JP2009294652A - Optical element for led - Google Patents

Optical element for led Download PDF

Info

Publication number
JP2009294652A
JP2009294652A JP2009113134A JP2009113134A JP2009294652A JP 2009294652 A JP2009294652 A JP 2009294652A JP 2009113134 A JP2009113134 A JP 2009113134A JP 2009113134 A JP2009113134 A JP 2009113134A JP 2009294652 A JP2009294652 A JP 2009294652A
Authority
JP
Japan
Prior art keywords
light
led
scattering
optical element
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009113134A
Other languages
Japanese (ja)
Other versions
JP5537068B2 (en
Inventor
Yasuhiro Koike
康博 小池
Katsunori Shinohara
克徳 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Optical Co Ltd
Original Assignee
Nitto Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Optical Co Ltd filed Critical Nitto Optical Co Ltd
Priority to JP2009113134A priority Critical patent/JP5537068B2/en
Publication of JP2009294652A publication Critical patent/JP2009294652A/en
Application granted granted Critical
Publication of JP5537068B2 publication Critical patent/JP5537068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress color unevenness in a radiation surface and illumination unevenness while suppressing the reduction of a front light quantity of light emitted from a plurality of LEDs to the minimum and to reduce the glare in an emission surface. <P>SOLUTION: In a light source including the plurality of LEDs discretely disposed and an optical element for LEDs disposed on the front side in a radiation direction of the light source, the optical element for the LEDs is formed by using a light scattering light guide body to which volumetrically uniform scattering ability is given. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、LED用光学素子に関する。   The present invention relates to an optical element for LED.

LEDを光源とする照明装置において、青色LEDチップと黄色蛍光体の組合せで白色光を得る方法(例えば特許文献1参照)、若しくはRGBのLEDチップを用いて光の3原色を合わせることで白色光を得る方法が一般的である。しかし、青色LEDチップと黄色蛍光体とを組み合わせた場合、青色LEDチップが直下にある中心付近の光と、その周辺の光で色温度分布があり、この結果、照射面で中央付近の光に比べて周辺光が黄色味がかる。これは所謂イエローリングと呼ばれている。一方、赤色LEDチップ、緑色LEDチップ、青色LEDチップの合成色により白色光を得る方法の場合、それぞれのLEDチップの内、1つのチップを光軸に合わせた場合、残りの2つのチップは光軸からずれて配置されてしまう。または3つのチップの重心位置に光軸を設置したとしても、やはりそれぞれのチップはレンズの光軸上からずれて配置されてしまう。この結果、照射面で赤色、緑色、青色の照射エリアがずれて不均一に混色されてしまう。また、より高輝度にするため複数個のLEDチップを並べて使うLEDチップでは、同様に光源が光軸上からずれて配置されることを原因とする照射面での照度むらが生ずる場合もあった。
さらに、一般的な電極のワイヤーボンディングにおいて、そのワイヤーが影となり照射する光に影響が出る場合がある。これらの対策として、光学パターンを配置した拡散機能を持った拡散シートなどを、LEDチップの照射方向前方に配置することで、色むらや明暗等を防止する技術が開発されている。
In a lighting device using an LED as a light source, white light is obtained by combining white light using a combination of a blue LED chip and a yellow phosphor (see, for example, Patent Document 1), or using RGB LED chips. The method of obtaining is common. However, when the blue LED chip and the yellow phosphor are combined, there is a color temperature distribution between the light near the center of the blue LED chip and the light around it, and as a result, the light near the center on the irradiated surface. Ambient light is yellowish compared to. This is called a so-called yellow ring. On the other hand, in the method of obtaining white light by combining the red LED chip, the green LED chip, and the blue LED chip, when one of the LED chips is aligned with the optical axis, the remaining two chips are light. It will be displaced from the axis. Alternatively, even if the optical axes are installed at the positions of the centers of gravity of the three chips, the respective chips are also arranged so as to be shifted from the optical axis of the lens. As a result, the irradiation areas of red, green, and blue are shifted on the irradiation surface and mixed unevenly. Moreover, in the LED chip that uses a plurality of LED chips arranged side by side in order to obtain higher luminance, there may be a case where the illumination surface has uneven illuminance due to the fact that the light source is shifted from the optical axis. .
Furthermore, in general wire bonding of electrodes, the wire may become a shadow and affect the irradiated light. As a countermeasure against these problems, a technique for preventing color unevenness, light and darkness, etc. has been developed by arranging a diffusion sheet having an optical pattern and having a diffusion function in front of the LED chip in the irradiation direction.

特開2008−16341号公報JP 2008-16341 A

ところで、拡散シートの表面散乱は基本的に単一散乱であるため、比較的大きな輝度むらや色むらがある場合には、拡散角が小さい拡散シートでは十分にむらを補正できるほど拡散させることができない。逆に拡散角が大きい拡散シートではむら補正はできても、後方散乱成分が大きくなり、前方光量が低下してしまう。
さらに、別の課題としてLED光源のグレア(まぶしさ)の問題がある。LEDは発光面のサイズが小さいうえに、照明用途としては高輝度化を要求するために、光源のまぶしさ(グレア)の問題が発生する。グレアはただまぶしいだけでなく、波長と強さによっては目の角膜にダメージを与える場合もあり、照明設計において、グレアの低減は重要であり、快適な照明環境を作るためには、十分な配慮が必要である。
By the way, since the surface scattering of the diffusion sheet is basically a single scattering, if there is relatively large luminance unevenness or color unevenness, the diffusion sheet having a small diffusion angle can be diffused enough to correct the unevenness. Can not. On the contrary, in the diffusion sheet having a large diffusion angle, even if the unevenness correction can be performed, the backscattering component becomes large, and the front light amount is reduced.
Another problem is the glare of the LED light source. Since the LED has a small light emitting surface size and requires high brightness for lighting applications, there is a problem of glare of the light source. Glare is not only dazzling, but depending on the wavelength and strength, it may damage the cornea of the eye. Reduction of glare is important in lighting design, and sufficient consideration is necessary to create a comfortable lighting environment. is required.

本発明の課題は、複数のLEDを配置した光源からの光をレンズ及びリフレクターの少なくとも1つを通して照射したとき、光の前方光量の低下を最小限に抑えながら、照射面での色むら、照度むらを抑制することである。さらに、出射面でのグレアを低減させることである。   The problem of the present invention is that when light from a light source in which a plurality of LEDs are arranged is irradiated through at least one of a lens and a reflector, color unevenness and illuminance on the irradiation surface are suppressed while minimizing a decrease in the amount of light in front of the light. It is to suppress unevenness. Furthermore, it is to reduce glare at the exit surface.

請求項1記載の発明は、
離散的に配置された複数のLEDからなる光源と、当該光源の照射方向前方に配置されるLED用光学素子であって、体積的に一様な散乱能が与えられた光散乱導光体により形成されていることを特徴とするLED用光学素子。
The invention described in claim 1
A light source comprising a plurality of discretely arranged LEDs, and an LED optical element arranged in front of the light source in the irradiation direction, by a light scattering light guide having a volumetric uniform scattering ability An optical element for LED, which is formed.

請求項2記載の発明は、請求項1記載のLED用光学素子において、
前記光源から所定の距離だけ離れた地点の、前記光源の光軸に対して、前記複数のLEDのそれぞれの照射エリア中心のズレが補正されるように、前記光散乱導光体のサイズパラメータ及び濁度の少なくとも一方が設定されていることを特徴としている。
The invention according to claim 2 is the optical element for LED according to claim 1,
The size parameter of the light-scattering light guide, and the deviation of the center of each irradiation area of the plurality of LEDs is corrected with respect to the optical axis of the light source at a point away from the light source by a predetermined distance; It is characterized in that at least one of turbidity is set.

本発明によれば、光散乱導光体から形成されたLED用光学素子が、複数のLEDからなる光源の照射方向前方に配置されているので、各LEDから発せられた光はLED用光学素子により散乱して照射面に均一に照射されることになる。さらに、LEDの小さい発光面からの入射光が光学素子内で拡散され、光学素子の大きい出射面から均一に出射されることで、グレアを低減することが可能となる。
また、光散乱導光体内部の球形粒子による散乱は、前方により指向性が高く光が散乱されるようにサイズパラメータが制御される。つまり、後方散乱成分が抑えられることになり、前方光量の低下を防止することが可能となる。
According to the present invention, since the LED optical element formed from the light scattering light guide is arranged in front of the irradiation direction of the light source composed of a plurality of LEDs, the light emitted from each LED is the LED optical element. The light is scattered and uniformly irradiated on the irradiated surface. Furthermore, the incident light from the small light emitting surface of the LED is diffused in the optical element and is uniformly emitted from the large light emitting surface of the optical element, so that glare can be reduced.
In addition, the scattering by the spherical particles inside the light-scattering light guide has a size parameter controlled so that light is scattered with higher directivity in the forward direction. That is, the backscattering component is suppressed, and it is possible to prevent a decrease in the front light amount.

第1の実施の形態に係るLED用光学素子としてのレンズを示す側面図である。It is a side view which shows the lens as an optical element for LED which concerns on 1st Embodiment. 図1のレンズが透明PMMAレンズで形成されている場合の当該レンズの光軸と各照射エリアとのズレを示す側面図である。It is a side view which shows the shift | offset | difference of the optical axis of the said lens, and each irradiation area in case the lens of FIG. 1 is formed with the transparent PMMA lens. 図2のレンズの光軸と各照射エリアとのズレを示す正面図である。It is a front view which shows the shift | offset | difference with the optical axis of the lens of FIG. 2, and each irradiation area. 単一真球粒子による散乱光強度の角度分布I(α、θ)を示すグラフである。It is a graph which shows angle distribution I ((alpha), (theta)) of the scattered light intensity by a single true spherical particle. 第2の実施の形態に係るLED用光学素子としてのレンズを示す側面図である。It is a side view which shows the lens as an optical element for LED which concerns on 2nd Embodiment. 図5のレンズをなす光散乱導光体に含まれる球形粒子が2μmのときの相対強度と角度との関係を示すグラフである。It is a graph which shows the relationship between relative intensity | strength when the spherical particle contained in the light-scattering light guide which makes the lens of FIG. 5 is 2 micrometers, and an angle.

[第1の実施の形態]
図1は、本発明に係るLED用光学素子としてのレンズを示す説明図である。図1に示すレンズ1は、両凸レンズであり、平面上に離散的に配置された複数のLED(第一LED11、第二LED12、第三LED13)からなる光源10の照射方向前方に配置されている。レンズ1と光源10との位置関係は、レンズ1の焦点距離に光源10が配置される位置関係となっている。
また、第一LED11、第二LED12及び第三LED13は、レンズ1の光軸2に対して、直交する方向に沿って等間隔に配列されている。そして、中央の第二LED12は、光軸2上に配置されている。
[First Embodiment]
FIG. 1 is an explanatory view showing a lens as an optical element for LED according to the present invention. A lens 1 shown in FIG. 1 is a biconvex lens, and is disposed in front of an irradiation direction of a light source 10 composed of a plurality of LEDs (first LED 11, second LED 12, and third LED 13) discretely disposed on a plane. Yes. The positional relationship between the lens 1 and the light source 10 is a positional relationship in which the light source 10 is disposed at the focal length of the lens 1.
The first LED 11, the second LED 12, and the third LED 13 are arranged at equal intervals along a direction orthogonal to the optical axis 2 of the lens 1. The central second LED 12 is arranged on the optical axis 2.

ここで、レンズ1が透明PMMAレンズから形成されている場合であると、図2,3に示すように光源10から所定距離だけ離れた照射面では、第二LED12の照射エリアB1の中心位置b1は光軸2と略同一であるものの、第一LED11の照射エリアA1の中心位置a1は光軸2からAだけずれるとともに、第三LED13の照射エリアC1の中心位置c1も光軸2からCだけずれることになる。   Here, in the case where the lens 1 is formed of a transparent PMMA lens, the center position b1 of the irradiation area B1 of the second LED 12 on the irradiation surface separated from the light source 10 by a predetermined distance as shown in FIGS. Is substantially the same as the optical axis 2, but the center position a1 of the irradiation area A1 of the first LED 11 is shifted from the optical axis 2 by A, and the center position c1 of the irradiation area C1 of the third LED 13 is also only from the optical axis 2 to C. It will shift.

一方、レンズ1が本願発明に係る光散乱導光体としてのHSOT(Highly Scattering OpticalTransmission)ポリマーから形成されている場合であると、図1に示すようにレンズ1に入射した光は当該レンズ1内部で多重散乱され、出射面から一定の広がり角を持って出射される。その広がり角は、光散乱導光体のサイズパラメータと濁度との少なくとも一方により、光源10から所定距離だけ離れた照射面で、第一LED11の照射エリアA1の中心位置a1、第二LED12の照射エリアB1の中心位置b1及び第三LED13の照射エリアC1の中心位置c1が光軸2とほぼ一致するように調整される。   On the other hand, when the lens 1 is formed of a HSOT (High Scattering Optical Transmission) polymer as a light scattering light guide according to the present invention, the light incident on the lens 1 as shown in FIG. And is scattered with a certain spread angle from the exit surface. The spread angle is determined by the center position a1 of the irradiation area A1 of the first LED 11 and the second LED 12 on the irradiation surface separated from the light source 10 by a predetermined distance depending on at least one of the size parameter and turbidity of the light scattering light guide. The center position b1 of the irradiation area B1 and the center position c1 of the irradiation area C1 of the third LED 13 are adjusted so as to substantially coincide with the optical axis 2.

以下、光散乱導光体について説明すると、この光散乱導光体は、体積的に一様な散乱能が与えられた導光体であり、散乱微粒子としての球形粒子を多数含んでいる。レンズ1内部に光が入射すると、その光は散乱微粒子によって散乱することになる。   Hereinafter, the light scattering light guide will be described. The light scattering light guide is a light guide having a volumetric uniform scattering ability, and includes a large number of spherical particles as scattering fine particles. When light enters the lens 1, the light is scattered by the scattering fine particles.

ここで、本発明の理論的な基礎を与えるMie散乱理論について説明する。Mie拡散理論は、一様な屈折率を有する媒体(マトリックス)中に該媒体と異なる屈折率を有する球形粒子(散乱微粒子)が存在するケースについてマックスウェルの電磁方程式の解を求めたものである。散乱微粒子によって散乱した散乱光の角度に依存した強度分布I(α、θ)は下記(1)式で表わされ、散乱効率K(α)は下記(2)式で表わされる。αは下記(3)式で表わされ、散乱子の光学的大きさを示すサイズパラメータであり、マトリックス中での光の波長λで規格化された球形粒子(散乱子)の半径rに相当する量である。角度θは散乱角で、入射光の進行方向と同一方向をθ=180度にとる。   Here, the Mie scattering theory that gives the theoretical basis of the present invention will be described. Mie diffusion theory is the solution of Maxwell's electromagnetic equation for the case where spherical particles (scattering fine particles) having a refractive index different from that of the medium exist in a medium (matrix) having a uniform refractive index. . The intensity distribution I (α, θ) depending on the angle of the scattered light scattered by the scattering particles is expressed by the following equation (1), and the scattering efficiency K (α) is expressed by the following equation (2). α is a size parameter that is expressed by the following equation (3) and indicates the optical size of the scatterer, and corresponds to the radius r of the spherical particle (scatterer) normalized by the wavelength λ of light in the matrix. The amount to be. The angle θ is a scattering angle, and the same direction as the traveling direction of incident light is θ = 180 degrees.

また、(1)式中のi1、i2は(4)式で表わされる。そして、(2)〜(4)式中の下添字ν付のa及びbは(5)式で表わされる。上添字1及び下添字νを付したP(cosθ)は、Legendreの多項式、下添字ν付のa、bは1次、2次のRecatti−Bessel関数Ψ、ζ(ただし、「」は下添字νを意味する。)とその導関数とからなる。mはマトリックスを基準にした散乱微粒子の相対屈折率で、m=nscatter/nmatrixである。 Further, i1 and i2 in the formula (1) are represented by the formula (4). And a and b with subscript ν in the expressions (2) to (4) are expressed by the expression (5). P (cosθ) with superscript 1 and subscript ν is Legendre's polynomial, a and b with subscript ν are first-order and second-order Recati-Bessel functions Ψ * , ζ * (where “ * ” Means the subscript ν) and its derivative. m is the relative refractive index of the scattering fine particles based on the matrix, and m = nscatter / nmattrix.

Figure 2009294652
Figure 2009294652

図4は、上記(1)〜(5)式に基づいて、単一真球粒子による強度分布I(α、θ)を示すグラフである。この図4では、原点の位置に散乱微粒子としての真球粒子があり、下方から励起光が入射した場合の散乱光強度の角度分布I(α、θ)を示している。そして、原点から各曲線S1〜S3までの距離が、それぞれの散乱角方向の散乱光強度である。曲線S1はαが1.7であるときの散乱光強度、曲線S2はαが11.5であるときの散乱光強度、曲線S3はαが69.2であるときの散乱光強度を示している。なお、図4においては散乱光強度を対数目盛で示している。このため、図4では僅かな強度差として見えているが、実際には非常に大きな差となる。
この図4に示すように、サイズパラメータαが大きくなるほど(ある波長λで考えた場合は真球粒子の粒径が大きくなるほど)、上方(照射方向の前方)に対して指向性高く光が散乱されていることがわかる。また、実際のところ、散乱光強度の角度分布I(α、θ)は、入射光波長λを固定すれば、散乱子の半径rと、媒体及び散乱子の相対屈折率mとをパラメータとして制御することができる。
FIG. 4 is a graph showing the intensity distribution I (α, θ) by a single true spherical particle based on the above equations (1) to (5). FIG. 4 shows the angular distribution I (α, θ) of the scattered light intensity when there is a true spherical particle as a scattering fine particle at the origin and the excitation light is incident from below. The distance from the origin to each of the curves S1 to S3 is the scattered light intensity in each scattering angle direction. Curve S1 shows the scattered light intensity when α is 1.7, curve S2 shows the scattered light intensity when α is 11.5, and curve S3 shows the scattered light intensity when α is 69.2. Yes. In FIG. 4, the scattered light intensity is shown on a logarithmic scale. Therefore, although it appears as a slight difference in intensity in FIG. 4, it is actually a very large difference.
As shown in FIG. 4, the larger the size parameter α (the larger the particle size of the true spherical particle when considered at a certain wavelength λ), the more light is scattered toward the upper side (front of the irradiation direction). You can see that Actually, the angular distribution I (α, θ) of the scattered light intensity is controlled by using the radius r of the scatterer and the relative refractive index m of the medium and the scatterer as parameters if the incident light wavelength λ is fixed. can do.

このような、単一真球粒子がN個含まれる光散乱導光体に光を入射させると、光は真球粒子により散乱される。散乱光は光散乱導光体中を進み、他の真球粒子により再度散乱される。ある程度以上の体積濃度で粒子を添加した場合には、このような散乱が逐次的に複数回行われた後、光が光散乱導光体から出射する。このような散乱光がさらに散乱されるような現象を多重散乱現象と呼ぶ。このような多重散乱においては、透明ポリマーでの光線追跡法による解析は容易ではない。しかし、モンテカルロ法により光の挙動を追跡し、その特性を解析することはできる。それによると、入射光が無偏光の場合、散乱角の累積分布関数F(θ)は下記の(6)式で表される。   When light is incident on such a light scattering light guide containing N single spherical particles, the light is scattered by the spherical particles. Scattered light travels through the light scattering light guide and is again scattered by other spherical particles. When particles are added at a volume concentration of a certain level or more, such scattering is sequentially performed a plurality of times, and then light is emitted from the light scattering light guide. A phenomenon in which such scattered light is further scattered is called a multiple scattering phenomenon. In such multiple scattering, analysis by a ray tracing method with a transparent polymer is not easy. However, the behavior of light can be traced by the Monte Carlo method and its characteristics can be analyzed. According to this, when the incident light is non-polarized light, the cumulative distribution function F (θ) of the scattering angle is expressed by the following equation (6).

Figure 2009294652
Figure 2009294652

ここで(6)式中のI(θ)は、(1)式で表されるサイズパラメータαの真球粒子の散乱強度である。強度Iの光が光散乱導光体に入射し、距離yを透過した後、光の強度が散乱によりIに減衰したとすると、これらの関係は下記の(7)式で表される。 Here, I (θ) in the equation (6) is the scattering intensity of the true spherical particles having the size parameter α represented by the equation (1). Assuming that light having an intensity of I 0 is incident on the light-scattering light guide and passes through the distance y, the intensity of the light is attenuated to I by scattering, and these relationships are expressed by the following equation (7).

Figure 2009294652
Figure 2009294652

この(7)式中のτは濁度と呼ばれ、媒体の散乱係数に相当するものであり、下記の(8)式のように粒子数Nに比例する。なお、(8)式中、σは散乱断面積である。 Τ in the equation (7) is called turbidity and corresponds to the scattering coefficient of the medium, and is proportional to the number N of particles as in the following equation (8). In the equation (8), σ s is a scattering cross section.

Figure 2009294652
Figure 2009294652

(7)式から長さLの光散乱導光体を散乱せずに透過する確率P(L)は下記の(9)式で表される。 From the equation (7), the probability P t (L) of transmitting through the light-scattering light guide of length L without scattering is expressed by the following equation (9).

Figure 2009294652
Figure 2009294652

反対に光路長Lまでに散乱される確率P(L)は、下記の(10)式で表される。 On the other hand, the probability P s (L) scattered up to the optical path length L is expressed by the following equation (10).

Figure 2009294652
Figure 2009294652

これらの式からわかるように、濁度τを変えることにより、光散乱導光体内での多重散乱の度合いを制御することができる。   As can be seen from these equations, the degree of multiple scattering in the light scattering light guide can be controlled by changing the turbidity τ.

以上の関係式により、散乱微粒子のサイズパラメータαと濁度τとの少なくとも1つをパラメータとして、光散乱導光体内での多重散乱を制御可能であり、出射面における出射光強度と散乱角も適正に設定可能である。つまり、図1における光源10から所定の距離だけ離れた地点の、光源10の光軸2と、複数のLED(第一LED11、第二LED12及び第三LED13)のそれぞれの照射エリアA1,B1,C1とのズレが補正されるように、散乱微粒子のサイズパラメータαと濁度τとが設定されていれば、色ズレを打ち消し均一にすることが可能になる。   By the above relational expression, it is possible to control multiple scattering in the light scattering light guide using at least one of the size parameter α and turbidity τ of the scattering fine particles as a parameter, and the outgoing light intensity and scattering angle on the outgoing surface can also be controlled. It can be set appropriately. That is, the irradiation area A1, B1, each of the optical axis 2 of the light source 10 and the plurality of LEDs (first LED 11, second LED 12, and third LED 13) at a point away from the light source 10 in FIG. If the size parameter α and the turbidity τ of the scattering fine particles are set so that the deviation from C1 is corrected, the color deviation can be canceled and made uniform.

本実施形態によれば、光散乱導光体では、光の吸収を伴わないミクロな不均一構造(粒子)の相対屈折率の大きさを制御でき、その多重散乱効果によって、光を減衰させることなく均一に、かつ特定方向に拡散出射することができる。さらに、レンズ1の出射面全体で光を平均化させて出射するため、グレアを低減することが可能となる。   According to the present embodiment, the light scattering guide can control the relative refractive index of a micro non-uniform structure (particle) that does not absorb light, and attenuates light by the multiple scattering effect. And can be diffused and emitted uniformly and in a specific direction. Furthermore, since the light is averaged and emitted from the entire emission surface of the lens 1, glare can be reduced.

なお、本発明は上記実施形態に限らず適宜変更可能であるのは勿論である。
例えば、本実施形態では、本発明に係るLED用光学素子としてレンズ1を例示して説明したが、これ以外にもLED用光学素子としてはリフレクターが挙げられる。
また、上記したように光源10からの光を1つの光学素子だけ透過させなくとも、複数の光学素子を透過させるようにしてもよい。
Of course, the present invention is not limited to the above-described embodiment and can be modified as appropriate.
For example, in this embodiment, although the lens 1 was illustrated and demonstrated as an optical element for LED which concerns on this invention, a reflector is mentioned as an optical element for LED besides this.
Further, as described above, the light from the light source 10 may be transmitted through a plurality of optical elements without passing through only one optical element.

[第2の実施の形態]
第1の実施の形態では、LED用光学素子が両凸レンズ(レンズ1)である場合を例示して説明したが、この第2の実施の形態ではLED用光学素子が片凸レンズである場合を例示して説明する。
[Second Embodiment]
In the first embodiment, the case where the LED optical element is a biconvex lens (lens 1) has been described as an example. However, in the second embodiment, the case where the LED optical element is a single convex lens is illustrated. To explain.

図5は、第2の実施の形態に係るLED用光学素子としてのレンズを示す側面図である。図5に示すように、レンズ20は、片凸レンズであり、平面上に離散的に配置された複数のLED(第一LED31、第二LED32)からなる光源30の照射方向前方に配置されている。レンズ20の凸面には、第一LED31及び第二LED32が収容される切欠21が形成されている。第一LED31及び第二LED32は、レンズ20の光軸22に対して、直交する方向に沿って光軸22を挟んで等間隔に配列されている。   FIG. 5 is a side view showing a lens as an optical element for LED according to the second embodiment. As shown in FIG. 5, the lens 20 is a single convex lens, and is arranged in front of the irradiation direction of the light source 30 composed of a plurality of LEDs (first LED 31 and second LED 32) discretely arranged on a plane. . On the convex surface of the lens 20, a notch 21 in which the first LED 31 and the second LED 32 are accommodated is formed. The first LED 31 and the second LED 32 are arranged at equal intervals along the optical axis 22 along the direction orthogonal to the optical axis 22 of the lens 20.

レンズ20をなす光散乱導光体は、例えばポリチルメタクリレート樹脂により形成されている。このポリチルメタクリレート樹脂には、散乱微粒子として粒子径が1〜10μmの球状かつ透光性のシリコーン粒子が多数含有されている。   The light scattering light guide forming the lens 20 is made of, for example, a polytyl methacrylate resin. This polytyl methacrylate resin contains a large number of spherical and translucent silicone particles having a particle diameter of 1 to 10 μm as scattering fine particles.

ここで、第一LED31と第二LED32との光軸間隔Hを1.5mmとし、レンズ20における切欠21から当該レンズ20の出射面23までの厚みTを12mmと仮定する。また、レンズ2の散乱微粒子の直径を2μmとした場合、当該散乱微粒子の単一散乱半値角θは、図6のグラフにおける相対強度が0.5のときの角度(6.1°)となる。
また、1つの散乱から次の散乱までの平均距離(自由行程)は、濁度τの逆数(1/τ)で表される。そして、厚さTのレンズ内部での散乱回数Nは、N=τ・Tで表される。この散乱回数Nは、0.1以上50以下であることが好ましい。例えばN=2とすると、レンズ全体での散乱半値角θは、下記の式(11)に示すように8.6°となる。
Here, it is assumed that the optical axis distance H between the first LED 31 and the second LED 32 is 1.5 mm, and the thickness T from the notch 21 to the exit surface 23 of the lens 20 is 12 mm. When the diameter of the scattering fine particles of the lens 2 is 2 μm, the single scattering half-value angle θ of the scattering fine particles is an angle (6.1 °) when the relative intensity in the graph of FIG. 6 is 0.5. .
Moreover, the average distance (free path) from one scattering to the next is expressed by the reciprocal (1 / τ) of turbidity τ. The number of scattering times N inside the lens having the thickness T is expressed by N = τ · T. The number of scattering times N is preferably 0.1 or more and 50 or less. For example, when N = 2, the scattering half-value angle θ of the entire lens is 8.6 ° as shown in the following formula (11).

Figure 2009294652
Figure 2009294652

レンズ20における出射面23での光線の広がり距離H1は、H1=2T・tanθで表されるので、上記により求められた値を代入するとH1=3.63mmとなる。つまり、出射面23での光線広がり距離H1が、第一LED31と第二LED32との光軸間隔Hのおよそ2.5倍程度となるために、第一LED31からの光線と、第二LED32からの光線とが重なり合うことになり、出射面23から均一に出射され、ムラが補正されることになる。   Since the spreading distance H1 of the light beam on the exit surface 23 of the lens 20 is expressed by H1 = 2T · tan θ, H1 = 3.63 mm when the value obtained as described above is substituted. That is, since the light beam spreading distance H1 on the exit surface 23 is about 2.5 times the optical axis distance H between the first LED 31 and the second LED 32, the light beam from the first LED 31 and the second LED 32 The light beams overlap with each other, and the light beams are emitted uniformly from the light exit surface 23, and unevenness is corrected.

1 レンズ(LED用光学素子)
2 光軸
10 光源
11 第一LED
12 第二LED
13 第三LED
20 レンズ(LED用光学素子)
22 光軸
30 光源
31 第一LED
32 第二LED
1 Lens (LED optical element)
2 Optical axis 10 Light source 11 First LED
12 Second LED
13 Third LED
20 Lens (LED optical element)
22 Optical axis 30 Light source 31 First LED
32 Second LED

Claims (2)

離散的に配置された複数のLEDからなる光源と、当該光源の照射方向前方に配置されるLED用光学素子であって、体積的に一様な散乱能が与えられた光散乱導光体により形成されていることを特徴とするLED用光学素子。   A light source comprising a plurality of discretely arranged LEDs, and an LED optical element arranged in front of the light source in the irradiation direction, by a light scattering light guide having a volumetric uniform scattering ability An optical element for LED, which is formed. 請求項1記載のLED用光学素子において、
前記光源から所定の距離だけ離れた地点の、前記光源の光軸に対して、前記複数のLEDのそれぞれの照射エリア中心のズレが補正されるように、前記光散乱導光体のサイズパラメータ及び濁度の少なくとも一方が設定されていることを特徴とするLED用光学素子。
The optical element for LED according to claim 1,
The size parameter of the light-scattering light guide, and the deviation of the center of each irradiation area of the plurality of LEDs is corrected with respect to the optical axis of the light source at a point away from the light source by a predetermined distance; At least one of turbidity is set, The LED optical element characterized by the above-mentioned.
JP2009113134A 2008-05-09 2009-05-08 LED optical elements Active JP5537068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009113134A JP5537068B2 (en) 2008-05-09 2009-05-08 LED optical elements

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008122845 2008-05-09
JP2008122845 2008-05-09
JP2009113134A JP5537068B2 (en) 2008-05-09 2009-05-08 LED optical elements

Publications (2)

Publication Number Publication Date
JP2009294652A true JP2009294652A (en) 2009-12-17
JP5537068B2 JP5537068B2 (en) 2014-07-02

Family

ID=41542843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113134A Active JP5537068B2 (en) 2008-05-09 2009-05-08 LED optical elements

Country Status (1)

Country Link
JP (1) JP5537068B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150790A (en) * 2010-01-19 2011-08-04 Nittoh Kogaku Kk White led illumination device and optical lens
JP2011181251A (en) * 2010-02-26 2011-09-15 Nittoh Kogaku Kk Led lighting system
CN110568601A (en) * 2019-08-30 2019-12-13 北京临近空间飞行器系统工程研究所 Image scanning system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137570A (en) * 1990-09-27 1992-05-12 Sanyo Electric Co Ltd Light emitting diode lamp
JP2004341446A (en) * 2003-05-19 2004-12-02 Nitto Jushi Kogyo Kk Light diffuser and optical member using the same and optical device
WO2005053041A1 (en) * 2003-11-25 2005-06-09 Matsushita Electric Works, Ltd. Light emitting device using light emitting diode chip
JP2007265688A (en) * 2006-03-27 2007-10-11 Harison Toshiba Lighting Corp Collimation lens and lighting fixture using this
WO2007121486A2 (en) * 2006-04-18 2007-10-25 Lamina Lighting, Inc. Optical devices for controlled color mixing
WO2009054948A1 (en) * 2007-10-24 2009-04-30 Superbulbs, Inc. Diffuser for led light sources

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137570A (en) * 1990-09-27 1992-05-12 Sanyo Electric Co Ltd Light emitting diode lamp
JP2004341446A (en) * 2003-05-19 2004-12-02 Nitto Jushi Kogyo Kk Light diffuser and optical member using the same and optical device
WO2005053041A1 (en) * 2003-11-25 2005-06-09 Matsushita Electric Works, Ltd. Light emitting device using light emitting diode chip
JP2007265688A (en) * 2006-03-27 2007-10-11 Harison Toshiba Lighting Corp Collimation lens and lighting fixture using this
WO2007121486A2 (en) * 2006-04-18 2007-10-25 Lamina Lighting, Inc. Optical devices for controlled color mixing
JP2009534799A (en) * 2006-04-18 2009-09-24 ラミナ ライティング インコーポレーテッド Optical device for controlled color mixing
WO2009054948A1 (en) * 2007-10-24 2009-04-30 Superbulbs, Inc. Diffuser for led light sources
JP2011501464A (en) * 2007-10-24 2011-01-06 テオス・インコーポレイテッド Diffuser for LED light source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150790A (en) * 2010-01-19 2011-08-04 Nittoh Kogaku Kk White led illumination device and optical lens
US8981402B2 (en) 2010-01-19 2015-03-17 Nittoh Kogaku K.K. White LED lighting device, and optical lens
JP2011181251A (en) * 2010-02-26 2011-09-15 Nittoh Kogaku Kk Led lighting system
CN110568601A (en) * 2019-08-30 2019-12-13 北京临近空间飞行器系统工程研究所 Image scanning system

Also Published As

Publication number Publication date
JP5537068B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
WO2013157243A1 (en) Luminous flux control member, light emitting apparatus, and illuminating apparatus
JP5279329B2 (en) Light-emitting unit with lens
JP6334497B2 (en) Lighting module
TWI384166B (en) Electronic device and lighting unit thereof
JP5562047B2 (en) White LED lighting device and optical lens
JP2016534513A (en) Optical system that produces uniform illumination
JP5543157B2 (en) Optical element and light emitting device
WO2014075721A1 (en) Artificial illumination device for generating natural light
JP6073718B2 (en) Optical lens
US10634296B2 (en) Luminous flux control member, light-emitting device, planar light source device, and display device
JP5537068B2 (en) LED optical elements
JP6437252B2 (en) Luminous flux control member, light emitting device, and illumination device
JP2011249141A (en) Light emitting device
TWI579487B (en) Secondary optical element and light source module
JP6309660B2 (en) Light guide and light emitting device
WO2015005424A1 (en) Optical element and illumination device including optical element
JP6748424B2 (en) Light emitting device, surface light source device, and display device
JP6344961B2 (en) Semiconductor light emitting device
JP6668689B2 (en) Lighting modules and large lighting devices
JP6749084B2 (en) LED lighting device
JP5401331B2 (en) Optical element and light emitting device
JP2020518869A (en) Diffusing lens and light emitting device employing the same
JP2013172084A (en) Luminaire
JP2018194566A (en) Diffusion lens and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140425

R150 Certificate of patent or registration of utility model

Ref document number: 5537068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250