JP2009297707A - High adsorbent porous shaped article and its production method - Google Patents

High adsorbent porous shaped article and its production method Download PDF

Info

Publication number
JP2009297707A
JP2009297707A JP2009106067A JP2009106067A JP2009297707A JP 2009297707 A JP2009297707 A JP 2009297707A JP 2009106067 A JP2009106067 A JP 2009106067A JP 2009106067 A JP2009106067 A JP 2009106067A JP 2009297707 A JP2009297707 A JP 2009297707A
Authority
JP
Japan
Prior art keywords
molded body
porous molded
inorganic ion
water
ion adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009106067A
Other languages
Japanese (ja)
Other versions
JP5507112B2 (en
Inventor
Akihiro Omori
昭浩 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2009106067A priority Critical patent/JP5507112B2/en
Publication of JP2009297707A publication Critical patent/JP2009297707A/en
Application granted granted Critical
Publication of JP5507112B2 publication Critical patent/JP5507112B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous shaped article appropriate as a sorbent medium, which is capable of adsorb and remove low-concentration phosphorus, boron, fluorine, arsenic, and the like contained in sewage or drainage at high speed and has large adsorption capacity. <P>SOLUTION: The porous shaped article comprises an organic polymer resin and an inorganic ion adsorbent, wherein the ratio of 95% cumulative relative X-ray intensity to 5% cumulative relative X-ray intensity (cumulative relative X-ray intensity ratio) of ingredient elements composing an inorganic ion adsorbent that is supported by the porous article ranges from 1 to 10 as measured using an electron probe microanalyzer (EPMA). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高吸着性能多孔性成形体及びその製造方法に関する。特に、河川水、下水処理水、工場排水中に含まれる、リン、ホウ素、ヒ素、フッ素イオンを選択的に吸着除去する吸着体に適した、処理速度が速くかつ吸着容量が大きい多孔性成形体に関するものである。   The present invention relates to a porous article having high adsorption performance and a method for producing the same. Particularly suitable for adsorbents that selectively adsorb and remove phosphorus, boron, arsenic, and fluorine ions contained in river water, sewage treated water, and factory effluent, and have a high treatment speed and a large adsorption capacity. It is about.

近年、環境汚染、富栄養化の問題から、飲料水、工業用水、工業排水、下水道処理水、環境水中のリン、ホウ素、ヒ素、フッ素イオン等の環境基準が強化され、それらを除去する技術が求められている。
リンは富栄養化の原因物質の一つであり、閉鎖水域で規制が強まっている。また、枯渇が危惧されている元素であり、排水中から回収し、再利用する技術が求められている。
ホウ素は、植物の育成にとって必須の元素であるが、過剰に存在すると植物の成長に悪影響を及ぼすことが知られている。さらに、人体に対しても、飲料水中に含まれると健康への影響、特に生殖機能の低下等の健康障害を起こす可能性が指摘されている。
ヒ素は、非鉄金属精錬工業の排水や、地熱発電所の熱排水、また特定地域の地下水等に含まれている。ヒ素の毒性については昔より知られているが、生体への蓄積性があり、慢性中毒、体重減少、知覚傷害、肝臓障害、皮膚沈着、皮膚がんなどを発症すると言われている。
フッ素は、金属精錬、ガラス、電子材料工業等からの排水に多く含まれる場合が多い。フッ素の人体へ影響が懸念されており、過剰に摂取すると、斑状歯、骨硬化症、甲状腺障害等の慢性フッ素中毒症を引き起こすことが知られている。
さらに、文明の発達にともない、これらの有害物質の排出量は増加することが懸念され、これらを効率的に除去する技術が求められている。
In recent years, environmental standards such as phosphorus, boron, arsenic and fluoride ions in drinking water, industrial water, industrial wastewater, sewage treated water, environmental water have been strengthened due to problems of environmental pollution and eutrophication, and technology to remove them has been developed. It has been demanded.
Phosphorus is one of the causative substances of eutrophication, and regulations are getting stronger in closed waters. In addition, it is an element that is feared to be depleted, and there is a need for a technique for recovering it from wastewater and reusing it.
Boron is an essential element for plant growth. However, boron is known to have an adverse effect on plant growth when present in excess. Furthermore, it has been pointed out that when it is contained in drinking water, it may cause health problems such as a decrease in reproductive function when it is contained in drinking water.
Arsenic is contained in wastewater from non-ferrous metal refining industry, heat from geothermal power plants, and groundwater in specific areas. The toxicity of arsenic has been known for a long time, but it is accumulative in the living body, and is said to cause chronic poisoning, weight loss, sensory injury, liver damage, skin deposition, skin cancer and the like.
Fluorine is often contained in waste water from metal refining, glass, electronic material industries, and the like. There is concern about the effects of fluorine on the human body, and it is known that excessive intake causes chronic fluorine poisoning such as plaque teeth, osteosclerosis, and thyroid disorders.
Furthermore, with the development of civilization, there is a concern that the amount of these harmful substances released will increase, and there is a need for a technique for efficiently removing these harmful substances.

これらの有害物質を除去する従来技術としては、ジルコニウム含水亜鉄酸塩や、含水酸化セリウム等の無機イオン吸着体粉末を高分子材料に担持させた吸着剤が知られている(特許文献1参照)。この公知の吸着剤は、多孔性であり表面の開孔性も高く、リンやホウ素等の吸着対象物の吸着体内部への拡散が速いので吸着性能が優れている。この成形体は、粉末の無機イオン吸着体をバインダの有機高分子と有機高分子の良溶媒、さらに水溶性高分子と混合して原料スラリーを得た後、該原料スラリーを成形して、水等の貧溶媒と接触させて凝固させる方法で製造される。   As a conventional technique for removing these harmful substances, an adsorbent in which an inorganic ion adsorbent powder such as zirconium hydroferrite or hydrous cerium hydroxide is supported on a polymer material is known (see Patent Document 1). ). This known adsorbent is porous and has a high surface pore-opening property, and is excellent in adsorption performance because diffusion of an object to be adsorbed such as phosphorus or boron into the adsorbent is quick. In this molded body, a powdered inorganic ion adsorbent is mixed with a binder organic polymer, a good solvent for the organic polymer, and further a water-soluble polymer to obtain a raw material slurry. It is produced by a method of solidifying by contacting with a poor solvent such as

しかし、従来の製造方法では、有機溶媒中に有機高分子と水溶性高分子を溶解させたポリマー溶液は粘度が高いため、該ポリマー溶液中に無機イオン吸着体を均一に分散することは困難であった。事実、不十分な分散のまま成形した多孔性成形体の内部には、無機イオン吸着体の二次凝集物が観察され、仕込みで入れた無機イオン吸着体全量が有効に吸着性能に反映されないという問題点を有していた。   However, in the conventional production method, since a polymer solution in which an organic polymer and a water-soluble polymer are dissolved in an organic solvent has a high viscosity, it is difficult to uniformly disperse the inorganic ion adsorbent in the polymer solution. there were. In fact, secondary aggregates of inorganic ion adsorbents are observed inside the porous molded body molded with insufficient dispersion, and the total amount of inorganic ion adsorbents charged in the preparation is not effectively reflected in the adsorption performance. Had problems.

WO2005/056175号公報WO2005 / 056175

本発明は、用水や排水中に含まれる低濃度のリン、ホウ素、フッ素、ヒ素等を、高速に吸着除去でき、また吸着容量が大きく、かつ耐久性が高く繰り返し使用できる吸着剤に適した多孔性成形体、及びその製造方法を提供することを目的とする。   The present invention is capable of adsorbing and removing low concentrations of phosphorus, boron, fluorine, arsenic, etc. contained in water and wastewater at high speed, and has a large adsorption capacity and high durability, and is suitable for an adsorbent that can be used repeatedly. It aims at providing a property molded object and its manufacturing method.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、原料スラリーを製造する工程で、無機イオン吸着体を有機溶媒中に均一に混合する際に、水溶性高分子を無機イオン吸着体の分散剤として加え、更にビーズミル等の粉砕・混合手段を用いて粉砕・混合する製造方法を採ることで、成形後の多孔性成形体中に無機イオン吸着体の二次凝集物が少なく、吸着性能に優れる多孔性成形体が得られることを見出し、この知見に基づいて本発明をなすに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors found that the water-soluble polymer is inorganic when the inorganic ion adsorbent is uniformly mixed in the organic solvent in the process of producing the raw slurry. In addition to dispersing as an ion adsorbent, by adopting a manufacturing method that uses pulverization / mixing means such as a bead mill, secondary aggregates of inorganic ion adsorbents are formed in the porous molded body after molding. The inventors have found that a porous molded body having a small amount and excellent adsorption performance can be obtained, and have reached the present invention based on this finding.

すなわち、本発明は下記の通りである。
(1)有機高分子樹脂及び無機イオン吸着体を含んでなる多孔性の成形体であって、電子線マイクロアナライザ(EPMA)を用いて得られる、該多孔性の成形体に担持されている無機イオン吸着体を構成する成分元素の95%相対累積X線強度と5%相対累積X線強度の比(相対累積X線強度比)が1〜10となることを含む、上記多孔性成形体。
(2)前記多孔性成形体が、連通孔を形成するフィブリルの内部に空隙を有し、かつ、該空隙の少なくとも一部はフィブリルの表面で開孔しており、該フィブリルの外表面及び内部の空隙表面に無機イオン吸着体が担持されている、上記(1)記載の多孔性成形体。
(3)前記連通孔が、成形体表面付近に最大孔径層を有する、上記(1)または(2)に記載の多孔性成形体。
(4)平均粒径が100〜2500μmである、上記(1)〜(3)のいずれか一つに記載の多孔性成形体。
(5)前記有機高分子樹脂が、エチレンビニルアルコール共重合体(EVOH)、ポリアクリロニトリル(PAN)、ポリスルホン(PS)、及びポリフッ化ビニリデン(PVDF)からなる群から選ばれる一種以上を含んでなる、上記(1)〜(4)のいずれか一つに記載の多孔性成形体。
(6)前記無機イオン吸着体が、下記式(I)で表される金属酸化物を少なくとも一種を含有している、上記(1)〜(5)に記載の多孔性成形体。
MN・mHO・・・・・・(I)
(式中、xは0〜3、nは1〜4、mは0〜6であり、MおよびNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群から選ばれる金属元素であり、互いに異なる。)
(7)前記金属酸化物が、下記(a)〜(c)のいずれかの群から選ばれる1種又は2種以上の混合物である、上記(6)に記載の多孔性成形体。
(a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン、及び水和酸化イットリウム
(b)チタン、ジルコニウム、スズ、セリウム、ランタン、及びイットリウムからなる群から選ばれる金属元素と、アルミニウム、珪素、及び鉄からなる群から選ばれる金属元素との複合金属酸化物
(c)活性アルミナ
(8)前記無機イオン吸着体が、硫酸アルミニウム添着活性アルミナ、及び硫酸アルミニウム添着活性炭からなる群から選ばれる少なくとも一種を含んでなる、上記(1)〜(5)のいずれか一つに記載の多孔性成形体。
(9)無機イオン吸着体の担持量が65〜95%である、上記(1)〜(8)のいずれか一つに記載の多孔性成形体。
(10)前記フィブリルが、有機高分子樹脂、無機イオン吸着体、及び水溶性高分子を含んでなる、上記(2)〜(9)のいずれか一つに記載の多孔性成形体。
(11)前記水溶性高分子が合成高分子である、上記(10)に記載の多孔性成形体。
(12)前記水溶性高分子が、ポリビニルピロリドンである、(10)又は(11)に記載の多孔性成形体。
(13)前記水溶性高分子の含有量が0.001〜10%である、上記(10)〜(12)のいずれか一つに記載の多孔性成形体。
(14)上記(1)〜(13)のいずれか一つに記載の多孔性成形体を充填しているカラム。
(15)有機高分子樹脂及び無機イオン吸着体を含んでなる多孔性成形体の製造方法であって、(1)少なくとも有機高分子樹脂の良溶媒と無機イオン吸着体と水溶性高分子の3種を粉砕・混合手段を用いて粉砕・混合してスラリーを得る粉砕・混合工程、(2)工程(1)で得たスラリーに有機高分子樹脂を溶解する溶解工程、(3)工程(2)で得たスラリーを成形し、貧溶媒中で凝固させる成形工程を含んでなる、多孔性成形体の製造方法。
(16)前記粉砕・混合手段が、媒体撹拌型ミルである、上記15)に記載の方法。
(17)前記有機高分子樹脂の良溶媒が、ジメチルスルホキシド(DMSO)、N−メチル−2ピロリドン(NMP)、ジメチルアセトアミド(DMAC)、ジメチルホルムアミド(DMF)からなる群から選ばれる1種以上である、上記(15)〜(16)記載の方法。
(18)貧溶媒が、水、又は、有機高分子樹脂の良溶媒と水の混合物である、上記(15)〜(17)のいずれか一つに記載の方法。
(19)前記有機高分子樹脂の良溶媒と水の混合物の混合比が0〜40%である、上記(15)〜(18)のいずれか一つに記載の方法。
(20)成形の方法が、回転する容器の側面に設けたノズルから、有機高分子樹脂、該有機高分子樹脂の良溶媒、水溶性高分子、無機イオン吸着体を混合したスラリーを飛散させて液滴を形成させることを含む、上記(15)〜(19)のいずれか一つに記載の方法。
(21)上記(1)〜(13)のいずれか一つに記載の多孔性成形体を含んでなる、多孔性吸着体。
That is, the present invention is as follows.
(1) A porous molded body comprising an organic polymer resin and an inorganic ion adsorbent, which is obtained by using an electron beam microanalyzer (EPMA) and is supported on the porous molded body. The said porous molded object including the ratio (relative cumulative X-ray intensity ratio) of 95% relative cumulative X-ray intensity and 5% relative cumulative X-ray intensity of the component elements constituting the ion adsorbent being 1-10.
(2) The porous molded body has voids in the fibrils forming the communication holes, and at least a part of the voids are open on the surface of the fibrils, and the outer surface and the inner surface of the fibrils. The porous molded body according to the above (1), wherein an inorganic ion adsorbent is supported on the surface of the void.
(3) The porous molded body according to (1) or (2), wherein the communication hole has a maximum pore diameter layer near the surface of the molded body.
(4) The porous molded body according to any one of (1) to (3), wherein the average particle diameter is 100 to 2500 μm.
(5) The organic polymer resin comprises one or more selected from the group consisting of ethylene vinyl alcohol copolymer (EVOH), polyacrylonitrile (PAN), polysulfone (PS), and polyvinylidene fluoride (PVDF). The porous molded body according to any one of (1) to (4) above.
(6) The porous molded body according to (1) to (5) above, wherein the inorganic ion adsorbent contains at least one metal oxide represented by the following formula (I).
MN x O n · mH 2 O ······ (I)
(Wherein x is 0 to 3, n is 1 to 4, m is 0 to 6, and M and N are Ti, Zr, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu. Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Si, Cr, Co, Ga, Fe, Mn, Ni, V, Ge, Nb and Ta are metal elements selected from the group Are different from each other.)
(7) The porous molded body according to (6), wherein the metal oxide is one or a mixture of two or more selected from the following groups (a) to (c).
(A) hydrated titanium oxide, hydrated zirconium oxide, hydrated tin oxide, hydrated cerium oxide, hydrated lanthanum oxide, and hydrated yttrium oxide (b) composed of titanium, zirconium, tin, cerium, lanthanum, and yttrium A composite metal oxide of a metal element selected from the group and a metal element selected from the group consisting of aluminum, silicon, and iron (c) activated alumina (8) the inorganic ion adsorbent is activated alumina loaded with aluminum sulfate, and The porous molded body according to any one of the above (1) to (5), comprising at least one selected from the group consisting of aluminum sulfate impregnated activated carbon.
(9) The porous molded body according to any one of (1) to (8), wherein the supported amount of the inorganic ion adsorbent is 65 to 95%.
(10) The porous molded body according to any one of (2) to (9), wherein the fibril comprises an organic polymer resin, an inorganic ion adsorbent, and a water-soluble polymer.
(11) The porous molded article according to (10), wherein the water-soluble polymer is a synthetic polymer.
(12) The porous molded body according to (10) or (11), wherein the water-soluble polymer is polyvinylpyrrolidone.
(13) The porous molded body according to any one of (10) to (12), wherein the content of the water-soluble polymer is 0.001 to 10%.
(14) A column packed with the porous molded body according to any one of (1) to (13) above.
(15) A method for producing a porous molded article comprising an organic polymer resin and an inorganic ion adsorbent, wherein (1) at least a good solvent of the organic polymer resin, an inorganic ion adsorbent, and a water-soluble polymer 3 A pulverization / mixing step for obtaining a slurry by pulverizing / mixing seeds using a pulverizing / mixing means, (2) a dissolving step for dissolving the organic polymer resin in the slurry obtained in step (1), (3) step (2 A method for producing a porous molded body, comprising a molding step in which the slurry obtained in (1) is molded and solidified in a poor solvent.
(16) The method according to 15) above, wherein the pulverization / mixing means is a medium stirring mill.
(17) The good solvent of the organic polymer resin is one or more selected from the group consisting of dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAC), and dimethylformamide (DMF). The method according to any one of (15) to (16) above.
(18) The method according to any one of (15) to (17), wherein the poor solvent is water or a mixture of a good solvent for organic polymer resin and water.
(19) The method according to any one of (15) to (18) above, wherein a mixing ratio of a good solvent of the organic polymer resin and a mixture of water is 0 to 40%.
(20) A molding method is to spray a slurry in which an organic polymer resin, a good solvent of the organic polymer resin, a water-soluble polymer, and an inorganic ion adsorbent are mixed from a nozzle provided on a side surface of a rotating container. The method according to any one of (15) to (19), which comprises forming a droplet.
(21) A porous adsorbent comprising the porous molded body according to any one of (1) to (13) above.

本発明の多孔性成形体は、成形体中に無機イオン吸着体の二次凝集物が少ないので、仕込みで用いた無機イオン吸着体の全てが均一に成形体の全体に分散し、その全てが有効に吸着に関与しているので、吸着対象物質との接触効率が極めて高い。
また、無機イオン吸着体の二次凝集物が少ないため、二次凝集物が起点となって割れることが少ないので、耐久性も高い。
したがって、低濃度のリンやホウ素、フッ素及びヒ素等を含む用水や排水を、好適に処理することができる。
Since the porous molded body of the present invention has few secondary aggregates of inorganic ion adsorbents in the molded body, all of the inorganic ion adsorbents used in the preparation are uniformly dispersed throughout the molded body. Since it is effectively involved in adsorption, the contact efficiency with the substance to be adsorbed is extremely high.
Moreover, since there are few secondary aggregates of an inorganic ion adsorption body, since secondary aggregates have few cracks from the starting point, durability is also high.
Therefore, water and wastewater containing low concentrations of phosphorus, boron, fluorine, arsenic, etc. can be suitably treated.

実施例1の成形体の割断面を示す電子顕微鏡写真(倍率200倍)。4 is an electron micrograph (magnification 200 times) showing a cut section of the molded body of Example 1. FIG. 実施例1の成形体の割断面表面付近を示す電子顕微鏡写真(倍率500倍)。The electron micrograph which shows the crack surface surface vicinity of the molded object of Example 1 (500-times multiplication factor). 実施例1の成形体の外表面を示す電子顕微鏡写真(倍率10,000倍)。The electron micrograph which shows the outer surface of the molded object of Example 1 (magnification 10,000 times). 実施例1の成形体の割断面を示す電子顕微鏡写真(倍率10,000倍)。4 is an electron micrograph (magnification 10,000 times) showing a fractured section of the molded body of Example 1. FIG. 比較例1の成形体の割断面を示す電子顕微鏡写真(倍率150倍)。The electron micrograph (150-times multiplication factor) which shows the crack surface of the molded object of the comparative example 1. FIG. 比較例1の成形体の割断面表面付近を示す電子顕微鏡写真(倍率500倍)。The electron micrograph which shows the crack surface surface vicinity of the molded object of the comparative example 1 (500-times multiplication factor). 比較例1の成形体の外表面を示す電子顕微鏡写真(倍率10,000倍)。The electron micrograph which shows the outer surface of the molded object of the comparative example 1 (magnification 10,000 times). 比較例1の成形体の割断面を示す電子顕微鏡写真(倍率10,000倍)。4 is an electron micrograph (magnification 10,000 times) showing a cut section of a molded body of Comparative Example 1. FIG.

以下、本発明について、特にその好ましい形態を中心に、具体的に説明する。
まず、本発明の成形体の構造について説明する。
本発明の多孔性成形体は、有機高分子樹脂からなる多孔性成形体に、無機イオン吸着体が担持されている。
本発明の多孔性成形体に担持されている無機イオン吸着体の成形体中での該無機イオン吸着体の分布状態では、電子線マイクロアナライザ(EPMA)で分析して求めた該無機イオン吸着体を構成する成分元素の濃度分布において、該成分元素の95%相対累積X線強度と5%相対累積X線強度の比(相対累積X線強度比)が1〜10である。さらに好ましい相対累積X線強度比の範囲は、1〜7であり、更に好ましくは、1〜5である。
無機イオン吸着体の成形体中での該無機イオン吸着体の分布状態の分析方法では、電子線マイクロアナライザ(EPMA)を用いて面分析を行う。この分析により得られた面分析データ、具体的にはX線強度(カウント数)の度数分布を統計処理する。
5%相対累積X線強度とは、電子線マイクロアナライザ(EPMA)で成形体の割断面を面分析して求めた、無機イオン吸着体を構成する成分元素のX線強度の度数分布を、小さいX線強度(低濃度)側からそのX線強度の度数を積算し、X線強度の度数の累計が5%に達するX線強度の値である。
同様に、95%相対累積X線強度とは、電子線マイクロアナライザ(EPMA)で成形体の割断面を面分析して求めた、無機イオン吸着体を構成する成分元素のX線強度の度数分布を、小さいX線強度(低濃度)側からそのX線強度の度数を積算し、X線強度の度数の累計が95%に達するX線強度の値である。このようにして求めた、95%相対累積X線強度と5%相対累積X線強度を用いて、下記式より、相対累積X線強度比を求めた。
相対累積X線強度比=95%相対累積X線強度/5%相対累積X線強度
Hereinafter, the present invention will be specifically described focusing on its preferred form.
First, the structure of the molded body of the present invention will be described.
In the porous molded body of the present invention, an inorganic ion adsorbent is supported on a porous molded body made of an organic polymer resin.
The inorganic ion adsorbent obtained by analyzing with an electron beam microanalyzer (EPMA) in the distribution state of the inorganic ion adsorbent in the inorganic ion adsorbent formed on the porous molded body of the present invention. In the concentration distribution of component elements constituting the component element, the ratio of the 95% relative cumulative X-ray intensity to the 5% relative cumulative X-ray intensity (relative cumulative X-ray intensity ratio) of the component elements is 1-10. A more preferable range of the relative cumulative X-ray intensity ratio is 1 to 7, more preferably 1 to 5.
In the analysis method of the distribution state of the inorganic ion adsorbent in the molded body of the inorganic ion adsorbent, surface analysis is performed using an electron beam microanalyzer (EPMA). The surface analysis data obtained by this analysis, specifically, the frequency distribution of the X-ray intensity (count number) is statistically processed.
The 5% relative cumulative X-ray intensity is small in the frequency distribution of the X-ray intensity of the component elements constituting the inorganic ion adsorbent, which was obtained by surface analysis of the cut surface of the molded body with an electron beam microanalyzer (EPMA). The X-ray intensity value is accumulated from the X-ray intensity (low concentration) side, and the accumulated X-ray intensity frequency reaches 5%.
Similarly, the 95% relative cumulative X-ray intensity is the frequency distribution of the X-ray intensity of the component elements constituting the inorganic ion adsorbent, which was obtained by surface analysis of the cut surface of the molded body with an electron beam microanalyzer (EPMA). Is the value of the X-ray intensity at which the cumulative X-ray intensity frequency reaches 95%. Using the 95% relative cumulative X-ray intensity and the 5% relative cumulative X-ray intensity thus determined, the relative cumulative X-ray intensity ratio was determined from the following formula.
Relative cumulative X-ray intensity ratio = 95% relative cumulative X-ray intensity / 5% relative cumulative X-ray intensity

この相対累積X線強度比は、無機イオン吸着体の成形体中での該無機イオン吸着体の分散状態を示す。相対累積X線強度比が10以下では、無機イオン吸着体の多孔性成形体中での該無機イオン吸着体の分散状態が良好であり、いわゆるダマと呼ばれるような二次凝集物が少ない。よって無機イオン吸着体と吸着対象イオンとの接触効率が高くなり、吸着性能が良好に保たれる。
さらに、無機イオン吸着体の二次凝集物が少ないため、二次凝集物が起点となって割れるといったことが少ないため耐久性も高い。
This relative cumulative X-ray intensity ratio indicates the dispersion state of the inorganic ion adsorbent in the molded body of the inorganic ion adsorbent. When the relative cumulative X-ray intensity ratio is 10 or less, the dispersion state of the inorganic ion adsorbent in the porous molded body of the inorganic ion adsorbent is good, and there are few secondary aggregates called so-called lumps. Therefore, the contact efficiency between the inorganic ion adsorbent and the ions to be adsorbed is increased, and the adsorption performance is kept good.
Furthermore, since there are few secondary aggregates of an inorganic ion adsorption body, since it is few that a secondary aggregate breaks from a starting point, durability is also high.

本発明の成形体は、次のような特殊な多孔構造を持つことが好ましい。
本発明の多孔性成形体は連通孔を有し多孔質な構造を有する。さらに、外表面にはスキン層が無く、表面の開口性に優れる。さらに、連通孔を形成するフィブリル内部にも空隙を有し、その空隙の少なくとも一部はフィブリル表面で開孔している。無機イオン吸着体は、該フィブリルの外表面及び内部の空隙表面に担持されている。
本発明の成形体の外表面開口率は、走査型電子顕微鏡で表面を観察した視野の面積中に占める全ての孔の開口面積の和の割合をいう。本発明では10,000倍で成形体の表面を観察し外表面開口率を実測した。本発明の多孔性成形体の外表面の電子顕微鏡写真を図3に示した。
The molded body of the present invention preferably has the following special porous structure.
The porous molded body of the present invention has communication holes and a porous structure. Furthermore, there is no skin layer on the outer surface, and the surface has excellent opening properties. Further, there is a void inside the fibril forming the communication hole, and at least a part of the void is opened on the fibril surface. The inorganic ion adsorbent is supported on the outer surface of the fibril and the inner void surface.
The outer surface aperture ratio of the molded article of the present invention refers to the ratio of the sum of the aperture areas of all the holes in the area of the field of view when the surface is observed with a scanning electron microscope. In the present invention, the surface of the molded body was observed at a magnification of 10,000 to actually measure the outer surface opening ratio. An electron micrograph of the outer surface of the porous molded body of the present invention is shown in FIG.

好ましい表面開口率の範囲は、10〜90%であり、特に15〜80%が好ましい。10%以上では、リンやホウ素等の吸着対象物質の成形体内部への拡散速度の低下が抑えられ、一方90%以下では成形体の強度が十分であり、力学的強度に優れた成形体の実現が可能になる。
本発明の成形体の外表面開口径は、走査型電子顕微鏡で表面を観察して求める。孔が円形の場合はその直径、円形以外の場合は、同一面積を有する円の円相当直径を用いる。
好ましい表面開口径の範囲は、0.005μm〜100μmであり、特に0.01μm〜50μmが好ましい。0.005μm以上では、リンやホウ素等の吸着対象物質の成形体内部への拡散速度の低下が抑えられ、一方、100μm以下では成形体の強度が十分となる。
The range of the surface opening ratio is preferably 10 to 90%, particularly preferably 15 to 80%. If it is 10% or more, a decrease in the diffusion rate of the substance to be adsorbed such as phosphorus or boron into the molded body is suppressed, while if it is 90% or less, the molded body has sufficient strength and has excellent mechanical strength. Realization is possible.
The outer surface opening diameter of the molded body of the present invention is determined by observing the surface with a scanning electron microscope. When the hole is circular, the diameter is used. When the hole is not circular, the equivalent circle diameter of a circle having the same area is used.
The range of the surface opening diameter is preferably 0.005 μm to 100 μm, and particularly preferably 0.01 μm to 50 μm. When the thickness is 0.005 μm or more, a decrease in the diffusion rate of a substance to be adsorbed such as phosphorus or boron into the molded body is suppressed. On the other hand, when the thickness is 100 μm or less, the strength of the molded body is sufficient.

本発明の成形体は、連通孔を形成するフィブリル内部にも空隙を有し、かつ、その空隙の少なくとも一部はフィブリルの表面で開孔している。無機イオン吸着体は、このフィブリルの外表面およびフィブリル内部の空隙表面に担持されている。フィブリル自体も多孔質であるため、内部に埋め込まれた吸着基質である無機イオン吸着体も、リンやホウ素といった吸着対象物質と接触することができ、有効に吸着剤として機能することができる。
本発明の多孔性成形体は、このように吸着基質が担持されている部分も多孔質であるため、吸着基質とバインダを練り込んでつくる従来の方法の欠点であった、吸着基質の微細な吸着サイトがバインダで塞がれるといったことが少なく、吸着基質である無機イオン吸着体を有効に利用することができる。
ここで、フィブリルとは有機高分子樹脂からなり、成形体の外表面および内部に三次元的に連続した網目構造を形成する繊維状の構造体を意味する。
フィブリル内部の空隙およびフィブリル表面の開孔は、走査型電子顕微鏡で成形体の割断面を観察して判定する。図4は、本発明の多孔性成形体の割断面を10,000倍で観察した電子顕微鏡写真である。フィブリルの断面には空隙があり、フィブリルの表面は開孔していることが観察される。さらに、無機イオン吸着体がフィブリルの外表面及び内部の空隙表面に担持されている様子が観察される。
フィブリルの太さは、0.01μm〜50μmが好ましい。
フィブリル表面の開孔径は、0.001μm〜5μmが好ましい。
The molded body of the present invention has voids in the fibrils forming the communication holes, and at least a part of the voids are opened on the surface of the fibrils. The inorganic ion adsorbent is supported on the outer surface of the fibril and the void surface inside the fibril. Since the fibril itself is also porous, an inorganic ion adsorbent that is an adsorption substrate embedded inside can also come into contact with a substance to be adsorbed such as phosphorus or boron, and can effectively function as an adsorbent.
In the porous molded body of the present invention, since the portion where the adsorption substrate is supported is also porous, the fineness of the adsorption substrate, which was a disadvantage of the conventional method of kneading the adsorption substrate and the binder, The adsorption site is rarely clogged with a binder, and an inorganic ion adsorbent that is an adsorption substrate can be used effectively.
Here, the fibril means a fibrous structure made of an organic polymer resin and forming a three-dimensional continuous network structure on the outer surface and inside of the molded body.
The void inside the fibril and the opening of the fibril surface are determined by observing the cut section of the molded body with a scanning electron microscope. FIG. 4 is an electron micrograph obtained by observing the fractured surface of the porous molded body of the present invention at a magnification of 10,000 times. It is observed that there are voids in the cross-section of the fibril and that the surface of the fibril is open. Furthermore, it is observed that the inorganic ion adsorbent is supported on the outer surface of the fibril and the inner void surface.
The thickness of the fibril is preferably 0.01 μm to 50 μm.
The pore diameter on the fibril surface is preferably 0.001 μm to 5 μm.

本発明の成形体の構造が発現するメカニズムを以下に考察する。
一般に、ポリマーとポリマーの良溶媒の混合物を貧溶媒の中に浸漬して、溶媒交換によりポリマーのゲル化を行わせて多孔体を形成する方法を湿式相分離法という。これらの過程で良溶媒の比率が減少し、それにつれてミクロ相分離が生じ、ポリマーの小球が形成し、成長し、絡み合い、フィブリルが形成され、フィブリルの隙間が連通孔となる。
さらに、成形体構造の決定(凝固)は、貧溶媒の内部への拡散により、外表面から内部へと順次進行していく。この方法では、成形体の表面にはスキン層と呼ばれる緻密な層が形成されるのが一般的である。
これに対し、本発明では、後述する水溶性高分子を添加することにより、相分離の過程で、ポリマーの絡み合いの間に水溶性高分子が分散し、介在することで、細孔同志が互いに連通し、フィブリル内部も多孔質となり、さらにフィブリル表面も開孔する。さらに、成形体の外表面においても開口し、スキン層のない成形体が得られるものと考えられる。
さらに、水溶性高分子は、相分離の過程で一部は貧溶媒側に溶けだしていくが、一部は、有機高分子樹脂の分子鎖と絡みあったまま、フィブリルの中に残る。この残存した水溶性高分子は、無機イオン吸着体である吸着基質とフィブリルの隙間をコーティングして、吸着基質の活性点を塞がない役目をすると考えられる。したがって、本発明の多孔性成形体は、担持した無機イオン吸着体の吸着能力のほぼ全てを使うことができ、効率が高い。
さらに、水溶性高分子は、フィブリルの表面からその分子鎖を一部、あたかもヒゲのように伸ばすため、フィブリルの表面は親水性に保たれ、疎水的吸着などからの防汚効果も期待できる。
The mechanism by which the structure of the molded body of the present invention is developed will be considered below.
In general, a method of forming a porous body by immersing a mixture of a polymer and a good solvent of the polymer in a poor solvent and causing the polymer to gel by solvent exchange is called a wet phase separation method. In these processes, the proportion of the good solvent decreases, and microphase separation occurs accordingly, polymer spheres form, grow, entangle and form fibrils, and the fibril gaps become communication holes.
Further, the determination (solidification) of the compact structure proceeds sequentially from the outer surface to the inner part due to the diffusion of the poor solvent into the inner part. In this method, a dense layer called a skin layer is generally formed on the surface of the molded body.
On the other hand, in the present invention, by adding a water-soluble polymer, which will be described later, the water-soluble polymer is dispersed between the polymer entanglements in the process of phase separation, so that the pores are mutually connected. In communication, the inside of the fibril becomes porous, and the fibril surface is also opened. Further, it is considered that a molded body having an opening on the outer surface of the molded body and having no skin layer can be obtained.
In addition, the water-soluble polymer partially dissolves in the poor solvent during the phase separation process, but a part remains in the fibril while being entangled with the molecular chain of the organic polymer resin. The remaining water-soluble polymer is considered to coat the gap between the adsorption substrate and the fibril which are inorganic ion adsorbents, and does not block the active site of the adsorption substrate. Therefore, the porous molded body of the present invention can use almost all of the adsorption capacity of the supported inorganic ion adsorbent, and has high efficiency.
Furthermore, since the water-soluble polymer partially extends its molecular chain from the surface of the fibril as if it is a beard, the surface of the fibril is kept hydrophilic, and an antifouling effect from hydrophobic adsorption can be expected.

本発明の多孔性成形体は、連通孔が、成形体表面付近に最大孔径層を有することが好ましい。ここで、最大孔径層とは、成形体の表面から内部に至る連通孔の孔径分布中で最大の部分をいう。ボイドと呼ばれる円形或いはだ円形(指状)の大きな空隙がある場合には、ボイドが存在する層を最大孔径層という。
表面付近とは、外表面から中心部へ向かって、成形体の割断径の25%まで内側を意味する。
最大孔径層が成形体表面付近にあることによって、吸着対象物質の内部への拡散を速める効果を有する。よって、リンやホウ素といった吸着対象物質を素早く成形体内部に取り込み、処理水中から除去することができる。
最大孔径及び最大孔径層の位置は、成形体の表面および割断面を走査型電子顕微鏡で観察して求める。
In the porous molded body of the present invention, the communicating holes preferably have a maximum pore diameter layer in the vicinity of the surface of the molded body. Here, the maximum pore diameter layer means the largest portion in the pore diameter distribution of the communication holes extending from the surface of the molded body to the inside. When there is a large circular or oval (finger-shaped) void called a void, the layer in which the void exists is called the maximum pore diameter layer.
The vicinity of the surface means the inner side up to 25% of the cleaved diameter of the molded body from the outer surface toward the center.
By having the maximum pore diameter layer in the vicinity of the surface of the molded body, it has the effect of accelerating the diffusion of the substance to be adsorbed into the interior. Therefore, adsorption target substances such as phosphorus and boron can be quickly taken into the molded body and removed from the treated water.
The positions of the maximum pore diameter and the maximum pore diameter layer are determined by observing the surface and the cut surface of the molded body with a scanning electron microscope.

孔径は、孔が円形の場合はその直径、円形以外の場合は、その面積と同一面積を有する円の円相当直径を用いる。
成形体の形態は、粒子状、糸状、シート状、中空糸状、円柱状、中空円柱状等の任意の形態をとることができる。
粒子状の成形体の成形方法は特に限定されないが、1流体ノズルや2流体ノズルから、ポリマースラリー(有機高分子樹脂と、該有機高分子樹脂の良溶媒と、水溶性高分子と、無機イオン吸着体の混合スラリー)を噴霧して凝固浴中で凝固する方法があげられる。
特に、粒子状で粒度分布がそろったものが得られる点で、下記の回転ノズル法が特に好ましい。回転ノズル法とは、高速で回転する回転容器の側面に設けたノズルから、遠心力で、ポリマースラリーを飛散させて液滴を形成させる方法である。
ノズルの径は、0.1mm〜10mmの範囲が好ましく、0.1mm〜5mmの範囲がより好ましい。0.1mm以上では液滴が飛散しやすく、10mm以下では、粒度分布の広がりを抑えることができる。
As the hole diameter, when the hole is circular, the diameter thereof is used. When the hole is not circular, the equivalent circle diameter of a circle having the same area as the area is used.
The form of the molded body can take any form such as a particulate form, a thread form, a sheet form, a hollow fiber form, a cylindrical form, and a hollow cylindrical form.
The molding method of the particulate molded body is not particularly limited, but the polymer slurry (organic polymer resin, good solvent of the organic polymer resin, water-soluble polymer, inorganic ion, and the like can be obtained from one fluid nozzle or two fluid nozzle. There is a method in which the adsorbent mixed slurry) is sprayed and coagulated in a coagulation bath.
In particular, the following rotating nozzle method is particularly preferable in that particles having a uniform particle size distribution can be obtained. The rotating nozzle method is a method of forming droplets by scattering polymer slurry from a nozzle provided on a side surface of a rotating container rotating at high speed by centrifugal force.
The diameter of the nozzle is preferably in the range of 0.1 mm to 10 mm, and more preferably in the range of 0.1 mm to 5 mm. When the thickness is 0.1 mm or more, the droplets are likely to scatter, and when the thickness is 10 mm or less, the spread of the particle size distribution can be suppressed.

遠心力は、遠心加速度で表され5〜1500Gの範囲が好ましく、10〜1000Gの範囲がより好ましい。より好ましくは、10〜800Gの範囲である。遠心加速度が5G以上では、液滴の形成と飛散が容易であり、1500G以下では、ポリマースラリーが糸状にならずに吐出するので粒度分布が広くなるのを抑えることができる。
糸状およびシート状成形体は、該当する形状の紡口、ダイスからポリマースラリーを押し出し、貧溶媒中で凝固させる方法を採ることができる。また、中空糸状成形体は、環状オリフィスからなる紡口を用いることで同様に成形できる。円柱状および中空円柱状成形体は、紡口からポリマースラリーを押し出す際、切断しながら貧溶媒中で凝固させてもよいし、糸状に凝固させてから後に切断してもよい。
なかでも、成形体を水処理分野において吸着剤として使用する場合には、カラム等に充填して通水する際の圧力損失、接触面積の有効性の点、取り扱い易さの点から粒子状が好ましく、特に球状粒子(真球状のみならず、楕円球状であってもよい)が好ましい。
本発明の球状成形体の平均粒子径は、該粒子を球状とみなして、レーザー光による回折の散乱光強度の角度分布から求めた球相当径のメジアン径である。好ましい平均粒子径の範囲は、100〜2500μmであり、特に200〜2000μmが好ましい。平均粒子径が100μm以上では、カラムやタンクになどへ充填した際に圧力損失を抑え、また、平均粒子径が2500μm以下では、カラムやタンクに充填したときの表面積が大きくなり、処理効率が上がる。
Centrifugal force is expressed by centrifugal acceleration and is preferably in the range of 5 to 1500 G, more preferably in the range of 10 to 1000 G. More preferably, it is the range of 10-800G. When the centrifugal acceleration is 5G or more, the formation and scattering of droplets are easy, and when the centrifugal acceleration is 1500G or less, the polymer slurry is discharged without being in the form of a thread, so that the particle size distribution can be suppressed from widening.
The thread-like and sheet-like molded bodies can be obtained by extruding a polymer slurry from a spinneret or a die having a corresponding shape and solidifying it in a poor solvent. Moreover, a hollow fiber shaped molded product can be similarly molded by using a spinning nozzle composed of an annular orifice. When extruding the polymer slurry from the spinning nozzle, the cylindrical and hollow cylindrical molded bodies may be solidified in a poor solvent while being cut, or may be solidified into a thread and then cut later.
In particular, when the molded body is used as an adsorbent in the water treatment field, the particle shape is reduced in terms of pressure loss, effectiveness of the contact area and ease of handling when packed in a column or the like and passed through. Spherical particles (not only true spheres but also oval spheres) are particularly preferable.
The average particle diameter of the spherical molded body of the present invention is the median diameter of the sphere equivalent diameter obtained from the angle distribution of the scattered light intensity of diffraction by laser light, assuming that the particles are spherical. The range of a preferable average particle diameter is 100-2500 micrometers, and 200-2000 micrometers is especially preferable. When the average particle size is 100 μm or more, pressure loss is suppressed when the column or tank is packed into a column or tank, and when the average particle size is 2500 μm or less, the surface area when the column or tank is packed is increased and the processing efficiency is increased. .

本発明の成形体の空孔率Pr(%)とは、成形体の含水時の重量W1(g)、乾燥後の重量W0(g)、及び成形体の比重をρとするとき、下式で表わされる値をいう。
Pr=(W1−W0)/(W1−W0+W0/ρ)×100
含水時の重量は、十分に水に濡れた成形体を、乾いたろ紙上に拡げ、余分な水分をとってから含水時の重量を測定すればよい。乾燥は、水分をとばすために、室温下で真空乾燥を行えばよい。成形体の比重は、比重瓶を用いて簡便に測定することができる。
好ましい空孔率Pr(%)の範囲は、50%〜90%であり、特に60〜85%が好ましい。50%以上でリンやホウ素等の吸着対象物質と吸着基質である無機イオン吸着体との接触頻度が十分となる。90%以下では、成形体の強度が十分となる。
The porosity Pr (%) of the molded body of the present invention is the following formula when the weight W1 (g) of the molded body when it contains water, the weight W0 (g) after drying, and the specific gravity of the molded body is ρ. The value represented by
Pr = (W1-W0) / (W1-W0 + W0 / ρ) × 100
The wet weight may be determined by spreading a molded product sufficiently wet with water on dry filter paper and removing excess moisture before measuring the wet weight. Drying may be performed under vacuum at room temperature in order to eliminate moisture. The specific gravity of the molded body can be easily measured using a specific gravity bottle.
A preferable range of the porosity Pr (%) is 50% to 90%, and particularly preferably 60 to 85%. If it is 50% or more, the contact frequency between the substance to be adsorbed such as phosphorus and boron and the inorganic ion adsorbent as the adsorption substrate becomes sufficient. If it is 90% or less, the strength of the molded article is sufficient.

本発明の成形体の無機イオン吸着体の担持量は、成形体の乾燥時の重量Wd(g)、灰分の重量Wa(g)、とするとき下式で表わされる値をいう。
担持量(%)=Wa/Wd ×100
ここで、灰分は本発明の成形体を800℃で2時間焼成したときの残分をいう。
高吸着性能の多孔性成形体を得るためには無機イオン吸着体の担持量を高くすることが好ましい。ただし高くし過ぎると成形体の強度が不足しやすくなる。好ましい担持量の範囲は65〜95%であり、さらに好ましくは70〜90%であり、特に75〜90%が好ましい。
The supported amount of the inorganic ion adsorbent in the molded body of the present invention is a value represented by the following formula when the weight Wd (g) when the molded body is dried and the weight Wa (g) of ash.
Load (%) = Wa / Wd × 100
Here, the ash content is the residue when the molded article of the present invention is baked at 800 ° C. for 2 hours.
In order to obtain a porous molded body having high adsorption performance, it is preferable to increase the amount of the inorganic ion adsorbent supported. However, if it is too high, the strength of the molded product tends to be insufficient. A preferable loading range is 65 to 95%, more preferably 70 to 90%, and particularly preferably 75 to 90%.

本発明の方法によると、従来技術の添着法とは異なり、吸着基質と有機高分子樹脂を練り込んで成形するため、担持量を多く保ち、且つ強度の強い成形体を得ることができる。
本発明の成形体の比表面積は、次式で定義される。
比表面積(m/cm)=SBET×かさ比重(g/cm
ここで、SBETは、成形体の単位重量あたりの表面積(m/g)である。
比表面積は、成形体を室温で真空乾燥した後、吸着ガスに窒素ガスを用いたBET法でSBETを測定し、上式により算出する。
かさ比重の測定方法は、粒子状、円柱状、中空円柱状等の形状が短いものは、湿潤状態の成形体を、メスシリンダー等を用いてみかけの体積を測定する。その後、室温で真空乾燥して重量を求める。
糸状、中空糸状、シート状の形状が長いものについては、湿潤時の断面積と長さを測定して、両者の積から体積を算出する。その後、室温で真空乾燥して重量を求める。
好ましい比表面積の範囲は、5m/cm〜500m/cmである。5m/cm以上では、吸着基質の担持量および吸着性能が十分となる。500m/cm以下では、成形体の強度が十分となる。
According to the method of the present invention, unlike the conventional attaching method, since the adsorbing substrate and the organic polymer resin are kneaded and molded, it is possible to obtain a molded body that maintains a large amount of support and has high strength.
The specific surface area of the molded product of the present invention is defined by the following formula.
Specific surface area (m 2 / cm 3 ) = SBET × bulk specific gravity (g / cm 3 )
Here, SBET is a surface area (m 2 / g) per unit weight of the molded body.
The specific surface area is calculated from the above equation after SBET is measured by the BET method using nitrogen gas as the adsorbed gas after vacuum drying the molded body at room temperature.
As for the method for measuring the bulk specific gravity, when the shape is short, such as a particulate shape, a cylindrical shape, or a hollow cylindrical shape, an apparent volume is measured using a wet compact and a graduated cylinder. Then, it vacuum-drys at room temperature and calculates | requires weight.
For a long fiber-like, hollow fiber-like, or sheet-like shape, the cross-sectional area and length when wet are measured, and the volume is calculated from the product of both. Then, it vacuum-drys at room temperature and calculates | requires weight.
The preferred range of the specific surface area is 5m 2 / cm 3 ~500m 2 / cm 3. If it is 5 m 2 / cm 3 or more, the carrying amount and adsorption performance of the adsorption substrate are sufficient. If it is 500 m 2 / cm 3 or less, the strength of the molded article is sufficient.

一般的に、吸着基質である無機イオン吸着体の吸着性能は、比表面積に比例する場合が多い。したがって比表面積(単位体積あたりの表面積)が小さいと、単位体積あたりの吸着性能が低くなり、カラムやタンクに充填したときの高速処理や高容量処理を達成しにくい。
本発明の成形体は、多孔質でありフィブリルが複雑に絡み合った三次元網目構造をとる。さらに、フィブリル自体も空隙を有するため、表面積が大きいという特徴を有する。このフィブリルに、さらに大きい比表面積をもつ吸着基質である無機イオン吸着体を、単位体積あたりに高い含有率で担持させるので、単位体積あたりの表面積が極めて大きくなるのが特徴である。
In general, the adsorption performance of an inorganic ion adsorbent that is an adsorption substrate is often proportional to the specific surface area. Therefore, if the specific surface area (surface area per unit volume) is small, the adsorption performance per unit volume is lowered, and it is difficult to achieve high-speed processing and high-capacity processing when the column or tank is packed.
The molded body of the present invention has a three-dimensional network structure that is porous and intricately intertwined with fibrils. Furthermore, since the fibril itself has voids, it has a feature that the surface area is large. Since the inorganic ion adsorbent, which is an adsorption substrate having a larger specific surface area, is supported on the fibrils at a high content per unit volume, the surface area per unit volume is extremely large.

次に本発明の多孔性成形体の製造方法について説明する。
本発明の多孔性成形体の製造方法は、
(1)少なくとも有機高分子樹脂の良溶媒と無機イオン吸着体と水溶性高分子の3種を粉砕・混合手段を用いて粉砕・混合してスラリーを得る粉砕・混合工程、
(2)工程(1)で得たスラリーに有機高分子樹脂を溶解する溶解工程、
(3)工程(2)で得たスラリーを成形し、貧溶媒中で凝固させる成形工程を含んでなることを特徴とする。
無機イオン吸着体を、有機高分子樹脂の良溶媒中で湿式粉砕することにより、無機イオン吸着体を微粒子化できる。さらに、この粉砕・混合工程において、水溶性高分子を加えることで、水溶性高分子が分散助剤の働きをし、粉砕の効率を改善し、さらに無機イオン吸着体の再凝集を防ぐ役割をする。その結果、成形後の多孔性成形体に担持された無機イオン吸着体には二次凝集物が少ない。
水溶性高分子が分散助剤として働くメカニズムを以下に考察する。
Next, the manufacturing method of the porous molded object of this invention is demonstrated.
The method for producing the porous molded body of the present invention comprises:
(1) A pulverization / mixing step of obtaining a slurry by pulverizing / mixing at least three kinds of a good solvent of an organic polymer resin, an inorganic ion adsorbent, and a water-soluble polymer using a pulverizing / mixing means,
(2) Dissolution step of dissolving the organic polymer resin in the slurry obtained in step (1),
(3) It is characterized by comprising a molding step in which the slurry obtained in step (2) is molded and solidified in a poor solvent.
By finely grinding the inorganic ion adsorbent in a good solvent of the organic polymer resin, the inorganic ion adsorbent can be made fine particles. Furthermore, in this pulverization / mixing step, the water-soluble polymer acts as a dispersion aid by adding a water-soluble polymer, improving the efficiency of pulverization, and further preventing re-aggregation of the inorganic ion adsorbent. To do. As a result, there are few secondary aggregates in the inorganic ion adsorbent supported on the molded porous molded body.
The mechanism by which the water-soluble polymer works as a dispersion aid will be discussed below.

水溶性高分子は、無機イオン吸着体の固体表面に吸着し、凝集している固体粒子を液体である有機高分子樹脂の良溶媒に濡れやすくする。濡れ性向上により凝集体は良溶媒中でほぐれ、凝集体中の空気を液体で置換できる。また、分子量が高い水溶性高分子は嵩高いので、無機イオン吸着体の固体表面に吸着層を形成し、固体粒子の表面電荷を増加させたり、立体障害により粒子間の反発力を高めることができる。
水溶性高分子には、ここで説明した分散剤としての効果と、先述した特殊な多孔構造をつくる効果の2つの効果がある。本発明の特徴は、従来技術で用いていた水溶性高分子の新たな効果を発見したものであり、多孔性成形体の性能面と製造面にもたらす効果は高い。性能面の効果は、成形体中に無機イオン吸着体の二次凝集物が少ないので、仕込みに用いた無機イオン吸着体の全てが均一に成形全体に分散し、その全てが有効に吸着に関与し、吸着対象物質との接触効率が極めて高いということである。
また、二次凝集物が少ないため、二次凝集物が起点となって割れるといったことが少ないため耐久性も高い。
製造面の効果は、粉砕・分散効率が高く、粉砕時間を短くできるということである。また、スラリーの安定性が向上し、長期間保存しても、無機イオン吸着体が沈降するといったことが少ないこともあげられる。
The water-soluble polymer is adsorbed on the solid surface of the inorganic ion adsorbent, and makes the aggregated solid particles easily wet with a good solvent of the organic polymer resin that is a liquid. By improving the wettability, the aggregate is loosened in a good solvent, and the air in the aggregate can be replaced with a liquid. In addition, since water-soluble polymers with high molecular weight are bulky, an adsorption layer can be formed on the solid surface of the inorganic ion adsorbent to increase the surface charge of the solid particles or to increase the repulsive force between the particles due to steric hindrance. it can.
The water-soluble polymer has two effects, that is, the effect as a dispersant described here and the effect of creating the special porous structure described above. The feature of the present invention is the discovery of a new effect of the water-soluble polymer used in the prior art, and a high effect on the performance and manufacturing aspects of the porous molded body. The performance effect is that there are few secondary agglomerates of the inorganic ion adsorbent in the molded product, so all of the inorganic ion adsorbent used in the preparation is uniformly dispersed throughout the molding, and all of them are effectively involved in the adsorption. However, the contact efficiency with the substance to be adsorbed is extremely high.
Moreover, since there are few secondary aggregates, since it is few that a secondary aggregate breaks from a starting point, durability is also high.
The production effect is that the grinding / dispersion efficiency is high and the grinding time can be shortened. In addition, the stability of the slurry is improved, and the inorganic ion adsorbent is less likely to settle even after long-term storage.

本発明に用いる水溶性高分子は有機高分子樹脂の良溶媒と相溶性のあるものであれば特に限定されない。
天然高分子では、グアーガム、ローカストビーンガム、カラーギナン、アラビアゴム、トラガント、ペクチン、デンプン、デキストリン、ゼラチン、カゼイン、コラーゲン等があげられる。
また、半合成高分子では、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルデンプン、メチルデンプン等があげられる。
The water-soluble polymer used in the present invention is not particularly limited as long as it is compatible with a good solvent for the organic polymer resin.
Examples of natural polymers include guar gum, locust bean gum, carrageenan, gum arabic, tragacanth, pectin, starch, dextrin, gelatin, casein, collagen and the like.
Examples of semisynthetic polymers include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl starch, and methyl starch.

さらに、合成高分子では、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルメチルエーテル、カルボキシビニルポリマー、カルボキシメチルセルロース、ポリアクリル酸ナトリウム、ナフタレンスルホン酸塩のホルマリン縮合物、ポリスチレンスルホン酸塩、ビニル化合物とカルボン酸系単量体との共重合物の塩、ポリアルキレンポリアミン、さらに、テトラエチレングリコール、トリエチレングリコール等のポリエチレングリコール類があげられる。
これらの水溶性高分子の中でも、合成高分子が耐生分解性を有する点で好ましい。
また、本発明の成形体では、水溶性高分子としてポリビニルピロリドンを用いるのが、連通孔を形成するフィブリル内部にも空隙を有する構造を発現させる効果が高い点で、特に好ましい。
ポリビニルピロリドンの重量平均分子量は、2,000〜2,000,000の範囲が好ましく、2,000〜1,000,000の範囲がより好ましく、2,000〜100,000の範囲がさらに好ましい。重量平均分子量が2,000以上では、フィブリル内部に空隙を有する構造を発現させる効果が高くなり、2,000,000以下では、成形する時の粘度が上昇せず、成形が容易である。
In addition, synthetic polymers include polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl methyl ether, carboxyvinyl polymer, carboxymethyl cellulose, sodium polyacrylate, formalin condensate of naphthalene sulfonate, polystyrene sulfonate, vinyl compounds and carboxylic acid-based monomers. Examples thereof include salts of copolymers with monomers, polyalkylene polyamines, and polyethylene glycols such as tetraethylene glycol and triethylene glycol.
Among these water-soluble polymers, a synthetic polymer is preferable in that it has biodegradation resistance.
In the molded article of the present invention, it is particularly preferable to use polyvinyl pyrrolidone as the water-soluble polymer because it has a high effect of developing a structure having voids inside the fibrils forming the communicating holes.
The weight average molecular weight of polyvinylpyrrolidone is preferably in the range of 2,000 to 2,000,000, more preferably in the range of 2,000 to 1,000,000, and still more preferably in the range of 2,000 to 100,000. When the weight average molecular weight is 2,000 or more, the effect of developing a structure having voids inside the fibril is enhanced. When the weight average molecular weight is 2,000,000 or less, the viscosity during molding does not increase and molding is easy.

また、多孔性成形体の構造に影響しない範囲で界面活性剤等の公知の分散剤を添加することもできる。
本発明の粉砕・混合手段は、無機イオン吸着体と有機高分子樹脂の良溶媒及び水溶性高分子を合わせて粉砕・混合できるものであれば特に限定されない。例えば、加圧型破壊、機械的磨砕、超音波処理、ホモジナイザー等の物理的破砕方法を用いることができる。粉砕・混合手段の典型例としては、ジェネレーターシャフト型ホモジナイザー、ワーリングブレンダーなどのブレンダー、サンドミルやボールミルなどの粉砕器、ジェットミル、乳鉢および乳棒、らいかい器、超音波処理などの手段が挙げられる。
粉砕効率が高く、粘度の高いものまで粉砕できるので、ボールミルやアトライタ、ビーズミル等の媒体撹拌型ミルが好ましい。無機イオン吸着体をナノ領域の微小粒径まで粉砕・混合が可能な点で、ビーズミルが更に好ましい。ビーズミルに使用するボール径は、特に限定されるものではないが、0.1〜2mmの範囲が好ましい。0.1mm以上では、ボール重量が充分あるので粉砕力があり粉砕効率が高く、2mm以下では、微粉砕する能力が優れている。ボールの材質は、特に限定されるものではないが、鉄やステンレスの金属系、アルミナやジルコニアの酸化物類、窒化ケイ素や炭化ケイ素等の非酸化物類の各種セラミック系が挙げられる。
特に、耐摩耗性に優れ、製品へのコンタミネーション(摩耗物の混入)が少ない点で、ジルコニア類が優れている。
粉砕・混合手段の操作条件についてビーズミルを例に説明するが、本発明はこれらにより何ら限定されるものではない。
粉砕・混合手段への原料の初期投入方法は、循環方式かプレミックス法が好ましい。循環方式は、あらかじめスラリータンク内に溶媒を投入し溶媒のみで循環ポンプとミルを運転し、被粉砕物を少しずつ投入していく方法である。プレミックス法は、あらかじめ別容器中で溶媒と被粉砕物を混合・スラリー化する方法をいう。ここで、溶媒とは有機高分子樹脂の良溶媒であり、被粉砕物とは無機イオン吸着体を指す。溶媒と被粉砕物の分散状態が悪くてダマがあるような場合、ビーズミルのスクリーン(ビーズとスラリーの分離機構)を詰まらせてしまうことがある。
アジテータの周速としては3m/s超〜20m/s未満であることが好ましく、8〜18m/sであることが更に好ましい。3m/s超では、粉砕効率が悪く、処理時間が長くなるという問題を回避でき、20m/s未満では、ビーズがミル内でアンバランスになり粉砕効率が低下するという問題を回避できる。
処理温度は、溶媒の凝固点〜引火点の範囲に制御することが好ましい。凝固点以下では、粉砕効率が極端に下がり、引火点以上では引火爆発の危険性の観点から好ましくない。通常、粉砕処理を行うと、ビーズの摩擦熱から発熱するので、冷却する必要が生じる。冷却手段は、スラリータンクとミルの循環ラインに熱交換器を設け冷却することも好ましい。
被粉砕物すなわち無機イオン吸着体の粒径制御方法は、粉砕時間の経過毎に実際にスラリー液をサンプリングして粒径及び粒径分布を測定し、粉砕時間と粒径分布の相関曲線を用いる方法が好ましい。また、粉砕時間の代わりに、スラリー粘度、スラリー温度等を管理指標として用いることもできる。粉砕時間が短いと被粉砕物の粒径は大きく、粉砕時間が長いと粒径は小さくなり粒径分布も狭くなる傾向がある。
Moreover, well-known dispersing agents, such as surfactant, can also be added in the range which does not affect the structure of a porous molded object.
The pulverizing / mixing means of the present invention is not particularly limited as long as the inorganic ion adsorbent, the good solvent of the organic polymer resin, and the water-soluble polymer can be pulverized and mixed together. For example, physical crushing methods such as pressure fracture, mechanical grinding, ultrasonic treatment, and homogenizer can be used. Typical examples of the pulverizing / mixing means include generator shaft type homogenizers, blenders such as Waring blenders, pulverizers such as sand mills and ball mills, jet mills, mortars and pestles, scourers, and ultrasonic treatment.
A medium agitation type mill such as a ball mill, an attritor or a bead mill is preferred because it has high crushing efficiency and can crush even a high viscosity. A bead mill is more preferable in that the inorganic ion adsorbent can be pulverized and mixed to a nano-sized particle size. The diameter of the ball used for the bead mill is not particularly limited, but a range of 0.1 to 2 mm is preferable. If it is 0.1 mm or more, the ball weight is sufficient, so that the pulverization force is high and the pulverization efficiency is high. If it is 2 mm or less, the ability to finely pulverize is excellent. The material of the ball is not particularly limited, and examples thereof include various ceramics such as iron and stainless steel, alumina and zirconia oxides, and non-oxides such as silicon nitride and silicon carbide.
In particular, zirconia is excellent in that it is excellent in wear resistance and has little contamination to the product (mixture of worn objects).
The operation conditions of the pulverization / mixing means will be described by taking a bead mill as an example, but the present invention is not limited to these.
The initial charging method of the raw material to the pulverizing / mixing means is preferably a circulation method or a premix method. The circulation method is a method in which a solvent is charged into a slurry tank in advance, a circulation pump and a mill are operated only with the solvent, and a material to be crushed is charged little by little. The premix method is a method in which a solvent and a material to be pulverized are mixed and slurried in advance in a separate container. Here, the solvent is a good solvent for the organic polymer resin, and the material to be pulverized refers to an inorganic ion adsorbent. When the dispersion state of the solvent and the material to be crushed is bad and lumps are present, the bead mill screen (bead / slurry separation mechanism) may be clogged.
The peripheral speed of the agitator is preferably more than 3 m / s and less than 20 m / s, and more preferably 8 to 18 m / s. If it exceeds 3 m / s, the problem that the pulverization efficiency is poor and the processing time becomes long can be avoided, and if it is less than 20 m / s, the problem that the beads become unbalanced in the mill and the pulverization efficiency decreases can be avoided.
The treatment temperature is preferably controlled in the range of the freezing point to the flash point of the solvent. Below the freezing point, the pulverization efficiency is extremely lowered, and above the flash point, it is not preferable from the viewpoint of the risk of flammable explosion. Usually, when the pulverization is performed, heat is generated from the frictional heat of the beads, and thus cooling is required. The cooling means is preferably cooled by providing a heat exchanger in the circulation line of the slurry tank and the mill.
The particle size control method for the object to be crushed, that is, the inorganic ion adsorbent, samples the slurry liquid every time the pulverization time elapses, measures the particle size and particle size distribution, and uses the correlation curve between the pulverization time and the particle size distribution. The method is preferred. Moreover, slurry viscosity, slurry temperature, etc. can also be used as a management index instead of grinding time. When the pulverization time is short, the particle size of the material to be pulverized is large, and when the pulverization time is long, the particle size tends to be small and the particle size distribution tends to be narrow.

本発明で用いる有機高分子樹脂は、特に限定されないが、湿式相分離による多孔化手法が可能なものが好ましい。たとえば、ポリスルホン系ポリマー、ポリフッ化ビニリデン系ポリマー、ポリ塩化ビニリデン系ポリマー、アクリロニトリル系ポリマー、ポリメタクリル酸メチル系ポリマー、ポリアミド系ポリマー、ポリイミド系ポリマー、セルロース系ポリマー、エチレンビニルアルコール共重合体系ポリマー等があげられる。
特に、水中での非膨潤性と耐生分解性、さらに製造のし易さから、エチレンビニルアルコール共重合体(EVOH)、ポリアクリロニトリル(PAN)、ポリスルホン(PS)、ポリフッ化ビニリデン(PVDF)が好ましく、さらに親水性と耐薬品性を兼ね備えている点で、エチレンビニルアルコール共重合体(EVOH)が好ましい。
また、本発明に用いる良溶媒は有機高分子樹脂及び水溶性高分子を共に溶解するものであればいずれでもよい。例えば、ジメチルスルホキシド(DMSO)、N−メチル−2ピロリドン(NMP)、ジメチルアセトアミド(DMAC)、ジメチルホルムアミド(DMF)等である。これらの良溶媒は1種または混合溶媒としてもよい。
The organic polymer resin used in the present invention is not particularly limited, but is preferably one that can be made porous by wet phase separation. For example, polysulfone polymer, polyvinylidene fluoride polymer, polyvinylidene chloride polymer, acrylonitrile polymer, polymethyl methacrylate polymer, polyamide polymer, polyimide polymer, cellulose polymer, ethylene vinyl alcohol copolymer polymer, etc. can give.
In particular, ethylene vinyl alcohol copolymer (EVOH), polyacrylonitrile (PAN), polysulfone (PS), and polyvinylidene fluoride (PVDF) are preferred because they are non-swellable and biodegradable in water, and easy to manufacture. An ethylene vinyl alcohol copolymer (EVOH) is preferable because it has both hydrophilicity and chemical resistance.
In addition, the good solvent used in the present invention may be any as long as it dissolves both the organic polymer resin and the water-soluble polymer. For example, dimethyl sulfoxide (DMSO), N-methyl-2pyrrolidone (NMP), dimethylacetamide (DMAC), dimethylformamide (DMF) and the like. These good solvents may be used alone or as a mixed solvent.

有機高分子樹脂の良溶媒中の含有率に特に限定はないが、好ましくは5〜40重量%であり、さらに好ましくは、7〜30重量%である。5重量%以上で十分に強度のある成形体が得られ、40重量%以下で空孔率の高い多孔性成形体が得られる。
本発明の成形体の水溶性高分子の含有量は、成形体の乾燥時の重量をWd(g)、成形体から抽出した水溶性高分子の重量をWs(g)とするときに下式で表される値をいう。
含有率(%)=Ws/Wd×100
水溶性高分子の含有量は、水溶性高分子の種類、分子量に左右されるが、0.001〜10%が好ましく、より好ましくは、0.01〜1%である。0.001%以上では、成形体の表面を開口させるのに効果が十分であり、10%以下では相対的にポリマー濃度が薄くならず、強度が十分となる。
Although there is no limitation in particular in the content rate in the good solvent of organic polymer resin, Preferably it is 5 to 40 weight%, More preferably, it is 7 to 30 weight%. A molded body having a sufficient strength is obtained at 5% by weight or more, and a porous molded body having a high porosity is obtained at 40% by weight or less.
The water-soluble polymer content of the molded product of the present invention is expressed by the following formula when the weight of the molded product when dried is Wd (g) and the weight of the water-soluble polymer extracted from the molded product is Ws (g). The value represented by
Content (%) = Ws / Wd × 100
The content of the water-soluble polymer depends on the type and molecular weight of the water-soluble polymer, but is preferably 0.001 to 10%, and more preferably 0.01 to 1%. If it is 0.001% or more, the effect is sufficient to open the surface of the molded body, and if it is 10% or less, the polymer concentration is not relatively reduced and the strength is sufficient.

ここで、成形体中の水溶性高分子の重量Wsは、次のようにして測定する。まず、乾燥した成形体を乳鉢等で粉砕した後、該粉砕物から水溶性高分子の良溶媒を用いて水溶性高分子を抽出し、次いで該抽出物を蒸発乾固して、抽出した水溶性高分子量の重量を求める。
さらに、抽出した蒸発乾固物の同定と、フィブリル中に残存して抽出されなかった水溶性高分子の有無の確認は、赤外線吸収スペクトル(IR)等で測定できる。さらに、フィブリル中に残存して抽出されなかった水溶性高分子がある場合は、本発明の多孔性成形体を、有機高分子樹脂と水溶性高分子の両方の良溶媒で溶解後、無機イオン吸着体を濾過して除いた液を作成し、次いで、該液体をGPC等を用いて分析して水溶性高分子の含有量を定量することができる。
水溶性高分子の含有量は、水溶性高分子の分子量、有機高分子樹脂とその良溶媒の組み合わせで適宜調整が可能である。例えば、分子量の高い水溶性高分子を使用すると、有機高分子樹脂との分子鎖の絡み合いが強固になり、成形時に貧溶媒側に移行しにくくなり、含有量を高くすることができる。
Here, the weight Ws of the water-soluble polymer in the molded body is measured as follows. First, after the dried molded body is pulverized with a mortar or the like, the water-soluble polymer is extracted from the pulverized product using a good solvent for the water-soluble polymer, and then the extract is evaporated to dryness to extract the extracted water-soluble polymer. The weight of the high molecular weight is determined.
Further, identification of the extracted evaporated and dried product and confirmation of the presence or absence of the water-soluble polymer remaining in the fibril and not extracted can be measured by infrared absorption spectrum (IR) or the like. Furthermore, when there is a water-soluble polymer that remains in the fibrils and is not extracted, the porous molded body of the present invention is dissolved in a good solvent for both the organic polymer resin and the water-soluble polymer, and then the inorganic ions are dissolved. A liquid obtained by removing the adsorbent by filtration can be prepared, and then the liquid can be analyzed using GPC or the like to quantify the content of the water-soluble polymer.
The content of the water-soluble polymer can be appropriately adjusted depending on the molecular weight of the water-soluble polymer and the combination of the organic polymer resin and the good solvent. For example, when a water-soluble polymer having a high molecular weight is used, the entanglement of the molecular chain with the organic polymer resin becomes strong, and it becomes difficult to shift to the poor solvent side during molding, and the content can be increased.

本発明で用いられる無機イオン吸着体とは、イオン吸着現象またはイオン交換現象を示す無機物質をいう。
例えば、天然物ではゼオライト、モンモリロナイト、及び各種の鉱物性物質があり、合成物系では金属酸化物や不溶性の含水酸化物などがある。前者はアルミノケイ酸塩で単一層格子をもつカオリン鉱物、2層格子構造の白雲母、海緑石、鹿沼土、パイロフィライト、タルク、3次元骨組み構造の長石、ゼオライトなどで代表される。後者は、複合金属水酸化物、金属酸化物、金属の含水酸化物、多価金属の塩、不溶性のヘテロポリ酸塩、不溶性ヘキサシアノ鉄酸塩などが主要なものである。
The inorganic ion adsorbent used in the present invention refers to an inorganic substance that exhibits an ion adsorption phenomenon or an ion exchange phenomenon.
For example, natural products include zeolite, montmorillonite, and various mineral substances, and synthetic products include metal oxides and insoluble hydrated oxides. The former is represented by aluminosilicate kaolin mineral with a single layer lattice, bilayer latticed muscovite, sea chlorite, kanuma earth, pyrophyllite, talc, three-dimensional framework feldspar, zeolite and the like. The latter mainly includes composite metal hydroxides, metal oxides, metal hydrated oxides, polyvalent metal salts, insoluble heteropolyacid salts, insoluble hexacyanoferrates, and the like.

多価金属の塩としては、下記式(II)のハイドロタルサイト系化合物が挙げられる。
2+ (1−X)3+ (OH(2+x−y)(An−)y/n (II)
〔式中、M2+はMg2+、Ni2+、Zn2+、Fe2+、Ca2+及びCu2+からなる群から選ばれる少なくとも1種の二価の金属イオンを示し、M3+はAl3+及びFe3+からなる群から選ばれる少なくとも1種の三価の金属イオンを示し、An−はn価のアニオンを示し、0.1≦x≦0.5であり、0.1≦y≦0.5であり、nは1または2である。〕
金属酸化物は、下記式(I)で表せる。
MN・mHO (I)
(式中、xは0〜3、nは1〜4、mは0〜6であり、MおよびNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群から選ばれる金属元素であり、互いに異なる。)
金属酸化物は、式(I)中のmが0で表せる未水和(未含水)の金属酸化物であってもよいし、mが0以外の数値で表せる水和(含水)金属酸化物であってもよい。
また式(I)中のxが0以外の数値である場合の金属酸化物は、含有される各金属元素が規則性を持って酸化物全体に均一に分布して、例えば、ペロブスカイト構造、スピネル構造等を形成し、ニッケルフェライト(NiFe)、ジルコニウムの含水亜鉄酸塩(Zr・Fe・mHO mは0.5〜6)のごとく金属酸化物に含有される各金属元素の組成比が一定に定まった化学式で表される、複合金属酸化物である。
Examples of the polyvalent metal salt include hydrotalcite compounds represented by the following formula (II).
M 2+ (1-X) M 3+ x (OH ) (2 + xy) (A n− ) y / n (II)
[ Wherein M 2+ represents at least one divalent metal ion selected from the group consisting of Mg 2+ , Ni 2+ , Zn 2+ , Fe 2+ , Ca 2+ and Cu 2+ , and M 3+ represents Al 3+ and Fe 3+. At least one trivalent metal ion selected from the group consisting of: An n− represents an n-valent anion, 0.1 ≦ x ≦ 0.5, and 0.1 ≦ y ≦ 0.5 And n is 1 or 2. ]
The metal oxide can be represented by the following formula (I).
MN x O n · mH 2 O (I)
(Wherein x is 0 to 3, n is 1 to 4, m is 0 to 6, and M and N are Ti, Zr, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu. Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Si, Cr, Co, Ga, Fe, Mn, Ni, V, Ge, Nb and Ta are metal elements selected from the group Are different from each other.)
The metal oxide may be an unhydrated (unhydrated) metal oxide in which m in the formula (I) can be represented by 0, or a hydrated (hydrated) metal oxide in which m can be represented by a numerical value other than 0. It may be.
Further, the metal oxide in the case where x in formula (I) is a numerical value other than 0 is such that each contained metal element has a regularity and is uniformly distributed throughout the oxide, for example, a perovskite structure, spinel It forms a structure, etc., and is contained in metal oxides such as nickel ferrite (NiFe 2 O 4 ) and zirconium hydrous ferrite (Zr · Fe 2 O 4 · mH 2 O m is 0.5 to 6). It is a complex metal oxide represented by a chemical formula in which the composition ratio of each metal element is fixed.

無機イオン吸着体としては、リン、ホウ素、フッ素、ヒ素の吸着性能に優れている点から、水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン、水和酸化イットリウム;チタン、ジルコニウム、スズ、セリウム、ランタン、イットリウムからなる群から選ばれる金属元素と、アルミニウム、珪素、鉄からなる群から選ばれる金属元素との複合金属酸化物、および活性アルミナからなる群から選ばれる少なくとも一種の金属酸化物であることが好ましい。また、硫酸アルミニウム添着活性アルミナ、硫酸アルミニウム添着活性炭等も好ましい。上記式(I)で表される金属酸化物は、M、N以外の金属元素が固溶したものであっても良い。例えば、式(I)に則ってZrO・mHOという式で表される水和酸化ジルコニウムとは、鉄が固溶した水和酸化ジルコニウムであってもよい。無機イオン吸着体は、式(I)で表せる金属酸化物を複数種含有していてもよい。 As the inorganic ion adsorbent, hydrated titanium oxide, hydrated zirconium oxide, hydrated tin oxide, hydrated cerium oxide, hydrated lanthanum oxide, water, because of its excellent adsorption performance of phosphorus, boron, fluorine and arsenic Sum yttrium oxide; a composite metal oxide of a metal element selected from the group consisting of titanium, zirconium, tin, cerium, lanthanum and yttrium and a metal element selected from the group consisting of aluminum, silicon and iron, and activated alumina It is preferably at least one metal oxide selected from the group. Also preferred are aluminum sulfate-added activated alumina, aluminum sulfate-added activated carbon, and the like. The metal oxide represented by the above formula (I) may be a solid solution of metal elements other than M and N. For example, the hydrated zirconium oxide represented by the formula ZrO 2 · mH 2 O according to the formula (I) may be hydrated zirconium oxide in which iron is dissolved. The inorganic ion adsorbent may contain a plurality of metal oxides represented by the formula (I).

各金属酸化物の無機イオン吸着体における分布状態については特に制限はないが、各金属酸化物の有する特性を有効に活用し、よりコストパフォーマンスに優れる無機イオン吸着体を得るためには、特定の金属酸化物の廻りを、他の金属酸化物が覆った混合体構造にすることが好ましい。このような構造としては、四三酸化鉄の廻りを水和酸化ジルコニウムが覆った構造が例示できる。
また、金属酸化物には他の元素を固溶している金属酸化物も含むため、ジルコニウムが固溶した四三酸化鉄の廻りを、鉄が固溶した水和酸化ジルコニウムが覆った構造も好ましい例として例示できる。この例においては、水和酸化ジルコニウムはリン、ホウ素、フッ素、ヒ素等のイオンに対する吸着性能や繰り返し使用に対する耐久性能は高いが、高価である。一方、四三酸化鉄は、水和酸化ジルコニウムに比較してリン、ホウ素、フッ素、ヒ素等のイオンに対する吸着性能や繰り返し使用に対する耐久性能は低いが、非常に安価である。
したがって、四三酸化鉄の廻りを水和酸化ジルコニウムで覆った構造にした場合、イオンの吸着に関与する無機イオン吸着体の表面付近は、吸着性能や耐久性能が高い水和酸化ジルコニウムになる一方、吸着に関与しない内部は安価な四三酸化鉄になるため、高吸着性能、高耐久性能、及び低価格の、すなわちコストパフォーマンスに極めて優れる吸着剤として利用できる。
There is no particular limitation on the distribution state of each metal oxide in the inorganic ion adsorbent, but in order to effectively utilize the characteristics of each metal oxide and obtain an inorganic ion adsorbent with better cost performance, a specific condition is required. It is preferable to make a mixed structure in which the metal oxide is surrounded by another metal oxide. An example of such a structure is a structure in which hydrated zirconium oxide covers the periphery of triiron tetroxide.
In addition, since metal oxides include metal oxides in which other elements are dissolved, the structure in which zirconium tetroxide in which zirconium is dissolved is covered with hydrated zirconium oxide in which iron is dissolved. It can be illustrated as a preferred example. In this example, hydrated zirconium oxide has high adsorption performance for ions such as phosphorus, boron, fluorine and arsenic and durability performance for repeated use, but is expensive. On the other hand, triiron tetroxide has a low adsorption performance for ions such as phosphorus, boron, fluorine, and arsenic and a durability performance for repeated use, but is very inexpensive.
Therefore, when the structure of iron tetroxide is covered with hydrated zirconium oxide, the vicinity of the surface of the inorganic ion adsorbent involved in ion adsorption becomes hydrated zirconium oxide with high adsorption performance and durability performance. Since the inside which does not participate in the adsorption becomes inexpensive iron trioxide, it can be used as an adsorbent having high adsorption performance, high durability performance, and low cost, that is, excellent in cost performance.

リン、ホウ素、フッ素、ヒ素の環境や健康に有害なイオンの吸着除去に対して、コストパフォーマンスに優れる吸着剤を得るという観点からは、無機イオン吸着体は、式(I)中のMおよびNの少なくとも一方がアルミニウム、珪素、鉄からなる群から選ばれる金属元素である金属酸化物の廻りを、式(I)中のMおよびNの少なくとも一方がチタン、ジルコニウム、スズ、セリウム、ランタン、イットリウムからなる群から選ばれる金属元素である金属酸化物で覆った構造で構成されていることが好ましい。
この場合、無機イオン吸着体中のアルミニウム、珪素、及び鉄からなる群から選ばれる金属元素の含有比率は、アルミニウム、珪素、及び鉄からなる群から選ばれる金属元素と、チタン、ジルコニウム、スズ、セリウム、ランタン、及びイットリウムからなる群から選ばれる金属元素との合計モル数をT、アルミニウム、珪素、及び鉄からなる群から選ばれる金属元素のモル数をFとして、F/T(モル比)が、0.01〜0.95の範囲であることが好ましく、0.1〜0.90の範囲であることがより好ましく、0.2〜0.85であることがさらに好ましく、0.3〜0.80であることが特に好ましい。これは、F/T(モル比)の値を大きくし過ぎると、吸着性能、耐久性能が低くなる傾向があり、小さくなると低価格化に対する効果が小さくなるからである。
From the viewpoint of obtaining an adsorbent with excellent cost performance for the adsorption and removal of ions harmful to the environment and health of phosphorus, boron, fluorine and arsenic, the inorganic ion adsorbent is represented by M and N in the formula (I). And at least one of M and N in the formula (I) is titanium, zirconium, tin, cerium, lanthanum, yttrium, and the like around the metal oxide which is a metal element selected from the group consisting of aluminum, silicon and iron It is preferable that the structure is covered with a metal oxide that is a metal element selected from the group consisting of:
In this case, the content ratio of the metal element selected from the group consisting of aluminum, silicon, and iron in the inorganic ion adsorbent is a metal element selected from the group consisting of aluminum, silicon, and iron, and titanium, zirconium, tin, F / T (molar ratio) where T is the total number of moles of metal elements selected from the group consisting of cerium, lanthanum, and yttrium, and F is the number of moles of metal elements selected from the group consisting of aluminum, silicon, and iron. Is preferably in the range of 0.01 to 0.95, more preferably in the range of 0.1 to 0.90, still more preferably 0.2 to 0.85, It is especially preferable that it is -0.80. This is because if the value of F / T (molar ratio) is excessively increased, the adsorption performance and durability performance tend to be lowered, and if the value is decreased, the effect on the cost reduction is reduced.

また、金属によっては、金属元素の酸化数が異なる複数の形態の金属酸化物が存在するが、無機イオン吸着体中で安定に存在できるものであれば、その形態に制限はない。例えば、鉄の酸化物である場合は、空気中での酸化安定性の問題から水和酸化第二鉄(FeO1.5・mHO)または水和四三酸化鉄(FeO1.33・mHO)であることが好ましい。
なお、無機イオン吸着体は、その製造方法等に起因して混入する不純物元素を本発明の目的の達成を逸脱しない範囲で含有していても良い。混入する可能性がある不純物元素としては窒素(硝酸態、亜硝酸態、アンモニウム態)、ナトリウム、マグネシウム、イオウ、塩素、カリウム、カルシウム、銅、亜鉛、臭素、バリウム、ハフニウム等が考えられる。
また、無機イオン吸着体は、その比表面積が吸着性能や耐久性能に影響するため、比表面積が一定の範囲内であることが好ましい。具体的には、窒素吸着法で求めたBET比表面積が20〜1000m/gであることが好ましく、30〜800m/gであることがより好ましく、50〜600m/gであることがさらに好ましく、60〜500m/gであることが特に好ましい。これは、BET比表面積が小さすぎると吸着性能が低下し、大きすぎると酸やアルカリに対する溶解性が大きくなり、その結果繰り返し使用に対する耐久性能が低下するからである。
Also, depending on the metal, there are a plurality of forms of metal oxides with different oxidation numbers of the metal elements, but the form is not limited as long as it can exist stably in the inorganic ion adsorbent. For example, in the case of an iron oxide, hydrated ferric oxide (FeO 1.5 · mH 2 O) or hydrated iron trioxide (FeO 1.33 · mH 2 O).
In addition, the inorganic ion adsorbent may contain an impurity element mixed due to its production method or the like within a range not departing from the achievement of the object of the present invention. Possible impurity elements to be mixed include nitrogen (nitrate, nitrite, ammonium), sodium, magnesium, sulfur, chlorine, potassium, calcium, copper, zinc, bromine, barium, hafnium, and the like.
In addition, since the specific surface area of the inorganic ion adsorbent affects the adsorption performance and durability, the specific surface area is preferably within a certain range. Specifically, it is preferable that a BET specific surface area determined by nitrogen adsorption method is 20~1000m 2 / g, more preferably 30~800m 2 / g, it is 50 to 600 m 2 / g More preferably, it is 60-500 m < 2 > / g. This is because if the BET specific surface area is too small, the adsorption performance is lowered, and if it is too large, the solubility in acid or alkali is increased, and as a result, the durability performance against repeated use is lowered.

上記式(I)で表される金属酸化物の製造方法は特に限定されないが、例えば、次のような方法により製造される。該金属塩酸塩、硫酸塩、硝酸塩等の塩類水溶液中にアルカリ溶液を添加して得られた沈殿物をろ過、洗浄した後乾燥する。乾燥は風乾するかもしくは約150℃以下、好ましくは約90℃以下で約1〜20時間程度乾燥する。
次に、式(I)中のMおよびNの少なくとも一方がアルミニウム、珪素、鉄からなる群から選ばれる金属元素である金属酸化物の廻りを、式(I)中のMおよびNの少なくとも一方がチタン、ジルコニウム、スズ、セリウム、ランタン、及びイットリウムからなる群から選ばれる金属元素である金属酸化物で覆った構造で構成されている無機イオン吸着体の製造方法を、四三酸化鉄の廻りを酸化ジルコニウムが覆った構造の無機イオン吸着体を製造する場合を例に説明する。
まずジルコニウムの塩化物、硝酸塩、硫酸塩等の塩と、鉄の塩化物、硝酸塩、硫酸塩等の塩とを、上述のF/T(モル比)が所望の値になるように混合した塩類水溶液を作製する。その後、アルカリ水溶液を添加して、pHを8〜9.5、好ましくは8.5〜9に調整して沈殿物を生成させる。この後、水溶液の温度を50℃にし、pHを8〜9.5好ましくは8.5〜9に保ちながら空気を吹き込み、液相に第一鉄イオンが検出できなくなるまで、酸化処理を行う。生じた沈澱を濾別し、水洗した後乾燥する。乾燥は風乾するかもしくは約150℃以下、好ましくは約90℃以下で約1〜20時間程度乾燥する。乾燥後の含水率は、約6〜30重量%の範囲内に入ることが好ましい。
Although the manufacturing method of the metal oxide represented by the said formula (I) is not specifically limited, For example, it manufactures with the following methods. A precipitate obtained by adding an alkaline solution to an aqueous salt solution of metal hydrochloride, sulfate, nitrate or the like is filtered, washed and dried. Drying is performed by air drying or at about 150 ° C. or less, preferably about 90 ° C. or less for about 1 to 20 hours.
Next, around at least one of M and N in the formula (I) around the metal oxide in which at least one of M and N in the formula (I) is a metal element selected from the group consisting of aluminum, silicon and iron A method for producing an inorganic ion adsorbent having a structure covered with a metal oxide, which is a metal element selected from the group consisting of titanium, zirconium, tin, cerium, lanthanum, and yttrium. A case where an inorganic ion adsorbent having a structure in which zirconium oxide is covered is manufactured will be described.
First, salts obtained by mixing a salt such as zirconium chloride, nitrate or sulfate with a salt such as iron chloride, nitrate or sulfate so that the above-mentioned F / T (molar ratio) is a desired value. Make an aqueous solution. Thereafter, an aqueous alkaline solution is added to adjust the pH to 8 to 9.5, preferably 8.5 to 9 to generate a precipitate. Thereafter, the temperature of the aqueous solution is set to 50 ° C., air is blown in while maintaining the pH at 8 to 9.5, preferably 8.5 to 9, and oxidation is performed until ferrous ions cannot be detected in the liquid phase. The resulting precipitate is filtered off, washed with water and dried. Drying is performed by air drying or at about 150 ° C. or less, preferably about 90 ° C. or less for about 1 to 20 hours. The moisture content after drying is preferably in the range of about 6 to 30% by weight.

前述の製造法において用いられるジルコニウムの塩としては、オキシ塩化ジルコニウム(ZrOCl)、四塩化ジルコニウム(ZrCl)、硝酸ジルコニウム(Zr(NO)、硫酸ジルコニウム(Zr(SO)等が挙げられる。これらは例えばZr(SO・4HOなどのように含水塩であってもよい。これらの金属塩は通常、1リットル中に約0.05〜2.0モルの溶液状で用いられる。前述の製造法において用いられる鉄の塩としては、硫酸第一鉄(FeSO)、硝酸第一鉄(Fe(NO)、塩化第一鉄(FeCl)等の第一鉄塩が挙げられる。これらもFeSO・7HOなどの含水塩であってもよい。これらの第一鉄塩は通常、固形物で加えられるが、溶液状で加えてもよい。
アルカリとしては、たとえば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア、炭酸ナトリウムなどが挙げられる。これらは、好ましくは約5〜20重量%の水溶液で用いられる。酸化性ガスを吹き込む場合、その時間は、酸化性ガスの種類などによって異なるが、通常約1〜10時間程度である。酸化剤としては、たとえば過酸化水素、次亜塩素酸ナトリウム、次亜塩素酸カリウムなどが用いられる。
Zirconium salts used in the aforementioned production methods include zirconium oxychloride (ZrOCl 2 ), zirconium tetrachloride (ZrCl 4 ), zirconium nitrate (Zr (NO 3 ) 4 ), zirconium sulfate (Zr (SO 4 ) 2 ). Etc. These may be hydrated salts such as Zr (SO 4 ) 2 .4H 2 O. These metal salts are usually used in the form of a solution of about 0.05 to 2.0 mol per liter. Examples of the iron salt used in the above-described production method include ferrous salts such as ferrous sulfate (FeSO 4 ), ferrous nitrate (Fe (NO 3 ) 2 ), and ferrous chloride (FeCl 2 ). Can be mentioned. These may also be hydrated salts such as FeSO 4 .7H 2 O. These ferrous salts are usually added as solids, but may be added in the form of a solution.
Examples of the alkali include sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, sodium carbonate and the like. These are preferably used in an aqueous solution of about 5 to 20% by weight. When the oxidizing gas is blown, the time varies depending on the kind of the oxidizing gas, but is usually about 1 to 10 hours. As the oxidizing agent, for example, hydrogen peroxide, sodium hypochlorite, potassium hypochlorite and the like are used.

本発明の方法の貧溶媒としては、例えば、水や、メタノール、エタノール等のアルコール類、エーテル類、n−ヘキサン、n−ヘプタン等の脂肪族炭化水素類などの有機高分子樹脂を溶解しない液体が用いられるが、水を用いることが好ましい。また、貧溶媒中に有機高分子樹脂の良溶媒を若干添加することにより凝固速度をコントロールすることも可能である。好ましい高分子樹脂の良溶媒と水の混合比は0〜40%であり、0〜30%がより好ましい。混合比が40%以下では、凝固速度が遅くならないため、液滴等に成形したポリマースラリーが、貧溶媒中への突入する時および貧溶媒中を移動中に、貧溶媒と成形体の間で摩擦抵抗の影響を受けず、形状が良好になる。
貧溶媒の温度は、特に限定されるものではないが、好ましくは−30℃〜90℃、より好ましくは0℃〜90℃、さらに好ましくは0℃〜80℃である。貧溶媒の温度が90℃以下、及び−30℃以上であると、貧溶媒中の成形体の状態が安定する。
Examples of the poor solvent in the method of the present invention include liquids that do not dissolve organic polymer resins such as water, alcohols such as methanol and ethanol, ethers, and aliphatic hydrocarbons such as n-hexane and n-heptane. However, it is preferable to use water. It is also possible to control the coagulation rate by adding a little good solvent of the organic polymer resin in the poor solvent. The mixing ratio of the good solvent of the polymer resin and water is preferably 0 to 40%, and more preferably 0 to 30%. When the mixing ratio is 40% or less, the coagulation rate does not slow, so the polymer slurry formed into droplets or the like is between the poor solvent and the molded body when entering the poor solvent and while moving in the poor solvent. Good shape without being affected by frictional resistance.
Although the temperature of a poor solvent is not specifically limited, Preferably it is -30 degreeC-90 degreeC, More preferably, it is 0 degreeC-90 degreeC, More preferably, it is 0 degreeC-80 degreeC. When the temperature of the poor solvent is 90 ° C. or lower and −30 ° C. or higher, the state of the molded body in the poor solvent is stabilized.

次に本発明の多孔性成形体の水処理用途以外について説明する。
本発明の多孔性成形体は、成形体表面の開口性が高く、成形体内部には連通孔が三次元網目状に発達しており、さらに連通孔を形成するフィブリルも多孔性であることから、接触効率が高いことが特徴である。
その接触効率が高いことを活かせる用途として、吸着剤、脱臭剤、抗菌剤、吸湿剤、食品の鮮度保持剤、酵素固定担体、クロマトグラフィーの担体等が挙げられる。
例えば、無機イオン吸着体にゼオライトを用いた場合は、脱臭効果が期待できる。
さらに、本発明の多孔性成形体の無機イオン吸着体がゼオライトであり、さらに、該ゼオライトに銀を担持した場合には、抗菌性を示す。
また、パラジウムや白金を担持した場合には、エチレンを吸着することから鮮度保持剤として使用できる。
また、銀又は銅を担持させた場合は、硫化水素やアンモニア、メチルメルカプタンといった悪臭ガスを吸着、分解できることから脱臭効果がある。
いずれの場合でも、本発明の多孔性成形体の接触効率の高さを活かした従来技術にない効果が期待できる。
Next, the non-water treatment application of the porous molded body of the present invention will be described.
The porous molded body of the present invention has a high opening property on the surface of the molded body, the communication holes are developed in a three-dimensional network inside the molded body, and the fibrils forming the communication holes are also porous. The contact efficiency is high.
Applications that make use of the high contact efficiency include adsorbents, deodorants, antibacterial agents, hygroscopic agents, food freshness-retaining agents, enzyme-immobilized carriers, chromatographic carriers, and the like.
For example, when zeolite is used as the inorganic ion adsorbent, a deodorizing effect can be expected.
Furthermore, the inorganic ion adsorbent of the porous molded body of the present invention is zeolite, and when the zeolite carries silver, it exhibits antibacterial properties.
Further, when palladium or platinum is supported, it can be used as a freshness retaining agent because it adsorbs ethylene.
In addition, when silver or copper is supported, a deodorizing effect can be obtained because malodorous gases such as hydrogen sulfide, ammonia, and methyl mercaptan can be adsorbed and decomposed.
In any case, an effect not found in the prior art utilizing the high contact efficiency of the porous molded body of the present invention can be expected.

次に、実施例によって本発明をさらに詳細に説明するが、本発明はこれらにより何ら限定されるものではない。
実施例において成形体の種々の物性を、以下の方法で測定した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these.
In the examples, various physical properties of the molded bodies were measured by the following methods.

・相対累積X線強度比
無機イオン吸着体の成形体中での分布状態は、電子線マイクロアナライザ(EPMA)(EPMA1600、(株)島津製作所)を用いて面分析を行った。分析して得た面分析データ(具体的にはX線強度(カウント数)の度数分布)を統計処理した。
無機イオン吸着体を構成する成分元素のX線強度の度数分布を、小さいX線強度(低濃度)側からそのX線強度の度数を積算し、X線強度の度数の累計が5%に達するX線強度の値を5%相対累積X線強度とした。
同様に、無機イオン吸着体を構成する成分元素のX線強度の度数分布を、小さいX線強度(低濃度)側からそのX線強度の度数を積算し、X線強度の度数の累計が95%に達するX線強度の値を95%相対累積X線強度とした。
下記式より、相対累積X線強度比を求めた。
相対累積X線強度比=95%相対累積X線強度/5%相対累積X線強度
-Relative cumulative X-ray intensity ratio The distribution state of the inorganic ion adsorbent in the compact was subjected to surface analysis using an electron beam microanalyzer (EPMA) (EPMA 1600, Shimadzu Corporation). The surface analysis data obtained by analysis (specifically, the frequency distribution of X-ray intensity (count number)) was statistically processed.
The frequency distribution of the X-ray intensity of the component elements constituting the inorganic ion adsorbent is integrated from the low X-ray intensity (low concentration) side, and the cumulative X-ray intensity frequency reaches 5%. The value of X-ray intensity was taken as 5% relative cumulative X-ray intensity.
Similarly, the frequency distribution of the X-ray intensity of the component elements constituting the inorganic ion adsorbent is integrated from the low X-ray intensity (low concentration) side, and the total of the X-ray intensity frequencies is 95. The value of the X-ray intensity reaching% was taken as the 95% relative cumulative X-ray intensity.
The relative cumulative X-ray intensity ratio was determined from the following formula.
Relative cumulative X-ray intensity ratio = 95% relative cumulative X-ray intensity / 5% relative cumulative X-ray intensity

・ 電子線マイクロアナライザ(EPMA)用サンプルの作成
成形体を室温で真空乾燥した。乾燥した成形体をカミソリにて割断後、オスミウム(Os)を蒸着した。次いでエポキシ樹脂にて包埋し、研磨にて断面を作成後、再びオスミウム(Os)を蒸着して成形体内部を観察するEPMA用サンプルを作成した。
-Preparation of sample for electron beam microanalyzer (EPMA) The molded body was vacuum-dried at room temperature. After cutting the dried molded body with a razor, osmium (Os) was deposited. Then, after embedding with an epoxy resin and creating a cross section by polishing, an osmium (Os) was again deposited to prepare a sample for EPMA in which the inside of the molded body was observed.

・ 無機イオン吸着体の担持量
成形体を室温下で24時間真空乾燥にした。乾燥した成形体の重量を測定し、成形体の乾燥時の重量Wd(g)とした。次に、乾燥した成形体を、電気炉を用いて800℃で2時間焼成して灰分の重量を測定し、灰分の重量Wa(g)とした。下記式より、担持量を求めた。
担持量(%)=Wa/Wd ×100
式中、Waは、成形体の灰分の重量(g)であり、Wdは成形体の乾燥時の重量(g)である。
-Amount of inorganic ion adsorbent supported The molded body was vacuum dried at room temperature for 24 hours. The weight of the dried molded body was measured and used as the weight Wd (g) when the molded body was dried. Next, the dried molded body was fired at 800 ° C. for 2 hours using an electric furnace, and the weight of ash was measured to obtain the weight Wa (g) of ash. The supported amount was determined from the following formula.
Load (%) = Wa / Wd × 100
In the formula, Wa is the weight (g) of the ash content of the molded body, and Wd is the weight (g) when the molded body is dried.

・ 比表面積
成形体を室温で真空乾燥した後、ベックマン・コールター(株)社製コールターSA3100(商品名)を用い、吸着ガスに窒素を用いたBET法で多孔性成形体の単位重量あたりの表面積SBET(m/g)を求めた。
つぎに、湿潤状態の成形体を、メスシリンダー等を用いてみかけの体積V(cm)を測定した。その後、室温で真空乾燥して重量W(g)を求めた。
本発明の成形体でいう比表面積は、次式から求めた。
比表面積(m/cm)=SBET×かさ比重(g/cm
かさ比重(g/cm)=W/V
式中、SBETは成形体の比表面積(m/g)であり、Wは成形体の乾燥重量(g)、Vはそのみかけの体積(cm)である。
-Specific surface area After the molded body was vacuum-dried at room temperature, the surface area per unit weight of the porous molded body by BET method using Beckman Coulter Co., Ltd. Coulter SA3100 (trade name) and nitrogen as the adsorbed gas. SBET (m 2 / g) was determined.
Next, the apparent volume V (cm 3 ) of the wet compact was measured using a graduated cylinder or the like. Then, it vacuum-dried at room temperature and calculated | required weight W (g).
The specific surface area referred to in the molded product of the present invention was determined from the following formula.
Specific surface area (m 2 / cm 3 ) = SBET × bulk specific gravity (g / cm 3 )
Bulk specific gravity (g / cm 3 ) = W / V
In the formula, SBET is the specific surface area (m 2 / g) of the molded body, W is the dry weight (g) of the molded body, and V is its apparent volume (cm 3 ).

・ 成形体の粒径及び無機イオン吸着体の粒径
成形体及び無機イオン吸着体の粒径は、レーザー回折/散乱式粒度分布測定装置(HORIBA社製のLA−950(商品名))で測定した。但し、粒径が2,000μm以上の場合には、SEM像を用いて、成形体の最長直径と最短直径を測定し、その平均値を粒径とした。
-Particle size of compact and inorganic ion adsorbent Particle size of compact and inorganic ion adsorbent was measured with a laser diffraction / scattering particle size distribution analyzer (LA-950 (trade name) manufactured by HORIBA). did. However, when the particle diameter was 2,000 μm or more, the longest diameter and the shortest diameter of the molded body were measured using an SEM image, and the average value was taken as the particle diameter.

・ 空孔率
十分に水に濡れた成形体を乾いたろ紙上に拡げ、余分な水分をとった後に重量を測定し、成形体の含水時の重量(W1)とした。次に、成形体を室温下で24時間真空乾燥を行って乾燥した成形体を得た。乾燥した成形体の重量を測定し、成形体の乾燥時の重量(W0)とした。
次に、比重瓶(ゲーリュサック型、容量10ml)を用意し、この比重瓶に純水(25℃)を満たしたときの重量を測定し、満水時の重量(Ww)とした。次に、この比重瓶に、純水に湿潤した状態の成形体を入れ、さらに標線まで純水を満たして重量を測定し、(Wwm)とした。次に、この成形体を比重瓶から取り出し、室温で24時間、真空乾燥に付して、乾燥した成形体を得た。乾燥した成形体の重量を測定して(M)とした。
下記の計算式に従って、成形体の比重(ρ)、および、空孔率(Pr)を求めた。
ρ=M/(Ww+M−Wwm)
Pr=(W1−W0)/(W1−W0+W0/ρ)×100
式中、Prは空孔率(%)であり、W1は成形体の含水時の重量(g)、W0は成形体の乾燥後の重量(g)、および、ρは成形体の比重(g/cm)、Mは成形体の乾燥後の重量(g)、Wwは比重瓶の満水時の重量(g)、Wwmは比重瓶に含水した成形体と純水を入れたときの重量(g)である。
-Porosity The molded product that had been sufficiently wetted with water was spread on dry filter paper, and after removing excess moisture, the weight was measured to obtain the weight (W1) of the molded product when it contained water. Next, the molded body was vacuum-dried at room temperature for 24 hours to obtain a dried molded body. The weight of the dried molded body was measured and used as the weight (W0) when the molded body was dried.
Next, a specific gravity bottle (Geryusac type, capacity 10 ml) was prepared, and when the specific gravity bottle was filled with pure water (25 ° C.), the weight was measured to obtain the full weight (Ww). Next, the molded body wet in pure water was put into this specific gravity bottle, and the pure water was filled up to the marked line and the weight was measured to obtain (Wwm). Next, this molded body was taken out from the specific gravity bottle and subjected to vacuum drying at room temperature for 24 hours to obtain a dried molded body. The weight of the dried molded body was measured and determined as (M).
The specific gravity (ρ) and porosity (Pr) of the compact were determined according to the following formula.
ρ = M / (Ww + M−Wwm)
Pr = (W1-W0) / (W1-W0 + W0 / ρ) × 100
In the formula, Pr is the porosity (%), W1 is the weight (g) of the molded body when it contains water, W0 is the weight (g) after drying the molded body, and ρ is the specific gravity (g / Cm 3 ), M is the weight (g) after drying of the molded body, Ww is the weight when the specific gravity bottle is full (g), and Wwm is the weight when the molded body and pure water contained in the specific gravity bottle are added ( g).

・ 走査型電子顕微鏡による成形体の観察
走査型電子顕微鏡(SEM)による成形体の観察は、日立製作所製のS−800型走査型電子顕微鏡で行った。
-Observation of a molded object with a scanning electron microscope Observation of the molded object with a scanning electron microscope (SEM) was performed with an S-800 scanning electron microscope manufactured by Hitachi, Ltd.

・ 成形体の割断
成形体を室温で真空乾燥し、乾燥した成形体をイソプロピルアルコール(IPA)に加えて、成形体中にIPAを含浸させた。次いで、IPAと共に成形体を直径5mmのゼラチンカプセルに封入し、液体窒素中で凍結した。凍結した成形体をカプセルごと彫刻刀で割断した。割断されている成形体を選別して顕微鏡用試料とした。
-Cleaving of the molded body The molded body was vacuum-dried at room temperature, and the dried molded body was added to isopropyl alcohol (IPA) to impregnate the molded body with IPA. Next, the molded body was enclosed in a gelatin capsule having a diameter of 5 mm together with IPA and frozen in liquid nitrogen. The frozen molded body was cleaved together with the engraved sword. The cut molded body was selected as a microscope sample.

・ 表面の開口径
走査型電子顕微鏡を用いて撮影した成形体の表面の画像から実測して求める。孔が円形の場合はその直径、円形以外の場合は、同一面積を有する円の円相当直径を用いる。
-Opening diameter of the surface Obtained by actual measurement from the image of the surface of the molded body taken using a scanning electron microscope. When the hole is circular, the diameter is used. When the hole is not circular, the equivalent circle diameter of a circle having the same area is used.

・ 表面の開口率
走査型電子顕微鏡を用いて撮影した成形体の表面の画像を、画像解析ソフト(三谷商事(株)製ウインルーフ(商品名))を用いて求めた。
さらに詳しく説明すると、得られたSEM像を濃淡画像として認識し、色が濃い部分を開口部、色が薄い部分をフィブリルとして、しきい値を手動で調整し、開口部分とフィブリル部分に分割して、その面積比を求めた。
-Surface aperture ratio The image of the surface of the molded body photographed using a scanning electron microscope was determined using image analysis software (Win Roof (trade name) manufactured by Mitani Corporation).
More specifically, the obtained SEM image is recognized as a grayscale image, and the threshold value is manually adjusted by dividing the dark portion into an opening portion and the light portion as a fibril portion, and dividing into an opening portion and a fibril portion. The area ratio was obtained.

・ リン吸着量
リン酸三ナトリウム(NaPO・12HO)を蒸留水に溶解し、リン濃度9mg−P/L(Pはリン、Lはリットル)の液を作り、硫酸でpHを7に調整した液をモデル液、すなわち吸着原液とした。
多孔性成形体8mlを、カラム(内径10mm)に充填して、さきの吸着原液を240ml/hr(SV30)の速度で通水した。カラムからの流出液(処理液)を30分毎にサンプリングして、該処理水中のリン酸イオン濃度(リン濃度)を測定して、0.5mg−P/L(ppm)超過時までの通水量(吸着量 mg−P/L−R(Rは多孔性成形体である。))を求めた。リン酸イオン濃度測定は、HACH社製りん酸測定装置フォスファックス・コンパクト(商品名)を用いて測定した。
・ Phosphorus adsorption amount Trisodium phosphate (Na 3 PO 4 · 12H 2 O) is dissolved in distilled water to make a solution with a phosphorus concentration of 9 mg-P / L (P is phosphorus, L is liter), and the pH is adjusted with sulfuric acid. The liquid adjusted to 7 was used as a model liquid, that is, an adsorption stock solution.
8 ml of the porous molded body was packed in a column (inner diameter: 10 mm), and the previous adsorption stock solution was passed through at a rate of 240 ml / hr (SV30). The effluent (treatment solution) from the column is sampled every 30 minutes, the phosphate ion concentration (phosphorus concentration) in the treated water is measured, and the flow until 0.5 mg-P / L (ppm) is exceeded. The amount of water (adsorption amount mg-P / LR (R is a porous molded body)) was determined. The phosphate ion concentration was measured using a phosphoric acid measuring device Phosfax Compact (trade name) manufactured by HACH.

[実施例1]
ポリビニルピロリドン(PVP、BASFジャパン(株)、Luvitec K30 Powder(商品名))375gを、ジメチルスルホキシド(DMSO、関東化学(株))4125g中に溶解して均一な溶液を得た。該溶液4500gに対し、平均粒径30μmの酸化セリウム粉末(岩谷産業(株))2250gを加えて、直径1mmφのジルコニアボールを充填したビーズミル(SC100、三井鉱山(株))を用いて、30分間粉砕・混合処理を行い黄色のスラリーを得た。さらに、このスラリーにエチレンビニルアルコール共重合体(EVOH、日本合成化学工業(株)、ソアノールE3803(商品名))375gを、溶解槽中にて、60℃に加温して撹拌羽根を用いて撹拌・溶解し、均一なスラリー溶液を得た。
得られたポリマースラリーを40℃に加温し、側面に直径5mmのノズルを開けた円筒状回転容器の内部に供給し、この容器を回転させ、遠心力(15G)によりノズルから液滴を形成し、60℃の水からなる凝固浴槽中に吐出させ、ポリマースラリーを凝固させた。さらに、洗浄、分級を行い、平均粒径600μmの球状成形体を得た。
物性を表1に示した。

得られた成形体の表面及び割断面を走査型電子顕微鏡(SEM)を用いて観察した結果を図1〜4に示した。
図1及び図2から割断面全体を観察したところ、無機イオン吸着体は、均一に分散して担持されていることが確認された。
さらに、電子線マイクロアナライザ(EPMA)を用いて、無機イオン吸着体の構成元素であるセリウム(Ce)について、成形体内部の面分析を行った。解析の結果、相対累積X線強度比は1.9であった。
さらに図1からは、得られた成形体には表面付近に最大孔径層(ボイド層)を有していることが観察された。
図3からは、成形体は外表面にはスキン層が形成されておらず、開口していることが確認された。
また図4からは、フィブリル内部の空隙、及びフィブリル表面の開孔が確認され、さらに、そのフィブリル外表面およびフィブリル内部の空隙表面には無機イオン吸着体粉末が担持されている様子が観察された。
この多孔性成形体のリン吸着量は、5.7g−P/L−Rであった。
また、本成形体の水溶性高分子(ポリビニルピロリドン)の含有率は、0.1重量%であった。
[Example 1]
375 g of polyvinylpyrrolidone (PVP, BASF Japan K.K., Luvitec K30 Powder (trade name)) was dissolved in 4125 g of dimethyl sulfoxide (DMSO, Kanto Chemical Co., Inc.) to obtain a uniform solution. Using a bead mill (SC100, Mitsui Mining Co., Ltd.) filled with 2250 g of cerium oxide powder (Iwatani Sangyo Co., Ltd.) having an average particle size of 30 μm to 4500 g of the solution and filled with zirconia balls having a diameter of 1 mmφ for 30 minutes Grinding and mixing were performed to obtain a yellow slurry. Further, 375 g of an ethylene vinyl alcohol copolymer (EVOH, Nippon Synthetic Chemical Industry Co., Ltd., Soarnol E3803 (trade name)) was heated to 60 ° C. in a dissolving tank, and a stirring blade was used. The mixture was stirred and dissolved to obtain a uniform slurry solution.
The obtained polymer slurry is heated to 40 ° C., supplied to the inside of a cylindrical rotating container with a nozzle having a diameter of 5 mm on the side, and this container is rotated to form droplets from the nozzle by centrifugal force (15 G). And it was made to discharge in the coagulation bath which consists of 60 degreeC water, and the polymer slurry was coagulated. Furthermore, washing | cleaning and classification were performed and the spherical molded object with an average particle diameter of 600 micrometers was obtained.
The physical properties are shown in Table 1.

The result of having observed the surface and fractured surface of the obtained molded object using the scanning electron microscope (SEM) was shown to FIGS.
Observation of the entire fractured surface from FIGS. 1 and 2 confirmed that the inorganic ion adsorbent was uniformly dispersed and supported.
Furthermore, surface analysis inside the compact was performed for cerium (Ce), which is a constituent element of the inorganic ion adsorbent, using an electron beam microanalyzer (EPMA). As a result of the analysis, the relative cumulative X-ray intensity ratio was 1.9.
Further, from FIG. 1, it was observed that the obtained molded body had a maximum pore diameter layer (void layer) in the vicinity of the surface.
From FIG. 3, it was confirmed that the molded body had no skin layer formed on the outer surface and was open.
From FIG. 4, it was confirmed that voids inside the fibrils and pores on the surface of the fibrils were formed, and that the inorganic ion adsorbent powder was supported on the outer surface of the fibrils and the surface of the voids inside the fibrils. .
The amount of phosphorus adsorbed on this porous molded body was 5.7 g-P / LR.
Moreover, the content rate of the water-soluble polymer (polyvinylpyrrolidone) of this molded object was 0.1 weight%.

(試験例1)
実施例1と同じ方法で得たポリマースラリーを8時間静置して、沈殿の状態を観察した。容器底部に沈降物は観察されず、実施例1のポリマースラリーは安定であることが確認された。
[実施例2]
粉砕・混合処理時間を5分間にしたこと以外は実施例1と同様の方法で、平均粒径600μmの球状成形体を得た。
物性を表1に示した。
[実施例3]
直径0.5mmφのジルコニアボールを用いて、粉砕・混合処理を行うこと以外は実施例1と同様の方法で、平均粒径600μmの球状成形体を得た。
物性を表1に示した。
(Test Example 1)
The polymer slurry obtained by the same method as in Example 1 was allowed to stand for 8 hours, and the state of precipitation was observed. No sediment was observed at the bottom of the container, and it was confirmed that the polymer slurry of Example 1 was stable.
[Example 2]
A spherical molded body having an average particle diameter of 600 μm was obtained in the same manner as in Example 1 except that the pulverization / mixing time was 5 minutes.
The physical properties are shown in Table 1.
[Example 3]
A spherical molded body having an average particle diameter of 600 μm was obtained in the same manner as in Example 1 except that zirconia balls having a diameter of 0.5 mmφ were used for pulverization and mixing.
The physical properties are shown in Table 1.

(比較例1)
ビーズミルによる粉砕・混合を行わないで、代わりに、容量10Lの円筒容器中で撹拌羽根を用いて、300rpmの回転数で8時間混合処理して黄色のスラリーを得たこと以外は実施例1と同様の方法で多孔性成形体を得た。平均粒径は600μmであった。
物性を表1に示した。
得られた成形体の表面及び割断面を走査型電子顕微鏡(SEM)を用いて観察した結果を図5〜8に示した。
図5及び図6から割断面全体を観察したところ、一部の無機イオン吸着体は、二次凝集物を形成して担持されていることが確認された。
さらに、電子線マイクロアナライザ(EPMA)を用いて、無機イオン吸着体の構成元素であるセリウム(Ce)について、成形体内部の面分析を行った。解析の結果、相対累積X線強度比は10.5であった。
図7からは、成形体は外表面にはスキン層が形成されておらず、開口していることが確認された。また図8からは、フィブリル内部の空隙、及びフィブリル表面の開孔が確認され、さらに、そのフィブリル外表面およびフィブリル内部の空隙表面には無機イオン吸着体粉末が担持されている様子が観察された。
この多孔性成形体のリン吸着量は、4.6g−P/L−Rで実施例より少なかった。これは、担持されている無機イオン吸着体の一部は二次凝集物として担持されているため、リン酸イオンとの接触効率が悪く、その結果、リン吸着量が低いものと考えられる。
(Comparative Example 1)
Instead of grinding and mixing with a bead mill, instead of using a stirring blade in a cylindrical container having a capacity of 10 L, mixing was performed at 300 rpm for 8 hours to obtain a yellow slurry. A porous molded body was obtained in the same manner. The average particle size was 600 μm.
The physical properties are shown in Table 1.
The result of having observed the surface and the fractured surface of the obtained molded object using the scanning electron microscope (SEM) was shown to FIGS.
When the entire fractured surface was observed from FIGS. 5 and 6, it was confirmed that some inorganic ion adsorbents were supported by forming secondary aggregates.
Furthermore, surface analysis inside the compact was performed for cerium (Ce), which is a constituent element of the inorganic ion adsorbent, using an electron beam microanalyzer (EPMA). As a result of analysis, the relative cumulative X-ray intensity ratio was 10.5.
From FIG. 7, it was confirmed that the molded body had no skin layer formed on the outer surface and was open. Further, from FIG. 8, it was confirmed that voids inside the fibrils and pores on the fibril surface were observed, and that the inorganic ion adsorbent powder was supported on the outer surface of the fibrils and the surface of the voids inside the fibrils. .
The amount of phosphorus adsorbed by this porous molded body was 4.6 g-P / LR, which was smaller than in the examples. This is presumably because part of the supported inorganic ion adsorbent is supported as secondary aggregates, so that the contact efficiency with phosphate ions is poor, and as a result, the phosphorus adsorption amount is low.

(試験例2)
比較例1と同じ方法で得たポリマースラリーを8時間静置して、沈殿の状態を観察した。容器底部には沈降物が観察された。比較例1のポリマースラリーは安定性に劣ることが確認された。
(Test Example 2)
The polymer slurry obtained by the same method as in Comparative Example 1 was allowed to stand for 8 hours, and the state of precipitation was observed. A sediment was observed at the bottom of the container. It was confirmed that the polymer slurry of Comparative Example 1 was inferior in stability.

本発明の成形体は、スキン層が無く、表面の開口性に優れるため、成形体内部への対象物質の拡散が速い。また、担持されている無機イオン吸着体は二次凝集物が少ないので、対象物質との接触効率が極めて高い。よって、液体や気体の処理に用いる吸着剤及びろ過剤、脱臭剤、抗菌剤、吸湿剤、食品の鮮度保持剤、各種のクロマトグラフィー用担体、触媒等に好適である。   Since the molded article of the present invention has no skin layer and is excellent in surface openability, diffusion of the target substance into the molded article is fast. Moreover, since the supported inorganic ion adsorbent has few secondary aggregates, the contact efficiency with the target substance is extremely high. Therefore, it is suitable for adsorbents and filter agents, deodorizers, antibacterial agents, hygroscopic agents, food freshness-preserving agents, various chromatographic carriers, catalysts and the like used for liquid and gas treatment.

Claims (21)

有機高分子樹脂及び無機イオン吸着体を含んでなる多孔性の成形体であって、電子線マイクロアナライザ(EPMA)を用いて得られる、該多孔性の成形体に担持されている無機イオン吸着体を構成する成分元素の95%相対累積X線強度と5%相対累積X線強度の比(相対累積X線強度比)が1〜10となることを含む、上記多孔性成形体。   A porous molded body comprising an organic polymer resin and an inorganic ion adsorbent, which is obtained by using an electron beam microanalyzer (EPMA) and is supported on the porous molded body The said porous molded object including the ratio (relative cumulative X-ray intensity ratio) of 95% relative cumulative X-ray intensity and 5% relative cumulative X-ray intensity of the component elements constituting 1 to 10. 前記多孔性成形体が、連通孔を形成するフィブリルの内部に空隙を有し、かつ、該空隙の少なくとも一部はフィブリルの表面で開孔しており、該フィブリルの外表面及び内部の空隙表面に無機イオン吸着体が担持されている、請求項1に記載の多孔性成形体。   The porous molded body has voids inside the fibrils forming the communication holes, and at least a part of the voids are open at the surface of the fibrils, and the outer surface of the fibrils and the void surface inside the fibrils The porous molded body according to claim 1, wherein an inorganic ion adsorbent is supported on the porous molded body. 前記連通孔が、成形体表面付近に最大孔径層を有する、請求項1又は2に記載の多孔性成形体。   The porous molded body according to claim 1, wherein the communication hole has a maximum pore diameter layer near the surface of the molded body. 平均粒径が100〜2500μmである、請求項1〜3のいずれか一項に記載の多孔性成形体。   The porous molded object as described in any one of Claims 1-3 whose average particle diameter is 100-2500 micrometers. 前記有機高分子樹脂が、エチレンビニルアルコール共重合体(EVOH)、ポリアクリロニトリル(PAN)、ポリスルホン(PS)、及びポリフッ化ビニリデン(PVDF)からなる群から選ばれる一種以上を含んでなる、請求項1〜4のいずれか一項に記載の多孔性成形体。   The organic polymer resin comprises at least one selected from the group consisting of ethylene vinyl alcohol copolymer (EVOH), polyacrylonitrile (PAN), polysulfone (PS), and polyvinylidene fluoride (PVDF). The porous molded object as described in any one of 1-4. 前記無機イオン吸着体が、下記式(I)で表される金属酸化物を少なくとも一種を含有している、請求項1〜5のいずれか一項に記載の多孔性成形体。
MN・mHO・・・・・・(I)
(式中、xは0〜3、nは1〜4、mは0〜6であり、MおよびNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群から選ばれる金属元素であり、互いに異なる。)
The porous molded body according to any one of claims 1 to 5, wherein the inorganic ion adsorbent contains at least one metal oxide represented by the following formula (I).
MN x O n · mH 2 O ······ (I)
(Wherein x is 0 to 3, n is 1 to 4, m is 0 to 6, and M and N are Ti, Zr, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu. Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Si, Cr, Co, Ga, Fe, Mn, Ni, V, Ge, Nb and Ta are metal elements selected from the group Are different from each other.)
前記金属酸化物が、下記(a)〜(c)のいずれかの群から選ばれる1種又は2種以上の混合物である、請求項6に記載の多孔性成形体。
(a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン、及び水和酸化イットリウム
(b)チタン、ジルコニウム、スズ、セリウム、ランタン、及びイットリウムからなる群から選ばれる金属元素と、アルミニウム、珪素、及び鉄からなる群から選ばれる金属元素との複合金属酸化物
(c)活性アルミナ
The porous molded body according to claim 6, wherein the metal oxide is one or a mixture of two or more selected from the group consisting of any of the following (a) to (c).
(A) hydrated titanium oxide, hydrated zirconium oxide, hydrated tin oxide, hydrated cerium oxide, hydrated lanthanum oxide, and hydrated yttrium oxide (b) composed of titanium, zirconium, tin, cerium, lanthanum, and yttrium Composite metal oxide (c) activated alumina of a metal element selected from the group and a metal element selected from the group consisting of aluminum, silicon, and iron
前記無機イオン吸着体が、硫酸アルミニウム添着活性アルミナ、及び硫酸アルミニウム添着活性炭からなる群から選ばれる少なくとも一種を含んでなる、請求項1〜5のいずれか一項に記載の多孔性成形体。   The porous molded body according to any one of claims 1 to 5, wherein the inorganic ion adsorbent comprises at least one selected from the group consisting of aluminum sulfate-added activated alumina and aluminum sulfate-added activated carbon. 無機イオン吸着体の担持量が65〜95%である、請求項1〜8のいずれか一項に記載の多孔性成形体。   The porous molded body according to any one of claims 1 to 8, wherein the supported amount of the inorganic ion adsorbent is 65 to 95%. 前記フィブリルが、有機高分子樹脂、無機イオン吸着体、及び水溶性高分子を含んでなる、請求項2〜9のいずれか一項に記載の多孔性成形体。   The porous molded body according to any one of claims 2 to 9, wherein the fibril comprises an organic polymer resin, an inorganic ion adsorbent, and a water-soluble polymer. 前記水溶性高分子が合成高分子である、請求項10に記載の多孔性成形体。   The porous molded body according to claim 10, wherein the water-soluble polymer is a synthetic polymer. 前記水溶性高分子が、ポリビニルピロリドンである、請求項10又は11に記載の多孔性成形体。   The porous molded body according to claim 10 or 11, wherein the water-soluble polymer is polyvinylpyrrolidone. 前記水溶性高分子の含有量が0.001〜10%である、請求項10〜12のいずれか一項に記載の多孔性成形体。   The porous molded object as described in any one of Claims 10-12 whose content of the said water-soluble polymer is 0.001 to 10%. 請求項1〜13のいずれか一項に記載の多孔性成形体を充填しているカラム。   A column packed with the porous molded body according to any one of claims 1 to 13. 有機高分子樹脂及び無機イオン吸着体を含んでなる多孔性成形体の製造方法であって、(1)少なくとも有機高分子樹脂の良溶媒と無機イオン吸着体と水溶性高分子の3種を粉砕・混合手段を用いて粉砕・混合してスラリーを得る粉砕・混合工程、(2)工程(1)で得たスラリーに有機高分子樹脂を溶解する溶解工程、(3)工程(2)で得たスラリーを成形し、貧溶媒中で凝固させる成形工程を含んでなる、多孔性成形体の製造方法。   A method for producing a porous molded article comprising an organic polymer resin and an inorganic ion adsorbent, (1) pulverizing at least three types of a good solvent for the organic polymer resin, an inorganic ion adsorbent, and a water-soluble polymer・ Crushing / mixing step to obtain slurry by pulverizing / mixing using mixing means, (2) dissolving step of dissolving organic polymer resin in slurry obtained in step (1), (3) obtained in step (2) A method for producing a porous molded body, comprising a molding step in which a slurry is molded and solidified in a poor solvent. 前記粉砕・混合手段が、媒体撹拌型ミルである、請求項15に記載の方法。   The method according to claim 15, wherein the pulverizing and mixing means is a medium stirring mill. 前記有機高分子樹脂の良溶媒が、ジメチルスルホキシド(DMSO)、N−メチル−2ピロリドン(NMP)、ジメチルアセトアミド(DMAC)、ジメチルホルムアミド(DMF)からなる群から選ばれる1種以上である、請求項15又は16に記載の方法。   The good solvent of the organic polymer resin is at least one selected from the group consisting of dimethyl sulfoxide (DMSO), N-methyl-2pyrrolidone (NMP), dimethylacetamide (DMAC), and dimethylformamide (DMF). Item 15. The method according to Item 15 or 16. 貧溶媒が、水、又は、有機高分子樹脂の良溶媒と水の混合物である、請求項15〜17のいずれか一項に記載の方法。   The method according to any one of claims 15 to 17, wherein the poor solvent is water or a mixture of a good solvent for organic polymer resin and water. 前記有機高分子樹脂の良溶媒と水の混合物の混合比が0〜40%である、請求項15〜18のいずれか一項に記載の方法。   The method according to any one of claims 15 to 18, wherein a mixing ratio of a good solvent of the organic polymer resin and a mixture of water is 0 to 40%. 成形の方法が、回転する容器の側面に設けたノズルから、有機高分子樹脂、該有機高分子樹脂の良溶媒、水溶性高分子、無機イオン吸着体を混合したスラリーを飛散させて液滴を形成させることを含む、請求項15〜19のいずれか一項に記載の方法。   The molding method is to spray droplets from a nozzle provided on the side of a rotating container by dispersing slurry containing an organic polymer resin, a good solvent for the organic polymer resin, a water-soluble polymer, and an inorganic ion adsorbent. 20. A method according to any one of claims 15 to 19, comprising forming. 請求項1〜13のいずれか一項に記載の多孔性成形体を含んでなる、多孔性吸着体。   A porous adsorbent comprising the porous molded body according to any one of claims 1 to 13.
JP2009106067A 2008-05-12 2009-04-24 High adsorption performance porous molded body and method for producing the same Expired - Fee Related JP5507112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009106067A JP5507112B2 (en) 2008-05-12 2009-04-24 High adsorption performance porous molded body and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008124449 2008-05-12
JP2008124449 2008-05-12
JP2009106067A JP5507112B2 (en) 2008-05-12 2009-04-24 High adsorption performance porous molded body and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014031746A Division JP5813150B2 (en) 2008-05-12 2014-02-21 High adsorption performance porous molded body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009297707A true JP2009297707A (en) 2009-12-24
JP5507112B2 JP5507112B2 (en) 2014-05-28

Family

ID=41362017

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009106067A Expired - Fee Related JP5507112B2 (en) 2008-05-12 2009-04-24 High adsorption performance porous molded body and method for producing the same
JP2014031746A Expired - Fee Related JP5813150B2 (en) 2008-05-12 2014-02-21 High adsorption performance porous molded body and method for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014031746A Expired - Fee Related JP5813150B2 (en) 2008-05-12 2014-02-21 High adsorption performance porous molded body and method for producing the same

Country Status (2)

Country Link
JP (2) JP5507112B2 (en)
CN (1) CN101579620B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195787A (en) * 2013-03-29 2014-10-16 旭化成ケミカルズ株式会社 Inorganic ion adsorbent, porous molded product and method for producing them
CN104525090A (en) * 2014-12-01 2015-04-22 四川大学 Absorbent used in sewage phosphorus removal, and preparation method thereof
CN105312032A (en) * 2014-06-20 2016-02-10 广州博能能源科技有限公司 Deodorant and preparation method of same
JP2017039874A (en) * 2015-08-21 2017-02-23 学校法人 中央大学 Porous film and manufacturing method therefor
CN106669672A (en) * 2016-12-27 2017-05-17 环境保护部华南环境科学研究所 Activated carbon catalyst for sulfur dioxide recovery and preparation method of activated carbon catalyst
WO2017082420A1 (en) * 2015-11-11 2017-05-18 旭化成株式会社 Porous molded article, and manufacturing method and manufacturing device for porous molded article
JP2018012090A (en) * 2016-07-22 2018-01-25 旭化成株式会社 Adsorbent
KR20180063083A (en) 2015-09-29 2018-06-11 도레이 카부시키가이샤 The porous formed article
WO2018143269A1 (en) * 2017-01-31 2018-08-09 三井金属鉱業株式会社 Molded body
KR20190013255A (en) * 2017-08-01 2019-02-11 재단법인 철원플라즈마 산업기술연구원 Composite adsorbent media for removing the nitrogen and phosphorus compounds and preparing method for the same
WO2019135371A1 (en) 2018-01-04 2019-07-11 旭化成株式会社 Porous molding
JP2019118880A (en) * 2018-01-04 2019-07-22 旭化成株式会社 Porous molding
JP2019118876A (en) * 2018-01-04 2019-07-22 旭化成株式会社 Porous molding
JP2019118881A (en) * 2018-01-04 2019-07-22 旭化成株式会社 Porous molding
JP2019118877A (en) * 2018-01-04 2019-07-22 旭化成株式会社 Porous molding
JP2019118878A (en) * 2018-01-04 2019-07-22 旭化成株式会社 Porous molding
JP2019118879A (en) * 2018-01-04 2019-07-22 旭化成株式会社 Porous molding
CN112058233A (en) * 2020-09-22 2020-12-11 东北农业大学 Preparation method and application of magnetic porous biochar modified by lanthanum hydroxide

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2540160B (en) * 2015-07-07 2019-08-28 Nanoscape Ag Improved material for rapid gas sorption in loudspeakers
US9663723B2 (en) 2015-08-26 2017-05-30 King Fahd University Of Petroleum And Minerals Method for removing sulfur compounds from fuel using an adsorbent
JP6549018B2 (en) * 2015-11-11 2019-07-24 旭化成メディカル株式会社 Adsorbent of cytokine and high mobility group box 1, and blood processing system
WO2017135068A1 (en) * 2016-02-03 2017-08-10 ゲステル株式会社 Element for extracting organic component
CN107899558B (en) * 2017-11-23 2020-12-18 曼哈格检测技术股份有限公司 Material for water quality detection and preparation method thereof
CN108404857A (en) * 2018-03-27 2018-08-17 深圳科尔新材料科技有限公司 A kind of the porous ceramic grain sorbing material and preparation method of load hydrated metal oxide
EP3698750A1 (en) * 2019-02-21 2020-08-26 DENTSPLY SIRONA Inc. Dental device for ridge preservation and promotion of jaw bone regeneration in an extraction site
KR102342317B1 (en) * 2020-02-25 2021-12-24 인오켐 주식회사 Fluorine adsorption material, preparing method for the same and treatment method of waste-water having fluorine ion using the same
CN112871133A (en) * 2020-04-21 2021-06-01 中国科学院大连化学物理研究所 Preparation method and application of macroporous inorganic functional material for adsorbing inactivated viruses
CN112058245B (en) * 2020-09-24 2023-06-09 内蒙古东源环保科技股份有限公司 Organic polymer adsorbent for sewage treatment and preparation method thereof
CN115400741B (en) * 2022-08-26 2023-11-24 核工业北京化工冶金研究院 Crosslinked polyacrylonitrile resin, preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186419A (en) * 1984-10-05 1986-05-01 Mitsui Alum Kogyo Kk Preparation of activated alumina particle
JPH02102734A (en) * 1988-10-07 1990-04-16 Miyoshi Oil & Fat Co Ltd Adsorbent and production thereof
WO2005056175A1 (en) * 2003-12-15 2005-06-23 Asahi Kasei Chemicals Corporation Porous formed article and method for production thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD249703A1 (en) * 1986-05-26 1987-09-16 Bitterfeld Chemie PROCESS FOR THE PREPARATION OF HYDROPHILIC HIGHPOROESIS ADSORBER RESINS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186419A (en) * 1984-10-05 1986-05-01 Mitsui Alum Kogyo Kk Preparation of activated alumina particle
JPH02102734A (en) * 1988-10-07 1990-04-16 Miyoshi Oil & Fat Co Ltd Adsorbent and production thereof
WO2005056175A1 (en) * 2003-12-15 2005-06-23 Asahi Kasei Chemicals Corporation Porous formed article and method for production thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195787A (en) * 2013-03-29 2014-10-16 旭化成ケミカルズ株式会社 Inorganic ion adsorbent, porous molded product and method for producing them
CN105312032A (en) * 2014-06-20 2016-02-10 广州博能能源科技有限公司 Deodorant and preparation method of same
CN104525090A (en) * 2014-12-01 2015-04-22 四川大学 Absorbent used in sewage phosphorus removal, and preparation method thereof
JP2017039874A (en) * 2015-08-21 2017-02-23 学校法人 中央大学 Porous film and manufacturing method therefor
KR20180063083A (en) 2015-09-29 2018-06-11 도레이 카부시키가이샤 The porous formed article
JPWO2017082420A1 (en) * 2015-11-11 2018-08-09 旭化成株式会社 Porous molded body, and method and apparatus for manufacturing porous molded body
WO2017082420A1 (en) * 2015-11-11 2017-05-18 旭化成株式会社 Porous molded article, and manufacturing method and manufacturing device for porous molded article
CN108348893A (en) * 2015-11-11 2018-07-31 旭化成株式会社 The manufacturing method and manufacturing device of porosity formed body and porosity formed body
US11224854B2 (en) 2015-11-11 2022-01-18 Asahi Kasei Kabushiki Kaisha Porous formed article, method for producing porous formed article, and production apparatus for porous formed article
CN108348893B (en) * 2015-11-11 2021-12-24 旭化成株式会社 Porous molded body, and method and apparatus for producing porous molded body
JP2018012090A (en) * 2016-07-22 2018-01-25 旭化成株式会社 Adsorbent
CN106669672A (en) * 2016-12-27 2017-05-17 环境保护部华南环境科学研究所 Activated carbon catalyst for sulfur dioxide recovery and preparation method of activated carbon catalyst
US11123709B2 (en) 2017-01-31 2021-09-21 Mitsui Mining & Smelting Co., Ltd. Molded article
WO2018143269A1 (en) * 2017-01-31 2018-08-09 三井金属鉱業株式会社 Molded body
JPWO2018143269A1 (en) * 2017-01-31 2019-02-07 三井金属鉱業株式会社 Compact
KR20190013255A (en) * 2017-08-01 2019-02-11 재단법인 철원플라즈마 산업기술연구원 Composite adsorbent media for removing the nitrogen and phosphorus compounds and preparing method for the same
KR101960340B1 (en) * 2017-08-01 2019-03-20 재단법인 철원플라즈마 산업기술연구원 Composite adsorbent media for removing the nitrogen and phosphorus compounds and preparing method for the same
JP2019118876A (en) * 2018-01-04 2019-07-22 旭化成株式会社 Porous molding
JP2019118881A (en) * 2018-01-04 2019-07-22 旭化成株式会社 Porous molding
JP2019118877A (en) * 2018-01-04 2019-07-22 旭化成株式会社 Porous molding
JP2019118878A (en) * 2018-01-04 2019-07-22 旭化成株式会社 Porous molding
JP2019118879A (en) * 2018-01-04 2019-07-22 旭化成株式会社 Porous molding
JP2019118880A (en) * 2018-01-04 2019-07-22 旭化成株式会社 Porous molding
WO2019135371A1 (en) 2018-01-04 2019-07-11 旭化成株式会社 Porous molding
US11865509B2 (en) 2018-01-04 2024-01-09 Asahi Kasei Kabushiki Kaisha Porous molding
CN112058233A (en) * 2020-09-22 2020-12-11 东北农业大学 Preparation method and application of magnetic porous biochar modified by lanthanum hydroxide

Also Published As

Publication number Publication date
JP5813150B2 (en) 2015-11-17
JP5507112B2 (en) 2014-05-28
CN101579620A (en) 2009-11-18
CN101579620B (en) 2012-09-19
JP2014113592A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP5813150B2 (en) High adsorption performance porous molded body and method for producing the same
JP6573678B2 (en) Porous molded body, and method and apparatus for manufacturing porous molded body
JP5622745B2 (en) Porous molded body and method for producing the same
JP4671419B2 (en) Porous molded body and method for producing the same
JP4646301B2 (en) Porous molded body and method for producing the same
JP2006297382A (en) Porous molding with high adsorption capacity and its production method
JP5062973B2 (en) Water treatment apparatus and method
JP5062971B2 (en) Water treatment apparatus and water treatment method
JP6093223B2 (en) Inorganic ion adsorbent and porous molded body
JP6694345B2 (en) Adsorbent
WO2019135371A1 (en) Porous molding
JP2006346544A (en) Apparatus and method for removing ion
JP6716382B2 (en) Iodic acid and/or antimony adsorbent
JP6694346B2 (en) Iodic acid and / or antimony adsorbent
JP2019118877A (en) Porous molding
JP2019118880A (en) Porous molding
JP2020099866A (en) Porous molded body
JP2019118881A (en) Porous molding
JP2019118879A (en) Porous molding
JP2021041378A (en) Porous molding
JP2015192944A (en) Washing water treatment in electrodeposition chemical conversion process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5507112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees