JP2009299532A - Co-generation apparatus - Google Patents

Co-generation apparatus Download PDF

Info

Publication number
JP2009299532A
JP2009299532A JP2008153117A JP2008153117A JP2009299532A JP 2009299532 A JP2009299532 A JP 2009299532A JP 2008153117 A JP2008153117 A JP 2008153117A JP 2008153117 A JP2008153117 A JP 2008153117A JP 2009299532 A JP2009299532 A JP 2009299532A
Authority
JP
Japan
Prior art keywords
cooling water
engine
heat exchanger
exhaust
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008153117A
Other languages
Japanese (ja)
Other versions
JP5107798B2 (en
Inventor
Keiji Iino
啓司 飯野
Toshiyuki Kitazawa
俊幸 北澤
Hiroshi Inoue
啓 井上
Kota Tokubi
広太 徳備
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008153117A priority Critical patent/JP5107798B2/en
Publication of JP2009299532A publication Critical patent/JP2009299532A/en
Application granted granted Critical
Publication of JP5107798B2 publication Critical patent/JP5107798B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a co-generation apparatus that improves total efficiency, in particular, power generation efficiency. <P>SOLUTION: This co-generation apparatus 10 includes at least a power generation unit 24 comprising a generator 20 connectable to a power supply passage 16 of AC electric power from a commercial power source 12 to an electric load 14 and an engine 22 for driving the generator, a heat exchanger for exchanging heat between the cooling water and the exhaust heat of the engine for raising a temperature, a cooling water passage 42c for connecting the heat exchanger 26 to the engine and supplying the cooling water outputted from the heat exchanger to the engine , and an exhaust passage 22h connected to the engine for discharging exhaust gas outputted from the engine. The co-generation apparatus is provided with a thermo-electric generating element 46 for generating power according to a temperature difference. A low temperature part 46a of the thermo-electric generating element 46 is brought in proximity to the cooling water passage 42c, and a high temperature part 46b of the thermo-electric generating element 46 is brought in proximity to the exhaust passage 22h. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明はコージェネレーション装置に関し、より具体的には発電効率を向上させるようにしたコージェネレーション装置に関する。   The present invention relates to a cogeneration apparatus, and more particularly to a cogeneration apparatus that improves power generation efficiency.

近年、商用電力系統から電気負荷に至る交流電力の給電路に内燃機関で駆動される発電機からなる発電ユニットを接続し、発電ユニットで生じた電力(電気エネルギ)を商用電力系統と連系させて電気負荷に供給すると共に、内燃機関の排熱を利用して生成した温水など(熱エネルギ)を熱負荷に供給するようにした、いわゆるコージェネレーション装置が提案されている(例えば特許文献1参照)。
特開平8−4586号公報
In recent years, a power generation unit consisting of a generator driven by an internal combustion engine is connected to an AC power supply path from a commercial power system to an electrical load, and the power generated by the power generation unit (electric energy) is linked to the commercial power system. A so-called cogeneration apparatus has been proposed in which hot water or the like (heat energy) generated by utilizing exhaust heat from an internal combustion engine is supplied to the heat load (see, for example, Patent Document 1). ).
JP-A-8-4586

ところで、上記したようなコージェネレーション装置にあっては、内燃機関の燃料のエネルギの内、約22.5%を電気エネルギに、約62.5%を熱エネルギに変換して電気負荷や熱負荷に供給しており、その総合効率は85.0%にまで達するが、エネルギをより有効に活用するべく、総合効率の向上、特に電気エネルギへの変換効率(発電効率)のさらなる向上が望まれている。しかしながら、上記した特許文献1に記載の技術は、その点に関して何ら開示するものではなかった。   By the way, in the above-mentioned cogeneration apparatus, about 22.5% of the energy of the fuel of the internal combustion engine is converted into electric energy, and about 62.5% is converted into heat energy, and electric load or heat load is converted. The total efficiency reaches 85.0%, but in order to make more effective use of energy, it is desired to improve the overall efficiency, especially the conversion efficiency into electric energy (power generation efficiency). ing. However, the technique described in Patent Document 1 described above has not been disclosed at all in that respect.

従って、この発明の目的は上記した課題を解決し、総合効率を向上、特に発電効率を向上させるようにしたコージェネレーション装置を提供することにある。   Accordingly, an object of the present invention is to provide a cogeneration apparatus that solves the above-described problems and improves the overall efficiency, in particular, the power generation efficiency.

上記した課題を解決するために、請求項1にあっては、商用電力系統から電気負荷に至る交流電力の給電路に接続可能な発電機と前記発電機を駆動する内燃機関からなる発電ユニットと、前記内燃機関の冷却水を排気熱と熱交換させて昇温する熱交換器と、前記熱交換器と前記内燃機関を接続して前記熱交換器から出力される前記冷却水を前記内燃機関に供給する冷却水通路と、前記内燃機関に接続されて前記内燃機関から出力される排気を排出する排気通路とを少なくとも備えたコージェネレーション装置において、温度差に応じて発電する熱発電素子を設けると共に、前記熱発電素子の低温部を前記冷却水通路に近接させる一方、前記熱発電素子の高温部を前記排気通路に近接させて配置する如く構成した。   In order to solve the above-described problem, in claim 1, a generator that can be connected to an AC power supply path from a commercial power system to an electric load, and a power generation unit that includes an internal combustion engine that drives the generator, A heat exchanger that heats the cooling water of the internal combustion engine by exchanging heat with exhaust heat, and the cooling water that is output from the heat exchanger by connecting the heat exchanger and the internal combustion engine to the internal combustion engine. A cogeneration apparatus comprising at least a cooling water passage for supplying air to an internal combustion engine and an exhaust passage for discharging exhaust gas output from the internal combustion engine is provided with a thermoelectric generator that generates electric power according to a temperature difference At the same time, the low temperature portion of the thermoelectric generator is placed close to the cooling water passage, while the high temperature portion of the thermoelectric generator is arranged close to the exhaust passage.

請求項2に係るコージェネレーション装置にあっては、前記熱発電素子の低温部を前記冷却水通路が前記熱交換器を出た直後の位置近傍に近接させて配置する如く構成した。   In the cogeneration apparatus according to the second aspect, the low temperature portion of the thermoelectric generator is arranged in the vicinity of the position immediately after the cooling water passage exits the heat exchanger.

請求項3に係るコージェネレーション装置にあっては、前記熱発電素子の高温部を前記排気通路が前記内燃機関を出た直後の位置近傍に近接させて配置する如く構成した。   In the cogeneration apparatus according to a third aspect of the present invention, the high temperature portion of the thermoelectric generator is arranged close to the position immediately after the exhaust passage leaves the internal combustion engine.

請求項1に係るコージェネレーション装置にあっては、温度差に応じて発電する熱発電素子を設けると共に、熱発電素子の低温部を熱交換器から出力される冷却水を内燃機関に供給する冷却水通路に近接させる一方、熱発電素子の高温部を内燃機関の排気通路に近接させて配置するように構成、即ち、冷却水通路と排気通路の温度差を利用して熱発電素子で発電するように構成したので、発電ユニットの電力に熱発電素子の電力を加えることができる、即ち、装置の発電量を増加でき、よって総合効率、特に発電効率を向上させることができる。   The cogeneration apparatus according to claim 1 is provided with a thermoelectric generator that generates electric power in accordance with a temperature difference, and cooling that supplies a low-temperature portion of the thermoelectric generator to the internal combustion engine with cooling water output from the heat exchanger The thermoelectric generator is arranged close to the water passage while the high temperature portion of the thermoelectric generator is arranged close to the exhaust passage of the internal combustion engine, that is, the thermoelectric generator generates electricity using the temperature difference between the cooling water passage and the exhaust passage. Since it comprised so, the electric power of a thermoelectric generation element can be added to the electric power of an electric power generation unit, ie, the electric power generation amount of an apparatus can be increased, and overall efficiency, especially electric power generation efficiency can be improved.

請求項2に係るコージェネレーション装置にあっては、熱発電素子の低温部を冷却水通路が熱交換器を出た直後の位置近傍、即ち、冷却水通路において温度が比較的低い位置の近傍に近接させて配置するように構成したので、上記した効果に加え、熱発電素子の低温部と高温部の温度差を増大させることができる、換言すれば、熱発電素子の発電量を増加でき、発電効率をより向上させることができる。   In the cogeneration apparatus according to claim 2, the low temperature portion of the thermoelectric generator is located near the position immediately after the cooling water passage exits the heat exchanger, that is, near the position where the temperature is relatively low in the cooling water passage. Since it is configured to be arranged close to each other, in addition to the above-described effects, the temperature difference between the low temperature part and the high temperature part of the thermoelectric generator can be increased, in other words, the power generation amount of the thermoelectric generator can be increased, The power generation efficiency can be further improved.

請求項3に係るコージェネレーション装置にあっては、熱発電素子の高温部を排気通路が内燃機関を出た直後の位置近傍、即ち、排気通路において温度が比較的高い位置の近傍に近接させて配置するように構成したので、上記した効果に加え、熱発電素子の低温部と高温部の温度差をより一層増大できるため、熱発電素子の発電量もさらに増加し、よって発電効率をより一層向上させることができる。   In the cogeneration apparatus according to claim 3, the high temperature portion of the thermoelectric generator is brought close to a position immediately after the exhaust passage exits the internal combustion engine, that is, close to a position where the temperature is relatively high in the exhaust passage. In addition to the effects described above, the temperature difference between the low-temperature part and the high-temperature part of the thermoelectric generator can be further increased, so that the amount of power generated by the thermoelectric generator further increases, thereby further improving the power generation efficiency. Can be improved.

以下、添付図面に即してこの発明に係るコージェネレーション装置を実施するための最良の形態について説明する。   The best mode for carrying out a cogeneration apparatus according to the present invention will be described below with reference to the accompanying drawings.

図1は、この発明の実施例に係るコージェネレーション装置を全体的に示すブロック図である。   FIG. 1 is a block diagram generally showing a cogeneration apparatus according to an embodiment of the present invention.

図1において符号10はコージェネレーション装置を示す。コージェネレーション装置10は、商用電源(商用電力系統)12から電気負荷14に至る交流電力の給電路(電力線)16に接続可能な発電機(スタータ/ジェネレータ)20と発電機20を駆動する内燃機関(以下、「エンジン」という)22からなる発電ユニット24と、エンジン22の冷却水を排気熱と熱交換させて昇温する排気熱交換器(熱交換器)26と、排気熱交換器26で昇温させられた冷却水が供給されて温水などを生成する排熱利用給湯暖房ユニット(熱負荷。図示せず)とを備える。   In FIG. 1, the code | symbol 10 shows a cogeneration apparatus. The cogeneration apparatus 10 includes a generator (starter / generator) 20 that can be connected to an AC power supply path (power line) 16 from a commercial power source (commercial power system) 12 to an electric load 14 and an internal combustion engine that drives the generator 20. (Hereinafter, referred to as “engine”) 22, an exhaust heat exchanger (heat exchanger) 26 that heats the cooling water of the engine 22 by exchanging heat with exhaust heat, and an exhaust heat exchanger 26. It is provided with a waste heat utilization hot water supply / heating unit (heat load, not shown) that is supplied with cooling water that has been heated to generate hot water or the like.

商用電源12は、単相3線からAC100/200Vで50Hz(または60Hz)の交流電力を出力する。発電ユニット24は一体化され、排気熱交換器26と共に発電ユニットケース(筐体)30の内部に収容される。   The commercial power supply 12 outputs AC power of 50 Hz (or 60 Hz) at 100/200 V AC from a single-phase three-wire. The power generation unit 24 is integrated and housed in the power generation unit case (housing) 30 together with the exhaust heat exchanger 26.

エンジン22は都市ガス(あるいはLPガス。以下、単に「ガス」という)を燃料とする、水冷4サイクルの単気筒OHV型の火花点火式のエンジンであり、例えば163ccの排気量を備える。図示は省略するが、発電ユニットケース30においてエンジン22のシリンダヘッドとシリンダブロック22aは水平方向(横向き)に配置され、その内部に1個のピストンが往復動自在に配置される。ピストンには鉛直方向(縦向き)に配置されるクランクシャフト(図示せず)が連結される。   The engine 22 is a water-cooled four-cycle single-cylinder OHV type spark ignition engine that uses city gas (or LP gas; hereinafter simply referred to as “gas”) as a fuel, and has a displacement of, for example, 163 cc. Although illustration is omitted, in the power generation unit case 30, the cylinder head and the cylinder block 22a of the engine 22 are arranged in a horizontal direction (lateral direction), and one piston is arranged in a reciprocating manner in the inside thereof. A crankshaft (not shown) arranged in the vertical direction (longitudinal direction) is connected to the piston.

発電機20は多極コイルを備え、クランクシャフトの上端に取り付けられるフライホイール(図示せず)の内側のクランクケース上に固定され、フライホイールとの間で相対回転するとき、交流電力を発電する。発電機20は、商用電源12(あるいは図示しないバッテリ)から通電されるとき、エンジン22をクランキングするスタータモータとしても機能する。   The generator 20 includes a multipole coil, is fixed on a crankcase inside a flywheel (not shown) attached to the upper end of the crankshaft, and generates AC power when rotating relative to the flywheel. . The generator 20 also functions as a starter motor that cranks the engine 22 when energized from the commercial power supply 12 (or a battery (not shown)).

エンジン22において空気(吸気)は吸気サイレンサ22b、エアクリーナ22cを通ってミキサ22dに入る。ミキサ22dには燃料供給源(図示せず)からガスがガス管32、ガス比例弁ユニット22eを介して供給され、そこで空気と混合させられる。ミキサ22dとガス比例弁ユニット22eからなるガスボックスにおいてミキサ22dは電動モータで駆動されるスロットルバルブと可変ジェットを備える。   In the engine 22, air (intake air) enters the mixer 22d through the intake silencer 22b and the air cleaner 22c. Gas is supplied to the mixer 22d from a fuel supply source (not shown) through the gas pipe 32 and the gas proportional valve unit 22e, where it is mixed with air. In the gas box including the mixer 22d and the gas proportional valve unit 22e, the mixer 22d includes a throttle valve driven by an electric motor and a variable jet.

ミキサ22dで生成された混合気は燃焼室(図示せず)に流れる。燃焼室の付近には点火プラグ22fが配置される。点火プラグ22fは、図示しないバッテリの出力がパワートランジスタやイグニッションコイルなどからなる点火装置22gを介して供給されると、燃焼室に臨む電極間に火花放電を生じ、混合気を着火して燃焼させる。よって生じた排気(排ガス)はエンジン22から出力され、エンジン22に接続される排気通路(排気管)22h、排気マフラ22iを通って発電ユニットケース30の外(庫外)に排出される。   The air-fuel mixture generated by the mixer 22d flows into a combustion chamber (not shown). A spark plug 22f is disposed in the vicinity of the combustion chamber. When the output of a battery (not shown) is supplied via an ignition device 22g composed of a power transistor, an ignition coil, or the like, the spark plug 22f generates a spark discharge between the electrodes facing the combustion chamber, ignites the air-fuel mixture, and burns it. . Thus, the generated exhaust gas (exhaust gas) is output from the engine 22, and is discharged out of the power generation unit case 30 (outside the warehouse) through an exhaust passage (exhaust pipe) 22h connected to the engine 22 and an exhaust muffler 22i.

エンジン22のシリンダブロック22aの下部(クランクケースの図示省略)にはオイルタンク(オイルパン)22kが形成され、そこにエンジン22の潤滑オイルが貯留される。潤滑オイルはギヤポンプ(図示せず)で掻き上げられてピストンなどの摺動部分を潤滑した後、コンロッド(図示せず)やシリンダ壁面を伝わって落下し、オイルタンク22kに貯留される。   An oil tank (oil pan) 22k is formed below the cylinder block 22a of the engine 22 (the crankcase is not shown), and the lubricating oil of the engine 22 is stored therein. Lubricating oil is scraped up by a gear pump (not shown) and lubricates a sliding portion such as a piston, then drops along a connecting rod (not shown) and a cylinder wall surface, and is stored in an oil tank 22k.

発電機20の出力はインバータユニット34に送られる。インバータユニット34はDC−DCコンバータなどを介して発電機20の出力をAC100/200V(単相)に変換する。インバータユニット34は、マイクロコンピュータからなるECU(Electronic Control Unit。電子制御ユニット)36と共にコントロール部を構成し、ECU36の指令を受けて発電機20の機能をスタータとジェネレータの間で切り換える。   The output of the generator 20 is sent to the inverter unit 34. The inverter unit 34 converts the output of the generator 20 into AC 100/200 V (single phase) via a DC-DC converter or the like. The inverter unit 34 constitutes a control unit together with an ECU (Electronic Control Unit) 36 composed of a microcomputer, and switches the function of the generator 20 between the starter and the generator in response to an instruction from the ECU 36.

インバータユニット34の出力は屋内配電盤40に送られる。屋内配電盤40は、過電流の通電などを防止する主幹ブレーカ40aと、インバータユニット34の出力に商用電源12の電力を加えて電気負荷14に供給する分電盤40bと、発電ユニット24の専用ブレーカ40cと、商用電源12から主幹ブレーカ40aに至る給電路16に配置されてそこを流れる交流電力の電流に応じた信号を生じる電流センサ40dなどを備える。即ち、インバータユニット34の出力は、屋内配電盤40で商用電源12の電力と合わせられて(連系されて)電気負荷14に供給される。   The output of the inverter unit 34 is sent to the indoor switchboard 40. The indoor switchboard 40 includes a main circuit breaker 40a that prevents overcurrent and the like, a distribution board 40b that adds the power of the commercial power supply 12 to the output of the inverter unit 34 and supplies it to the electric load 14, and a dedicated breaker for the power generation unit 24. 40c, and a current sensor 40d that is disposed in the power supply path 16 from the commercial power supply 12 to the main breaker 40a and generates a signal corresponding to the current of AC power flowing therethrough. That is, the output of the inverter unit 34 is combined with (connected to) the electric power of the commercial power supply 12 by the indoor switchboard 40 and supplied to the electric load 14.

このように、インバータユニット34の出力は、屋内配電盤40で商用電源12から電気負荷14に至る交流電力の給電路16に接続可能にされる。尚、発電ユニット24の発電出力(定格電力)は、1.0kW程度である。   As described above, the output of the inverter unit 34 can be connected to the AC power supply path 16 from the commercial power supply 12 to the electric load 14 by the indoor switchboard 40. The power generation output (rated power) of the power generation unit 24 is about 1.0 kW.

コージェネレーション装置10は、前記した電流センサ40dの他に、図1に示すように多くのセンサを備え、各センサの出力はECU36に入力される。ECU36は入力された出力に基づいてエンジン22の運転などを制御するが、その制御は本願と直接の関連を有しないため、説明を省略する。   The cogeneration apparatus 10 includes a number of sensors as shown in FIG. 1 in addition to the above-described current sensor 40d, and the output of each sensor is input to the ECU 36. The ECU 36 controls the operation of the engine 22 and the like based on the input output, but the control is not directly related to the present application, and thus the description thereof is omitted.

符号42はエンジン22を冷却する冷却水(不凍液)の通路(以下、「冷却水通路」という)を示す。冷却水通路42はエンジン22のシリンダブロック22aとオイルタンク22kや排気熱交換器26を通り、外部の排熱利用給湯暖房ユニット(以下、単に「暖房ユニット」という)に接続される。   Reference numeral 42 indicates a passage of cooling water (antifreeze) for cooling the engine 22 (hereinafter referred to as “cooling water passage”). The cooling water passage 42 passes through the cylinder block 22a of the engine 22, the oil tank 22k, and the exhaust heat exchanger 26, and is connected to an external exhaust heat utilization hot water supply / heating unit (hereinafter simply referred to as “heating unit”).

冷却水通路42について詳説すると、冷却水通路42は、暖房ユニットとオイルタンク22kを接続して暖房ユニットから出力される低温の冷却水をオイルタンク22kに供給する第1の冷却水通路42aと、オイルタンク22kと排気熱交換器26を接続してオイルタンク22kから出力される冷却水を排気熱交換器26に供給する第2の冷却水通路42bと、排気熱交換器26とエンジン22のシリンダブロック22aを接続して排気熱交換器26から出力される冷却水をシリンダブロック22aに供給する第3の冷却水通路(冷却水通路)42cと、シリンダブロック22aと暖房ユニットを接続してシリンダブロック22aから出力される高温の冷却水を暖房ユニットに供給する(戻す)第4の冷却水通路42dとからなる。   The cooling water passage 42 will be described in detail. The cooling water passage 42 connects the heating unit and the oil tank 22k, and supplies a low-temperature cooling water output from the heating unit to the oil tank 22k. A second cooling water passage 42b for connecting the oil tank 22k and the exhaust heat exchanger 26 to supply the cooling water output from the oil tank 22k to the exhaust heat exchanger 26, the exhaust heat exchanger 26 and the cylinder of the engine 22 A third cooling water passage (cooling water passage) 42c that connects the block 22a and supplies the cooling water output from the exhaust heat exchanger 26 to the cylinder block 22a, and the cylinder block 22a and the heating unit are connected to the cylinder block. The fourth cooling water passage 42d supplies (returns) the high-temperature cooling water output from 22a to the heating unit.

従って、暖房ユニットから送られる低温の冷却水は冷却水通路42の入口側42eに導かれ、循環ポンプ44によって第1の冷却水通路42aを介してオイルタンク22kに供給される。オイルタンク22kにおいて冷却水は、オイルタンク22kに形成されるタンク通路を通って潤滑オイルと熱交換して潤滑オイルを冷却した後、第2の冷却水通路42bを通って排気通路22hに配置された排気熱交換器26に供給される。   Accordingly, the low-temperature cooling water sent from the heating unit is guided to the inlet side 42e of the cooling water passage 42, and is supplied to the oil tank 22k by the circulation pump 44 via the first cooling water passage 42a. In the oil tank 22k, the cooling water passes through a tank passage formed in the oil tank 22k to exchange heat with the lubricating oil to cool the lubricating oil, and then is disposed in the exhaust passage 22h through the second cooling water passage 42b. The exhaust heat exchanger 26 is supplied.

排気熱交換器26において冷却水は、排気(排ガス)と熱交換して昇温させられる。尚、排気熱交換器26は、例えば冷却水通路42を変形させ、排気通路22hを覆うような構造としたものである。排気熱交換器26を通過した冷却水は、第3の冷却水通路42cを介してシリンダブロック22a(およびシリンダヘッド)に形成されるシリンダ通路に供給されてエンジン22と熱交換し、エンジン22を冷却する。排気やエンジン22との熱交換によって昇温させられた高温の冷却水は、第4の冷却水通路42dを通って出口側42fから暖房ユニットに戻される。   In the exhaust heat exchanger 26, the cooling water is heated up by exchanging heat with the exhaust gas (exhaust gas). The exhaust heat exchanger 26 has a structure in which, for example, the cooling water passage 42 is deformed to cover the exhaust passage 22h. The cooling water that has passed through the exhaust heat exchanger 26 is supplied to the cylinder passage formed in the cylinder block 22a (and the cylinder head) via the third cooling water passage 42c to exchange heat with the engine 22, Cooling. The high-temperature cooling water that has been heated by heat exchange with the exhaust or the engine 22 is returned to the heating unit from the outlet side 42f through the fourth cooling water passage 42d.

また、コージェネレーション装置10において、エンジン22(正確には、エンジン22のシリンダヘッドの排気バルブ)と排気熱交換器26の間には、温度差に応じて発電する熱発電素子46が設けられる。   In the cogeneration apparatus 10, a thermoelectric generator 46 that generates electric power according to a temperature difference is provided between the engine 22 (more precisely, an exhaust valve of the cylinder head of the engine 22) and the exhaust heat exchanger 26.

以下、その熱発電素子46および熱発電素子46が設けられる位置などについて詳しく説明する。   Hereinafter, the thermoelectric generation element 46 and the position where the thermoelectric generation element 46 is provided will be described in detail.

図2は、図1に示す発電ユニット24、排気熱交換器26などが収容された発電ユニットケース30を示す分解斜視図である。また、図3は図2において破線で囲まれた部分を拡大して示す部分拡大図であり、図4は図3に示す熱発電素子46が配置される位置付近の断面図である。尚、図3においては、理解の便宜のため、排気通路22hなどの一部を取り外した状態で示した。また、図3,4においては、冷却水の流れを太線の黒矢印で示すと共に、排気の流れを太線の白矢印で示した。   FIG. 2 is an exploded perspective view showing a power generation unit case 30 in which the power generation unit 24, the exhaust heat exchanger 26 and the like shown in FIG. 1 are accommodated. 3 is a partially enlarged view showing a portion surrounded by a broken line in FIG. 2, and FIG. 4 is a sectional view in the vicinity of a position where the thermoelectric generator 46 shown in FIG. 3 is arranged. In FIG. 3, for convenience of understanding, a part of the exhaust passage 22h is removed. 3 and 4, the flow of the cooling water is indicated by a thick black arrow, and the flow of the exhaust gas is indicated by a thick white arrow.

図2に示す如く、発電ユニットケース30は外壁パネル50を備え、外壁パネル50によって形成された内部空間に、前記した発電ユニット24、排気熱交換器26などが収容される。具体的には、発電ユニットケース30の重力方向において下方位置には、排気熱交換器26などが配置されると共に、排気熱交換器26の上方、換言すれば、発電ユニットケース30の中央位置にはエンジン22、発電機20などが設置される。また、発電ユニットケース30の上方位置には、エアクリーナ22cやマフラ22iなどが取り付けられる。尚、図2において熱発電素子46は見えない。   As shown in FIG. 2, the power generation unit case 30 includes an outer wall panel 50, and the above-described power generation unit 24, the exhaust heat exchanger 26, and the like are accommodated in an internal space formed by the outer wall panel 50. Specifically, the exhaust heat exchanger 26 and the like are disposed at a position below the power generation unit case 30 in the gravity direction, and at the top of the exhaust heat exchanger 26, in other words, at the center position of the power generation unit case 30. The engine 22 and the generator 20 are installed. An air cleaner 22c, a muffler 22i, and the like are attached to the upper position of the power generation unit case 30. Note that the thermoelectric generator 46 is not visible in FIG.

熱発電素子46は、図3,4に示す如く平板状を呈する。熱発電素子46は、図4に示すように、金属材から製作されると共に、冷却されて温度が低下させられるべき低温部46aおよび加熱されて温度が上昇させられるべき高温部46bと、低温部46aと高温部46bの間に介挿されると共に、図示しないp型熱電半導体とn型熱電半導体を交互に直列接続してなる半導体素子46cとからなる。即ち、熱発電素子46は、低温部46aと高温部46bの温度差に応じて発電するゼーベック効果を利用した、公知の熱発電モジュールであり、詳しい説明は省略する。   The thermoelectric generator 46 has a flat plate shape as shown in FIGS. As shown in FIG. 4, the thermoelectric generator 46 is made of a metal material, and is cooled to be cooled to lower the temperature 46 a, the heated portion 46 b to be heated, and the low temperature portion 46 b to be heated. The semiconductor element 46c is inserted between the p-type thermoelectric semiconductor (not shown) and the n-type thermoelectric semiconductor alternately connected in series. That is, the thermoelectric generator 46 is a known thermoelectric generator module that uses the Seebeck effect of generating electric power according to the temperature difference between the low temperature portion 46a and the high temperature portion 46b, and detailed description thereof is omitted.

熱発電素子46は、エンジン22と排気熱交換器26の間であってエンジン22の排気通路22hと排気熱交換器26の冷却水通路42に近接して配置される。詳しくは、図4に示す如く、熱発電素子46の低温部46aは冷却水通路42(正確には、排気熱交換器26とエンジン22を接続する第3の冷却水通路42c)に近接する一方、熱発電素子46の高温部46bは排気通路22hに近接して配置される。尚、熱発電素子46の低温部46aと第3の冷却水通路42cとの離間距離L1は、第3の冷却水通路42cによって低温部46aを冷却可能な程度の距離とされる。同様に、熱発電素子46の高温部46bと排気通路22hとの離間距離L2は、排気通路22hからの熱によって高温部46bを加熱可能な程度の距離とされる。   The thermoelectric generator 46 is disposed between the engine 22 and the exhaust heat exchanger 26 and close to the exhaust passage 22 h of the engine 22 and the cooling water passage 42 of the exhaust heat exchanger 26. Specifically, as shown in FIG. 4, the low temperature portion 46 a of the thermoelectric generator 46 is close to the cooling water passage 42 (more precisely, the third cooling water passage 42 c connecting the exhaust heat exchanger 26 and the engine 22). The high temperature portion 46b of the thermoelectric generator 46 is disposed close to the exhaust passage 22h. The separation distance L1 between the low temperature portion 46a of the thermoelectric generator 46 and the third cooling water passage 42c is set to such a distance that the low temperature portion 46a can be cooled by the third cooling water passage 42c. Similarly, the separation distance L2 between the high temperature portion 46b of the thermoelectric generator 46 and the exhaust passage 22h is set to such a distance that the high temperature portion 46b can be heated by the heat from the exhaust passage 22h.

熱発電素子46が配置される第3の冷却水通路42cと排気通路22hの位置について、より具体的に説明すると、図1に示すように、熱発電素子46の低温部46aは、第3の冷却水通路42cが排気熱交換器26を出た直後の位置(図において符号42c1で示す)近傍に近接して配置される。即ち、低温部46aは第3の冷却水通路42cにおいて温度が比較的低い位置近傍に配置される。   More specifically, the positions of the third cooling water passage 42c and the exhaust passage 22h in which the thermoelectric generation element 46 is disposed will be described. As shown in FIG. The cooling water passage 42c is disposed in the vicinity of the position immediately after exiting the exhaust heat exchanger 26 (indicated by reference numeral 42c1 in the figure). That is, the low temperature part 46a is arranged in the vicinity of a position where the temperature is relatively low in the third cooling water passage 42c.

他方、熱発電素子46の高温部46bは、排気通路22hがエンジン22を出た直後の位置(図において符号22h1で示す)近傍、換言すれば、エンジン22の排気バルブ(図示せず)の近傍に近接して配置される。即ち、高温部46bは排気通路22hにおいて温度が比較的高い位置近傍に配置される。   On the other hand, the high temperature portion 46b of the thermoelectric generator 46 is in the vicinity of the position immediately after the exhaust passage 22h leaves the engine 22 (indicated by reference numeral 22h1 in the figure), in other words, in the vicinity of the exhaust valve (not shown) of the engine 22. Is placed close to. That is, the high temperature portion 46b is disposed in the vicinity of the position where the temperature is relatively high in the exhaust passage 22h.

熱発電素子46は、上記した位置に配置されることで低温部46aが第3の冷却水通路42cによって冷却されて低温になる一方、高温部46bが排気通路22hによって加熱されて高温になる。これにより、熱発電素子46の低温部46aと高温部46bの間に温度差が生じ、その温度差に応じて(比例して)発電が行われる。具体的には、低温部46aと高温部46bの温度が例えば70℃と650℃で温度差が580℃の場合、熱発電素子46は約30Wの直流電力を出力することができる。   By disposing the thermoelectric generator 46 at the above-described position, the low temperature portion 46a is cooled by the third cooling water passage 42c and becomes low temperature, while the high temperature portion 46b is heated by the exhaust passage 22h and becomes high temperature. Thereby, a temperature difference arises between the low temperature part 46a and the high temperature part 46b of the thermoelectric generation element 46, and electric power generation is performed according to the temperature difference (proportional). Specifically, when the temperature difference between the low temperature portion 46a and the high temperature portion 46b is, for example, 70 ° C. and 650 ° C. and the temperature difference is 580 ° C., the thermoelectric generator 46 can output DC power of about 30 W.

また、熱発電素子46は、第3の冷却水通路42cと排気通路22hの間に配置されるため、第3の冷却水通路42cが排気通路22hを冷却するのを防止することもできる。従って、排気通路22hを流れる排気の温度が第3の冷却水通路42cによって低下させられることはなく、よってその後の排気熱交換器26での熱交換を効率良く行うことができる、即ち、総合効率を向上させることができる。   Further, since the thermoelectric generator 46 is disposed between the third cooling water passage 42c and the exhaust passage 22h, the third cooling water passage 42c can be prevented from cooling the exhaust passage 22h. Therefore, the temperature of the exhaust gas flowing through the exhaust passage 22h is not lowered by the third cooling water passage 42c, and hence the subsequent heat exchange in the exhaust heat exchanger 26 can be performed efficiently, that is, the overall efficiency. Can be improved.

上記のようにして発電された熱発電素子46の出力(直流電力)は、図1に示す如く、電力線52を介してインバータユニット34に入力され、そこで前述した発電機20の出力と合わせられた後、専用ブレーカ34c、分電盤34bなどを通じて電気負荷14に供給される。   As shown in FIG. 1, the output (DC power) of the thermoelectric generator 46 generated as described above is input to the inverter unit 34 through the power line 52, where it is combined with the output of the generator 20 described above. Thereafter, the electric load 14 is supplied through the dedicated breaker 34c, the distribution board 34b, and the like.

以上の如く、この発明の実施例にあっては、商用電力系統(商用電源)12から電気負荷14に至る交流電力の給電路16に接続可能な発電機(スタータ/ジェネレータ)20と前記発電機を駆動する内燃機関(エンジン)22からなる発電ユニット24と、前記内燃機関の冷却水を排気熱と熱交換させて昇温する熱交換器(排気熱交換器)26と、前記熱交換器と前記内燃機関を接続して前記熱交換器から出力される前記冷却水を前記内燃機関に供給する冷却水通路(第3の冷却水通路)42cと、前記内燃機関に接続されて前記内燃機関から出力される排気を排出する排気通路22hとを少なくとも備えたコージェネレーション装置10において、温度差に応じて発電する熱発電素子46を設けると共に、前記熱発電素子46の低温部46aを前記冷却水通路42cに近接させる一方、前記熱発電素子46の高温部46bを前記排気通路22hに近接させて配置する如く構成した。   As described above, in the embodiment of the present invention, the generator (starter / generator) 20 that can be connected to the AC power supply path 16 from the commercial power system (commercial power source) 12 to the electric load 14 and the generator A power generation unit 24 comprising an internal combustion engine (engine) 22 that drives the engine, a heat exchanger (exhaust heat exchanger) 26 that heats the cooling water of the internal combustion engine by exchanging heat with exhaust heat, and the heat exchanger A cooling water passage (third cooling water passage) 42c for connecting the internal combustion engine to supply the cooling water output from the heat exchanger to the internal combustion engine, and a connection to the internal combustion engine from the internal combustion engine. In the cogeneration apparatus 10 having at least an exhaust passage 22h for discharging exhaust gas to be output, a thermoelectric generation element 46 that generates electric power according to a temperature difference is provided, and the low temperature portion 4 of the thermoelectric generation element 46 is provided. While to close a to the cooling water passage 42c, and as configured to arrange the high-temperature portion 46b of the heat generating element 46 in close proximity to the exhaust passage 22h.

このように、第3の冷却水通路42cと排気通路22hの温度差を利用して熱発電素子46で発電するように構成したので、発電ユニット24の電力に熱発電素子46の電力を加えることができる、即ち、コージェネレーション装置10の発電量を増加でき、よって総合効率、特に発電効率を向上させることができる。   As described above, since the thermoelectric generator 46 generates power using the temperature difference between the third cooling water passage 42c and the exhaust passage 22h, the electric power of the thermoelectric generator 46 is added to the electric power of the power generation unit 24. That is, the power generation amount of the cogeneration apparatus 10 can be increased, and thus the overall efficiency, particularly the power generation efficiency can be improved.

また、前記熱発電素子46の低温部46aを前記冷却水通路(第3の冷却水通路)42cが前記熱交換器26を出た直後の位置46c1近傍に近接させて配置する如く構成した。即ち、熱発電素子46の低温部46aを第3の冷却水通路42cにおいて温度が比較的低い位置の近傍に近接させて配置するように構成したので、熱発電素子46の低温部46aと高温部46bの温度差を増大させることができる、換言すれば、熱発電素子46の発電量を増加でき、発電効率をより向上させることができる。   Further, the low temperature portion 46a of the thermoelectric generator 46 is arranged so that the cooling water passage (third cooling water passage) 42c is disposed in the vicinity of the position 46c1 immediately after leaving the heat exchanger 26. That is, since the low temperature portion 46a of the thermoelectric generator 46 is arranged in the vicinity of the position where the temperature is relatively low in the third cooling water passage 42c, the low temperature portion 46a and the high temperature portion of the thermoelectric generator 46 are arranged. The temperature difference of 46b can be increased, in other words, the power generation amount of the thermoelectric generator 46 can be increased, and the power generation efficiency can be further improved.

また、前記熱発電素子46の高温部46bを前記排気通路22hが前記内燃機関(エンジン)22を出た直後の位置22h1近傍に近接させて配置する如く構成した。即ち、熱発電素子46の高温部46bを排気通路22hにおいて温度が比較的高い位置の近傍に近接させて配置するように構成したので、熱発電素子46の低温部46aと高温部46bの温度差をより一層増大できるため、熱発電素子46の発電量もさらに増加し、よって発電効率をより一層向上させることができる。   Further, the high temperature portion 46b of the thermoelectric generator 46 is arranged so that the exhaust passage 22h is close to the vicinity of the position 22h1 immediately after leaving the internal combustion engine (engine) 22. That is, since the high temperature portion 46b of the thermoelectric generator 46 is arranged in the vicinity of the position where the temperature is relatively high in the exhaust passage 22h, the temperature difference between the low temperature portion 46a and the high temperature portion 46b of the thermoelectric generator 46 is determined. Therefore, the amount of power generated by the thermoelectric generator 46 can be further increased, and the power generation efficiency can be further improved.

尚、上記において、熱発電素子46の出力をインバータユニット34に入力するように構成したが、それに限られるものではなく、例えば図示しない操作パネルの表示灯などに直接入力し、表示灯の点灯用の電力として用いるように構成しても良い。   In the above, the output of the thermoelectric generator 46 is configured to be input to the inverter unit 34. However, the present invention is not limited to this. For example, the output is directly input to an indicator on an operation panel (not shown). You may comprise so that it may be used as electric power.

また、発電機20の駆動源を都市ガス・LPガスを燃料とするガスエンジンとしたが、ガソリン燃料などを使用するエンジンであっても良い。また、発電ユニット24の定格出力およびエンジン22の排気量などを具体的な値で示したが、それらは例示であって限定されるものではない。   Moreover, although the drive source of the generator 20 is a gas engine using city gas / LP gas as fuel, an engine using gasoline fuel or the like may be used. Moreover, although the rated output of the power generation unit 24, the displacement of the engine 22 and the like are shown as specific values, these are examples and are not limited.

また、実施例において商用電源12が出力する交流電力を100/200Vとしたが、商用電源12が出力する交流電力が100/200Vを超えるときは、それに相応する電圧を発電ユニット24から出力させることはいうまでもない。   In the embodiment, the AC power output from the commercial power source 12 is set to 100 / 200V. However, when the AC power output from the commercial power source 12 exceeds 100 / 200V, the corresponding voltage is output from the power generation unit 24. Needless to say.

この発明の実施例に係るコージェネレーション装置を全体的に示すブロック図である。1 is a block diagram generally showing a cogeneration apparatus according to an embodiment of the present invention. 図1に示す発電ユニットなどが収容された発電ユニットケースを示す分解斜視図である。It is a disassembled perspective view which shows the electric power generation unit case in which the electric power generation unit etc. which were shown in FIG. 1 were accommodated. 図2において破線で囲まれた部分を拡大して示す部分拡大図である。It is the elements on larger scale which expand and show the part enclosed with the broken line in FIG. 図3に示す熱発電素子が配置される位置付近の断面図である。It is sectional drawing of the position vicinity of the thermoelectric power generation element shown in FIG.

符号の説明Explanation of symbols

10 コージェネレーション装置、12 商用電源(商用電力系統)、14 電気負荷、16 給電路、20 発電機(スタータ/ジェネレータ)、22 エンジン(内燃機関)、22h 排気通路、24 発電ユニット、26 排気熱交換器(熱交換器)、42c 第3の冷却水通路(冷却水通路)、46 熱発電素子、46a (熱発電素子の)低温部、46b (熱発電素子の)高温部   DESCRIPTION OF SYMBOLS 10 Cogeneration apparatus, 12 Commercial power supply (commercial power system), 14 Electric load, 16 Feeding path, 20 Generator (starter / generator), 22 Engine (internal combustion engine), 22h Exhaust passage, 24 Power generation unit, 26 Exhaust heat exchange (Heat exchanger), 42c third cooling water passage (cooling water passage), 46 thermoelectric generator, 46a (thermoelectric generator) low temperature section, 46b (thermoelectric generator) high temperature section

Claims (3)

商用電力系統から電気負荷に至る交流電力の給電路に接続可能な発電機と前記発電機を駆動する内燃機関からなる発電ユニットと、前記内燃機関の冷却水を排気熱と熱交換させて昇温する熱交換器と、前記熱交換器と前記内燃機関を接続して前記熱交換器から出力される前記冷却水を前記内燃機関に供給する冷却水通路と、前記内燃機関に接続されて前記内燃機関から出力される排気を排出する排気通路とを少なくとも備えたコージェネレーション装置において、温度差に応じて発電する熱発電素子を設けると共に、前記熱発電素子の低温部を前記冷却水通路に近接させる一方、前記熱発電素子の高温部を前記排気通路に近接させて配置したことを特徴とするコージェネレーション装置。   A generator that can be connected to an AC power supply path from a commercial power system to an electric load and an internal combustion engine that drives the generator, and the cooling water of the internal combustion engine is heat-exchanged with exhaust heat to raise the temperature. A heat exchanger that connects the heat exchanger to the internal combustion engine and supplies the cooling water output from the heat exchanger to the internal combustion engine, and the internal combustion engine that is connected to the internal combustion engine. A cogeneration apparatus having at least an exhaust passage for discharging exhaust gas output from an engine is provided with a thermoelectric generation element that generates electric power according to a temperature difference, and a low temperature portion of the thermoelectric generation element is brought close to the cooling water passage On the other hand, the cogeneration apparatus is characterized in that the high temperature portion of the thermoelectric generator is disposed close to the exhaust passage. 前記熱発電素子の低温部を前記冷却水通路が前記熱交換器を出た直後の位置近傍に近接させて配置したことを特徴とする請求項1記載のコージェネレーション装置。   2. The cogeneration apparatus according to claim 1, wherein the low temperature portion of the thermoelectric generator is disposed close to a position immediately after the cooling water passage exits the heat exchanger. 前記熱発電素子の高温部を前記排気通路が前記内燃機関を出た直後の位置近傍に近接させて配置したことを特徴とする請求項1または2記載のコージェネレーション装置。   The cogeneration apparatus according to claim 1 or 2, wherein the high temperature portion of the thermoelectric generator is disposed close to a position immediately after the exhaust passage leaves the internal combustion engine.
JP2008153117A 2008-06-11 2008-06-11 Cogeneration equipment Expired - Fee Related JP5107798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008153117A JP5107798B2 (en) 2008-06-11 2008-06-11 Cogeneration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008153117A JP5107798B2 (en) 2008-06-11 2008-06-11 Cogeneration equipment

Publications (2)

Publication Number Publication Date
JP2009299532A true JP2009299532A (en) 2009-12-24
JP5107798B2 JP5107798B2 (en) 2012-12-26

Family

ID=41546679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008153117A Expired - Fee Related JP5107798B2 (en) 2008-06-11 2008-06-11 Cogeneration equipment

Country Status (1)

Country Link
JP (1) JP5107798B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154305A (en) * 2011-01-28 2012-08-16 Honda Motor Co Ltd Cogeneration apparatus
JP2014173528A (en) * 2013-03-11 2014-09-22 Toho Gas Co Ltd Cogeneration device
JP2014181575A (en) * 2013-03-18 2014-09-29 Toho Gas Co Ltd Cogeneration device
JP2017069248A (en) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 Power generating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299417A (en) * 2004-04-07 2005-10-27 Toyota Motor Corp Exhaust heat power generating device and automobile equipped with the same
JP2006125321A (en) * 2004-10-29 2006-05-18 Hino Motors Ltd Exhaust heat recovery device
JP2006283579A (en) * 2005-03-31 2006-10-19 Honda Motor Co Ltd Cogeneration device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299417A (en) * 2004-04-07 2005-10-27 Toyota Motor Corp Exhaust heat power generating device and automobile equipped with the same
JP2006125321A (en) * 2004-10-29 2006-05-18 Hino Motors Ltd Exhaust heat recovery device
JP2006283579A (en) * 2005-03-31 2006-10-19 Honda Motor Co Ltd Cogeneration device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154305A (en) * 2011-01-28 2012-08-16 Honda Motor Co Ltd Cogeneration apparatus
JP2014173528A (en) * 2013-03-11 2014-09-22 Toho Gas Co Ltd Cogeneration device
JP2014181575A (en) * 2013-03-18 2014-09-29 Toho Gas Co Ltd Cogeneration device
JP2017069248A (en) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 Power generating device

Also Published As

Publication number Publication date
JP5107798B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP4949325B2 (en) Cogeneration equipment
US8169092B2 (en) Cogeneration system
US8354755B2 (en) Cogeneration system
JP5001749B2 (en) Cogeneration equipment
JP5144169B2 (en) Cogeneration equipment
JP5107798B2 (en) Cogeneration equipment
US20120197514A1 (en) Engine control device and cogeneration apparatus employing the engine control device
CN102482993B (en) Engine system in which transformer is arranged in independent ventilation path
JP2009047053A (en) Cogeneration device
JP4896081B2 (en) Cogeneration equipment
Takita et al. Study of Methods to Enhance Energy Utilization Efficiency of Micro Combined Heat and Power Generation Unit-Equipped with an Extended Expansion Linkage Engine and Reduction of Waste Energy
JP5806471B2 (en) Cogeneration equipment
JP2009047052A (en) Co-generation apparatus
RU75004U1 (en) AUTONOMOUS THERMOELECTRIC POWER UNIT ON HYDROCARBON FUEL
JP2009168002A (en) Engine generator
RU2069783C1 (en) Attachment for carburetor engine
JP2014070491A (en) Gas engine starting time initialization processing device
WO2012056190A1 (en) Micro combined heat and power unit
JP4892436B2 (en) Cogeneration equipment
JP5707151B2 (en) Cogeneration equipment
GB2486359A (en) Micro combined heat and power unit with solenoid fuel control valve
GB2485929A (en) Micro combined heat and power unit with heat exchanger diverter valve arrangement
GB2485932A (en) Micro combined heat and power unit having an electrical heating element
JP2012136977A (en) Stationary cogeneration system
JP2012052645A (en) Exterior panel sealing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120919

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121004

R150 Certificate of patent or registration of utility model

Ref document number: 5107798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees