偏光された光が前記被測定物で反射されて前記ペンタプリズムの前記他方の入出射面へ入射し、前記一方の入出射面から出射して前記受光部へ帰還する帰還角度の変化を測定することを特徴とする真直度測定装置。
In the straightness measuring apparatus according to any one of claims 1 to 3,
The inclinometer includes an autocollimator having a light emitting unit and a light receiving unit provided separately from the housing, and a pentaprism placed on the housing, and is irradiated in a horizontal direction from the light emitting unit. Is incident on one incident / exit surface of the pentaprism, and the vertically polarized light exiting from the other incident / exit surface of the pentaprism is reflected by the object to be measured and the other of the pentaprism A straightness measuring apparatus that measures a change in a feedback angle that is incident on the incident / exiting surface of the light, exits from the one incident / exiting surface, and returns to the light receiving unit.
請求項7に記載の真直度測定装置において、
前記ペンタプリズムの他方の入出射面から出射する垂直方向に偏光された出射光が、前記筐体下に設けられて前記被測定物に常に接しており、前記被測定物の傾斜に応じて傾斜する反射体の上面によって反射され、前記ペンタプリズムを経由して前記受光部へ入射する帰還角度を測定することを特徴とする真直度測定装置。
In the straightness measuring apparatus according to claim 7,
The vertically polarized outgoing light that exits from the other entrance / exit surface of the pentaprism is provided under the casing and is always in contact with the object to be measured, and is inclined according to the inclination of the object to be measured. A straightness measuring apparatus that measures a feedback angle that is reflected by the upper surface of the reflector and enters the light receiving unit via the pentaprism.
請求項1から請求項3までの何れかに記載の真直度測定装置において、
前記傾斜計は、前記筐体に載置された電気式水準器であり、垂下された振り子の下端の検出体が、該検出体の前後に設けられた2個の近接センサの何れかへの近接度から前記被測定物の傾斜角度を算出することを特徴とする真直度測定装置。
In the straightness measuring apparatus according to any one of claims 1 to 3,
The inclinometer is an electric level mounted on the housing, and the detection body at the lower end of the pendulum that is suspended is connected to one of the two proximity sensors provided before and after the detection body. A straightness measuring apparatus that calculates an inclination angle of the object to be measured from proximity.
請求項1に記載の真直度測定装置において、
走行距離を計測する前記車輪が前後の車軸の何れか一方に取り付けられた車輪であり、かつ前記筐体の傾斜によって前記被測定物の傾斜を計測する場合において、前記前後の車軸は間隔が変更可能とされていることを特徴とする真直度測定装置。
The straightness measuring apparatus according to claim 1,
When the wheel for measuring the travel distance is a wheel attached to one of the front and rear axles, and the inclination of the object to be measured is measured by the inclination of the housing, the distance between the front and rear axles is changed. Straightness measuring device characterized by being made possible.
真直度測定装置によって平面を縦方向と横方向との格子状に、好ましくは更に放射状に真直度を測定し、得られる測定データを解析しスムージング処理して接続することを特徴とする平面度測定方法。   Flatness measurement characterized by measuring the straightness in a grid pattern in the vertical and horizontal directions, preferably further in a radial direction by a straightness measuring device, and analyzing and connecting the obtained measurement data Method.
JP2008153250A 2008-06-11 2008-06-11 Straightness measuring device Pending JP2009300180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008153250A JP2009300180A (en) 2008-06-11 2008-06-11 Straightness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008153250A JP2009300180A (en) 2008-06-11 2008-06-11 Straightness measuring device

Publications (1)

Publication Number Publication Date
JP2009300180A true JP2009300180A (en) 2009-12-24

Family

ID=41547245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008153250A Pending JP2009300180A (en) 2008-06-11 2008-06-11 Straightness measuring device

Country Status (1)

Country Link
JP (1) JP2009300180A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288141A (en) * 2010-06-18 2011-12-21 株式会社三丰 Industrial machine
CN113091653A (en) * 2021-04-19 2021-07-09 中国科学院国家天文台南京天文光学技术研究所 Device and method for measuring angle freedom degree error of linear guide rail based on pentaprism
JP7111027B2 (en) 2019-02-27 2022-08-02 トヨタ自動車株式会社 Walking state determination device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288141A (en) * 2010-06-18 2011-12-21 株式会社三丰 Industrial machine
JP2012002715A (en) * 2010-06-18 2012-01-05 Mitsutoyo Corp Industrial machine
US8924176B2 (en) 2010-06-18 2014-12-30 Mitutoyo Corporation Industrial machine
JP7111027B2 (en) 2019-02-27 2022-08-02 トヨタ自動車株式会社 Walking state determination device
CN113091653A (en) * 2021-04-19 2021-07-09 中国科学院国家天文台南京天文光学技术研究所 Device and method for measuring angle freedom degree error of linear guide rail based on pentaprism
CN113091653B (en) * 2021-04-19 2022-10-04 中国科学院国家天文台南京天文光学技术研究所 Device and method for measuring angle freedom degree error of linear guide rail based on pentaprism

Similar Documents

Publication Publication Date Title
US8321167B2 (en) Surveying instrument and surveying compensation method
KR101108602B1 (en) Vehicle wheel alignment system and methodology
RU2653771C2 (en) Two bodies misalignment device and determination method
JP3197529B2 (en) Non-contact measurement method of wheel alignment characteristics and its measurement device
US8899115B2 (en) Method and system for locating a laser vibrometer during non-contact scanning
CN104215178B (en) Object volume non-contact measurement method based on reflecting mirror secondary imaging and device
US10267659B2 (en) Angle detecting device and surveying instrument
TWI668406B (en) Laser detecting device
CN101013093A (en) Surface defect inspection apparatus, surface defect inspection method, and surface defect inspection program
CN107121079B (en) A kind of curved surface elevation information measuring device and method based on monocular vision
EP0661520A1 (en) Laser surveying system
JP2010506135A (en) Method for dynamically detecting the surface shape of a solid without contact
CN207280397U (en) Angle measurement unit
JP2017516105A (en) Robust index correction of angle encoders using analog signals
US20210080578A1 (en) Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program
JP2019124496A (en) Three-dimensional surveying device and three-dimensional surveying method
JP2009300180A (en) Straightness measuring device
TWI472712B (en) Vertical and parallelism detection system and its detection method
TW201432222A (en) Three-dimensional range finding method and system thereof
KR101179952B1 (en) 3-demensional measureing system using a noncontact type probe simultaneously
KR101046184B1 (en) Runout measurement system of tire
JP7324097B2 (en) Three-dimensional surveying device, three-dimensional surveying method and three-dimensional surveying program
JP3705863B2 (en) Height measuring device and height measuring method
KR20120129517A (en) a 3D range finder
JP6253932B2 (en) Direction detection device and survey system