JP2009293536A - 内燃機関の排気制御装置 - Google Patents

内燃機関の排気制御装置 Download PDF

Info

Publication number
JP2009293536A
JP2009293536A JP2008148746A JP2008148746A JP2009293536A JP 2009293536 A JP2009293536 A JP 2009293536A JP 2008148746 A JP2008148746 A JP 2008148746A JP 2008148746 A JP2008148746 A JP 2008148746A JP 2009293536 A JP2009293536 A JP 2009293536A
Authority
JP
Japan
Prior art keywords
exhaust
upstream
flow path
main
catalytic converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008148746A
Other languages
English (en)
Other versions
JP4962418B2 (ja
Inventor
Satoshi Miura
聡 三浦
Satoshi Nishii
聡 西井
Shunichi Mitsuishi
俊一 三石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008148746A priority Critical patent/JP4962418B2/ja
Publication of JP2009293536A publication Critical patent/JP2009293536A/ja
Application granted granted Critical
Publication of JP4962418B2 publication Critical patent/JP4962418B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】 流路切換弁の閉から開への切換タイミングを適切なものとして、排気エミッションの低減や触媒の劣化進行の抑制を図る。
【解決手段】 メイン触媒コンバータよりも上流側の排気のメイン流路に流路切換弁を介装し、メイン流路の上流部分に並設されたバイパス流路にバイパス触媒コンバータを介装する。排気温度センサにより検出されるメイン触媒コンバータの下流側の排気温度が触媒活性判定温度T0に達すると、流路切換弁を開とする(S14,S15)。機関始動後の2回目以降の閉状態である場合、初回の閉状態に比して、この触媒活性判定温度T0に所定の補正値αを加算する(S12,S13)。また、閉から開への切換後に、触媒の上流側と下流側にそれぞれ設けた酸素センサの出力に基づいて、メイン触媒コンバータの活性状態を判定し、この活性状態までの排気温度の上昇分を学習値α2として算出し、触媒活性判定温度T0に加算する(S16〜S19)。
【選択図】図3

Description

この発明は、触媒コンバータで排気浄化を行う内燃機関の排気制御装置、特に、メイン触媒コンバータが活性化していない冷間始動直後などに、別の触媒コンバータを備えたバイパス流路側に排気を案内するようにした形式の排気制御装置の改良に関する。
従来から知られているように、車両の床下などの排気系の比較的下流側にメイン触媒コンバータを配置した構成では、内燃機関の冷間始動後、触媒コンバータの温度が上昇して活性化するまでの間、十分な排気浄化作用を期待することができない。また一方、触媒コンバータを排気系の上流側つまり内燃機関側に近付けるほど、触媒の熱劣化による耐久性低下が問題となる。
そのため、特許文献1に開示されているように、メイン触媒コンバータを備えたメイン流路の上流側部分と並列にバイパス流路を設けるとともに、このバイパス流路に、別のバイパス触媒コンバータを介装し、両者を切り換える流路切換弁によって、冷間始動直後は、バイパス流路側に排気を案内するようにした排気制御装置が従来から提案されている。この構成では、バイパス触媒コンバータは排気系の中でもメイン触媒コンバータより相対的に上流側に位置しており、相対的に早期に活性化するので、より早い段階から排気浄化を開始することができる。
流路切換弁の作動は、例えば排気温度センサを用いてメイン触媒コンバータの下流側の排気温度を検出し、この排気温度に応じて排気浄化触媒の活性状態を判定している。つまり、排気温度が所定の触媒活性判定温度以下の場合には、メイン触媒コンバータが非活性であると判定し、バイパス流路側に排気を案内するように流路切換弁を閉じ、排気温度が触媒活性判定温度を超えると、メイン触媒コンバータが活性化したと判断して流路切換弁を開く。
特開2005−351088号公報
このように、流路切換弁(以下、単に『切換弁』とも呼ぶ)は機関始動後にメイン触媒コンバータ(以下、『床下触媒』とも呼ぶ)が一度も活性していない機関冷間始動直後に閉状態とされるが、例えば渋滞時やコンビニエンスストアなどに立ち寄った場合など、比較的長い時間アイドル運転を継続するような状況では、排気ガスボリュームが少ないことから、床下触媒の温度が低下し、再び非活性状態となることがある。そのため、例えば触媒下流の排気温度から再び非活性状態となったか(つまり、所定の触媒活性温度よりも低下したか)を判定し、その場合には再び流路切換弁を閉じることが好ましい。
しかしながら、機関冷間始動直後など、床下触媒を含めた排気系の温度が十分に低い流路切換弁の初回の閉状態と、上記のように床下触媒が既に活性化した暖機後に流路切換弁を再び閉じるような場合、つまり機関始動から機関停止までの1トリップ中に既に流路切換弁の開を経験している2回目以降の閉状態とでは、床下触媒の昇温特性が大きく異なるものとなる。
図5は、初回の閉状態(A)及び2回目以降の閉状態(B)における床下触媒の入口ガス温度、床下触媒の先頭部・中段部及び後端部における触媒温度(BED温度)の昇温特性を示している。同図に示すように、初回の閉状態では、触媒を含めた排気系が冷え切っていることから、床下触媒が先頭から徐々に暖められ、触媒温度が先頭から後端へ順番に上昇していく傾向にあるのに対し、2回目以降の閉状態では、既に触媒が触媒活性判定温度付近まで暖まっているために、均等に昇温する傾向にある。このため、触媒下流の排気温度により触媒の活性状態を判定する場合、初回の閉状態では、触媒反応熱が触媒下流側まで流れてくる時間が遅いため、実際の触媒温度に対して触媒下流側の排気温度が低くなる傾向にあるのに対し、2回目以降の閉状態では、比較的均等に暖まることから早い段階で触媒反応熱が触媒下方へ流れてくるために、初回の閉状態に比して触媒下流側の排気温度が相対的に高くなる傾向にある。
このような相違によって、触媒下流の排気温度と固定の触媒活性判定温度との比較により活性状態を判定すると、誤判定を生じるおそれがある。例えば、初回の閉状態に応じて触媒活性判定温度を設定すると、2回目以降の閉状態ではメイン触媒コンバータの活性前に流路切換弁が開いて排気エミッションの悪化を招くおそれがあり、また、2回目以降の閉状態に応じて触媒活性判定温度を設定すると、初回の閉状態ではメイン触媒コンバータが既に活性されているにもかかわらず流路切換弁がしばらく閉じたままとなり、バイパス触媒コンバータが排気ガスに晒される機会が増えて、このバイパス触媒コンバータの熱劣化が進行するおそれがある。
そこで本発明は、流路切換弁の閉から開への切換タイミングを適正化し、排気エミッションの悪化やバイパス触媒コンバータの熱劣化や耐久性の低下を低減・解消することを目的としている。
メイン触媒コンバータよりも上流側の排気のメイン流路に流路切換弁が介装されるとともに、このメイン流路の上流部分に並設されたバイパス流路にバイパス触媒コンバータが介装され、上記流路切換弁の閉時に排気がバイパス流路へ流れるように構成された内燃機関の排気制御装置において、上記メイン触媒コンバータの下流側の排気温度を検出する排気温度検出手段と、上記排気温度が所定の触媒活性判定温度を超えると上記流路切換弁を開とする制御部と、を有する。そして、この制御部は、上記流路切換弁の閉時に、機関始動後における初回の閉状態であるか、あるいは2回目以降の閉状態であるかを判定する閉状態判定手段と、上記2回目以降の閉状態の場合、初回の閉状態の場合に比して、上記触媒活性判定温度を増加側へ補正する触媒活性判定温度補正手段と、を有することを特徴としている。
この発明によれば、流路切換弁の閉から開への切換タイミングを適切なものとして、流路切換弁の開への切換が遅れることよる排気エミッションの悪化や、流路切換弁の開への切換が早すぎることによるバイパス触媒コンバータの熱劣化や耐久性の低下を低減・解消することができる。
以下、この発明を直列4気筒内燃機関の排気制御装置として適用した一実施例を図面に基づいて詳細に説明する。図1はこの排気制御装置の配管レイアウトを模式的に示した説明図であり、始めに、この図1に基づいて、排気制御装置全体の構成を説明する。直列に配置された♯1気筒〜♯4気筒からなる各気筒1には、気筒毎に上流側メイン通路2が接続されている。4つの気筒の中で、排気行程が連続しない♯1気筒の上流側メイン通路2と♯4気筒の上流側メイン通路2とが1本の中間メイン通路3として合流しており、同様に排気行程が連続しない♯2気筒の上流側メイン通路2と♯3気筒の上流側メイン通路2とが1本の中間メイン通路3として合流している。ここで、各2本の上流側メイン通路2が合流する合流部には、それぞれ流路切換弁4が設けられている。この流路切換弁4は、冷間時に閉じられるものであって、閉時には、上流側メイン通路2と中間メイン通路3との間の上下の連通を遮断するとともに、2本の上流側メイン通路2の間を非連通状態とする構成となっている。一対の流路切換弁4は、後述するように、1つのバルブユニット5として構成されている。バルブユニット5の下流に位置する2本の中間メイン通路3は、合流点6において互いに合流し、1本の下流側メイン通路7となる。この下流側メイン通路7の途中には、メイン触媒コンバータ8が介装されている。このメイン触媒コンバータ8における触媒としては、三元触媒とHCトラップ触媒とを含んでいる。なお、このメイン触媒コンバータ8は、車両の床下に配置される容量の大きなものである。以上の上流側メイン通路2と中間メイン通路3と下流側メイン通路7とメイン触媒コンバータ8とによって、通常の運転時に排気が通流するメイン流路が構成される。このメイン流路は、直列4気筒内燃機関において周知の「4−2−1」の形で集合する配管レイアウトとなっており、従って、排気動的効果を利用した充填効率向上が実現される。
一方、バイパス流路として、上流側メイン通路2の各々から、上流側バイパス通路11が分岐している。この上流側バイパス通路11は、上流側メイン通路2よりも通路断面積が十分に小さなものであって、その上流端となる分岐点12は、上流側メイン通路2のできるだけ上流側の位置に設定されている。そして、互いに隣接した位置にある♯1気筒の上流側バイパス通路11と♯2気筒の上流側バイパス通路11とが合流点13において1本の中間バイパス通路14として互いに合流しており、同様に互いに隣接した位置にある♯3気筒の上流側バイパス通路11と♯4気筒の上流側バイパス通路11とが合流点13において1本の中間バイパス通路14として互いに合流している。なお、各通路を模式的に示した図1では、各上流側バイパス通路11が比較的長く描かれているが、実際には、可能な限り短くなっている。換言すれば、最短距離でもって中間バイパス通路14として合流している。2本の中間バイパス通路14は、合流点15において1本の下流側バイパス通路16として互いに合流している。この下流側バイパス通路16の下流端は、下流側メイン通路7のメイン触媒コンバータ8より上流側の合流点17において、下流側メイン通路7に合流している。そして、上記下流側バイパス通路16の途中には、三元触媒を用いたバイパス触媒コンバータ18が介装されている。このバイパス触媒コンバータ18は、バイパス流路の中で、可能な限り上流側に配置されている。つまり、中間バイパス通路14もできるだけ短くなっている。
なお、本実施例においては、中間バイパス通路14として集合させることなく4本の上流側バイパス通路11をバイパス触媒コンバータ18直前位置で1本の下流側バイパス通路16として集合させた構成も可能であるが、分岐点12の位置とバイパス触媒コンバータ18の位置を一定のものとして比較した場合、4本の上流側バイパス通路11を長く引き回すよりも、上記実施例のように上流側で2本の中間バイパス通路14にまとめた方が、全体の通路長(各気筒のバイパス通路の総和)が短くなり、配管自体の熱容量ならびに外気に対する放熱面積が小さくなる。
上記バイパス触媒コンバータ18は、その内部に、前後に分割された2つのモノリス触媒担体つまり第1触媒18aと第2触媒18bとを備えている。そして、これらの第1触媒18aと第2触媒18bとの間の間隙19に、排気還流通路20の一端が接続されている。この排気還流通路20の他端は、図示せぬ排気還流制御弁を介して機関吸気系へと延びている。つまり、上記間隙19が、還流排気の取り出し口となっている。上記バイパス触媒コンバータ18は、メイン触媒コンバータ8に比べて容量が小さな小型のものであり、望ましくは、低温活性に優れた触媒が用いられる。
上記のように構成された排気制御装置においては、冷間始動後の機関温度ないしは排気温度が低い段階では、適宜なアクチュエータを介して流路切換弁4が閉じられ、メイン流路が遮断される。そのため、各気筒1から吐出された排気は、その全量が、分岐点12から上流側バイパス通路11および中間バイパス通路14を通してバイパス触媒コンバータ18へと流れる。バイパス触媒コンバータ18は、排気系の上流側つまり気筒1に近い位置にあり、かつ小型のものであるので、速やかに活性化し、早期に排気浄化が開始される。また、このとき、流路切換弁4が閉じることで、各気筒1の上流側メイン通路2が互いに非連通状態となる。そのため、ある気筒から吐出された排気が他の気筒の上流側メイン通路2へと回り込む現象が防止され、この回り込みに伴う排気温度の低下が確実に回避される。さらに、この流路切換弁4の閉状態の下で排気還流を行う場合、排気還流通路20から吸気系へ取り出される還流排気は、第1触媒18aを通過した後の清浄な排気つまり異物や未燃成分等が除去されたものとなっているので、排気還流制御弁や吸気系におけるデポジットの付着や汚損が防止される。
一方、機関の暖機が進行して、機関温度ないしは排気温度が十分に高くなったら、流路切換弁4が開放される。これにより、各気筒1から吐出された排気は、主に、上流側メイン通路2から中間メイン通路3および下流側メイン通路7を通り、メイン触媒コンバータ8を通過する。このときバイパス流路側は特に遮断されていないが、バイパス流路側の方がメイン流路側よりも通路断面積が小さく、かつバイパス触媒コンバータ18が介在しているので、両者の通路抵抗の差により、排気流の大部分はメイン流路側を通り、バイパス流路側には殆ど流れない。従って、バイパス触媒コンバータ18の熱劣化は十分に抑制される。またバイパス流路側が完全に遮断されないことから、排気流量が大となる高速高負荷時には、排気流の一部がバイパス流路側を流れることで、背圧による充填効率低下を回避することができる。
またメイン流路側は、前述したように、排気干渉回避を考慮した「4−2−1」の配管レイアウトとなっているので、排気動的効果による充填効率向上効果を得ることができる。ここで、バイパス流路側は、排気干渉回避を特に考慮しない形で連通・集合しているが、上流側バイパス通路11の通路断面積を十分に小さなものとすることで、各気筒の連通による排気干渉を、実質的に無視し得るレベルにまで低減することが可能である。なお、上流側バイパス通路11の通路断面積をある上限寸法よりも大きくすると上記の排気干渉による充填効率低下が生じ、また逆にある下限寸法よりも小さくすると、流路切換弁4が閉状態にある間の排気流量が過度に小さく制限されてしまい、運転可能な領域が過度に狭められる。従って、上流側バイパス通路11の通路断面積の最適な値は、機関排気量等に応じた所定の上限寸法と下限寸法との範囲内となる。一例として、総排気量が約2000ccの内燃機関において、等価直径が5mm〜15mmの範囲内で、良好な結果が得られた。
さらに、この流路切換弁4の閉状態の下で排気還流を行う場合、還流排気は、やはりバイパス触媒コンバータ18から取り出される。このとき、仮に一部の排気が下流側メイン通路7から下流側バイパス通路16を逆流するような形で排気還流通路20へと流れることがあっても、排気還流通路20から吸気系へ取り出される還流排気は、第2触媒18bを通過した後の清浄な排気となるので、やはり排気還流制御弁や吸気系におけるデポジットの付着や汚損が防止される。なお、このように第2触媒18bを逆流する際の流れの速度は比較的遅く、第2触媒18b内での滞留時間(通過時間)が長くなるので、図示するように、第2触媒18bの軸方向長さを第1触媒18aの軸方向長さよりも短く設定することが可能である。
図2は、上記の排気制御装置をより具体的な形態として示したものであり、シリンダブロック32とシリンダヘッド33とを有する内燃機関31が、車両のエンジンルーム内に所謂横置形式に搭載されており、そのシリンダヘッド33の車両後方となる側面に、上流側メイン通路2を主に構成する排気マニホルド34が取り付けられている。この排気マニホルド34の出口部には、一対の流路切換弁4を備えたバルブユニット5が取り付けられ、その下流に、下流側メイン通路7となるフロントチューブ35が接続されている。このフロントチューブ35の上流側の一部は、内部で2つの通路に区画されており、つまり上記の中間メイン通路3を構成している。メイン触媒コンバータ8は、上記フロントチューブ35の途中に設けられている。
バイパス流路となるバイパス触媒コンバータ18等は、シリンダヘッド33から車両後方へ延びるメイン流路の下側の空間に配置されている。バイパス触媒コンバータ18は、エンジンルーム内に位置し、かつ車両走行方向に対し、フロントチューブ35よりも前方側となるので、走行中は走行風によって効果的に冷却され、該バイパス触媒コンバータ18の過昇温が防止される。
また、上流側メイン通路2に対し上流側バイパス通路11は鋭角をなすように分岐しており、これによって、流路切換弁4閉時に、バイパス流路側に円滑に排気が流れる。
メイン触媒コンバータ8の上流側と下流側には、排気の空燃比に対応する酸素濃度を検出する上流側酸素センサ(上流側酸素濃度検出手段)41及び下流側酸素センサ(下流側酸素濃度検出手段)42が設けられるとともに、メイン触媒コンバータ8の下流側には、触媒下流の排気温度を検出する排気温度センサ(排気温度検出手段)43が設けられている。なお、酸素センサとして、この実施例では簡易的に理論空燃比の近傍で出力が反転するものを用いているが、これに限らず、酸素濃度・空燃比を幅広く検出可能な広域型のものを用いてもよい。制御部40(図1参照)は、各種制御処理を記憶及び実行する機能を有するデジタルコンピュータシステムであり、これらセンサ類の検出信号に応じて、後述するような流路切換弁4の制御等を行う。
図3は、本実施例に係る流路切換弁4の閉から開への切換制御の流れを示すフローチャートである。ステップS11では、流路切換弁4が閉状態であるか、言い換えるとメイン触媒コンバータ8が非活性状態であるかを判定する。ここで本実施例においては、図示せぬ他のルーチンにより、冷間始動時以外の暖機後の状態であっても、排気温度センサ43による触媒下流の排気温度などに基づいてメイン触媒コンバータ8が非活性状態であるかを判定し、非活性状態であると判定されると流路切換弁4を再び閉じるようになっている。
ステップS12では、機関始動から機関停止までの1トリップ中に、流路切換弁4の閉を既に経験済みであるか、つまり、2回目以降の閉状態であるかを判定する。2回目以降の閉状態の場合、ステップS13へ進み、流路切換弁4を閉から開へ切換えるための触媒活性判定温度T0を増加側に補正する。具体的には、図4にも示すように、触媒活性判定温度T0に所定の温度補正値αを加算する。一方、冷間始動時のように、機関始動後の初回の閉状態である場合には、ステップS13を実行することなくステップS12からステップS14へ進む。ステップS14では、排気温度センサ43により検出される触媒下流の排気温度が、上記の触媒活性判定温度T0に達したかが判定される。触媒活性判定温度T0に達していればステップS15へ進み、流路切換弁4を閉から開へ切り換える。
ステップS16では、上流側酸素センサ41と下流側酸素センサ42の出力つまり触媒上流側,下流側の酸素濃度を読み込む。ステップS17では、これら上流側酸素センサ41と下流側酸素センサ42の出力に基づいて、メイン触媒コンバータ8が活性したかを判定する。具体的には、図4に示すように、空燃比フィードバック制御によって上流側酸素センサ41の出力がリッチ側とリーン側へ周期的に反転する波形となる一方、下流側酸素センサ42の出力は反転することなく理論空燃比に対応するほぼ一定値に収束したかを判定する。収束したと判定されると、ステップS18へ進み、流路切換弁4の閉から開への切換開始時期から収束時期までのディレイ期間ΔD(図4参照)を求め、このディレイ期間ΔDにおける排気温度変化に応じて、ステップS14での活性判定に用いられる触媒活性判定温度T0に対する学習値α2を求める。そして、ステップS19において、触媒活性判定温度T0を補正・学習する。具体的には、図4に示すように、排気温度センサ43の検出信号に基づいて、ディレイ期間ΔDにおける排気温度の差分すなわち上昇分を学習値α2として算出し、このα2を触媒活性判定温度T0に加算する。この学習内容は次回以降のステップS14での触媒活性判定温度T0を用いた活性判定処理に反映されることとなる。
図4を参照して、ステップS14の判定処理によりメイン触媒コンバータ8が活性したと判定されて流路切換弁4が閉から開へ切り換えられると、空燃比フィードバック制御が行われ、上流側酸素センサ41の出力がリッチ側とリーン側とで周期的に反転する波形のものとなる。ここで、メイン触媒コンバータ8が活性化していれば、図4の符号P2に示すように、下流側酸素センサ42の出力が、上流側酸素センサ41の出力のように周期的に反転する波形となることなく、ほぼ一定の値に収束するものの、仮にメイン触媒コンバータ8が活性化していなければ、符号P1に示すように、上流側酸素センサ41の出力と同様に波形状のものとなる。そこで本実施例においては、上述したように、流路切換弁4の閉から開への切換開始時期から下流側酸素センサ42の出力がほぼ一定値に収束する時期、つまり酸素センサ41,42の出力により活性したと判定される時期までのディレイ期間ΔDを求め、このディレイ期間ΔDに応じて、触媒活性判定温度T0の学習を行うようにしている。このように、フィードバック制御などに用いられる既存の酸素センサ41,42を利用し、専用の新たなセンサ部品等を敢えて必要とすることのない簡素な構造で、触媒活性判定温度T0を良好に補正・学習することができる。
次に、本実施例の特徴的な構成及び作用効果について列記する。
メイン触媒コンバータ8よりも上流側の排気のメイン流路(2,3,7)に流路切換弁4が介装されるとともに、このメイン流路の上流部分に並設されたバイパス流路(11,14,16)にバイパス触媒コンバータ18が介装され、流路切換弁4の閉時に排気がバイパス流路へ流れるように構成されている。メイン触媒コンバータ8の下流側の排気温度を検出する排気温度センサ43(排気温度検出手段)と、排気温度が所定の触媒活性判定温度T0を超えると流路切換弁4を開とする制御部40と、を有する。
そして第1の特徴として、流路切換弁4の閉時に、機関始動後における初回の閉状態であるか、あるいは2回目以降の閉状態であるかを判定し(ステップS12,閉状態判定手段)、2回目以降の閉状態の場合、初回の閉状態の場合に比して、触媒活性判定温度T0を増加側へ補正している(ステップS13,触媒活性判定温度補正手段)。このように、切換弁4の最初の閉状態と2回目以降の閉状態のいずれにおいても、メイン触媒コンバータ8の下流側の排気温度に基づいて流路切換弁4の閉から開への切換タイミングを適切に判定することができるようになり、流路切換弁4の開への切換が遅れることよる排気エミッションの悪化や、流路切換弁4の開への切換が早すぎることによるバイパス触媒コンバータ18の熱劣化やこれによる耐久性の低下を低減・解消することができる。
第2の特徴として、メイン触媒コンバータ8の上流側の排気の酸素濃度を検出する上流側酸素センサ41(上流側酸素濃度検出手段)と、メイン触媒コンバータ8の下流側の排気の酸素濃度を検出する下流側酸素センサ42(下流側酸素濃度検出手段)と、を有し、流路切換弁4を閉から開へ切り換えた開切換後に、上流側の排気の酸素濃度と下流側の排気の酸素濃度とに基づいて、メイン触媒コンバータ8が活性したかを判定し(ステップS17,閉後活性判定手段)、切換弁4の開切換から活性状態と判定されるまでの排気温度の変化に応じて、触媒活性判定温度T0の学習値α2を算出している(ステップS18,触媒活性判定温度学習手段)。この学習値α2を触媒活性判定温度T0に反映させることで(ステップS19)、フィードバック制御などに用いられる既存の酸素センサ41,42などを利用し、専用の新たなセンサ部品等を敢えて必要とすることのない簡素な構造で、流路切換弁4の閉から開への切換タイミングを更に適切なものとすることができる。
以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば、ここでは直列4気筒内燃機関に適用した一実施例について説明したが、この発明は、直列4気筒以外の直列多気筒内燃機関あるいはV型多気筒内燃機関等の種々の形式の内燃機関の排気制御装置として適用することが可能である。
この発明に係る排気制御装置の一実施例を示す構成説明図。 上記実施例の排気系の側面図。 上記実施例の流路切換弁の閉から開への切換制御の流れを示すフローチャート。 上記流路切換弁の閉から開への切換前後のセンサ出力等の変化を示すタイミングチャート。 初回の閉状態と2回目以降の閉状態とにおける触媒の昇温特性の相違を示す説明図。
符号の説明
2…上流側メイン通路(メイン流路)
3…中間メイン通路(メイン流路)
4…流路切換弁
8…メイン触媒コンバータ
11…上流側バイパス通路(バイパス流路)
14…中間バイパス通路(バイパス流路)
16…下流側バイパス通路(バイパス流路)
18…バイパス触媒コンバータ
40…制御部
41…上流側酸素センサ(上流側酸素濃度検出手段)
42…下流側酸素センサ(下流側酸素濃度検出手段)
43…排気温度センサ(排気温度検出手段)

Claims (5)

  1. メイン触媒コンバータよりも上流側の排気のメイン流路に流路切換弁が介装されるとともに、このメイン流路の上流部分に並設されたバイパス流路にバイパス触媒コンバータが介装され、上記流路切換弁の閉時に排気がバイパス流路へ流れるように構成された内燃機関の排気制御装置において、
    上記メイン触媒コンバータの下流側の排気温度を検出する排気温度検出手段と、
    上記排気温度が所定の触媒活性判定温度を超えると上記流路切換弁を開とする制御部と、を有し、
    この制御部は、
    上記流路切換弁の閉時に、機関始動後における初回の閉状態であるか、あるいは2回目以降の閉状態であるかを判定する閉状態判定手段と、
    上記2回目以降の閉状態の場合、初回の閉状態の場合に比して、上記触媒活性判定温度を増加側へ補正する触媒活性判定温度補正手段と、
    を有することを特徴とする内燃機関の排気制御装置。
  2. 上記メイン触媒コンバータの上流側の排気の酸素濃度を検出する上流側酸素濃度検出手段と、
    上記メイン触媒コンバータの下流側の排気の酸素濃度を検出する下流側酸素濃度検出手段と、を有し、
    上記制御部は、
    上記流路切換弁を閉から開へ切り換えた開切換後に、上流側の排気の酸素濃度と下流側の排気の酸素濃度とに基づいて、上記メイン触媒コンバータが活性したかを判定する閉後活性判定手段と、
    上記切換弁の開切換から上記閉後活性判定手段により活性状態と判定されるまでの排気温度の変化に応じて、上記触媒活性判定温度の学習値を算出する触媒活性判定温度学習手段と、
    を有することを特徴とする請求項1に記載の内燃機関の排気制御装置。
  3. メイン触媒コンバータよりも上流側の排気のメイン流路に流路切換弁が介装されるとともに、このメイン流路の上流部分に並設されたバイパス流路にバイパス触媒コンバータが介装され、上記流路切換弁の閉時に排気がバイパス流路へ流れるように構成された内燃機関の排気制御装置において、
    上記メイン触媒コンバータの上流側の排気の酸素濃度を検出する上流側酸素濃度検出手段と、
    上記メイン触媒コンバータの下流側の排気の酸素濃度を検出する下流側酸素濃度検出手段と、
    上記メイン触媒コンバータの下流側の排気温度を検出する排気温度検出手段と、
    上記排気温度が所定の触媒活性判定温度を超えると上記流路切換弁を開とする制御部と、を有し、
    上記制御部は、
    上記流路切換弁を閉から開へ切り換えた開切換後に、上流側の排気の酸素濃度と下流側の排気の酸素濃度とに基づいて、上記メイン触媒コンバータが活性したかを判定する閉後活性判定手段と、
    上記切換弁の開切換から上記閉後活性判定手段により活性状態と判定されるまでの排気温度の変化に応じて、上記触媒活性判定温度の学習値を算出する触媒活性判定温度学習手段と、
    を有することを特徴とする内燃機関の排気制御装置。
  4. 上記閉後活性判定手段では、上流側酸素濃度検出手段の出力が周期的に変動する一方、下流側酸素濃度検出手段の出力がほぼ一定値に収束したときに、上記メイン触媒コンバータが活性したと判定することを特徴とする請求項2又は3に記載の内燃機関の排気浄化装置。
  5. 上記メイン流路が、各気筒にそれぞれ接続された気筒毎の上流側メイン通路と、この複数の上流側メイン通路が1本の流路に合流してなり、上記メイン触媒コンバータが介装された下流側メイン通路と、を有し、
    上記バイパス流路が、上記上流側メイン通路の上流側部分からそれぞれ分岐するとともに該上流側メイン通路よりも通路断面積の小さな気筒毎の上流側バイパス通路と、この複数の上流側バイパス通路が1本の流路に合流してなり、かつ下流端が上記下流側メイン通路に上記メイン触媒コンバータ上流側の位置において接続し、上記バイパス触媒コンバータが介装された下流側バイパス通路と、を有し、
    上記流路切換弁は、複数の上流側メイン通路の合流部に設けられており、該流路切換弁の閉時に、各上流側メイン通路を互いに非連通状態とすることを特徴とする請求項1〜4のいずれかに記載の内燃機関の排気制御装置。
JP2008148746A 2008-06-06 2008-06-06 内燃機関の排気制御装置 Active JP4962418B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148746A JP4962418B2 (ja) 2008-06-06 2008-06-06 内燃機関の排気制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008148746A JP4962418B2 (ja) 2008-06-06 2008-06-06 内燃機関の排気制御装置

Publications (2)

Publication Number Publication Date
JP2009293536A true JP2009293536A (ja) 2009-12-17
JP4962418B2 JP4962418B2 (ja) 2012-06-27

Family

ID=41541916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008148746A Active JP4962418B2 (ja) 2008-06-06 2008-06-06 内燃機関の排気制御装置

Country Status (1)

Country Link
JP (1) JP4962418B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240140A (ja) * 1995-03-03 1996-09-17 Nissan Motor Co Ltd 内燃機関の空燃比制御装置
JP2007154810A (ja) * 2005-12-07 2007-06-21 Nissan Motor Co Ltd 内燃機関の触媒劣化診断装置および診断方法
JP2008128101A (ja) * 2006-11-21 2008-06-05 Toyota Motor Corp 内燃機関の排気浄化装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240140A (ja) * 1995-03-03 1996-09-17 Nissan Motor Co Ltd 内燃機関の空燃比制御装置
JP2007154810A (ja) * 2005-12-07 2007-06-21 Nissan Motor Co Ltd 内燃機関の触媒劣化診断装置および診断方法
JP2008128101A (ja) * 2006-11-21 2008-06-05 Toyota Motor Corp 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
JP4962418B2 (ja) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4742837B2 (ja) 内燃機関の触媒劣化診断装置および診断方法
JP4502038B2 (ja) 内燃機関の制御システム
JP4462100B2 (ja) 内燃機関の排気装置および内燃機関の制御方法
JP4438759B2 (ja) 内燃機関の制御装置
US20080209900A1 (en) Exhaust Purification System for Internal Combustion Engine
JP4670884B2 (ja) 内燃機関の排気ガス還流装置
JP4779730B2 (ja) 内燃機関の排気浄化装置の故障診断装置
JP2007239493A (ja) 過給機付き内燃機関
JP2007162489A (ja) 過給機付き内燃機関の制御装置
JP2009024531A (ja) 内燃機関の気筒別空燃比制御システムの異常診断装置
JP4962418B2 (ja) 内燃機関の排気制御装置
JP2006017081A (ja) 多気筒内燃機関
JP5141430B2 (ja) 内燃機関の排気制御装置及び排気制御方法
JP2008075571A (ja) 内燃機関の制御装置
JP4687602B2 (ja) 内燃機関の故障診断方法及び内燃機関の故障診断装置
JP2008038825A (ja) 内燃機関の制御装置
JP2009209840A (ja) エンジンの排気浄化装置
US20080034735A1 (en) Internal combustion engine and method of controlling the same
JP4631759B2 (ja) 内燃機関の排気浄化装置の故障診断装置
JP4289133B2 (ja) 内燃機関の空燃比制御装置
JP4371227B2 (ja) 多気筒エンジンの排気浄化装置
JP4609166B2 (ja) 内燃機関の排気装置
JP2010116895A (ja) 内燃機関の制御装置
JP2007239571A (ja) 内燃機関の制御装置
JP4385874B2 (ja) 内燃機関の排気装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4962418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3