JP2009298670A - Synthetic quartz glass and production method therefor - Google Patents

Synthetic quartz glass and production method therefor Download PDF

Info

Publication number
JP2009298670A
JP2009298670A JP2008157144A JP2008157144A JP2009298670A JP 2009298670 A JP2009298670 A JP 2009298670A JP 2008157144 A JP2008157144 A JP 2008157144A JP 2008157144 A JP2008157144 A JP 2008157144A JP 2009298670 A JP2009298670 A JP 2009298670A
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
optical axis
glass block
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008157144A
Other languages
Japanese (ja)
Other versions
JP5359044B2 (en
Inventor
Koichi Fushimi
広一 伏見
Aya Sumitomo
彩 住友
Kei Kanbayashi
敬 神林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008157144A priority Critical patent/JP5359044B2/en
Publication of JP2009298670A publication Critical patent/JP2009298670A/en
Application granted granted Critical
Publication of JP5359044B2 publication Critical patent/JP5359044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method for producing a synthetic quartz glass in which the distribution of birefringence value in the optical axis is controlled, and the distribution of birefringence value in a direction vertical to the optical axis is reduced. <P>SOLUTION: The production method for producing a synthetic quartz glass comprises: a heating step where a synthetic quartz glass block is heated to the temperature range of 500 to 1,300°C at ≥300°C/hr; and a cooling step where the synthetic quartz glass block held at the above temperature range is cooled at ≥50°C/hr. In at least the heating step in the heating step and the cooling step, temperature control is performed in such a manner that the temperature change of the synthetic quartz glass block in a direction becoming an optical axis when used as an optical material is made smaller than the temperature change of the synthetic quartz glass block in a direction vertical to the above direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、合成石英ガラス及び合成石英ガラスの製造方法に関する。   The present invention relates to synthetic quartz glass and a method for producing synthetic quartz glass.

従来、シリコン等のウエハ上に集積回路の微細パターンを露光・転写する光リソグラフィ技術において、投影露光装置と呼ばれる露光装置が用いられている。この露光装置の光源は、近年のLSIの高集積化に伴い、i線(365nm)から、KrF(248nm)、ArF(193nm)エキシマレーザへと短波長化が進められている。   2. Description of the Related Art Conventionally, an exposure apparatus called a projection exposure apparatus is used in an optical lithography technique that exposes and transfers a fine pattern of an integrated circuit onto a wafer such as silicon. The light source of this exposure apparatus has been shortened from i-line (365 nm) to KrF (248 nm) and ArF (193 nm) excimer lasers with the recent high integration of LSI.

一般に、i線よりも長い波長の光源を用いる露光装置の照明光学系、又は投影光学系に使用される光学ガラスは、i線よりも短い波長の光に対して光透過率が著しく低下し、特に250nm以下の波長領域の光に対しては、ほとんどの光学ガラスが光を透過しなくなる。そのため、光源にエキシマレーザを用いる露光装置には、石英ガラスや、蛍石等のフッ化物結晶が使用される。石英ガラスや蛍石はまた、紫外線、及び真空紫外線の光学系に広く用いられる材料である。   In general, the optical glass used in an illumination optical system of an exposure apparatus that uses a light source having a wavelength longer than i-line or a projection optical system has a significantly reduced light transmittance with respect to light having a wavelength shorter than i-line. Especially for light in the wavelength region of 250 nm or less, most optical glass does not transmit light. For this reason, quartz glass or fluoride crystals such as fluorite are used in an exposure apparatus that uses an excimer laser as a light source. Quartz glass and fluorite are also widely used materials for ultraviolet and vacuum ultraviolet optics.

合成石英ガラスを光リソグラフィ装置の光学系で用いる場合、大きな面積の集積回路パターンが高い解像度を有するように露光する必要があるため、合成石英ガラスの光学部材は、非常に高品質であることが要求される。例えば、部材の屈折率分布が、直径250mm以上の非常に大きな口径内において、10−6オーダー以下であることが要求される。また、複屈折量を減少させること、すなわち光学部材の内部歪を減少させることが、屈折率分布の均質性を向上させることと同様に重要である。さらに、エキシマレーザを用いた露光装置の照明光学系、及び投影光学系の全光路長は1mを超えることから、光量のロスを避けるために使用される硝材には、内部透過率99.75%/cmという高い透過率が要求される。 When synthetic quartz glass is used in an optical system of an optical lithography apparatus, it is necessary to expose so that an integrated circuit pattern having a large area has a high resolution. Therefore, an optical member of synthetic quartz glass must be of very high quality. Required. For example, the refractive index distribution of the member is required to be 10 −6 or less in a very large aperture having a diameter of 250 mm or more. Also, reducing the amount of birefringence, that is, reducing the internal distortion of the optical member is as important as improving the homogeneity of the refractive index distribution. Furthermore, since the total optical path length of the illumination optical system and projection optical system of the exposure apparatus using an excimer laser exceeds 1 m, the internal transmittance of the glass material used to avoid the loss of the light amount is 99.75%. A high transmittance of / cm is required.

このような、複屈折量の減少、屈折率分布の高い均質性、高透過率、及び耐紫外線性を有する大口径石英ガラスは、従来、直接法と呼ばれる気相合成法によって製造されてきた。エキシマレーザを用いた露光装置において、高透過率を維持するために、耐紫外線性向上因子の一つとして知られる水素分子濃度を適切な値に調整することが必要である。なお、水素分子は、気相合成中に石英ガラスに取り込まれるものである。   Such a large-diameter quartz glass having reduced birefringence, high homogeneity of refractive index distribution, high transmittance, and ultraviolet resistance has been conventionally produced by a vapor phase synthesis method called a direct method. In an exposure apparatus using an excimer laser, in order to maintain a high transmittance, it is necessary to adjust the hydrogen molecule concentration, which is known as one of the UV resistance improving factors, to an appropriate value. Hydrogen molecules are taken into quartz glass during vapor phase synthesis.

気相合成法により、合成石英ガラスはインゴットとして得られ、この合成石英ガラスのインゴット内部には、製造時の熱履歴に由来するさまざまな応力が残留している。そのため、ガラス内部の屈折率及び複屈折値の均質性は良好とは言えず、露光装置の光学素子として適さない。また、合成石英ガラスインゴットは合成終了後、大気によって急速に冷却されるため、構造決定温度が高く、耐紫外線性が悪い。したがって、構造決定温度を適切な値に調整して、耐紫外線性を向上させ、さらに、残留応力を解放して屈折率及び複屈折値等の均質性を向上させるために、製造後にアニールを施すことが一般的である。   Synthetic quartz glass is obtained as an ingot by the vapor phase synthesis method, and various stresses derived from the thermal history during production remain in the ingot of the synthetic quartz glass. Therefore, the homogeneity of the refractive index and the birefringence value inside the glass cannot be said to be good, and it is not suitable as an optical element of an exposure apparatus. Further, since the synthetic quartz glass ingot is rapidly cooled by the air after the synthesis is completed, the structure determination temperature is high and the ultraviolet resistance is poor. Therefore, annealing is performed after manufacturing in order to adjust the structure determination temperature to an appropriate value to improve ultraviolet resistance and to release residual stress and improve homogeneity such as refractive index and birefringence value. It is common.

特許文献1には、合成石英ガラスインゴットを得る第一ステップと、合成石英ガラスインゴットをアニール処理し、該アニール処理後、さらに、所定の温度範囲まで所定の降温速度で冷却する第二ステップと、第二ステップで得られた合成石英ガラスブロックを、所定の温度範囲まで加熱し所定時間保持した後、さらに、所定の温度範囲まで所定の降温速度で冷却する第三のステップを備える合成石英ガラスの製造方法が開示されている。   Patent Document 1 includes a first step of obtaining a synthetic quartz glass ingot, an annealing treatment of the synthetic quartz glass ingot, and a second step of cooling at a predetermined temperature drop rate to a predetermined temperature range after the annealing treatment, The synthetic quartz glass block obtained in the second step is heated to a predetermined temperature range, held for a predetermined time, and further cooled to a predetermined temperature range at a predetermined temperature decrease rate. A manufacturing method is disclosed.

さらに、特許文献2では、特許文献1に記載された第三ステップに相当するステップにおける加熱の昇温速度と、冷却の降温速度とが検討されている。   Further, in Patent Document 2, the heating rate of heating in the step corresponding to the third step described in Patent Document 1 and the cooling rate of cooling are studied.

また、各光学部材の光軸方向の複屈折値の分布が、互いに相殺されるよう、複数の光学部材を組み合わせることにより、露光装置全体としての複屈折値の分布を抑えることが知られている(特許文献1及び2)。
国際公開第01/12566号公報 特開2005−022921号公報
It is also known to suppress the distribution of birefringence values as a whole exposure apparatus by combining a plurality of optical members so that the distribution of birefringence values in the optical axis direction of each optical member cancel each other. (Patent Documents 1 and 2).
International Publication No. 01/12566 Japanese Patent Laid-Open No. 2005-022921

KrF(248nm)、ArF(193nm)エキシマレーザ等の短波長の光を用いた露光方法において、解像度をさらに向上させるために、高NAレンズを用いることが考えられる。高NAレンズでは、光軸と光路とのなす角度が大きく、光学部材の光軸方向の複屈折値の分布だけでなく、側面方向、すなわち、光軸方向に対して垂直な方向の複屈折値の分布も考慮する必要が生じている。   In an exposure method using short-wavelength light such as KrF (248 nm) or ArF (193 nm) excimer laser, it is conceivable to use a high NA lens in order to further improve the resolution. In a high NA lens, the angle formed between the optical axis and the optical path is large, and not only the distribution of the birefringence value in the optical axis direction of the optical member but also the birefringence value in the lateral direction, that is, the direction perpendicular to the optical axis direction. It is also necessary to consider the distribution of.

しかしながら、光学部材として用いられるアニール処理を施した合成石英ガラス部材は、屈折率均質性や耐紫外線性を充分に向上させることはできるものの、複屈折値の均質化、複屈折値の分布の制御等の複屈折値性能を向上させることが容易ではない。また、このような合成石英ガラスから形成されたレンズ等の光学部材を、多数配列して露光装置を構成すると、各光学部材の複屈折が積算され、露光装置全体として大きな複屈折が形成されてしまう。   However, annealed synthetic quartz glass members used as optical members can sufficiently improve refractive index homogeneity and UV resistance, but homogenize birefringence values and control the distribution of birefringence values. It is not easy to improve the birefringence value performance such as. Further, when an exposure apparatus is configured by arranging a large number of optical members such as lenses formed from such synthetic quartz glass, the birefringence of each optical member is integrated, and a large birefringence is formed in the entire exposure apparatus. End up.

そして、従来の合成石英ガラスの製造方法では、合成石英ガラスブロックを光学材料として用いたときに、光軸方向及び光軸と垂直方向の、二方向における複屈折値を充分に制御できないという問題があった。   The conventional method for producing synthetic silica glass has a problem that the birefringence value in two directions, ie, the optical axis direction and the direction perpendicular to the optical axis, cannot be sufficiently controlled when a synthetic quartz glass block is used as an optical material. there were.

そこで、本発明の目的は、光軸方向の複屈折値の分布が制御されており、光軸と垂直方向の複屈折値の分布が低減された合成石英ガラスを製造することの可能な製造方法、及びその製造方法で得られる合成石英ガラスを提供することにある。   Accordingly, an object of the present invention is to provide a manufacturing method capable of manufacturing a synthetic quartz glass in which the distribution of birefringence values in the optical axis direction is controlled and the distribution of birefringence values in the direction perpendicular to the optical axis is reduced. And a synthetic quartz glass obtained by the manufacturing method thereof.

本発明は、合成石英ガラスブロックを、500℃以上1300℃以下の温度範囲まで300℃/時間以上で昇温する加熱工程と、上記温度範囲内に保持された合成石英ガラスブロックを50℃/時間以上で冷却する冷却工程と、を備える合成石英ガラスの製造方法であって、加熱工程及び冷却工程のうち少なくとも加熱工程において、光学材料として用いられたときに光軸となるべき方向の、上記合成石英ガラスブロックの温度変化を、当該方向と垂直方向の上記合成石英ガラスブロックの温度変化よりも小さくする温度制御を実施する、合成石英ガラスの製造方法を提供する。   The present invention provides a heating step of heating a synthetic quartz glass block to a temperature range of 500 ° C. or more and 1300 ° C. or less at a rate of 300 ° C./hour or more, and a synthetic quartz glass block held within the temperature range of 50 ° C./hour. A method of producing synthetic quartz glass comprising: a cooling step for cooling as described above, wherein at least one of the heating step and the cooling step in the direction of the optical axis when used as an optical material in the heating step. Provided is a method for producing synthetic quartz glass, in which temperature control is performed to make the temperature change of the quartz glass block smaller than the temperature change of the synthetic quartz glass block in the direction perpendicular to the direction.

本発明はまた、上記合成石英ガラスの製造方法により得ることのできる、合成石英ガラスを提供するものである。   The present invention also provides a synthetic quartz glass that can be obtained by the method for producing a synthetic quartz glass.

本発明の合成石英ガラスの製造方法によれば、光軸方向の複屈折値の分布が制御されており、光軸と垂直方向の複屈折値の分布を低減された合成石英ガラスを製造することが可能になる。   According to the method for producing synthetic quartz glass of the present invention, the production of synthetic quartz glass in which the distribution of birefringence values in the optical axis direction is controlled and the distribution of birefringence values in the direction perpendicular to the optical axis is reduced. Is possible.

本発明の合成石英ガラスの製造方法は、加熱工程と冷却工程とを備えており、これらの工程のうち少なくとも加熱工程において、上述の温度制御を実施するものである。以下、本発明の製造方法の好適な実施形態について、工程ごとに説明する。   The method for producing synthetic quartz glass of the present invention includes a heating step and a cooling step, and the temperature control described above is performed at least in the heating step among these steps. Hereinafter, preferred embodiments of the production method of the present invention will be described step by step.

加熱工程は、合成石英ガラスブロックを、500℃以上1300℃以下の温度範囲まで300℃/時間以上で昇温する工程である。   The heating step is a step of raising the temperature of the synthetic quartz glass block to 300 ° C./hour or more to a temperature range of 500 ° C. or more and 1300 ° C. or less.

ここで合成石英ガラスブロックとは、以下に述べる直接法等の製造方法により得られる合成石英ガラスインゴットそのもの、又はそのインゴットから切り出した合成石英ガラスをいう。   Here, the synthetic quartz glass block refers to a synthetic quartz glass ingot itself obtained by a production method such as a direct method described below, or a synthetic quartz glass cut out from the ingot.

合成石英ガラスインゴットの製造方法である直接法は、例えば以下のように実施できる。すなわち、高純度の四塩化ケイ素ガスや有機ケイ素化合物をキャリアガスで希釈した原料ガスを、石英ガラス製バーナの中心部から噴出させ、酸素ガス及び水素ガスを混合して燃焼させる。そして、バーナの周囲の酸素ガスと水素ガスとの燃焼により生成する水で加水分解反応させるか、原料ガスを火炎と燃焼反応させることにより、石英ガラス微粒子を発生させて、その石英ガラス微粒子を、バーナ下方にある不透明石英ガラス板からなるターゲット上に堆積させ、回転、揺動、及び引き下げ等の操作を行い、同時に、酸素ガス及び水素ガスの燃焼熱で溶融・ガラス化し、石英ガラスインゴットを得る。   The direct method, which is a method for producing a synthetic quartz glass ingot, can be carried out as follows, for example. That is, a raw material gas obtained by diluting a high purity silicon tetrachloride gas or an organic silicon compound with a carrier gas is ejected from the center of a quartz glass burner, and oxygen gas and hydrogen gas are mixed and burned. Then, the silica glass fine particles are generated by hydrolysis reaction with water generated by the combustion of oxygen gas and hydrogen gas around the burner, or by causing the raw material gas to undergo a combustion reaction with the flame to generate the quartz glass fine particles. The quartz glass ingot is obtained by depositing on a target made of an opaque quartz glass plate below the burner and performing operations such as rotation, swinging, and pulling down, and simultaneously melting and vitrifying with the combustion heat of oxygen gas and hydrogen gas. .

このとき、インゴットを回転させて、インゴットの周方向に温度分布が均一となるよう加熱すれば、インゴットの複屈折値の分布を、回転対称に形成することができ、インゴットから形成される合成石英ガラスブロックの複屈折値の分布もまた、回転対称とすることができる。   At this time, if the ingot is rotated and heated so that the temperature distribution becomes uniform in the circumferential direction of the ingot, the birefringence distribution of the ingot can be formed in a rotationally symmetrical manner, and the synthetic quartz formed from the ingot The distribution of birefringence values of the glass block can also be rotationally symmetric.

このようにして製造した合成石英ガラスインゴットを、そのまま合成石英ガラスブロックとして用いるか、所定の形状に切り出して合成石英ガラスブロックとして使用する。すなわち、合成石英ガラスブロックは、合成石英ガラスインゴットそのものであっても、目的の光学部材を複数個取り出せる大きさの塊であってもよいが、目的の光学部材の形状を有するもの、或いは、研磨等の仕上げ加工を施すことにより目的の光学部材が得られる形状を有するものが好ましい。   The synthetic quartz glass ingot produced in this way is used as it is as a synthetic quartz glass block, or cut into a predetermined shape and used as a synthetic quartz glass block. That is, the synthetic quartz glass block may be a synthetic quartz glass ingot itself or a lump of a size from which a plurality of target optical members can be taken out, but it has the shape of the target optical member or is polished. It is preferable to have a shape in which a target optical member can be obtained by performing finishing processing such as.

なお、合成石英ガラスインゴットの製造方法は、直接法に限られるわけではなく、スート法、OVD法、間接法等のVAD法(Vapour Phase Axial Deposition法)を採用することもできる。   In addition, the manufacturing method of a synthetic quartz glass ingot is not necessarily restricted to a direct method, VAD methods (Vapor Phase Axial Deposition method), such as a soot method, OVD method, and an indirect method, can also be employ | adopted.

このようにして得られる合成石英ガラスブロックに対して、「光学材料として用いられたときに光軸となるべき方向」を決定する。ここで、「光学材料として用いられたときに光軸となるべき方向」(以下、単に「光軸方向」という場合がある。)とは、本発明の製造方法で得られた合成石英ガラスをレンズ等の光学材料として用いるときの光の透過方向であり、合成石英ガラスブロックの形状や製造条件等から任意に決定できる。   The “direction to be the optical axis when used as an optical material” is determined for the synthetic quartz glass block thus obtained. Here, “the direction to be the optical axis when used as an optical material” (hereinafter sometimes simply referred to as “optical axis direction”) refers to the synthetic quartz glass obtained by the production method of the present invention. This is the light transmission direction when used as an optical material such as a lens, and can be arbitrarily determined from the shape of the synthetic quartz glass block, manufacturing conditions, and the like.

「光学材料として用いられたときに光軸となるべき方向」は、合成石英ガラスブロックが採取される合成石英ガラスインゴットの、製造時の回転軸の方向であることが好ましい。すなわち、合成石英ガラスインゴットの中心と、合成石英ガラスブロックの中心とは一致するのが好適である。ここで、「採取される」には、合成石英ガラスインゴットを切り出して採取する場合と、合成石英ガラスインゴットをそのまま用いる場合の2通りが含まれる。   The “direction to be the optical axis when used as an optical material” is preferably the direction of the rotation axis at the time of production of the synthetic quartz glass ingot from which the synthetic quartz glass block is collected. That is, it is preferable that the center of the synthetic quartz glass ingot and the center of the synthetic quartz glass block coincide. Here, “collected” includes two cases: a case where a synthetic quartz glass ingot is cut out and collected, and a case where the synthetic quartz glass ingot is used as it is.

合成石英ガラスブロックとしては特に、円筒形状を成しているものがよく、光軸方向は、この円筒形状の一方の端面の中心と接する面と垂直の方向であることが好ましい。ここで端面の中心とは、合成石英ガラスインゴットが回転させて製造されるときはその回転中心(回転軸と端面の交点)を意味し、それ以外の場合は端面の重心位置を意味する。端面は平坦でも曲面状でもよいが、加熱工程の実施の容易性から平坦であることが好ましい。また両端面は平行であることが好ましい。   In particular, the synthetic quartz glass block preferably has a cylindrical shape, and the optical axis direction is preferably perpendicular to the surface in contact with the center of one end surface of the cylindrical shape. Here, the center of the end face means the center of rotation (intersection of the rotation axis and the end face) when the synthetic quartz glass ingot is rotated, and the center of gravity of the end face otherwise. The end face may be flat or curved, but is preferably flat in view of ease of carrying out the heating step. Moreover, it is preferable that both end surfaces are parallel.

このようにして光軸方向を決定した後、光軸方向の合成石英ガラスブロックの温度変化(以下、「光軸方向温度変化」という。)を、当該方向と垂直方向の合成石英ガラスブロックの温度変化(以下、「垂直方向温度変化」という。)よりも小さくする温度制御を実施する。この温度制御は加熱工程中に実施されるが、加熱工程の全期間に亘り実施されることが好ましい。   After determining the optical axis direction in this way, the temperature change of the synthetic quartz glass block in the optical axis direction (hereinafter referred to as “optical axis direction temperature change”) is the temperature of the synthetic quartz glass block in the direction perpendicular to the direction. Temperature control is performed so as to be smaller than the change (hereinafter referred to as “vertical direction temperature change”). This temperature control is performed during the heating step, but is preferably performed over the entire period of the heating step.

光軸方向温度変化を垂直方向温度変化よりも小さくすると、合成石英ガラスブロックの両端面から、光軸方向に沿って合成石英ガラスブロックの中心部に流れる熱流束が、光軸以外の方向(光軸と垂直の方向が含まれる)に沿って、中心部に流れる熱流束に比べて小さくなる。これにより、光軸方向の複屈折値の分布を制御でき、光軸と垂直方向の複屈折値の分布を低減させることができる。   When the temperature change in the optical axis direction is made smaller than the temperature change in the vertical direction, the heat flux flowing from both end faces of the synthetic silica glass block along the optical axis direction to the center of the synthetic silica glass block is in a direction other than the optical axis (light (The direction perpendicular to the axis is included) is smaller than the heat flux flowing in the center. Thereby, the distribution of birefringence values in the optical axis direction can be controlled, and the distribution of birefringence values in the direction perpendicular to the optical axis can be reduced.

光軸方向温度変化を垂直方向温度変化よりも小さくする方法として、光軸方向の合成石英ガラスブロックの両端面を断熱材で覆い温度制御を実施する方法が有効である。すなわち、加熱工程において、合成石英ガラスブロックの両端面を断熱材で覆った状態で、500℃以上1300℃以下の温度範囲まで300℃/時間以上で昇温することが好ましい。このような昇温は、合成石英ガラスブロックを加熱炉中に保持し、500℃以上1300℃以下の温度範囲まで300℃/時間以上昇温するように設定を行えば実施できる。   As a method for making the temperature change in the optical axis direction smaller than the temperature change in the vertical direction, a method of performing temperature control by covering both end faces of the synthetic quartz glass block in the optical axis direction with a heat insulating material is effective. That is, in the heating step, it is preferable to raise the temperature at 300 ° C./hour or more up to a temperature range of 500 ° C. or more and 1300 ° C. or less with both end faces of the synthetic quartz glass block covered with a heat insulating material. Such a temperature increase can be carried out by holding the synthetic quartz glass block in a heating furnace and setting the temperature to be increased to 300 ° C./hour or more up to a temperature range of 500 ° C. to 1300 ° C.

断熱材は、光軸方向温度変化を垂直方向温度変化よりも小さくできるものであればよく、その素材や形状は任意であるが、例えば、耐火煉瓦、グラスウール、アルミナ等を用いることができる。   Any heat insulating material may be used as long as the temperature change in the optical axis direction can be made smaller than the temperature change in the vertical direction, and the material and shape thereof are arbitrary. For example, refractory bricks, glass wool, alumina, and the like can be used.

最終的に得られる合成石英ガラスについて、歪量(nm/cm)が以下の(1)及び(2)の条件に適合するように、上記温度制御を行うことが好ましい。
(1)光軸方向の歪量(nm/cm)の分布を、光軸と垂直の合成石英ガラス断面の中心から周縁に向けて測定した場合に(中心から周縁までの長さ:L)、中心から0.8Lまでの歪量が±3nm/cm以内(好ましくは、±2nm/cm以内、さらには±1nm/cm以内)となるようにし、0.8Lを超えLまでの間は歪量(nm/cm)の絶対値が3(好ましくは5、さらには10)を超えるようにする。
(2)光軸と垂直方向の歪量(nm/cm)の分布を測定した場合に、歪量が±3nm/cm以内(好ましくは、±2nm/cm以内、さらには±1nm/cm以内)となるようにする。
The synthetic quartz glass finally obtained is preferably subjected to the above temperature control so that the strain amount (nm / cm) meets the following conditions (1) and (2).
(1) When the distribution of strain (nm / cm) in the optical axis direction is measured from the center to the periphery of the synthetic quartz glass cross section perpendicular to the optical axis (length from the center to the periphery: L), The strain amount from the center to 0.8 L is within ± 3 nm / cm (preferably within ± 2 nm / cm, and further within ± 1 nm / cm), and the strain amount is between 0.8 L and L The absolute value of (nm / cm) is set to exceed 3 (preferably 5, or 10).
(2) When the distribution of strain (nm / cm) in the direction perpendicular to the optical axis is measured, the strain is within ± 3 nm / cm (preferably within ± 2 nm / cm, and further within ± 1 nm / cm). To be.

ここで歪量(nm/cm)について簡単に説明する。複屈折量(複屈折値)は、Δn=Re/tで表されるが(Δnは複屈折量、Reはレタデーション、tは試料厚み)、実際に測定されるのは、複屈折量と試料厚みの積で表されるレタデーションであり、レタデーションReの単位がnm、tの単位がcmであるとき、複屈折量Δnの単位は(nm/cm)で表すことができる。ガラスのような固体においては、複屈折量は応力に比例し、応力は歪みの大きさに比例することから、複屈折量(複屈折値)は歪量とも呼ばれる。よって、歪量を制御することは、複屈折量(複屈折値)を制御することと同義である。   Here, the amount of strain (nm / cm) will be briefly described. The amount of birefringence (birefringence value) is expressed by Δn = Re / t (Δn is the amount of birefringence, Re is the retardation, and t is the thickness of the sample). When the retardation Re is expressed in terms of the product of thickness, the unit of retardation Re is nm, and the unit of t is cm, the unit of birefringence Δn can be expressed by (nm / cm). In a solid such as glass, the amount of birefringence is proportional to the stress, and the stress is proportional to the magnitude of strain. Therefore, the amount of birefringence (birefringence value) is also called the amount of strain. Therefore, controlling the amount of strain is synonymous with controlling the amount of birefringence (birefringence value).

本発明では、光軸方向の複屈折値について、進相軸の方向と、光学部材の径方向(合成石英ガラスの光軸と垂直方向)とが平行である場合に、プラス(+)、垂直である場合にマイナス(−)を付す。また、側面方向(合成石英ガラスの光軸と垂直方向)の複屈折値は、進相軸の方向と光学部材の光軸方向とが平行な場合にプラス(+)、垂直な場合にマイナス(−)を付す。   In the present invention, with respect to the birefringence value in the optical axis direction, when the fast axis direction and the radial direction of the optical member (perpendicular to the optical axis of the synthetic quartz glass) are parallel, plus (+), vertical If it is, a minus (-) is attached. In addition, the birefringence value in the lateral direction (perpendicular to the optical axis of the synthetic quartz glass) is plus (+) when the fast axis direction and the optical axis direction of the optical member are parallel, and minus (+) when perpendicular. -) Is attached.

複屈折値の測定値が小さい場合、進相軸は必ずしも、光学部材の光軸方向と完全に平行、又は垂直にはならず、傾きを有する場合がある。このような場合、複屈折値は、光軸方向と垂直な方向に対する進相軸の角度が、45度より小さい場合にはプラス(+)を、45度より大きい場合にはマイナス(−)を付して扱えばよい。   When the measured value of the birefringence value is small, the fast axis is not necessarily completely parallel or perpendicular to the optical axis direction of the optical member, and may have an inclination. In such a case, the birefringence value is plus (+) when the angle of the fast axis with respect to the direction perpendicular to the optical axis direction is smaller than 45 degrees, and minus (-) when larger than 45 degrees. You can handle it.

複屈折値の測定方法としては、位相変調法、回転検光子法等が挙げられる。位相変調法において、光学系は、光源、偏光子、位相変調素子、試料、及び検光子によって構成される。光源としては、He−Neレーザ、又は、レーザダイオード、位相変調素子としては光弾性変換器が使用される。   Examples of the method for measuring the birefringence value include a phase modulation method and a rotation analyzer method. In the phase modulation method, the optical system includes a light source, a polarizer, a phase modulation element, a sample, and an analyzer. A He—Ne laser or a laser diode is used as the light source, and a photoelastic converter is used as the phase modulation element.

光源からの光は、偏光子によって直線偏光となり、位相変調素子に入射する。試料上に投射される位相変調素子からの光束は、素子により直線偏光から、円偏光、直線偏光と連続的に偏光状態が変化する変調光である。測定に際しては、試料上の測定点に、入射する光束を中心として、試料を回転させて、検知器のピークを見つけ、その時の振幅を測定することによって、進相軸の方向と、複屈折による位相差の大きさを求める。なお、光源にゼーマンレーザを用いると、試料を回転させずに測定をおこなうことができる。また、位相シフト法、光へテロダイン干渉法を用いてもよい。回転検光子法では、光源と光検出器との間の試料を、偏光子と回転検光子とによって挟むような装置構成となっており、試料の後ろに、配置した検光子を回転させながら、検知器からの信号を測定し、検知器からの信号の最大値と最小値とから位相差を求める。   The light from the light source becomes linearly polarized light by the polarizer and enters the phase modulation element. The light beam from the phase modulation element projected onto the sample is modulated light whose polarization state changes continuously from linearly polarized light to circularly polarized light and linearly polarized light by the element. When measuring, rotate the sample around the incident light beam at the measurement point on the sample, find the peak of the detector, and measure the amplitude at that time. Find the magnitude of the phase difference. Note that when a Zeeman laser is used as the light source, measurement can be performed without rotating the sample. Further, a phase shift method or an optical heterodyne interference method may be used. In the rotation analyzer method, the sample configuration between the light source and the photodetector is sandwiched between the polarizer and the rotation analyzer, and while rotating the analyzer placed behind the sample, The signal from the detector is measured, and the phase difference is obtained from the maximum value and the minimum value of the signal from the detector.

なお、本発明において「光軸方向の複屈折値(歪量)の分布」というときは、合成石英ガラスに対して「複屈折値測定用のレーザを照射する方向を光軸方向にした」場合に、測定される(合成石英ガラスの厚さ方向の)複屈折値(歪量)が、光軸と垂直な断面(合成石英ガラスが円柱状のときは円形状断面の半径方向)にどのように分布しているのか、を意味する。   In the present invention, when “distribution of birefringence value (amount of strain) in the optical axis direction” is referred to, “the direction in which the laser for birefringence value measurement is irradiated is set to the optical axis direction” with respect to synthetic quartz glass In addition, how the birefringence value (strain amount) measured (in the thickness direction of the synthetic quartz glass) is in the cross section perpendicular to the optical axis (in the radial direction of the circular cross section when the synthetic quartz glass is cylindrical) It means that it is distributed.

一方、「光軸と垂直方向の複屈折値(歪量)の分布」というときは、合成石英ガラスに対して「複屈折値測定用のレーザを照射する方向を光軸と垂直方向にした」場合に、測定される(合成石英ガラスの側面方向)の複屈折値(歪量)が、光軸に沿った断面(合成石英ガラスが円柱状のときは矩形断面の縦又は横方向)にどのように分布しているのか、を意味する。   On the other hand, the phrase “distribution of birefringence value (amount of strain) in the direction perpendicular to the optical axis” refers to the synthetic quartz glass “the direction in which the laser for measuring the birefringence value is irradiated is perpendicular to the optical axis.” The birefringence value (strain amount) of the measured (side surface direction of the synthetic quartz glass) in the section along the optical axis (vertical or horizontal direction of the rectangular section when the synthetic quartz glass is cylindrical) It means that it is distributed.

以上説明したように、両端面を断熱材で覆うことで、光軸方向では、表面と中心部との温度差を低減することが容易になり、表面から中心部にわたる領域で歪みが小さくなる。これにより、合成石英ガラスブロックの光軸と垂直方向の複屈折値の分布の均一性が向上する。   As described above, by covering the both end surfaces with the heat insulating material, it becomes easy to reduce the temperature difference between the surface and the central portion in the optical axis direction, and the distortion is reduced in the region extending from the surface to the central portion. This improves the uniformity of the birefringence distribution in the direction perpendicular to the optical axis of the synthetic quartz glass block.

一方、合成石英ガラスブロックの両端面以外の面(以下、「側面」と呼ぶ場合がある。)は、断熱されていないために、光軸と垂直な断面を見たときに、その中心部と周縁(側面付近)の温度差は大きくなる。このため、側面の表面から中心部にわたる領域で歪みが大きくなる。   On the other hand, surfaces other than both end surfaces of the synthetic quartz glass block (hereinafter sometimes referred to as “side surfaces”) are not thermally insulated, so that when viewed from a cross section perpendicular to the optical axis, The temperature difference at the periphery (near the side surface) increases. For this reason, distortion increases in a region extending from the surface of the side surface to the central portion.

このような温度制御の下、本加熱工程と、後述する冷却工程を経ることにより、合成石英ガラスブロックの光軸方向の複屈折値の分布が、中心から外周に向かってほぼ一定で、かつ外周周縁部で極端に増加する、という分布が可能になる。   Under such temperature control, the distribution of birefringence values in the optical axis direction of the synthetic quartz glass block is substantially constant from the center to the outer periphery through the main heating step and the cooling step described later, and the outer periphery. A distribution that increases extremely at the periphery is possible.

加熱工程における昇温速度は、上述のように300℃/時間以上である。昇温速度が、300℃/時間より小さい場合、昇温時に合成石英ガラスブロックの側面から中心部まで、熱が伝達され易くなり、合成石英ガラスブロックの表面と中心部との温度差が小さくなるため、上述のような複屈折値(歪量)の分布を形成させることが困難になる。昇温速度は、500℃/時間以上が好ましく、1000℃/時間以上がより好ましい。   The heating rate in the heating step is 300 ° C./hour or more as described above. When the rate of temperature increase is smaller than 300 ° C./hour, heat is easily transferred from the side surface to the center of the synthetic quartz glass block at the time of temperature increase, and the temperature difference between the surface and the center of the synthetic quartz glass block is reduced. For this reason, it is difficult to form the distribution of the birefringence value (distortion amount) as described above. The heating rate is preferably 500 ° C./hour or more, and more preferably 1000 ° C./hour or more.

合成石英ガラスブロックの加熱は、500℃以上1300℃以下の温度範囲まで行う。温度範囲の下限が500℃未満では、複屈折値が変化し難く、1300℃よりも大きいと、複屈折値分布が悪化したり、合成石英ガラスブロック中の水素分子濃度が低下するなどして、光学ガラス部材としての物性を低下させ易い。合成石英ガラスブロックの加熱は、900〜1200℃の温度範囲まで行うことが好ましく、1000〜1100℃の温度範囲まで行うことがより好ましい。   The synthetic quartz glass block is heated to a temperature range of 500 ° C. or higher and 1300 ° C. or lower. When the lower limit of the temperature range is less than 500 ° C., the birefringence value hardly changes, and when it is higher than 1300 ° C., the birefringence value distribution is deteriorated or the concentration of hydrogen molecules in the synthetic quartz glass block is reduced. It is easy to reduce the physical properties as an optical glass member. The heating of the synthetic quartz glass block is preferably performed to a temperature range of 900 to 1200 ° C, and more preferably to a temperature range of 1000 to 1100 ° C.

加熱工程においては、上述の昇温速度で、上述の温度範囲の加熱温度まで、合成石英ガラスブロックを急昇温させた後、この温度範囲の加熱温度にて保持するようにしてもよい。このようにすれば、複屈折値(歪量)の分布の穏やかな勾配を形成し易くなる。なお、このような温度の保持操作は、少なくとも、合成石英ガラスブロックの中心部が加熱温度に達する以前に終了する必要がある。   In the heating step, the synthetic quartz glass block may be rapidly heated to the heating temperature in the above temperature range at the above temperature increase rate, and then held at the heating temperature in this temperature range. This makes it easy to form a gentle gradient of the birefringence value (distortion amount) distribution. Such a temperature holding operation needs to be completed at least before the central portion of the synthetic quartz glass block reaches the heating temperature.

加熱工程に続いて、温度範囲内に保持された合成石英ガラスブロックを50℃/時間以上で冷却する冷却工程を実施する。   Subsequent to the heating step, a cooling step of cooling the synthetic quartz glass block maintained within the temperature range at 50 ° C./hour or more is performed.

冷却工程では、50℃/時間以上の降温速度で、500℃未満の温度まで冷却することが好ましい。50℃/時間より遅い速度で冷却すると、合成石英ガラスブロックの側面から中心部へ伝達される熱量が大きくなるため、加熱工程における急昇温によって形成された、側面の温度と中心部の温度との差が小さくなり、その結果、光軸方向の複屈折値の分布が、光軸と垂直な面の全面に亘り均質化し、上記条件(1)のような制御ができなくなるため、好ましくない。   In the cooling step, it is preferable to cool to a temperature of less than 500 ° C. at a temperature lowering rate of 50 ° C./hour or more. When cooling at a rate slower than 50 ° C./hour, the amount of heat transferred from the side surface of the synthetic quartz glass block to the central portion increases, so the temperature of the side surface and the temperature of the central portion formed by the rapid temperature rise in the heating process As a result, the distribution of birefringence values in the direction of the optical axis becomes uniform over the entire surface perpendicular to the optical axis, and control as in the above condition (1) becomes impossible, which is not preferable.

冷却工程における降温速度は、200℃/時間以上が好ましく、500℃/時間以上がより好ましい。   The cooling rate in the cooling step is preferably 200 ° C./hour or more, and more preferably 500 ° C./hour or more.

冷却工程においても、光軸方向温度変化を垂直方向温度変化よりも小さくする温度制御を実施することが好ましい。その方法としては、光軸方向の合成石英ガラスブロックの両端面を断熱材で覆う方法が挙げられ、合成石英ガラスブロックの両端面を断熱材で覆って加熱工程を実施し、そのままの状態で50℃/時間以上で冷却すればよい。   Also in the cooling step, it is preferable to implement temperature control that makes the temperature change in the optical axis direction smaller than the temperature change in the vertical direction. As the method, there is a method of covering both end faces of the synthetic quartz glass block in the optical axis direction with a heat insulating material, covering both end faces of the synthetic quartz glass block with a heat insulating material, and performing a heating step. Cooling may be performed at a temperature of ° C / hour or more.

以上説明した加熱工程及び冷却工程を実施することにより、光軸方向の複屈折値の分布が制御されており、光軸と垂直方向の複屈折値の分布を低減された合成石英ガラスを得ることができる。   By performing the heating step and the cooling step described above, a synthetic quartz glass in which the distribution of birefringence values in the optical axis direction is controlled and the distribution of birefringence values in the direction perpendicular to the optical axis is reduced is obtained. Can do.

なお、加熱工程に先立って、加熱工程で用いる合成石英ガラスブロック、又は当該ガラスブロックが採取される合成石英ガラスインゴットを、900℃以上の加熱温度まで加熱し、当該加熱温度で保持した後、500℃以下の温度まで10℃/時間以下で冷却する、アニール工程を実施することもできる。   Prior to the heating step, the synthetic quartz glass block used in the heating step or the synthetic quartz glass ingot from which the glass block is collected is heated to a heating temperature of 900 ° C. or higher and held at the heating temperature. An annealing step of cooling at a temperature of 10 ° C./hour or less to a temperature of 0 ° C. or less can also be performed.

アニール工程における加熱温度は、900〜1200℃が好ましく、1000〜1100℃がより好ましい。冷却速度は、10℃/時間以下が好ましく、5℃/時間以下がより好ましい。   900-1200 degreeC is preferable and the heating temperature in an annealing process has more preferable 1000-1100 degreeC. The cooling rate is preferably 10 ° C./hour or less, and more preferably 5 ° C./hour or less.

本発明においては、冷却工程終了後の合成石英ガラスに対して、研削、研磨、芯取り等の加工を施すことにより、光学部材を形成するようにしてもよい。このようにして製造された合成石英ガラスからなる光学部材は、上述した複屈折値の分布を有するため、半導体露光装置の光学レンズ、液晶露光装置の光学レンズ等の用途に好適に用いることができる。   In the present invention, the optical member may be formed by performing processing such as grinding, polishing, and centering on the synthetic quartz glass after completion of the cooling step. The optical member made of synthetic quartz glass thus produced has the above-described birefringence value distribution, and therefore can be suitably used for applications such as an optical lens of a semiconductor exposure apparatus and an optical lens of a liquid crystal exposure apparatus. .

以下、熱処理炉を用いて本発明の製造方法を実施する実施形態について、図面を参照しながら説明する。   Hereinafter, an embodiment in which the manufacturing method of the present invention is carried out using a heat treatment furnace will be described with reference to the drawings.

図1は、合成石英ガラスブロックを内部に収容した熱処理炉を示す断面図である。図1に示す熱処理炉1は、円柱形状の合成石英ガラスブロック2を収容可能に構成されており、炉内12を均一に加熱可能な炉内ヒータ13と、炉内12の底面を形成する炉床板14とを、炉壁10内部に備えている。炉床板14の上部には、ベース材料としての2個の耐火煉瓦15が、空間11を空けて平行に設置され、2個の耐火煉瓦15の上部には、合成石英ガラスブロック2の外径に略対応した外周形状を有する断熱材3に挟まれた合成石英ブロック2が設置されている。なお、断熱材3は、耐熱煉瓦とすることが可能である。   FIG. 1 is a cross-sectional view showing a heat treatment furnace in which a synthetic quartz glass block is accommodated. A heat treatment furnace 1 shown in FIG. 1 is configured to be capable of accommodating a cylindrical synthetic quartz glass block 2, and a furnace 13 that can uniformly heat the furnace 12 and a furnace that forms the bottom surface of the furnace 12. A floor plate 14 is provided inside the furnace wall 10. Two refractory bricks 15 as base materials are installed in parallel on the top of the hearth plate 14 with a space 11 therebetween, and the outer diameter of the synthetic quartz glass block 2 is formed on the top of the two refractory bricks 15. A synthetic quartz block 2 sandwiched between heat insulating materials 3 having a substantially corresponding outer peripheral shape is installed. The heat insulating material 3 can be a heat-resistant brick.

図1における、y軸方向は、光軸となるべき方向(合成石英ガラスブロック2に対して熱処理工程及び冷却工程が施された後、光学部材として用いられたときの光軸方向)である。また、x軸方向は、y軸方向と垂直な方向である。   The y-axis direction in FIG. 1 is the direction that should be the optical axis (the optical axis direction when the synthetic quartz glass block 2 is used as an optical member after being subjected to a heat treatment step and a cooling step). The x-axis direction is a direction perpendicular to the y-axis direction.

熱処理炉1内に設置される合成石英ガラスブロック2は、アニール処理が施されたものであってもよい。炉内ヒータ13により、熱処理炉1の炉内は均一に加熱され、これにより合成石英ガラスブロック2は、500℃以上1300℃以下の範囲の温度まで、300℃/時間以上の昇温速度で加熱される(加熱工程)。必要により、500℃以上1300℃以下の温度で一定時間保持した後、炉内ヒータ13を制御して、50℃/時間以上で合成石英ガラスブロック2を冷却する(冷却工程)。   The synthetic quartz glass block 2 installed in the heat treatment furnace 1 may be subjected to annealing treatment. The interior of the heat treatment furnace 1 is uniformly heated by the in-furnace heater 13, whereby the synthetic quartz glass block 2 is heated to a temperature in the range of 500 ° C. to 1300 ° C. at a temperature increase rate of 300 ° C./hour or more. (Heating process). If necessary, after holding at a temperature of 500 ° C. or higher and 1300 ° C. or lower for a certain time, the furnace heater 13 is controlled to cool the synthetic quartz glass block 2 at 50 ° C./hour or higher (cooling step).

加熱工程及び冷却工程において、合成石英ガラスブロック2のy軸方向の両端面が断熱材3で覆われていることから、y軸に沿って合成石英ガラスブロック2の中心部に流れる熱流束が、x軸方向に沿って合成石英ガラスブロック2中心部に流れる熱流束に比べて小さくなる。これにより、光軸方向の複屈折値の分布(y軸方向にレーザを照射して得られた複屈折値の、x軸に沿った面における分布)が制御され、光軸と垂直方向の複屈折値の分布(x軸方向にレーザを照射して得られた複屈折値の、y軸に沿った面における分布)が低減された合成石英ガラスを得ることができる。   In the heating step and the cooling step, since both end surfaces in the y-axis direction of the synthetic quartz glass block 2 are covered with the heat insulating material 3, the heat flux flowing to the central portion of the synthetic quartz glass block 2 along the y-axis is It becomes smaller than the heat flux flowing in the central part of the synthetic quartz glass block 2 along the x-axis direction. As a result, the distribution of birefringence values in the optical axis direction (the birefringence values obtained by irradiating the laser in the y-axis direction on the surface along the x-axis) is controlled, and the birefringence values in the direction perpendicular to the optical axis are controlled. It is possible to obtain a synthetic quartz glass in which the distribution of refraction values (the distribution of birefringence values obtained by irradiating a laser in the x-axis direction on the surface along the y-axis) is reduced.

以下、実施例及び比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

実施例1及び比較例1の合成石英ガラスブロックを、以下のようにして作製した。
[実施例1]
(アニール処理)
直径250mm、厚さ65mmの合成石英ガラスブロックを、下記の条件を設定した炉内で、アニール処理した。まず、140℃/時間で1100℃まで昇温し、1100℃で10時間保持し、次いで10℃/時間で500℃まで降温して放冷した。なお、雰囲気は大気とした。
The synthetic quartz glass blocks of Example 1 and Comparative Example 1 were produced as follows.
[Example 1]
(Annealing treatment)
A synthetic quartz glass block having a diameter of 250 mm and a thickness of 65 mm was annealed in a furnace in which the following conditions were set. First, the temperature was raised to 1100 ° C. at 140 ° C./hour, held at 1100 ° C. for 10 hours, then cooled to 500 ° C. at 10 ° C./hour and allowed to cool. The atmosphere was air.

(熱処理工程)
アニール処理後の合成石英ガラスブロックに対して、図1に示すような加熱炉内で、熱処理をした。アニール処理後の合成石英ガラスブロックは、図1のように、上下面、すなわち、y軸方向の両端面を耐熱煉瓦で挟んだ状態にした。耐熱煉瓦は、断熱材として用いており、合成石英ガラスブロックと接触する面の面積は、200mm×200mmであり、厚さが70mmであった。熱処理としては、まず、昇温速度1200℃/時間で1200℃まで昇温し、20分保持する加熱工程を実施し、その後、800℃/時間で降温する冷却工程を実施した。
(Heat treatment process)
The synthetic quartz glass block after the annealing treatment was subjected to heat treatment in a heating furnace as shown in FIG. As shown in FIG. 1, the synthetic quartz glass block after the annealing treatment was in a state in which the upper and lower surfaces, that is, both end surfaces in the y-axis direction were sandwiched between heat-resistant bricks. The heat-resistant brick was used as a heat insulating material, and the area of the surface in contact with the synthetic quartz glass block was 200 mm × 200 mm and the thickness was 70 mm. As the heat treatment, first, a heating step of raising the temperature to 1200 ° C. at a heating rate of 1200 ° C./hour and holding for 20 minutes was performed, and then a cooling step of lowering the temperature at 800 ° C./hour was performed.

このようにして得られた、熱処理後の合成石英ガラスの歪量の分布を図2、3に示した。なお、得られたサンプルの歪量の測定は、ヘテロダイン干渉法を用いた。光軸方向の歪量及び光軸方向と垂直な方向の歪量の測定範囲は、いずれも合成石英ガラスブロックの中心から、外周から5mm内側まで、とした。また、測定に用いる波長は、ヘリウムネオンレーザの発振波長である632.8nmであった。   The strain distribution of the synthetic quartz glass after the heat treatment thus obtained is shown in FIGS. In addition, the heterodyne interferometry was used for the measurement of the distortion amount of the obtained sample. The measurement ranges of the strain amount in the optical axis direction and the strain amount in the direction perpendicular to the optical axis direction were both from the center of the synthetic quartz glass block to 5 mm from the outer periphery. The wavelength used for the measurement was 632.8 nm, which is the oscillation wavelength of the helium neon laser.

図2は、実施例1の合成石英ガラスブロックの光軸方向の歪量の分布を示す図である。この歪量は、ガラスブロックの中心から半径方向外側へ向かって、約100mm付近まで、0〜+1nm/cm程度の値を推移し、120mmにおいて、+18.6nm/cmであった。すなわち光軸方向の歪量の分布幅は18.6nm/cmであった。図3は、光軸と垂直方向の歪量の分布を示す図である。歪量は、最大で+1nm/cm、最小で−0.5nm/cmであり、分布幅は1.5nm/cmであった。光軸と垂直方向の歪量の分布幅を、光軸方向の歪量の分布幅で割ると、0.08であった。   FIG. 2 is a diagram showing a strain distribution in the optical axis direction of the synthetic quartz glass block of Example 1. The amount of strain changed from about 0 mm to about 1 nm / cm from the center of the glass block toward the outer side in the radial direction to about 100 mm, and was +18.6 nm / cm at 120 mm. That is, the distribution width of the strain amount in the optical axis direction was 18.6 nm / cm. FIG. 3 is a diagram showing the distribution of strain in the direction perpendicular to the optical axis. The strain amount was +1 nm / cm at the maximum, -0.5 nm / cm at the minimum, and the distribution width was 1.5 nm / cm. When the distribution width of the strain amount in the direction perpendicular to the optical axis was divided by the distribution width of the strain amount in the optical axis direction, it was 0.08.

[比較例1]
直径250mm、厚さ60mmの合成石英ガラスブロックを用いて、その上下面を耐熱煉瓦で挟んだ状態にしなかったこと以外は実施例1と同様にして、熱処理後の合成石英ガラスブロックを得た。熱処理後の合成石英ガラスブロックの歪量の分布を図4、5に示した。
[Comparative Example 1]
A synthetic quartz glass block after heat treatment was obtained in the same manner as in Example 1 except that a synthetic quartz glass block having a diameter of 250 mm and a thickness of 60 mm was used and the upper and lower surfaces were not sandwiched between heat-resistant bricks. The distribution of strain of the synthetic quartz glass block after the heat treatment is shown in FIGS.

図4は、比較例1の合成石英ガラスブロックの光軸方向の歪量の分布を示す図である。この歪量は、ガラスブロックの中心から径方向外側へ向かって、約60mm付近まで、0〜+1nm/cm程度の値を推移し、100mmにおいて、約+5nm/cmであり、120mmにおいて、+17.9nm/cmであった。すなわち光軸方向の歪量の分布幅は17.9nm/cmであった。図5は、比較例1の合成石英ガラスブロックの光軸と垂直方向の歪量の分布を示す図である。最大で+1nm/cm、最小で−2nm/cmであり、分布幅は3nm/cmであった。光軸と垂直方向の歪量の分布幅を、光軸方向の歪量の分布幅で割ると、0.17であった。   FIG. 4 is a diagram showing the distribution of strain in the optical axis direction of the synthetic quartz glass block of Comparative Example 1. The amount of distortion changes from about 0 to +1 nm / cm from the center of the glass block to the outer side in the radial direction to about 60 mm, about +5 nm / cm at 100 mm, and +17.9 nm at 120 mm. / Cm. That is, the distribution width of the strain amount in the optical axis direction was 17.9 nm / cm. FIG. 5 is a diagram showing the distribution of strain in the direction perpendicular to the optical axis of the synthetic quartz glass block of Comparative Example 1. The maximum was +1 nm / cm, the minimum was -2 nm / cm, and the distribution width was 3 nm / cm. When the distribution width of the strain amount in the direction perpendicular to the optical axis was divided by the distribution width of the strain amount in the optical axis direction, it was 0.17.

実施例1と比較例1から、実施例1では石英ガラスブロックの、光軸となるべき方向の両端面に断熱材(耐熱煉瓦)が設けられていることにより、比較例1と比較して、光軸方向の歪量の分布を同等に維持しつつ、光軸方向と垂直な方向の歪量の分布を低減することができた。また、実施例1の光軸方向の歪量は、外周付近で急激に上昇しており、分布は適切に制御されていた。   From Example 1 and Comparative Example 1, in Example 1, the quartz glass block is provided with a heat insulating material (heat-resistant brick) on both end surfaces in the direction to be the optical axis, so as compared with Comparative Example 1, It was possible to reduce the strain distribution in the direction perpendicular to the optical axis direction while maintaining the same strain distribution in the optical axis direction. Further, the amount of strain in the optical axis direction of Example 1 increased rapidly in the vicinity of the outer periphery, and the distribution was appropriately controlled.

合成石英ガラスブロックを内部に収容した熱処理炉を示す断面図である。It is sectional drawing which shows the heat processing furnace which accommodated the synthetic quartz glass block inside. 実施例1の合成石英ガラスブロックの光軸方向の歪量の分布を示す図である。It is a figure which shows distribution of the distortion amount of the optical axis direction of the synthetic quartz glass block of Example 1. FIG. 実施例1の合成石英ガラスブロックの光軸と垂直方向の歪量の分布を示す図である。It is a figure which shows distribution of the distortion amount of the orthogonal | vertical direction with the optical axis of the synthetic quartz glass block of Example 1. FIG. 比較例1の合成石英ガラスブロックの光軸方向の歪量の分布を示す図である。It is a figure which shows distribution of the distortion amount of the optical axis direction of the synthetic quartz glass block of the comparative example 1. 比較例1の合成石英ガラスブロックの光軸と垂直方向の歪量の分布を示す図である。It is a figure which shows the distribution of the amount of distortions of the orthogonal | vertical direction with the optical axis of the synthetic quartz glass block of the comparative example 1. FIG.

符号の説明Explanation of symbols

1…熱処理炉、2…合成石英ガラスブロック、3…断熱材、10…炉壁、11…空間、12…炉内、13…炉内ヒータ、14…炉床板、15…耐火煉瓦。   DESCRIPTION OF SYMBOLS 1 ... Heat treatment furnace, 2 ... Synthetic quartz glass block, 3 ... Heat insulating material, 10 ... Furnace wall, 11 ... Space, 12 ... In-furnace, 13 ... In-furnace heater, 14 ... Hearth board, 15 ... Fire brick.

Claims (6)

合成石英ガラスブロックを、500℃以上1300℃以下の温度範囲まで300℃/時間以上で昇温する加熱工程と、前記温度範囲内に保持された合成石英ガラスブロックを50℃/時間以上で冷却する冷却工程と、を備える合成石英ガラスの製造方法であって、
前記加熱工程及び冷却工程のうち少なくとも加熱工程において、
光学材料として用いられたときに光軸となるべき方向の、前記合成石英ガラスブロックの温度変化を、当該方向と垂直方向の前記合成石英ガラスブロックの温度変化よりも小さくする温度制御を実施する、合成石英ガラスの製造方法。
A heating step of heating the synthetic quartz glass block to a temperature range of 500 ° C. or more and 1300 ° C. or less at 300 ° C./hour or more, and cooling the synthetic quartz glass block held in the temperature range at 50 ° C./hour or more. A method for producing synthetic quartz glass comprising a cooling step,
In at least the heating step of the heating step and the cooling step,
Implementing temperature control in which the temperature change of the synthetic quartz glass block in the direction to be the optical axis when used as an optical material is smaller than the temperature change of the synthetic quartz glass block in the direction perpendicular to the direction, A method for producing synthetic quartz glass.
光学材料として用いられたときに光軸となるべき方向の、前記合成石英ガラスブロックの両端面を断熱材で覆うことにより、前記温度制御を実施する、請求項1記載の合成石英ガラスの製造方法。   The method for producing synthetic quartz glass according to claim 1, wherein the temperature control is performed by covering both end faces of the synthetic quartz glass block with a heat insulating material in a direction to be an optical axis when used as an optical material. . 前記光軸は、前記合成石英ガラスブロックが採取される合成石英ガラスインゴットの、製造時の回転軸である、請求項1又は2記載の合成石英ガラスの製造方法。   The method for producing synthetic quartz glass according to claim 1 or 2, wherein the optical axis is a rotation axis at the time of production of a synthetic quartz glass ingot from which the synthetic quartz glass block is collected. 前記合成石英ガラスブロックは円筒形状を成しており、前記光軸は当該円筒形状の一方の端面の中心と接する面と垂直な軸である、請求項1〜3のいずれか一項に記載の合成石英ガラスの製造方法。   The synthetic quartz glass block has a cylindrical shape, and the optical axis is an axis perpendicular to a surface in contact with the center of one end surface of the cylindrical shape. A method for producing synthetic quartz glass. 前記加熱工程の前に、
前記加熱工程で用いる合成石英ガラスブロック、又は当該ガラスブロックが採取される合成石英ガラスインゴットを、900℃以上の加熱温度まで加熱し、当該加熱温度で保持した後、500℃以下の温度まで10℃/時間以下で冷却する、アニール工程を実施する、請求項1〜4のいずれか一項に記載の合成石英ガラスの製造方法。
Before the heating step,
The synthetic quartz glass block used in the heating step or the synthetic quartz glass ingot from which the glass block is collected is heated to a heating temperature of 900 ° C. or higher, held at the heating temperature, and then 10 ° C. to a temperature of 500 ° C. or lower. The manufacturing method of the synthetic quartz glass as described in any one of Claims 1-4 which implements the annealing process cooled at / hour or less.
請求項1〜5のいずれか一項に記載の合成石英ガラスの製造方法により得ることのできる、合成石英ガラス。   A synthetic quartz glass obtainable by the method for producing a synthetic quartz glass according to any one of claims 1 to 5.
JP2008157144A 2008-06-16 2008-06-16 Synthetic quartz glass and method for producing synthetic quartz glass Active JP5359044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008157144A JP5359044B2 (en) 2008-06-16 2008-06-16 Synthetic quartz glass and method for producing synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008157144A JP5359044B2 (en) 2008-06-16 2008-06-16 Synthetic quartz glass and method for producing synthetic quartz glass

Publications (2)

Publication Number Publication Date
JP2009298670A true JP2009298670A (en) 2009-12-24
JP5359044B2 JP5359044B2 (en) 2013-12-04

Family

ID=41545972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008157144A Active JP5359044B2 (en) 2008-06-16 2008-06-16 Synthetic quartz glass and method for producing synthetic quartz glass

Country Status (1)

Country Link
JP (1) JP5359044B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682373A1 (en) * 2011-03-02 2014-01-08 Nikon Corporation Heat treatment apparatus for ceramic materials for optical use, heat treatment method for ceramic materials for optical use, heat treatment method for synthetic quartz glass, method for producing optical system, and method for manufacturing exposure apparatus
EP2703367A1 (en) 2012-08-27 2014-03-05 Heraeus Quarzglas GmbH & Co. KG Heat Treatment method for synthetic quartz glass
CN113387550A (en) * 2021-07-03 2021-09-14 四川神光石英科技有限公司 Method for improving uniformity of quartz glass

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001002311A (en) * 1999-06-22 2001-01-09 Konica Corp Adhesive imparting method and device, and bookbinding device
WO2001002311A1 (en) * 1999-07-05 2001-01-11 Nikon Corporation Method for producing quartz glass member and quartz glass member produced thereby
WO2001012566A1 (en) * 1999-08-12 2001-02-22 Nikon Corporation Method for preparation of synthetic vitreous silica and apparatus for heat treatment
JP2005022921A (en) * 2003-07-02 2005-01-27 Nikon Corp Synthetic quartz glass optical member, manufacturing method thereof, optical system, exposure equipment and surface heating furnace for synthetic quartz glass
JP2006225249A (en) * 2004-10-15 2006-08-31 Toshiba Ceramics Co Ltd Method for manufacturing synthetic silica glass substrate for photomask, synthetic silica glass substrate for photomask manufactured thereby, and annealing furnace used in the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001002311A (en) * 1999-06-22 2001-01-09 Konica Corp Adhesive imparting method and device, and bookbinding device
WO2001002311A1 (en) * 1999-07-05 2001-01-11 Nikon Corporation Method for producing quartz glass member and quartz glass member produced thereby
WO2001012566A1 (en) * 1999-08-12 2001-02-22 Nikon Corporation Method for preparation of synthetic vitreous silica and apparatus for heat treatment
JP2005022921A (en) * 2003-07-02 2005-01-27 Nikon Corp Synthetic quartz glass optical member, manufacturing method thereof, optical system, exposure equipment and surface heating furnace for synthetic quartz glass
JP2006225249A (en) * 2004-10-15 2006-08-31 Toshiba Ceramics Co Ltd Method for manufacturing synthetic silica glass substrate for photomask, synthetic silica glass substrate for photomask manufactured thereby, and annealing furnace used in the method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682373A1 (en) * 2011-03-02 2014-01-08 Nikon Corporation Heat treatment apparatus for ceramic materials for optical use, heat treatment method for ceramic materials for optical use, heat treatment method for synthetic quartz glass, method for producing optical system, and method for manufacturing exposure apparatus
EP2682373A4 (en) * 2011-03-02 2014-08-20 Nikon Corp Heat treatment apparatus for ceramic materials for optical use, heat treatment method for ceramic materials for optical use, heat treatment method for synthetic quartz glass, method for producing optical system, and method for manufacturing exposure apparatus
US9896370B2 (en) 2011-03-02 2018-02-20 Nikon Corporation Apparatus for heat treating an optical ceramic material, method for heat treating an optical ceramic material, method for heat treating synthetic silica glass, method for producing an optical system, and method for producing an exposure apparatus
EP2703367A1 (en) 2012-08-27 2014-03-05 Heraeus Quarzglas GmbH & Co. KG Heat Treatment method for synthetic quartz glass
JP2014043373A (en) * 2012-08-27 2014-03-13 Shinetsu Quartz Prod Co Ltd Heat treatment method of synthetic quartz glass
US9409812B2 (en) 2012-08-27 2016-08-09 Heraeus Quarzglas Gmbh & Co. Kg Heat treatment method for synthetic quartz glass
CN113387550A (en) * 2021-07-03 2021-09-14 四川神光石英科技有限公司 Method for improving uniformity of quartz glass

Also Published As

Publication number Publication date
JP5359044B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
KR101513310B1 (en) Titania-doped quartz glass member and making method
TWI572569B (en) Titania-doped quartz glass and making method
JP4889230B2 (en) Quartz glass optical element, method for producing this optical element and use thereof
KR100662319B1 (en) Method for producing quartz glass member and quartz glass member produced thereby
JP5299477B2 (en) Method for producing synthetic quartz glass
CN103941539B (en) EUV lithography component, preparation method and titania-doped quartz glass
JP2008063181A (en) Synthetic quartz glass substrate for excimer laser and production method therefor
JP5359044B2 (en) Synthetic quartz glass and method for producing synthetic quartz glass
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP4170719B2 (en) Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member
TW201337447A (en) Photomask substrate for titania-silica glass euv lithography
US9896370B2 (en) Apparatus for heat treating an optical ceramic material, method for heat treating an optical ceramic material, method for heat treating synthetic silica glass, method for producing an optical system, and method for producing an exposure apparatus
JPH08259255A (en) Quartz glass for photolithography, optical member including the same, exposing device using the same and its production
JPH1053432A (en) Quartz glass optical member, its production, and projection exposure device
JPH092828A (en) Quartz glass, optical member containing the same and production of the same
JP2011026173A (en) Heat-treatment method of synthetic quartz glass
JP2005022921A (en) Synthetic quartz glass optical member, manufacturing method thereof, optical system, exposure equipment and surface heating furnace for synthetic quartz glass
JP4017863B2 (en) Annealing furnace and method for producing optical synthetic quartz glass
US20030064877A1 (en) Fused silica having high internal transmission and low birefringence
JP2008063151A (en) Synthetic quartz glass substrate for excimer laser and its production method
JP2003176143A (en) Synthetic quartz glass
JP3965552B2 (en) Method for producing synthetic quartz glass
JP4177078B2 (en) Synthetic quartz glass material for optical components
JPH07247132A (en) Production of quartz glass
JPH02102139A (en) Quartz glass matrix for light transmitter, quartz glass raw block for mainly producing same matrix and light transmitter formed with same matrix

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5359044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250