JP2009296977A - Method for producing japanese red pine young seedling infected with mycorrhizal fungus - Google Patents

Method for producing japanese red pine young seedling infected with mycorrhizal fungus Download PDF

Info

Publication number
JP2009296977A
JP2009296977A JP2008157381A JP2008157381A JP2009296977A JP 2009296977 A JP2009296977 A JP 2009296977A JP 2008157381 A JP2008157381 A JP 2008157381A JP 2008157381 A JP2008157381 A JP 2008157381A JP 2009296977 A JP2009296977 A JP 2009296977A
Authority
JP
Japan
Prior art keywords
red pine
mycorrhizal
fungus
infected
seedlings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008157381A
Other languages
Japanese (ja)
Inventor
Ichiro Yokota
一郎 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokken Co Ltd
Original Assignee
Hokken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokken Co Ltd filed Critical Hokken Co Ltd
Priority to JP2008157381A priority Critical patent/JP2009296977A/en
Publication of JP2009296977A publication Critical patent/JP2009296977A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mushroom Cultivation (AREA)
  • Cultivation Of Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing infected seedlings in large volume by an easy way in a short period by using a natural infection route of mycorrhizal fungi to Japanese red pine (Pinus densiflora) young seedlings and forming mycorrhizae in an oligotrophic medium. <P>SOLUTION: This method for producing the Japanese red pine young seedlings infected with mycorrhizal fungi includes: (1) a process of sowing Japanese red pine seeds on an oligotrophic medium which can support the root of Japanese red pine young seedlings, has water retention, and contains nutrient as little as possible; (2) a process of inoculating mycorrhizal fungi to the vicinity of the root of Japanese red pine young seedlings after at least sprouting from the Japanese red pine seeds; (3) a process of covering the first and second roots of Japanese red pine young seedlings when hyphae of the inoculated mycorrhizal fungi extend, and (4) a process of transplanting and acclimating the Japanese red pine young seedlings infected with mycorrhizal fungi. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、滅菌した容器にアカマツの種子を無菌播種し、菌根菌のマツタケ、コウタケ、チチタケ等の菌根菌の種菌を接種、感染させて菌根菌感染のアカマツ幼苗を生産する方法に関する。   The present invention relates to a method for producing a red pine seedling infected with mycorrhizal fungi by aseptically sowing seeds of red pine in a sterilized container, inoculating and infecting mycorrhizal fungi such as matsutake, kotake, and chichitake. .

従来、菌根菌に属するマツタケに関し、多くの研究者が人工栽培を手掛けているが、未だに成功例がない。この様な人工栽培を困難にさせる第一の理由は、マツタケ菌糸がアカマツの根に菌根を作りアカマツの光合成産物である糖類を菌根を通して直接利用するという特殊な栄養の取り方をしていること、第二はマツタケとアカマツとの共生関係の仕組みがまだ完全に解明できていないこと、第三はマツタケ菌の生育が極めて緩慢なことによる。 Conventionally, many researchers have engaged in artificial cultivation of Matsutake, which belongs to mycorrhizal fungi, but there are no successful examples yet. The first reason for making this kind of artificial cultivation difficult is that matsutake mycelia produce mycorrhiza at the roots of Pinus densiflora and use the sugars that are the photosynthetic products of Pinus densiflora directly through the mycorrhiza. Second, the mechanism of the symbiotic relationship between matsutake and red pine has not been fully elucidated, and the third is that the growth of matsutake fungi is extremely slow.

ところで、マツタケの生産量は全国的に激減する傾向にあり、その原因は1960年代から始まった燃料革命による薪炭生産量の減少でアカマツ林が放置されるようになり、それに伴うマツクイムシによるマツの被害、酸性雨などの大気汚染、地球温暖化等の要因が複合的に重なり、林内の土壌理化学性、土壌微生物相がマツタケ菌の生息する環境に不適なものになった為と思料される。 By the way, the production of matsutake tends to drastically decrease nationwide, and the cause of this is that red pine forests have been neglected due to the reduction in the production of charcoal due to the fuel revolution that began in the 1960s. It is thought that factors such as acid pollution, air pollution, and global warming overlapped, making the soil physicochemical properties and soil microflora unsuitable for the environment where matsutake fungi inhabit.

一方、無菌条件下でアカマツ無菌実生苗と菌根菌の菌糸を用いた混合培養によってマツタケ菌感染苗を作出した事例がいくつか報告されている。
(1)液体培地に浸漬したバーミキュライトを培地とする植物培養用フラスコでマツタケ菌糸体とアカマツ苗を混合培養して菌根を合成した(非特許文献1)。
(2)マツタケ菌糸のコロニーを無菌的に破砕し、得られた菌糸体を含む培養液にアカマツの根を無菌的に浸漬して菌根を合成した(特許文献1)。
(3)試験管の寒天培地へ樹木の無菌幼苗を移植し、ショウロ菌糸を接種して取り出し、大型ビーカーに入れた滅菌済み海砂に移植して菌根を合成した(非特許文献2)。
(4)液体培養したマツタケ菌の粉砕菌糸体をバーミキュライトとミズゴケ混合培地で培養し、アカマツ無菌実生を移植して菌根を合成した。(特許文献3)
On the other hand, several cases have been reported in which pine mushroom-infected seedlings were produced by a mixed culture using a red pine aseptic seedling and mycorrhizal mycelium under aseptic conditions.
(1) Mycorrhiza was synthesized by mixing and cultivating matsutake mycelium and red pine seedlings in a plant culture flask using vermiculite immersed in a liquid medium as a medium (Non-patent Document 1).
(2) The matsutake mycelium colony was aseptically crushed, and the roots of Pinus densiflora were aseptically immersed in a culture solution containing the obtained mycelium (Patent Document 1).
(3) Sterile seedlings of trees were transplanted to an agar medium in a test tube, inoculated with ginger mycelia, and transplanted into sterilized sea sand placed in a large beaker to synthesize mycorrhiza (Non-Patent Document 2).
(4) The pulverized mycelium of matsutake fungus that had been cultured in liquid was cultured in a mixed medium of vermiculite and sphagnum moss, and aseptic seedlings of Pinus densiflora were transplanted to synthesize mycorrhizae. (Patent Document 3)

しかし、上記培養法はいずれも、アカマツ苗の育成と菌根菌の培養を別々の容器で行なった後、培養菌糸が充満する培地へアカマツ無菌苗を移植あるいはアカマツ苗へ培養菌糸を人為的に直接付着させて菌根を合成させる手法であり、特殊な培養容器や煩雑な操作を伴い作業効率が悪く、コンタミの危険性や、順化後の厳しい自然環境の下で共生関係が維持されて菌根が定着し、シロとなって成長するかどうかが不明確で、実用に耐えうる感染苗生産方法とは言い難い。
特許第3263730号公報(マツタケ菌根の迅速人工合成法)。 特開2004−129653号公報(マツタケ菌と無菌発芽苗の共培養によるマツタケ菌感染マツ苗の形成方法)。 (衛藤慎也(1990)菌根合成によるマツタケ菌感染苗の育成 広島県林試研報、24、1〜6)。 2004 玉田克志 宮城県林業試験場業務報告37号10−11
However, in any of the above-mentioned culture methods, after raising red pine seedlings and cultivating mycorrhizal fungi in separate containers, transplant the sterile red pine seedlings to a medium filled with cultured mycelia or artificially transfer the cultured mycelium to red pine seedlings. It is a method to synthesize mycorrhiza by directly attaching, and it is inefficient due to special culture container and complicated operation, and symbiotic relationship is maintained under the risk of contamination and harsh natural environment after acclimatization It is unclear whether mycorrhiza colonizes and grows as white, and it is difficult to say that it is an infectious seedling production method that can withstand practical use.
Japanese Patent No. 3263730 (rapid artificial synthesis of matsutake mycorrhiza). JP-A-2004-129653 (Method for forming pine seedlings infected with matsutake by co-culture of matsutake fungi and sterile germinated seedlings). (Shinya Eto (1990) Raising matsutake fungus seedlings by mycorrhiza synthesis, Hiroshima Prefectural Forest Research Institute, 24, 1-6). 2004 Katsushi Tamada Miyagi Forestry Experiment Station Business Report 37 No. 10-11

そこで本発明は上記実情に鑑みてなされたもので、やせた土地で栄養源を求めて菌糸を伸ばして宿主の根圏に菌糸伸長域を拡大させるという菌根菌のアカマツの根への自然感染経路に着目し、貧栄養培地等の一定条件下で菌根を形成させ、簡便な手法で短期間に感染苗を大量生産する方法を見出し、本発明を完成させたものである。   Accordingly, the present invention has been made in view of the above circumstances, and is a natural infection route to the red pine root of mycorrhizal fungi that expands the mycelium extension area in the root rhizosphere of the host by seeking a nutrient source in thin land The present invention has been completed by finding a method for mass-producing infected seedlings in a short period of time by forming mycorrhiza under certain conditions such as an oligotrophic medium, etc.

上記目的を達成するために、請求項1記載の菌根菌感染アカマツ幼苗の生産方法は、(1)アカマツ幼苗の根を支持可能で且つ保水性を備えた可及的に栄養分を含まない貧栄養培地に、アカマツ種子を播種する工程と、(2)少なくとも該アカマツ種子が発芽した後に、該アカマツ幼苗の根元付近に菌根菌を接種する工程と、(3)該接種した菌根菌の菌糸が伸長してアカマツ幼苗の一次根及び二次根を覆う工程と、(4)該菌根菌が感染したアカマツ幼苗を移植して順化させる工程と、を備えたことを特徴とする。
請求項2記載の菌根菌感染アカマツ幼苗の生産方法は、貧栄養培地が、ゲル状の物質等であり、請求項3記載の菌根菌感染アカマツ幼苗の生産方法は該ゲル状の物質がジェランガムであることを特徴とする。
請求項4記載の菌根菌感染アカマツ幼苗の生産方法は、菌根菌が、マツタケ菌、コウタケ菌、チチタケ菌のいずれかであることを特徴とする。
請求項5記載の菌根菌感染アカマツ幼苗の生産方法は、菌根菌が、麦芽抽出物、酵母抽出物及びペプトンを含んだ培地で継代培養された菌であることを特徴とする。
請求項6載の菌根菌感染アカマツ幼苗の根元付近に接種する菌根菌の生産方法は、菌根菌が、デンプンを含んだ穀物種子と多孔性を有する細粒とを混合させた培地で培養したものであることを特徴とする。
In order to achieve the above object, the method for producing a pine seedling infected with mycorrhizal fungus according to claim 1 comprises: (1) a poorly nutrient-free plant that can support the roots of red pine seedling and has water retention. Seeding red pine seeds in a nutrient medium; (2) inoculating mycorrhizal fungi near the root of the red pine seedling after at least germination of the red pine seeds; and (3) And a step of covering the primary and secondary roots of the red pine seedling by extending the mycelium, and (4) a step of transplanting and acclimatizing the red pine seedling infected with the mycorrhizal fungus.
The method for producing a mycorrhizal fungus-infected red pine seedling according to claim 2 is such that the oligotrophic medium is a gel-like substance, and the method for producing a mycorrhizal-infected red pine seedling is according to claim 3 wherein the gel-like substance is It is a gellan gum.
The method for producing a mycorrhizal-infected red pine seedling according to claim 4 is characterized in that the mycorrhizal fungus is any one of matsutake fungus, mushroom fungus, and tititake fungus.
The method for producing a mycorrhizal-infected red pine seedling according to claim 5 is characterized in that the mycorrhizal fungus is a fungus subcultured in a medium containing a malt extract, a yeast extract and peptone.
The method for producing mycorrhizal fungi inoculated in the vicinity of the root of a mycorrhizal-infected red pine seedling according to claim 6, wherein the mycorrhizal fungus is a medium obtained by mixing cereal seeds containing starch and porous fine particles. It is characterized by being cultured.

少なくともアカマツ種子から発芽した後に該アカマツ幼苗の根元付近にマツタケ菌等の菌根菌が接種されると、該菌根菌は発芽したアカマツ幼苗の1次根及び2次根へと下降する。
その過程にあって、その培地がアカマツ幼苗の根を支持可能で且つ保水性を備えた可及的に栄養分を含まない貧栄養培地であり、マツタケ菌等の菌根菌は、本来貧栄養に耐え得る性状を備えるので、栄養源を求めて菌糸を伸ばし、上記1次根及び2次根を経て、アカマツ幼苗の光合成で糖類等の栄養を蓄えた根へと至り、菌糸伸長域を拡大して菌根形成を行なう。
このとき、貧栄養培地を、ゲル状物質(例えばジェランガム)とすれば、アカマツ幼苗の根を支持可能で且つ保水性を備えたものとすることができ、透明度が高い状態で発芽、1次根及び2次根の伸長、菌根菌の感染を目視することができる。
またこの際、当該マツタケ菌、コウタケ菌、チチタケ菌等の菌根菌が、麦芽抽出物及、酵母抽出物及びペプトンを含んだ培地で培養されたものであると、生育旺盛な活力のある菌糸となり、より貧栄養に耐え得る性状を備えたものとなり、菌根菌の感染率が高まり、より多くの感染苗を得ることができる。
同時に、菌根菌を、オオムギ等のデンプンを含んだ穀物種子と軽石、ゼオライト、大谷石等の多孔性を有する細粒とを混合させた培地で培養すると、菌根菌に十分な酸素を供給することが出来るので生育旺盛で活力のある種菌となり、より貧栄養に耐え得る性状を備えたものとなる。
こうした結果、本発明は、特別な培養装置や道具類、複雑な作業を必要とせず、確実にマツタケ菌等の菌根菌の感染したアカマツ幼苗を量産することが可能となる。
When mycorrhizal fungi such as matsutake fungus are inoculated in the vicinity of the roots of the red pine seedlings after germination from at least red pine seeds, the mycorrhizal fungi descend to the primary and secondary roots of the germinated red pine seedlings.
In that process, the medium is an oligotrophic medium that can support the roots of Japanese red pine seedlings and has water retention, and contains no nutrients as much as possible. Since it has the characteristics that it can withstand, it expands the mycelia by seeking the nutrient source, extending the hyphae, passing through the primary roots and secondary roots to the roots that store sugars and other nutrients by photosynthesis of red pine seedlings. To form mycorrhiza.
At this time, if the oligotrophic medium is a gel-like substance (eg gellan gum), it can support the roots of red pine seedlings and have water retention, germinate in a highly transparent state, and primary roots. And secondary root elongation and mycorrhizal fungal infection can be visually observed.
At this time, if the mycorrhizal fungi such as matsutake fungus, mushroom fungus, and tititake fungus are cultured in a medium containing malt extract, yeast extract and peptone, vigorous hyphae with vigorous growth Thus, it has a property capable of withstanding poor nutrition, and the infection rate of mycorrhizal fungi is increased, so that more infected seedlings can be obtained.
At the same time, when mycorrhizal fungi are cultured in a medium that is mixed with grain seeds containing starch such as barley and porous fine particles such as pumice, zeolite, and Otani stone, sufficient oxygen is supplied to mycorrhizal fungi Therefore, it becomes a vigorous and vigorous inoculum, and has properties that can withstand poor nutrition.
As a result, the present invention does not require special culture devices, tools, or complicated operations, and can reliably mass-produce pine seedlings infected with mycorrhizal fungi such as matsutake fungi.

本発明は、アカマツの種子を無菌発芽させた幼苗に、生育旺盛で活力のあるマツタケ種菌を接種して菌根菌の自然感染経路を利用して短期間に確実にマツタケ菌感染苗を得るもので、その具体的な実施の形態を生産過程の順に従い、図および表に基づいて説明する。   The present invention inoculates seedlings of germinated red pine seeds with vigorous and vigorous matsutake seedlings to obtain matsutake fungus-infected seedlings in a short period of time using the natural infection route of mycorrhizal fungi Then, the specific embodiment will be described based on the order of the production process and based on the drawings and tables.

図1における第1系列から説明する。
先ず、図1における第1系列を説明すると、アカマツの種子からアカマツ幼苗を育成のために、アカマツ幼苗の根を支持可能で且つ保水性を備えた可及的に栄養分を含まない貧栄養培地、例えば透明度の高いゲル状培地・ジェランガムを準備し固化する工程とする。
ここで言う貧栄養培地とは、アカマツ幼苗の根を支持可能で且つ保水性を備えた性質を有するが、それ自身はできる限り栄養分を含まない培地をいい、培地基質以外の新たな栄養分を添加することなく、且つ、それ自身もできる限り無機及び有機の植物の成長を促す栄養分を含まない培地を指す。例えば、透明度の高いゲル状の素ジェランガムが挙げられる。しかし、該貧栄養培地は、ジェランガムに限定されるものではない。
ここで、上記貧栄養培地に着目したのは、アカマツの種子は自らが持つ胚乳の栄養分により発芽、根を出し続いて胚軸が伸びて茎葉が展開するが、このアカマツ種子の生育過程において、栄養分を含んだ培地では種子の発芽率、根の発育とも良好でない。そこで、やせた土地で栄養源を求めて菌糸を伸ばして菌糸伸長域を拡大させるという菌根菌の自然感染経路に着目したもので、成長するアカマツの幼苗を支持する機能と保水性を有する培地に成り得る透明度の高いゲル状培地、素ジェランガムを採用した。
具体的には、耐熱容器を準備してイオン交換水1000mlを入れて15gのジェランガムを少量づつ攪拌しながら添加して加熱溶解、完全に溶解したのを確認し、該溶解液10mlをφ18mmの試験管に分注する。その後、該試験管の口部をアルミホイルまたはシリコン栓で蓋をして1.2気圧120℃、15分オートクレーブし、冷却して貧栄養で半透明なゲル、素ジェランガム培地を作成する。
The first series in FIG. 1 will be described.
First, the first series in FIG. 1 will be described. In order to grow red pine seedlings from red pine seeds, an oligotrophic medium that can support the roots of red pine seedlings and has water retention as much as possible and does not contain nutrients. For example, it is set as the process which prepares and solidifies a gel-like culture medium and gellan gum with high transparency.
The oligotrophic medium here refers to a medium that can support the roots of Japanese red pine seedlings and has water retention, but itself contains no nutrients as much as possible, and adds new nutrients other than the medium substrate. And a nutrient-free medium that itself promotes the growth of inorganic and organic plants as much as possible. For example, gel-like raw gellan gum with high transparency can be mentioned. However, the oligotrophic medium is not limited to gellan gum.
Here, attention was paid to the above-mentioned oligotrophic medium. The seeds of Pinus densiflora germinate by the nutrients of their own endosperm, and then the roots grow and the foliage develops. In a medium containing nutrients, seed germination rate and root growth are not good. Therefore, we focused on the natural infection route of mycorrhizal fungi by expanding mycelium by seeking nutrients in thin land and expanding the hyphal elongation area. A gel medium with high transparency that can be formed was used.
Specifically, a heat-resistant container was prepared, 1000 ml of ion-exchanged water was added, 15 g of gellan gum was added while stirring little by little, and it was confirmed that the solution was dissolved by heating and completely dissolved. Dispense into tubes. Thereafter, the mouth of the test tube is covered with aluminum foil or a silicon stopper, autoclaved at 1.2 atm. 120 ° C. for 15 minutes, and cooled to prepare an oligotrophic, translucent gel and elementary gellan gum medium.

次に、図1に示す如く、前記滅菌したジェランガムを入れた試験管にアカマツ種子を播種し、無菌アカマツ幼苗を育成する。
図1は試験管1に貧栄養で透明度の高いゲル状の素ジェランガム培地2の表面に、アカマツ種子3を1粒播種した状態を示す。該アカマツ種子3の種皮は真菌類、バクテリアなどの雑菌で強く付着汚染されており、エチルアルコールで予備殺菌後、次亜塩素酸ナトリウムなどの塩素系殺菌剤で殺菌し、滅菌水で数回ゆすいで播種する。その後、21〜25℃、12時間照明の培養室で培養すると該アカマツ種子は自らが持つ胚乳の栄養分により2週間で発芽し、次の図2、図3において、ジェランガム培地2の表面からアカマツの種子は自らが持つ胚乳の栄養分により発芽、根を出し続いて胚軸が伸びて茎葉が展開し、無菌のアカマツ幼苗4が生育する。
Next, as shown in FIG. 1, red pine seeds are sown in a test tube containing the sterilized gellan gum to grow sterile red pine seedlings.
FIG. 1 shows a state in which a single red pine seed 3 is sown in a test tube 1 on the surface of a gel-like raw gellan gum medium 2 having poor nutrition and high transparency. The seed coat of the Pinus densiflora seed 3 is strongly adhered and contaminated with various fungi such as fungi and bacteria, sterilized with ethyl alcohol, sterilized with a chlorine-based disinfectant such as sodium hypochlorite, and rinsed several times with sterilized water. Sow. After that, when cultivated in a culture room at 21 to 25 ° C. for 12 hours, the red pine seeds germinate in two weeks due to the nutrients of the endosperm that they own. In FIGS. The seed germinates and roots due to the nutrients of the endosperm, and then the hypocotyl extends and the foliage develops, and a sterile red pine seedling 4 grows.

次に、図1に示す第2系列に基づいて、マツタケ菌糸の採取、継代培養、オオムギからなるマツタケ種菌の生産過程について順に説明する。
先ず、図1に示す如く、マツタケ菌糸を採取し、これは例えばF136で広島県産マツタケのヒダ組織から1/2浜田培地で分離したマツタケ菌糸を、HY培地に移植し、1〜2回継代培養、増殖した該菌糸をマツタケ種菌の接種源とする。表1に、該HY培地の組成とその培地1リットル当たりの含量を示す。
Next, based on the 2nd series | sequence shown in FIG. 1, the production process of the matsutake inoculum which consists of a matsutake hypha collection, subculture, and a barley is demonstrated in order.
First, as shown in FIG. 1, matsutake mycelia was collected. For example, matsutake mycelia separated from fold tissue of Hiroshima-grown matsutake mushrooms in 1/2 Hamada medium were transplanted to HY medium for 1-2 times. The subcultured and grown mycelia are used as an inoculation source for matsutake inoculum. Table 1 shows the composition of the HY medium and the content per liter of the medium.

次に、図1の第2系列に示す如く、HY培地にて培養増殖したマツタケ菌糸をオオムギ培地へ繁殖させる工程とする。
オオムギは市販の圧片オオムギを一晩吸水させた後、容積比で20%の軽石またはゼオライトあるいは大谷石の細粒を添加混合した培地とし、上口部の大きな容積450mlの耐熱ガラス容器に300ml充填して60分間の蒸らし操作後、滅菌を1.2気圧、120℃、60分の条件でオートクレーブにて行った。該耐熱ガラス容器の上口部はφ5mmの孔付きキャップで蓋をし、この孔にフィルターを圧着させた構造として、マツタケ菌糸の呼吸に供する。更に、軽石またはゼオライトあるいは大谷石の細粒に関しては、オオムギ培地に膨軟性と通気を持たせることによりマツタケ菌糸の生育中に該培地が締まることなく十分酸素を供給して、活力ある該マツタケ菌糸を育てることに供する。
滅菌後放冷し、図4に示すように、HY培地で40日間継代培養したマツタケ菌糸スラント5を1〜2cm角の大きさに切り取り、該オオムギ7培地中にて、望ましくは該耐熱ガラス容器6の側面に埋め込んで2ケ月培養することによって、培養マツタケ菌糸から活力と感染力の高いマツタケ種菌、所謂オオムギで繁殖したマツタケ菌を育生させる。
該オオムギ7の該耐熱ガラス容器6面側や上表面側において、白色で旺盛に伸びたマツタケ菌糸がオオムギ7の表面を覆うようになったら該白色の菌糸部分を丁寧にピンセットで掻き取り、同じ組成のオオムギ培地に移植した。
Next, as shown in the second series of FIG. 1, the matsutake mycelia cultured and proliferated in the HY medium are propagated to the barley medium.
Barley is a medium containing 20% pumice or zeolite or Otani stone fine particles mixed with a commercial pressed barley overnight, and 300 ml in a heat-resistant glass container with a large 450 ml upper mouth. After filling and steaming for 60 minutes, sterilization was performed in an autoclave under the conditions of 1.2 atm, 120 ° C. and 60 minutes. The upper mouth portion of the heat-resistant glass container is covered with a cap with a hole of φ5 mm, and a filter is pressure-bonded to the hole to be used for breathing matsutake mycelia. Furthermore, for fine granules of pumice, zeolite, or Otani stone, the vigorous matsutake mycelia can be supplied by providing sufficient oxygen without causing the medium to tighten during growth of the matsutake mycelia by giving the barley medium softness and aeration. Serving to grow.
As shown in FIG. 4, the matsutake mycelium slant 5 subcultured for 40 days in a HY medium is cut into a size of 1 to 2 cm square, and the heat resistant glass is desirably removed in the barley 7 medium. By embedding in the side surface of the container 6 and culturing for two months, the matsutake fungus bred in the so-called barley that grows vigorous and infectious matsutake from the matsutake mycelia is grown.
When pine bamboo hyphae that grows white and covers the surface of barley 7 on the heat resistant glass container 6 side and upper surface side of the barley 7, the white hyphae part is carefully scraped off with tweezers. Transplanted into barley medium of composition.

更に、図1の第3系列に示す如く、前記アカマツ幼苗への該マツタケ菌の接種及び菌根感染過程について説明する。
オオムギ培地で繁殖したマツタケ菌をアカマツ幼苗の根元付近に接種し、アカマツ幼苗へ感染させる菌根形成工程とする。
即ち、図5に示すように、アカマツ幼苗4の一次根8が十分伸長し、二次根9が発生したら無菌幼苗の根元付近に該マツタケ種菌10を1粒接種する。やがて、図5、図6に示すように、該マツタケ種菌10由来のマツタケ菌糸11は、接種2週間ほどでアカマツ幼苗4の生育に従い、貧栄養培地に滲出する根の代謝産物に感応して、アカマツ幼苗4の一次根8及び二次根9に沿って伸び、根の内部組織に侵入し、アカマツ幼苗の根部に充分なマツタケ菌等の菌根菌の菌根が形成される。該マツタケ菌糸11が根に沿って下降する状況を拡大し、図6の点線で示した。更に続けて、該マツタケ菌糸11はアカマツ幼苗4の一次根8及び二次根9へと下降を継続し、遂にはアカマツ幼苗4の一次根8及び二次根9の表面を覆って、根の内部に侵入して菌根が形成される。菌根が形成されると毛細根の発生が抑制される。図7は、成熟した時期の状態で、培養容器内にて菌根形成が行われた状態を表す概略写真である。
即ち、アカマツの種子は、本来やせた土地で栄養源を求めて菌糸を伸ばして菌糸伸長域を拡大させるが、このやせた土地と可及的に同等な条件を備えた貧栄養培地に植えられたアカマツ種子が成長して一次根及び二次根を伸ばすと、根元付近に播種されたマツタケ菌等の菌根菌がアカマツ幼苗の光合成で作成された糖類等の栄養源を求め、あるいは貧栄養培地に隣接して光合成産物のデンプン粒子を蓄えた根組織の生命活動に伴う代謝物質が貧栄養培地へ滲出するのを感知して感染の領域を根組織の表面に拡大し、それにより、アカマツ幼苗の根部に充分なマツタケ菌等の菌根菌の菌根が形成される。
この試みは、従来のマツタケ菌感染苗作成の失敗の原因が、本来マツタケ菌等の菌根菌は栄養の少ないやせた土地でアカマツと共生を行う菌であり、培養菌糸が充満する富培地へアカマツ苗を移植し或いはアカマツ苗へ培養菌糸を直接付着させてしまうと、菌根菌は培地内に豊富にある栄養供給を受けてしまい、やせた土地で栄養源を求めて菌糸を伸ばして菌糸伸長域を拡大させるという菌根菌本来の活動を低減させ結果的に感染の領域を根組織の表面に拡大できないが、一度形成された菌根が順化後に退化消滅すると推察されることに基づく。
この菌根の形成以降、マツタケ菌はアカマツ幼苗の一次根及び二次根と共生を行うようになる。すなわちマツタケ菌はアカマツ幼苗の光合成産物の糖類を貰い、アカマツ幼苗は自身の根が届かない場所の培地もしくは土壌から水分や栄養分をマツタケ菌から貰い、乾燥や養分欠乏に対する抵抗性を互いに高めつつ、共存のサイクルを形成する。
Furthermore, as shown in the third series of FIG. 1, the inoculation of the matsutake fungus to the red pine seedling and the mycorrhizal infection process will be described.
The matsutake fungus propagated on the barley medium is inoculated in the vicinity of the root of the red pine seedling to form a mycorrhiza formation process for infecting the red pine seedling.
That is, as shown in FIG. 5, when the primary root 8 of the red pine seedling 4 is sufficiently elongated and the secondary root 9 is generated, one matsutake seedling 10 is inoculated near the root of the sterile seedling. Eventually, as shown in FIG. 5 and FIG. 6, the matsutake mycelium 11 derived from the matsutake inoculum 10 responds to the growth of the red pine seedling 4 within about 2 weeks of inoculation, in response to the root metabolites that exude to the nutrient medium, Along with the primary root 8 and the secondary root 9 of the red pine seedling 4, it penetrates into the internal tissue of the root, and sufficient mycorrhizal mycorrhizal fungi such as matsutake fungi are formed at the root of the red pine seedling. The situation where the matsutake mycelium 11 descends along the root is enlarged and shown by the dotted line in FIG. Subsequently, the matsutake hyphae 11 continue to descend to the primary roots 8 and secondary roots 9 of the red pine seedling 4, finally covering the surface of the primary roots 8 and secondary roots 9 of the red pine seedling 4, Enters the inside and forms mycorrhiza. When mycorrhiza is formed, generation of capillary roots is suppressed. FIG. 7 is a schematic photograph showing a state in which mycorrhizal formation has been performed in a culture vessel in a mature state.
In other words, red pine seeds are originally pine seeds that seek nutrient sources and extend mycelia to expand the mycelial growth area. When seeds grow and extend primary and secondary roots, mycorrhizal fungi such as matsutake fungi sown near the roots seek nutrient sources such as sugars created by photosynthesis of red pine seedlings, or in an oligotrophic medium By detecting the exudation of metabolites associated with the vital activity of the root tissue, which stores adjacent photosynthesis product starch particles, into the oligotrophic medium, the area of infection is expanded to the surface of the root tissue, thereby Sufficient mycorrhizal mycorrhizal fungi such as matsutake fungi are formed at the root.
This attempt is due to the failure of conventional matsutake fungus-infected seedlings to be produced. Mycorrhizal fungi such as matsutake fungi are originally symbiotic with red pine in poorly cultivated and thin land, and the pine fungus is filled with rich mycelia. When transplanting seedlings or attaching cultured mycelia directly to Pinus densiflora seedlings, mycorrhizal fungi receive an abundance of nutrients in the medium, seeking hygiene sources on thin land, extending mycelia, and extending mycelia This is based on the fact that the mycorrhizal fungi that reduce the mycorrhizal fungi, which increase the size of the mycorrhiza, and as a result the area of infection cannot be expanded to the surface of the root tissue, but the mycorrhiza once formed is supposed to degenerate and disappear after acclimatization.
After this mycorrhiza formation, matsutake fungi become symbiotic with primary and secondary roots of Pinus densiflora seedlings. In other words, matsutake fungus seeds the sugars of the photosynthesis product of red pine seedlings, and red pine seedlings sow moisture and nutrients from matsutake fungi from the medium or soil where their roots do not reach, while increasing resistance to drought and nutrient deficiency, Form a coexistence cycle.

このとき、上記マツタケ菌、コウタケ菌、チタケ菌等の菌根菌が、麦芽抽出物、酵母抽出物及びペプトンを含んだ培養液、更にはHY培地で、継代培代されたものであると、活力が高く生育旺盛な種菌となり、より貧栄養に耐え得る性状を備えたものとなり、菌根菌の高い感染率を示す種菌となる。
また、菌根菌を、オオムギ等のデンプンを含んだ穀物種子と軽石、ゼオライト、大谷石等の多孔性を有する細粒とを混合させた培地で培養すると、菌根菌が特に通気を必要とすることから、上記と同様生育旺盛な菌糸となり、より貧栄養に耐え得る活力の高い性状を備えたものとなる。
At this time, the mycorrhizal fungi such as the above-mentioned matsutake fungus, mushroom fungus, and mushroom fungus are those that have been subcultured in a culture solution containing a malt extract, yeast extract and peptone, and further in a HY medium. It becomes a vigorous and vigorous inoculum, has a property that can withstand poor nutrition, and becomes an inoculum exhibiting a high infection rate of mycorrhizal fungi.
In addition, when mycorrhizal fungi are cultured in a medium in which grain seeds containing starch such as barley are mixed with porous fine particles such as pumice, zeolite, and Otani stone, mycorrhizal fungi need aeration. Therefore, it becomes a vigorous hypha similar to the above, and has a high vitality that can withstand poor nutrition.

感染後の幼苗が順化できる大きさに育ったら、軽石、赤土細粒の混合用土の鉢に移植、順化する。
順化したアカマツ苗は、岩石の風化土壌を含む砕石を盛った人工の築山に植え込むと数年後には苗木の成長に伴ってシロが形成、拡大し、マツタケ菌感染苗によるマツタケ山の大規模造成が可能となる。
Once the infected seedlings have grown to a size that can be adapted, they are transplanted and acclimatized in a pot of mixed soil of pumice and red soil.
Acclimatized Pinus densiflora seedlings, when planted in artificial rocks built with crushed rocks containing weathered rocks, will form and expand with the growth of the seedlings several years later. Creation is possible.

この発明の実施例を、上記実施の形態に基づいて製作した。その実施状況を以下に説明する。耐熱容器にイオン交換水1000mlを準備し、15gのジェランガムを少量づつ攪拌しながら添加・溶解しジェランガム溶解液を作製した。該ジェランガム溶解液10mlを試験管に分注し、その口部をアルミホイルで蓋をして1.2気圧,120℃で15分間滅菌し、無栄養で透明度の高いゲル状培地ジェランガムを作製した。該滅菌したジェランガムを入れた試験管に、エチルアルコールで予備殺菌後、次亜塩素酸ナトリウムなどの塩素系殺菌剤で殺菌したアカマツ種子を播種し、25℃12時間照明の培養室で培養して2週間で発芽させ、一次根を伸長させて無菌アカマツ幼苗を育成した。採取したマツタケ菌糸を、栄養分を含有するHY培地に移植して継代培養し、マツタケ菌糸を増殖した。その後、吸水したオオムギに容積比で20%の大谷石の細粒を加えて混合し上口部の大きな容積450mlの耐熱ガラス容器に300ml充填して60分間の蒸らし作業を行って、1.2気圧、120℃で60分の条件でオートクレーブにて滅菌して所謂、オオムギ培地とした。前記HY培地で40日間継代培養したマツタケ菌糸スラントを1〜2cm角の大きさに切り取り、該オオムギ培地中の該耐熱ガラス容器の側面に埋め込んで2月培養し、培養マツタケ菌糸から感染力の高いマツタケ種菌を育生繁殖させた。アカマツ幼苗の一次根が伸長し、二次根が発生した無菌幼苗の根元付近に該マツタケ種菌を1粒接種した。接種2週間後にはマツタケ種菌がアカマツ幼苗の一次根に沿って栄養を求めて下降を開始し、遂に、アカマツ幼苗の二次根に至り、最終的に、根の表皮組織から細胞間隙に侵入して菌根を形成した。   An example of the present invention was manufactured based on the above embodiment. The implementation status will be described below. 1000 ml of ion-exchanged water was prepared in a heat-resistant container, and 15 g of gellan gum was added and dissolved little by little with stirring to prepare a gellan gum solution. 10 ml of the gellan gum solution was dispensed into a test tube, and the mouth was covered with aluminum foil and sterilized at 1.2 atm and 120 ° C. for 15 minutes to prepare a gel-free medium gellan gum with no nutrition and high transparency. . The test tube containing the sterilized gellan gum is pre-sterilized with ethyl alcohol, then sown pine seeds sterilized with a chlorine-based disinfectant such as sodium hypochlorite and cultivated in a culture room at 25 ° C. for 12 hours. Germination was performed in 2 weeks, and the primary roots were elongated to grow sterile red pine seedlings. The collected matsutake mycelia were transplanted to a HY medium containing nutrients and subcultured to grow matsutake mycelia. Then, 20% Oyaishi fine granules by volume ratio were added to the absorbed barley, mixed, filled in a heat-resistant glass container with a large volume of 450 ml in the upper mouth, and steamed for 60 minutes, and 1.2. A so-called barley medium was obtained by sterilization in an autoclave under atmospheric pressure and 120 ° C. for 60 minutes. The matsutake mycelium slant that has been subcultured for 40 days in the HY medium is cut to a size of 1 to 2 cm square, embedded in the side of the heat-resistant glass container in the barley medium, and cultured in February. Breeding and breeding high matsutake inoculum. One matsutake seedling was inoculated in the vicinity of the root of a sterile seedling in which the primary roots of red pine seedlings were elongated and secondary roots were generated. Two weeks after the inoculation, the matsutake inoculum begins to descend along with the primary roots of the red pine seedlings, finally reaches the secondary roots of the red pine seedlings, and finally enters the cell space from the root epidermis. The mycorrhiza was formed.

以上のマツタケ菌糸のアカマツの根への感染は透明度の高いジェランガム培地を通して行われ、肉眼による目視観察が可能であった。感染の事実は、感染によって毛細根の発生が抑制されたこと、根の組織観察により細胞間隙にハルヒネットの存在が観察されたこと、順化後の根に出来るマツタケ特有な形態の菌根の存在が観察されたこと(図8参照)、根の表面に付着する菌糸のDNAの塩基配列、等によって確認できた。 The infection of Pinus densiflora roots with the above matsutake mycelia was performed through gellan gum medium with high transparency, and visual observation was possible with the naked eye. The fact of infection is that the occurrence of capillary roots was suppressed by infection, the presence of harhinnets in the cell space was observed by observation of the root tissue, and the mycorrhiza specific to matsutake that can be made into the roots after acclimatization The presence was observed (see FIG. 8), and was confirmed by the base sequence of the hyphal DNA attached to the surface of the root, and the like.

本発明は、短期間に確実に菌根菌感染苗を作成でき且つコストもかからず、マツタケ菌感染苗の大量生産が可能である。更に、マツタケだけでなく、チチタケ、コウタケ等の菌根菌にも応用が可能である。また、マツタケ菌感染苗によるマツタケ山の大規模造成に効果的であり、菌根菌感染苗は、環境や病虫害への抵抗性が増すので、計画的な菌根菌感染苗の植林によって環境保全や観光産業に寄与できる。   The present invention can reliably produce mycorrhizal fungus-infected seedlings in a short period of time and does not cost, and can mass-produce matsutake fungus-infected seedlings. Furthermore, it can be applied not only to matsutake but also to mycorrhizal fungi such as chichitake and koitake. In addition, it is effective for the large-scale construction of matsutake mushrooms using matsutake fungus-infected seedlings. Since mycorrhizal-infected seedlings increase resistance to the environment and pests, environmental conservation is achieved through planned planting of mycorrhizal fungus-infected seedlings And contribute to the tourism industry.

アカマツ種子の播種からアカマツ幼苗を順化させるまでの工程の流れを示す概略図である。It is the schematic which shows the flow of the process from sowing of a red pine seed to acclimatization of a red pine seedling. 透明度の高いゲル状培地にアカマツ種子を無菌播種させた状態を示す概略図である。It is the schematic which shows the state as which the red pine seed was aseptically sown in the gel-like culture medium with high transparency. 試験管内の成長したアカマツ幼苗を示す概略図である。It is the schematic which shows the grown red pine seedling in a test tube. オオムギ培地中に移植した培養マツタケ菌糸が周囲のオオムギに伸びて種菌となった状態を示す概略図である。It is the schematic which shows the state which the culture matsutake hypha transplanted in the barley culture medium extended to the surrounding barley, and became a seed fungus. 置床したオオムギ種菌から伸びたマツタケ菌糸が、アカマツ幼苗の一次根及び二次根へと下降してその表面を覆った状態を示す概略図である。It is the schematic which shows the state which the matsutake mycelium extended from the placed barley inoculum descend | falls to the primary root and secondary root of a red pine seedling, and covered the surface. 図5の一部を更に拡大した略図である。Fig. 6 is a schematic view further enlarging a part of Fig. 5. 培養容器内にてアカマツ無菌苗の一次根及び二次根へのマツタケ菌の感染状態を表す写真図である。It is a photograph figure showing the infection state of the matsutake fungus to the primary root and secondary root of a red pine aseptic seedling in a culture container. アカマツ順化苗に形成されたマツタケ特有の菌根を表す写真図である。It is a photograph figure showing the mycorrhiza peculiar to the matsutake formed in the red pine acclimatized seedling.

符号の説明Explanation of symbols

1 試験管
2 ジェランガム培地(貧栄養培地)
3 アカマツ種子
4 アカマツ幼苗
5 マツタケ菌糸スラント
6 耐熱ガラス容器
7 オオムギ
8 一次根
9 二次根
10 マツタケ種菌
11 マツタケ菌糸






1 Test tube 2 Gellan gum medium (poor nutrient medium)
3 Japanese red pine seeds 4 Japanese red pine seedlings 5 Matsutake mycelium slant 6 Heat-resistant glass container 7 Barley 8 Primary root 9 Secondary root 10 Matsutake inoculum 11 Matsutake hyphae






Claims (6)

(1)アカマツ幼苗の根を支持可能で且つ保水性を備えた可及的に栄養分を含まない貧栄養培地に、アカマツ種子を播種する工程と、
(2)少なくとも該アカマツ種子から発芽した後に、該アカマツ幼苗の根元付近に菌根菌を接種する工程と、
(3)該接種した菌根菌の菌糸が伸長してアカマツ幼苗の一次根及び二次根を覆う工程と、
(4)該菌根菌が感染したアカマツ幼苗を移植して順化させる工程と、
を備えたことを特徴とする菌根菌感染アカマツ幼苗の生産方法。
(1) sowing red pine seeds in an oligotrophic medium capable of supporting roots of red pine seedlings and having water retention and containing as little nutrient as possible;
(2) a step of inoculating a mycorrhizal fungus near the root of the red pine seedling after germination from at least the red pine seed;
(3) a step of extending the mycelium of the inoculated mycorrhizal fungus to cover primary and secondary roots of red pine seedlings;
(4) transplanting and acclimatizing red pine seedlings infected with the mycorrhizal fungi;
A method for producing red pine seedlings infected with mycorrhizal fungi, comprising:
貧栄養培地が、ゲル状物質である請求項1記載の菌根菌感染アカマツ幼苗の生産方法。 The method for producing red pine seedlings infected with mycorrhizal fungi according to claim 1, wherein the oligotrophic medium is a gel substance. 貧栄養培地のゲル状物質が、ジェランガムである請求項2記載の菌根菌感染アカマツ幼苗の生産方法。 The method for producing a mycorrhizal-infected red pine seedling according to claim 2, wherein the gel-like substance of the oligotrophic medium is gellan gum. 菌根菌が、マツタケ菌、コウタケ菌、チチタケ菌のいずれかである請求項1〜3のうちいずれかに記載の菌根菌感染アカマツ幼苗の生産方法。 The mycorrhizal fungus is any one of matsutake fungus, mushroom fungus, and tititake fungus. The method for producing a mycorrhizal fungus-infected red pine seedling according to any one of claims 1 to 3. 菌根菌が、麦芽抽出物、酵母抽出物及びペプトンを含んだ培地で継代培養された菌である請求項1〜4のうちいずれかに記載の菌根菌感染アカマツ幼苗の生産方法。 The mycorrhizal fungus is a fungus that has been subcultured in a medium containing a malt extract, a yeast extract and peptone, 5. The method for producing a mycorrhizal-infected red pine seedling according to any one of claims 1 to 4. 菌根菌が、デンプンを含んだ穀物種子と多孔性を有する細粒とを混合させた培地で培養した菌である請求項1〜5のうちいずれかに記載の菌根菌感染アカマツ幼苗の生産方法。
The mycorrhizal fungus is a fungus cultivated in a medium in which starch seed-containing cereal seeds and porous fine particles are mixed, production of mycorrhizal-infected red pine seedlings according to any one of claims 1 to 5 Method.
JP2008157381A 2008-06-17 2008-06-17 Method for producing japanese red pine young seedling infected with mycorrhizal fungus Pending JP2009296977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008157381A JP2009296977A (en) 2008-06-17 2008-06-17 Method for producing japanese red pine young seedling infected with mycorrhizal fungus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008157381A JP2009296977A (en) 2008-06-17 2008-06-17 Method for producing japanese red pine young seedling infected with mycorrhizal fungus

Publications (1)

Publication Number Publication Date
JP2009296977A true JP2009296977A (en) 2009-12-24

Family

ID=41544545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008157381A Pending JP2009296977A (en) 2008-06-17 2008-06-17 Method for producing japanese red pine young seedling infected with mycorrhizal fungus

Country Status (1)

Country Link
JP (1) JP2009296977A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422767A (en) * 2011-09-14 2012-04-25 靖宇县特产研究所 Artificial breeding method for wild pinus sylvestriformis
CN103070014A (en) * 2013-01-30 2013-05-01 攀枝花市林业科学技术推广站(攀枝花市林业工作总站) Method for breeding summer truffle root seedling through inoculation of suspension liquid
CN108541514A (en) * 2018-03-21 2018-09-18 丽水市林业科学研究院 A method of cultivating orange newborn mushroom offspring
CN112470750A (en) * 2020-11-18 2021-03-12 山东农业大学 Device for conveniently and rapidly detecting mycorrhiza infection rate of plants in batches and using method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422767A (en) * 2011-09-14 2012-04-25 靖宇县特产研究所 Artificial breeding method for wild pinus sylvestriformis
CN102422767B (en) * 2011-09-14 2012-11-28 靖宇县特产研究所 Artificial breeding method for wild pinus sylvestriformis
CN103070014A (en) * 2013-01-30 2013-05-01 攀枝花市林业科学技术推广站(攀枝花市林业工作总站) Method for breeding summer truffle root seedling through inoculation of suspension liquid
CN103070014B (en) * 2013-01-30 2015-04-29 攀枝花市林业科学技术推广站(攀枝花市林业工作总站) Method for breeding summer truffle root seedling through inoculation of suspension liquid
CN108541514A (en) * 2018-03-21 2018-09-18 丽水市林业科学研究院 A method of cultivating orange newborn mushroom offspring
CN108541514B (en) * 2018-03-21 2023-10-13 丽水市农林科学研究院 Method for cultivating orange Rumex Lactarius mycorrhiza seedlings
CN112470750A (en) * 2020-11-18 2021-03-12 山东农业大学 Device for conveniently and rapidly detecting mycorrhiza infection rate of plants in batches and using method thereof
CN112470750B (en) * 2020-11-18 2022-05-06 山东农业大学 Device for conveniently and rapidly detecting mycorrhiza infection rate of plants in batches and using method thereof

Similar Documents

Publication Publication Date Title
CN101595803B (en) Method for producing edible fungus mycorrhizal seedling of mycorhiza
CN107711290B (en) Culture medium for mycorrhizal edible fungus symbiotic seedling and synchronous culture method thereof
CN105794495B (en) Armillaria mellea strain symbiotic with gastrodia elata and application thereof
EP2231854B1 (en) Method and system for in vitro mass production of arbuscular mycorrhizal fungi
CN108293504B (en) Method for cultivating mycorrhizal nursery stock
CN102037849A (en) Tremella fuciformis strain culture method
CN103931492A (en) Tissue-culture rapid seedling growing method for apple rootstock M9
CN108401794A (en) A kind of armillaria mellea accreting with Rhizoma Gastrodiae liquid spawn production method and cultigen special culture media
CN105684849A (en) Organic substrate containing arbuscular mycorrhiza fungi and preparing method and application thereof
CN108260470B (en) Method for improving mycorrhizal seedling raising of tricholoma matsutake
CN107125028A (en) A kind of wild yellow ring squama agaric domestication and artificial culturing method
KR100483333B1 (en) Production method of the cauliflower mushroom using fermented sawdust
JP2009296977A (en) Method for producing japanese red pine young seedling infected with mycorrhizal fungus
CN106396844A (en) Culture medium, and applications thereof in producing tremella fuciformis strains
KR20100136895A (en) Methods for producing hyphae of mycorrhizal mushrooms and solid mediums for the methods, and methods for producing mycorrhiza-infected seedlings of woody plants using the hyphae formed on the solid medium as inoculum sources
TW201026220A (en) Fungal bed cultivation method of hon-shimeji mushroom
CN110604048B (en) Woody plant mycorrhiza multi-inoculation method and application
JP3499479B2 (en) Mycorrhizal seedling preparation and artificial cultivation of mycorrhizal mushrooms
CN107090410A (en) One plant production plant hormone mycorrhizal fungi and its promote plant growth in application
JP3947143B2 (en) Formation method of Matsutake-infected pine seedlings by co-culture of matsutake fungi and sterile germinated pine seedlings
JP2022077963A (en) Plant seedling, seedling cultivation method, culture soil, and method of growing plant
CN102771350A (en) Method for cultivating mycorrhizal seedlings
CN103229722B (en) Culture method of cunninghamia lanceolata callus
CN111742781A (en) Efficient and practical Chinese chestnut ectomycorrhiza soil basin inoculation system and application thereof
WO2022102389A1 (en) Plant seedling, seedling cultivation method, culture soil, and method of growing plant