JP2009294224A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2009294224A5 JP2009294224A5 JP2009215442A JP2009215442A JP2009294224A5 JP 2009294224 A5 JP2009294224 A5 JP 2009294224A5 JP 2009215442 A JP2009215442 A JP 2009215442A JP 2009215442 A JP2009215442 A JP 2009215442A JP 2009294224 A5 JP2009294224 A5 JP 2009294224A5
- Authority
- JP
- Japan
- Prior art keywords
- rays
- crystal
- diffracted
- analyte
- ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012491 analyte Substances 0.000 claims 6
- 230000005540 biological transmission Effects 0.000 claims 5
- 238000004458 analytical method Methods 0.000 claims 2
- 230000001066 destructive Effects 0.000 claims 2
Claims (2)
前記透過型結晶分析体の厚さHが、Nを自然数、Λを消衰距離としたとき、
H=[(2N+1)/2]・Λ
であることを特徴とする非破壊分析方法。
ただし消衰距離Λは、X線の波長をλとしたとき、
Λ=(λcosθ B )/|χ G |
で表され、このとき上記χ G は「−[(r e λ 2 )/πV C ]F G 」であり、「r e 」は電子古典半径を、「V C 」は結晶単位格子(=単位胞体積)を、「F G 」はブラッグ角θ B ≠0の時の結晶構造因子を表す。 The object is irradiated with monochromatic parallel X-rays, and transmitted X-rays, refracted X-rays, diffracted X-rays or small-angle scattered X-rays from the object are incident on the crystal lattice plane of the transmissive crystal analyte at a Bragg angle θ B , Of the forward diffracted X-rays obtained in the transmission direction and the diffracted diffracted X-rays obtained in the diffracting direction by the dynamic diffraction of the type crystal analyte, the forward diffracted X-rays are detected to darken the image in the object. A non-destructive analysis method for obtaining a bright image in the field of view,
When the thickness H of the transmission crystal analyte is N as a natural number and Λ as an extinction distance,
H = [(2N + 1) / 2] · Λ
A non-destructive analysis method characterized by
However, the extinction distance Λ is, when the wavelength of X-ray is λ,
Λ = (λ cos θ B ) / | χ G |
In this case, χ G is “− [(r e λ 2 ) / πV C ] F G ”, “r e ” is the electron classical radius, and “V C ” is the crystal unit cell (= unit “F G ” represents the crystal structure factor when the Bragg angle θ B ≠ 0.
前記透過型結晶分析体の厚さHが、Nを自然数、Λを消衰距離としたとき、
H=[(2N+1)/2]・Λ
であることを特徴とする非破壊分析装置。
ただし消衰距離Λは、X線の波長をλとしたとき、
Λ=(λcosθ B )/|χ G |
で表され、このとき上記χ G は「−[(r e λ 2 )/πV C ]F G 」であり、「r e 」は電子古典半径を、「V C 」は結晶単位格子(=単位胞体積)を、「F G 」はブラッグ角θ B ≠0の時の結晶構造因子を表す。 Monochromatic parallel X-ray irradiated to the object, transmitted X-rays from the object, the refractive X-ray, the diffraction X-ray or small angle scattering X-ray is incident at the Bragg angle theta B in the crystal lattice surface of the transmissive crystal analyte, the transmission Of the forward diffracted X-rays obtained in the transmission direction and the diffracted diffracted X-rays obtained in the diffracting direction by the dynamic diffraction of the type crystal analyte, the forward diffracted X-rays are detected to darken the image in the object. A nondestructive analyzer that obtains a bright image in the field of view,
When the thickness H of the transmission crystal analyte is N as a natural number and Λ as an extinction distance,
H = [(2N + 1) / 2] · Λ
A nondestructive analyzer characterized by being.
However, the extinction distance Λ is, when the wavelength of X-ray is λ,
Λ = (λ cos θ B ) / | χ G |
In this case, χ G is “− [(r e λ 2 ) / πV C ] F G ”, “r e ” is the electron classical radius, and “V C ” is the crystal unit cell (= unit “F G ” represents the crystal structure factor when the Bragg angle θ B ≠ 0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009215442A JP5187694B2 (en) | 2001-07-11 | 2009-09-17 | Nondestructive analysis method and nondestructive analyzer |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001211221 | 2001-07-11 | ||
JP2001211221 | 2001-07-11 | ||
JP2002058053 | 2002-03-04 | ||
JP2002058053 | 2002-03-04 | ||
JP2009215442A JP5187694B2 (en) | 2001-07-11 | 2009-09-17 | Nondestructive analysis method and nondestructive analyzer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002186332A Division JP4498663B2 (en) | 2001-07-11 | 2002-06-26 | Thickness setting method for transmission crystal analyte |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2009294224A JP2009294224A (en) | 2009-12-17 |
JP2009294224A5 true JP2009294224A5 (en) | 2010-02-12 |
JP5187694B2 JP5187694B2 (en) | 2013-04-24 |
Family
ID=41542498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009215442A Expired - Fee Related JP5187694B2 (en) | 2001-07-11 | 2009-09-17 | Nondestructive analysis method and nondestructive analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5187694B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57203426A (en) * | 1981-06-08 | 1982-12-13 | Tokyo Shibaura Electric Co | X-ray diagnostic apparatus |
JPS59230540A (en) * | 1983-06-13 | 1984-12-25 | キヤノン株式会社 | X-ray digital solid photographing apparatus |
JPH0783744B2 (en) * | 1987-06-02 | 1995-09-13 | 株式会社日立製作所 | X-ray tomography system |
RU2012872C1 (en) * | 1991-05-14 | 1994-05-15 | Виктор Натанович Ингал | Method for obtaining image of object internal structure |
JPH06102600A (en) * | 1992-09-24 | 1994-04-15 | Yokogawa Medical Syst Ltd | Slit photography and image information reader |
JP2001033406A (en) * | 1999-07-16 | 2001-02-09 | Nec Corp | X-ray phase difference image pickup method and device |
-
2009
- 2009-09-17 JP JP2009215442A patent/JP5187694B2/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Harutyunyan et al. | Nonlinear dark-field microscopy | |
JP2003329617A5 (en) | ||
WO2015066977A1 (en) | Apparatus and method for x-ray grating phase-contrast imaging | |
KR970059729A (en) | Phase type X-ray CT device | |
WO2011027642A1 (en) | Method for measuring the characteristics of a measurement subject, and planar periodic structural body | |
Katayama et al. | Ultrafast dynamics of surface-enhanced Raman scattering due to Au nanostructures | |
Gueriau et al. | Noninvasive synchrotron-based X-ray Raman scattering discriminates carbonaceous compounds in ancient and historical materials | |
JP2013213720A5 (en) | ||
Wang et al. | Anomalous phonon modes in black phosphorus revealed by resonant Raman scattering | |
Casiraghi | Effect of hydrogen on the UV Raman intensities of diamond-like carbon | |
Metzler et al. | Polarization dependence of aragonite calcium L-edge XANES spectrum indicates c and b axes orientation | |
Genslein et al. | Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples | |
JP5277432B2 (en) | Suspended matter analysis method | |
WO2012165052A1 (en) | Measurement method for object to be measured | |
Zhang et al. | Quantitative analysis of pharmaceutical bilayer tablets using transmission Raman spectroscopy | |
WO2011013452A1 (en) | Method for measurement of properties of analyte, measurement apparatus, and filter device | |
JP2012237691A5 (en) | ||
Liu et al. | Flexible and transparent SERS substrates composed of Au@ Ag nanorod arrays for in situ detection of pesticide residues on fruit and vegetables | |
WO2011142155A1 (en) | Method for measuring characteristics of object to be measured, and gap arrangement structure and measuring device used therefor | |
JP2009294224A5 (en) | ||
JP2012108126A5 (en) | ||
JP5483840B2 (en) | X-ray imaging apparatus and X-ray imaging method | |
Cody et al. | In-situ ellipsometric study of the optical properties of LTL-doped thin film sensors for copper (II) ion detection | |
Inaba et al. | Effects of chirality and defect density on the intermediate frequency raman modes of individually suspended single-walled carbon nanotubes | |
JPWO2014041675A1 (en) | X-ray imaging apparatus and X-ray imaging method |