JP2009293513A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2009293513A
JP2009293513A JP2008147854A JP2008147854A JP2009293513A JP 2009293513 A JP2009293513 A JP 2009293513A JP 2008147854 A JP2008147854 A JP 2008147854A JP 2008147854 A JP2008147854 A JP 2008147854A JP 2009293513 A JP2009293513 A JP 2009293513A
Authority
JP
Japan
Prior art keywords
urea water
reducing agent
particle size
temperature
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008147854A
Other languages
Japanese (ja)
Other versions
JP4558816B2 (en
Inventor
Tatsuya Fujita
達也 藤田
Masatoshi Maruyama
昌利 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2008147854A priority Critical patent/JP4558816B2/en
Priority to DE102009026754A priority patent/DE102009026754B4/en
Priority to US12/478,870 priority patent/US20090301068A1/en
Publication of JP2009293513A publication Critical patent/JP2009293513A/en
Application granted granted Critical
Publication of JP4558816B2 publication Critical patent/JP4558816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0408Methods of control or diagnosing using a feed-back loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a NOx purification rate adding a suitable reducing agent while suppressing the influence on an internal combustion engine. <P>SOLUTION: An SCR catalyst 42 is provided in an exhaust pipe 22 of an engine, and a urea water adding valve 44 is provided upstream. Urea water is supplied by pressurization by a urea water pump 53 to the urea water adding valve 44. In an ECU 60, a temperature of the SCR catalyst 42 is detected, and a urea water pressure pressurized by the urea water pump 53 based on the SCR catalyst is changed based on the SCR catalyst temperature. At this time, if the SCR catalyst temperature is in a predetermined low temperature region, the urea water pressure is raised, and an atomization particle size of the urea water to be added from the urea water adding valve 44 is changed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に係り、特に還元剤としてのアンモニアにより排気中のNOx(窒素酸化物)を選択的に浄化する選択還元型触媒(SCR:Selective Catalytic Reduction)を採用した排気浄化システムに好適に適用されるものである。なお、本システムは、一般に還元剤として尿素水溶液が用いられることから、尿素SCRシステムとして知られている。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly, an exhaust gas that employs a selective catalytic reduction (SCR) that selectively purifies NOx (nitrogen oxide) in exhaust gas by ammonia as a reducing agent. The present invention is suitably applied to a purification system. This system is generally known as a urea SCR system because an aqueous urea solution is used as a reducing agent.

近年、自動車等に適用されるエンジン(特にディーゼルエンジン)において、排気中のNOxを高い浄化率で浄化する排気浄化システムとして、尿素SCRシステムの開発が進められており、一部実用化に至っている。尿素SCRシステムとしては次の構成が知られている。すなわち、尿素SCRシステムでは、エンジン本体に接続された排気管に選択還元型のNOx触媒が設けられるとともに、その上流側に、NOx還元剤としての尿素水(尿素水溶液)を排気管内に添加する尿素水添加弁が設けられている。   In recent years, a urea SCR system has been developed as an exhaust purification system for purifying NOx in exhaust gas at a high purification rate in engines (particularly diesel engines) applied to automobiles and the like, and some have been put into practical use. . The following configuration is known as a urea SCR system. That is, in the urea SCR system, a selective reduction type NOx catalyst is provided in an exhaust pipe connected to the engine body, and urea water (urea aqueous solution) as a NOx reducing agent is added into the exhaust pipe upstream thereof. A water addition valve is provided.

上記システムにおいては、尿素水添加弁により排気管内に尿素水が添加されることで、NOx触媒上で排気中のNOxが選択的に還元除去される。NOxの還元に際しては、尿素水が排気熱で加水分解されることによりアンモニア(NH3)が生成され、そのアンモニアがNOx触媒に吸着するととともに同NOx触媒上にてアンモニアに基づく還元反応が行われることによってNOxが還元、浄化されることになる。   In the above system, urea water is added into the exhaust pipe by the urea water addition valve, so that NOx in the exhaust gas is selectively reduced and removed on the NOx catalyst. When NOx is reduced, urea water is hydrolyzed by exhaust heat to produce ammonia (NH3), which is adsorbed on the NOx catalyst and undergoes a reduction reaction based on ammonia on the NOx catalyst. As a result, NOx is reduced and purified.

また、NOx触媒でのNOx浄化性能を向上させるべく、尿素水添加弁から添加される還元剤について排気管内での蒸発及び拡散を促進させる技術が提案されている(例えば、特許文献1参照)。すなわち、特許文献1の発明では、NOx触媒の排気上流側における排気通路に遮蔽部材を設けるとともに、その遮蔽部材の下流側に浄化剤を噴射して、浄化剤の微粒化を促進させる構成としている。また、排気通路内に噴射された浄化剤を分散部材に衝突させて、浄化剤の微粒化を促進させる構成としている。
特開2007−255343号公報
In addition, in order to improve the NOx purification performance of the NOx catalyst, a technique for promoting evaporation and diffusion in the exhaust pipe of the reducing agent added from the urea water addition valve has been proposed (for example, see Patent Document 1). That is, in the invention of Patent Document 1, a shielding member is provided in the exhaust passage on the exhaust upstream side of the NOx catalyst, and a purification agent is injected downstream of the shielding member to promote atomization of the purification agent. . In addition, the purifier sprayed into the exhaust passage is collided with the dispersion member to promote atomization of the purifier.
JP 2007-255343 A

しかしながら、上記特許文献1の発明では、排気通路内に遮蔽部材や分散部材を設けることに伴い排気通路内での圧力増加が生じる。この排気通路内での圧力増加は内燃機関の運転中に常に生じるため、燃費の悪化等、内燃機関の運転に関して悪影響が及ぶおそれがあった。すなわち、排気流量はエンジン運転状態に応じて変動する。このとき、例えば吸入空気量(排気流量)が多量となる高負荷運転状態では、排気通路内に設けられる遮蔽部材や分散部材が原因で排気での損失が大きくなり燃費低下が生じると考えられる。   However, in the invention of Patent Document 1, the pressure in the exhaust passage increases with the provision of the shielding member and the dispersion member in the exhaust passage. Since this pressure increase in the exhaust passage always occurs during the operation of the internal combustion engine, there is a risk of adverse effects on the operation of the internal combustion engine such as deterioration of fuel consumption. That is, the exhaust flow rate varies depending on the engine operating state. At this time, for example, in a high-load operation state in which the intake air amount (exhaust flow rate) is large, it is considered that the loss in the exhaust increases due to the shielding member or the dispersion member provided in the exhaust passage, and the fuel consumption decreases.

本発明は、内燃機関への影響を抑制しつつ好適なる還元剤の添加を行い、ひいてはNOx浄化率を向上させることができる内燃機関の排気浄化装置を提供することを主たる目的とするものである。   The main object of the present invention is to provide an exhaust purification device for an internal combustion engine that can add a suitable reducing agent while suppressing the influence on the internal combustion engine, thereby improving the NOx purification rate. .

以下、上記課題を解決するための手段、及びその作用効果について説明する。   Hereinafter, means for solving the above-described problems and the effects thereof will be described.

本発明の排気浄化装置は、内燃機関の排気通路に設けられ還元剤により排気中のNOxを選択的に浄化するNOx触媒(SCR触媒)と、前記NOx触媒の排気上流側に液状の還元剤を添加する還元剤添加手段と、前記還元剤添加手段に供給される還元剤を加圧する加圧手段とを備える排気浄化システムに適用される。そして、請求項1に記載の発明では、NOx触媒の温度又はそれに相関する温度情報を計測又は推定により取得し、その触媒温度又は温度情報に基づいて、加圧手段により加圧される還元剤圧力を変更することで、還元剤添加手段により添加される還元剤の噴霧粒径を変更する。なお、加圧手段として、例えば加圧ポンプが用いられる。   An exhaust emission control device according to the present invention includes a NOx catalyst (SCR catalyst) that is provided in an exhaust passage of an internal combustion engine and selectively purifies NOx in exhaust gas by a reducing agent, and a liquid reducing agent on the exhaust upstream side of the NOx catalyst. The present invention is applied to an exhaust gas purification system including a reducing agent adding unit to be added and a pressurizing unit to pressurize the reducing agent supplied to the reducing agent adding unit. And in invention of Claim 1, the temperature information of NOx catalyst or the temperature information correlated with it is acquired by measurement or estimation, and the reducing agent pressure pressurized by the pressurizing means based on the catalyst temperature or temperature information Is changed to change the spray particle diameter of the reducing agent added by the reducing agent addition means. For example, a pressurizing pump is used as the pressurizing means.

ここで、請求項2に記載したように、NOx触媒の温度が所定の低温域にある場合に、加圧手段により還元剤圧力を高圧化するとよい。還元剤圧力を高圧化することにより、還元剤の噴霧粒径を微細化できる。より具体的には、噴霧粒径の切替を行う温度しきい値を定めておき、触媒温度がその温度しきい値よりも低温になった場合に、還元剤圧力を高くする。   Here, as described in claim 2, when the temperature of the NOx catalyst is in a predetermined low temperature range, the reducing agent pressure may be increased by the pressurizing means. By increasing the reducing agent pressure, the spray particle size of the reducing agent can be made fine. More specifically, a temperature threshold value for switching the spray particle size is determined, and the reducing agent pressure is increased when the catalyst temperature becomes lower than the temperature threshold value.

要するに、本願発明者によれば、還元剤添加手段から添加供給される還元剤の粒径が相違すると、NOx触媒におけるNOx浄化性能に差異が生じることが確認された。詳しくは、図2に示すように、NOx触媒ではある温度(浄化率飽和温度)よりも高温になると、NOx浄化率が所定の高浄化率レベルに飽和するが、その飽和温度が還元剤の粒径に応じて相違し、粒径が小さいほど飽和温度が低いことが確認された。本発明では、こうした特性に着目し、触媒温度に応じて還元剤の噴霧粒径を変更するようにしたため、NOx触媒でのNOx浄化率が低くなりがちな場合において噴霧粒径の微細化によりNOx浄化率の向上を図ることができる。また、本発明では、必要に応じて還元剤の圧力を変更し、それにより還元剤の噴霧粒径を変更する構成としているため、排気通路内に遮蔽部材や分散部材を設ける従来構成とは異なり、内燃機関への影響を抑制できる。その結果、内燃機関への影響を抑制しつつ好適なる還元剤の添加を行い、ひいてはNOx浄化率を向上させることができる。   In short, the inventors of the present application have confirmed that when the particle size of the reducing agent added and supplied from the reducing agent adding means is different, the NOx purification performance of the NOx catalyst is different. Specifically, as shown in FIG. 2, when the NOx catalyst becomes higher than a certain temperature (purification rate saturation temperature), the NOx purification rate is saturated to a predetermined high purification rate level. It was confirmed that the saturation temperature was lower as the particle size was smaller, depending on the diameter. In the present invention, focusing on such characteristics, the spray particle size of the reducing agent is changed in accordance with the catalyst temperature. Therefore, when the NOx purification rate of the NOx catalyst tends to be low, the NOx catalyst is made finer by reducing the spray particle size. The purification rate can be improved. Further, in the present invention, the pressure of the reducing agent is changed as necessary, and thereby the spray particle size of the reducing agent is changed. Therefore, unlike the conventional configuration in which a shielding member or a dispersion member is provided in the exhaust passage. The influence on the internal combustion engine can be suppressed. As a result, it is possible to add a suitable reducing agent while suppressing the influence on the internal combustion engine, thereby improving the NOx purification rate.

また、還元剤の粒径を大小変更する場合においてそのうち粒径大である場合のNOx触媒の浄化率飽和温度を温度しきい値とし、その温度しきい値よりも低温側を所定の低温域であるとする(請求項3)。そして、触媒温度が所定の低温域にある場合に、還元剤の噴霧粒径を小さくするとよい。これにより、還元剤の粒径を大きくしたままではNOx触媒のNOx浄化率が飽和値に達しない場合に、還元剤を微粒化することでNOx浄化率を高めることができる。   Further, when the particle size of the reducing agent is changed, the NOx catalyst purification rate saturation temperature when the particle size is large is set as a temperature threshold, and a temperature lower than the temperature threshold is set in a predetermined low temperature range. (Claim 3). And when a catalyst temperature exists in a predetermined low temperature range, it is good to make the spray particle diameter of a reducing agent small. Thereby, when the NOx purification rate of the NOx catalyst does not reach the saturation value with the particle size of the reducing agent kept large, the NOx purification rate can be increased by atomizing the reducing agent.

内燃機関の始動直後にはNOx触媒は低温状態にあり、内燃機関の始動後において排気熱により徐々に昇温される。そこで、請求項4に記載したように、内燃機関の始動時において還元剤の噴霧粒径を小さくし、所定時間の経過後に噴霧粒径を大きくするとよい。これにより、内燃機関の始動に伴う触媒温度の変化に合わせて好適なる還元剤添加を実施できる。   Immediately after the internal combustion engine is started, the NOx catalyst is in a low temperature state, and after the internal combustion engine is started, the temperature is gradually raised by exhaust heat. Therefore, as described in claim 4, it is preferable to reduce the spray particle size of the reducing agent when starting the internal combustion engine and increase the spray particle size after a predetermined time has elapsed. Thereby, a suitable reducing agent addition can be implemented according to the change of the catalyst temperature accompanying the start of the internal combustion engine.

還元剤の噴霧粒径は、還元剤の温度にも依存して変化すると考えられる。そこで、請求項5に記載したように、加圧手段による還元剤の加圧に加え、加熱手段による還元剤の加熱を実施することにより還元剤の噴霧粒径を変更するとよい。この場合、還元剤を加圧及び加熱することで、還元剤微粒化を一層促進できる。   The spray particle size of the reducing agent is considered to change depending on the temperature of the reducing agent. Therefore, as described in claim 5, in addition to the pressurization of the reducing agent by the pressurizing means, the spraying particle diameter of the reducing agent may be changed by heating the reducing agent by the heating means. In this case, atomization of the reducing agent can be further promoted by pressurizing and heating the reducing agent.

上記のとおり還元剤圧力が変更される構成では、その圧力の変更に伴い添加時間あたりの還元剤添加量(還元剤添加弁である場合の開弁時間あたりの還元剤添加量、「添加率」とも言える)が変わり、NOx触媒に導入される還元剤量が変動する。この点、請求項6に記載したように、還元剤の圧力を検出し、該検出した還元剤の圧力に応じて還元剤添加手段による還元剤添加の周期、及び1回あたりの添加時間の少なくともいずれかを可変に設定するとよい。これにより、還元剤圧力が可変設定される場合にも所望量の還元剤添加を実現できる。   In the configuration in which the reducing agent pressure is changed as described above, the reducing agent addition amount per addition time (reducing agent addition amount per valve opening time when the reducing agent addition valve is used, “addition rate”) The amount of reducing agent introduced into the NOx catalyst varies. In this regard, as described in claim 6, the pressure of the reducing agent is detected, and at least the period of addition of the reducing agent by the reducing agent addition means according to the detected pressure of the reducing agent, and the addition time per one time Either of them may be set to be variable. Thereby, even when the reducing agent pressure is variably set, a desired amount of reducing agent can be added.

以下、本発明を具体化した一実施形態を図面に基づいて説明する。本実施形態では、車両用の多気筒ディーゼルエンジンを制御対象としてエンジン制御システムを構築するものとしており、当該制御システムにおいては電子制御ユニット(以下、ECUという)を中枢としてエンジンの各種制御が実施される。また本実施形態では、燃料噴射システムとしてコモンレール式燃料噴射システムを採用するとともに、排気浄化システムとして尿素SCRシステムを採用することとしている。先ずは、本システムの全体概略を図1を用いて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. In this embodiment, an engine control system is constructed with a multi-cylinder diesel engine for a vehicle as a control target. In the control system, various controls of the engine are performed with an electronic control unit (hereinafter referred to as ECU) as a center. The In this embodiment, a common rail fuel injection system is adopted as the fuel injection system, and a urea SCR system is adopted as the exhaust purification system. First, an overall outline of the present system will be described with reference to FIG.

エンジン10は、レシプロエンジン構造を有するエンジン本体11を有しており、その基本構造として、シリンダ内を往復動するピストン12や、吸気側及び排気側の各ポートに設けられて各々個別に開閉動作する吸気弁13、排気弁14を備えている。ピストン12の往復動に伴いクランク軸15が回転する。また、シリンダヘッドには気筒ごとに燃料噴射弁16が設けられている。燃料噴射弁16によって燃焼室17内に燃料が直接噴射され、その噴射燃料が燃焼室17内で燃焼に供される。   The engine 10 has an engine body 11 having a reciprocating engine structure. As a basic structure, the engine 10 is provided in a piston 12 reciprocating in a cylinder, and each port on the intake side and the exhaust side, and is individually opened and closed. An intake valve 13 and an exhaust valve 14 are provided. As the piston 12 reciprocates, the crankshaft 15 rotates. The cylinder head is provided with a fuel injection valve 16 for each cylinder. Fuel is directly injected into the combustion chamber 17 by the fuel injection valve 16, and the injected fuel is used for combustion in the combustion chamber 17.

クランク軸15には、同クランク軸15の回転を検出するためのクランク角センサ18が設けられている。また、シリンダブロックには、エンジン冷却水の温度を検出するための水温センサ19が設けられている。   The crankshaft 15 is provided with a crank angle sensor 18 for detecting the rotation of the crankshaft 15. Further, the cylinder block is provided with a water temperature sensor 19 for detecting the temperature of the engine cooling water.

燃料供給系の構成について簡単に説明する(ただし周知の構成のため、図示による説明は省略)。燃料供給系の構成として高圧ポンプとコモンレール(蓄圧配管)とが設けられており、高圧ポンプにより燃料タンク内の燃料が高圧化され、コモンレールに対して圧送される。コモンレール内には数10〜200MPa程度の高圧燃料が貯留され、この高圧燃料が各気筒の燃料噴射弁16に供給される。なお、コモンレール内の燃料圧力は都度のエンジン運転状態等に応じて適宜調整される。   The configuration of the fuel supply system will be briefly described (however, since it is a well-known configuration, description by illustration is omitted). A high-pressure pump and a common rail (pressure accumulation pipe) are provided as a configuration of the fuel supply system, and the fuel in the fuel tank is increased in pressure by the high-pressure pump and is pumped to the common rail. A high pressure fuel of about several tens to 200 MPa is stored in the common rail, and this high pressure fuel is supplied to the fuel injection valve 16 of each cylinder. Note that the fuel pressure in the common rail is appropriately adjusted according to the engine operating condition and the like.

エンジン本体11の吸気ポートには吸気管(マニホールド部分を含む)21が接続され、排気ポートには排気管(マニホールド部分を含む)22が接続されている。吸気管21には、電気駆動式のスロットルバルブを有するスロットルアクチュエータ23が設けられている。また、吸気管21内の吸気通路と排気管22内の排気通路とはEGR通路24により接続されており、そのEGR通路24にはEGR弁25とEGRクーラ26とが設けられている。なお、吸気管21の最上流部にはエアクリーナ27が設けられており、そのエアクリーナ27にはエアフロメータ(吸気量センサ)28が設けられている。   An intake pipe (including a manifold portion) 21 is connected to the intake port of the engine body 11, and an exhaust pipe (including a manifold portion) 22 is connected to the exhaust port. The intake pipe 21 is provided with a throttle actuator 23 having an electrically driven throttle valve. The intake passage in the intake pipe 21 and the exhaust passage in the exhaust pipe 22 are connected by an EGR passage 24, and an EGR valve 25 and an EGR cooler 26 are provided in the EGR passage 24. An air cleaner 27 is provided at the most upstream portion of the intake pipe 21, and an air flow meter (intake air amount sensor) 28 is provided in the air cleaner 27.

また、本システムには、過給装置としてターボチャージャ30が設けられている。ターボチャージャ30は、吸気管21に設けられた吸気コンプレッサ31と、排気管22に設けられた排気タービン32とを有しており、排気管22を流れる排気によって排気タービン32が回転し、その回転力がシャフト33を介して吸気コンプレッサ31に伝達される。そして、吸気コンプレッサ31により、吸気管21内を流れる吸入空気が圧縮されて過給が行われる。ターボチャージャ30にて過給された空気は、インタークーラ34によって冷却された後、吸気管21の下流側に給送される。   Further, in this system, a turbocharger 30 is provided as a supercharging device. The turbocharger 30 includes an intake compressor 31 provided in the intake pipe 21 and an exhaust turbine 32 provided in the exhaust pipe 22, and the exhaust turbine 32 rotates by the exhaust gas flowing through the exhaust pipe 22. The force is transmitted to the intake compressor 31 via the shaft 33. Then, the intake air flowing through the intake pipe 21 is compressed by the intake compressor 31 and supercharging is performed. The air supercharged by the turbocharger 30 is cooled by the intercooler 34 and then fed to the downstream side of the intake pipe 21.

その他、吸気管21には、吸気圧センサ、吸気温センサ等のセンサ類が設けられるが、便宜上説明を省略する。   In addition, the intake pipe 21 is provided with sensors such as an intake pressure sensor and an intake air temperature sensor, but description thereof is omitted for convenience.

次に、排気系に設けられる排気浄化システムについて説明する。排気管22には、上流側から順に、酸化触媒41、SCR触媒(アンモニア選択還元触媒)42、アンモニアスリップ触媒43が配設されている。SCR触媒42が「NOx触媒」に相当する。また、排気管22において酸化触媒41とSCR触媒42との間には、還元剤としての尿素水(尿素水溶液)を排気管22内に添加供給するための尿素水添加弁44が設けられている。尿素水添加弁44は、既存の燃料噴射弁(電磁駆動式のインジェクタ)とほぼ同様の構成を有しており、電気的な制御指令に伴う開弁動作により尿素水添加弁44の先端噴孔部から尿素水が噴射(添加)される。   Next, an exhaust purification system provided in the exhaust system will be described. In the exhaust pipe 22, an oxidation catalyst 41, an SCR catalyst (ammonia selective reduction catalyst) 42, and an ammonia slip catalyst 43 are disposed in order from the upstream side. The SCR catalyst 42 corresponds to a “NOx catalyst”. Further, a urea water addition valve 44 for adding and supplying urea water (urea aqueous solution) as a reducing agent into the exhaust pipe 22 is provided between the oxidation catalyst 41 and the SCR catalyst 42 in the exhaust pipe 22. . The urea water addition valve 44 has substantially the same configuration as an existing fuel injection valve (electromagnetically driven injector), and the tip injection hole of the urea water addition valve 44 is opened by a valve opening operation associated with an electrical control command. The urea water is injected (added) from the part.

尿素水添加弁44に対しては、尿素水タンク51から尿素水が逐次供給されるようになっており、次に、尿素水供給系の構成について説明する。   To the urea water addition valve 44, urea water is sequentially supplied from the urea water tank 51. Next, the configuration of the urea water supply system will be described.

尿素水タンク51は給液キャップ付きの密閉容器にて構成されており、その内部に所定濃度(32.5%)の尿素水が貯蔵されている。尿素水タンク51には尿素水配管52の一端が接続されており、その尿素水配管52の途中に加圧手段としての尿素水ポンプ53が設けられている。尿素水配管52の他端は尿素水添加弁44に接続されている。また、同じく尿素水配管52には、同配管内における尿素水の圧力を検出する圧力センサ54が設けられている。尿素水ポンプ53は、ECU60からの駆動信号により回転駆動される電動式ポンプであり、尿素水ポンプ53が回転駆動されることにより、尿素水タンク51内の尿素水が汲み上げられ尿素水配管52を通じて尿素水添加弁44側に吐出される。本実施形態では特に、尿素水ポンプ53による尿素水の圧送量(ポンプ圧送量)が可変調整できる構成となっており、その圧送量の変更により尿素水配管52内の尿素水圧力が変更可能になっている。なお、尿素水ポンプ53は、尿素水タンク51内に尿素水に浸漬した状態で設置されるインタンク式ポンプであってもよい。   The urea water tank 51 is configured by a sealed container with a liquid supply cap, and urea water having a predetermined concentration (32.5%) is stored therein. One end of a urea water pipe 52 is connected to the urea water tank 51, and a urea water pump 53 as a pressurizing means is provided in the middle of the urea water pipe 52. The other end of the urea water pipe 52 is connected to the urea water addition valve 44. Similarly, the urea water pipe 52 is provided with a pressure sensor 54 for detecting the pressure of the urea water in the pipe. The urea water pump 53 is an electric pump that is rotationally driven by a drive signal from the ECU 60. When the urea water pump 53 is rotationally driven, the urea water in the urea water tank 51 is pumped up and passed through the urea water pipe 52. It is discharged to the urea water addition valve 44 side. In the present embodiment, in particular, the urea water pumping amount (pump pumping amount) by the urea water pump 53 can be variably adjusted, and the urea water pressure in the urea water pipe 52 can be changed by changing the pumping amount. It has become. The urea water pump 53 may be an in-tank pump that is installed in the urea water tank 51 while being immersed in the urea water.

また、排気管22において酸化触媒41とSCR触媒42との間には、当該排気管22内を流れる排気に旋回流を生じさせるためのミキサ55が設けられている。ミキサ55は、例えば複数の羽根片を有する回転体からなる排気攪拌手段であり、排気の通過に伴い回転し、それに伴い排気が旋回しながらSCR触媒42に流れ込む構成となっている。   Further, a mixer 55 is provided between the oxidation catalyst 41 and the SCR catalyst 42 in the exhaust pipe 22 for generating a swirling flow in the exhaust gas flowing through the exhaust pipe 22. The mixer 55 is, for example, an exhaust stirrer composed of a rotating body having a plurality of blade pieces. The mixer 55 rotates with the passage of the exhaust gas, and the exhaust gas flows into the SCR catalyst 42 while rotating.

上記構成の排気浄化システムでは、エンジン運転時において、尿素水添加弁44により排気管22内に尿素水が添加供給されると、排気管22内において排気と共に尿素水がSCR触媒42に供給され、SCR触媒42においてNOxの還元反応が行われることによってその排気が浄化される。   In the exhaust purification system having the above configuration, when urea water is added and supplied into the exhaust pipe 22 by the urea water addition valve 44 during engine operation, urea water is supplied to the SCR catalyst 42 together with the exhaust gas in the exhaust pipe 22. The exhaust gas is purified by performing a reduction reaction of NOx in the SCR catalyst 42.

詳しくは、尿素水添加弁44から噴射された尿素水は排気熱で加水分解され、その際、(NH2)2CO+H2O→2NH3+CO2 …(式1)
のような反応によりアンモニア(NH3)が生成される。そして、SCR触媒42を排気
が通過する際、アンモニアによって排気中のNOxが選択的に還元浄化される。その際、以下に示すような還元反応が行われることによって、NOxが還元浄化されることになる。
4NO+4NH3+O2→4N2+6H2O …(式2)
6NO2+8NH3→7N2+12H2O …(式3)
NO+NO2+2NH3→2N2+3H2O …(式4)
このようにアンモニアによるNOxの還元浄化が行われる際、アンモニアがNOxと反応しきれずに余剰となると、その余剰アンモニアが排気に混じって排気下流側に放出される。かかる場合、余剰アンモニアは、SCR触媒下流側のアンモニアスリップ触媒43(例えば酸化触媒)により除去されるようになっている。
Specifically, the urea water injected from the urea water addition valve 44 is hydrolyzed by exhaust heat, and at that time, (NH2) 2CO + H2O → 2NH3 + CO2 (Formula 1)
Ammonia (NH3) is generated by the reaction as described above. When the exhaust gas passes through the SCR catalyst 42, NOx in the exhaust gas is selectively reduced and purified by ammonia. At that time, NOx is reduced and purified by the following reduction reaction.
4NO + 4NH3 + O2 → 4N2 + 6H2O (Formula 2)
6NO2 + 8NH3 → 7N2 + 12H2O (Formula 3)
NO + NO2 + 2NH3 → 2N2 + 3H2O (Formula 4)
In this way, when the reduction and purification of NOx by ammonia is performed, if ammonia does not react with NOx and becomes surplus, the surplus ammonia is mixed with the exhaust and released downstream of the exhaust. In such a case, surplus ammonia is removed by an ammonia slip catalyst 43 (for example, an oxidation catalyst) on the downstream side of the SCR catalyst.

また、排気管22において酸化触媒41とSCR触媒42との間には、酸素濃度センサ45と温度センサ46とが設けられており、これらの各センサの出力を基に排気中の酸素濃度や触媒温度が検出される。また、SCR触媒42の下流側には、SCR触媒通過後の排気を検出対象として同排気中のNOx量(NOx濃度)を検出するNOxセンサ47が設けられており、このNOxセンサ47の出力を基にSCR触媒42のNOx浄化率が検出されるようになっている。   In addition, an oxygen concentration sensor 45 and a temperature sensor 46 are provided between the oxidation catalyst 41 and the SCR catalyst 42 in the exhaust pipe 22, and the oxygen concentration in the exhaust gas and the catalyst are based on the outputs of these sensors. The temperature is detected. Further, on the downstream side of the SCR catalyst 42, there is provided a NOx sensor 47 for detecting the NOx amount (NOx concentration) in the exhaust with the exhaust after passing through the SCR catalyst as a detection target. Based on this, the NOx purification rate of the SCR catalyst 42 is detected.

なお、図1では省略しているが、排気管22にはDPF(ディーゼルパティキュレートフィルタ)が設置されており、このDPFによって排気中のPM(パティキュレートマター)が捕集されるようになっている。   Although omitted in FIG. 1, a DPF (diesel particulate filter) is installed in the exhaust pipe 22, and PM (particulate matter) in the exhaust is collected by the DPF. Yes.

ECU60は、CPU、ROM、RAM等からなる周知のマイクロコンピュータ(図示略)を備えて構成されており、このECU60には、上述した各種センサの検出信号や、その他コモンレール内の燃料圧力(レール圧)を検出するためのレール圧センサ、ドライバによるアクセル操作量(アクセル開度)を検出するためのアクセルセンサなどから検出信号が逐次入力される。そして、ECU60は、エンジン回転速度やアクセル操作量等のエンジン運転情報に基づいて、燃料噴射制御や燃料圧力制御(レール圧制御)等を実行する。これにより、燃料噴射弁16の燃料噴射動作や高圧ポンプによる燃料圧送動作が制御される。その他、ECU60は、都度のエンジン運転状態に基づいてスロットルアクチュエータ23やEGR弁25等の制御を適宜実行する。   The ECU 60 includes a known microcomputer (not shown) including a CPU, a ROM, a RAM, and the like. The ECU 60 includes detection signals from the various sensors described above and other fuel pressures (rail pressure) in the common rail. Detection signals are sequentially input from a rail pressure sensor for detecting), an accelerator sensor for detecting an accelerator operation amount (accelerator opening) by a driver, and the like. Then, the ECU 60 performs fuel injection control, fuel pressure control (rail pressure control), and the like based on engine operation information such as engine rotation speed and accelerator operation amount. As a result, the fuel injection operation of the fuel injection valve 16 and the fuel pumping operation by the high-pressure pump are controlled. In addition, the ECU 60 appropriately executes control of the throttle actuator 23, the EGR valve 25, and the like based on each engine operating state.

ECU60は、NOxセンサ47の出力に基づいて、SCR触媒42の下流側におけるNOx量を算出したり、NOx浄化率を算出したりする。また、NOx浄化率に基づいて尿素水添加量を制御する。ちなみに、NOx浄化率X1は、エンジンからのNOx排出量Y1とSCR触媒42の下流側におけるNOx量Y2とに基づいて算出される(X1=(Y1−Y2)/Y1)。このとき、NOx排出量Y1は、都度のエンジン運転状態(エンジン回転速度、燃料噴射量)に基づいてマップや数式により算出される。また、SCR触媒42の下流側におけるNOx量Y2はNOxセンサ出力により算出される。   Based on the output of the NOx sensor 47, the ECU 60 calculates the NOx amount on the downstream side of the SCR catalyst 42 or calculates the NOx purification rate. Further, the urea water addition amount is controlled based on the NOx purification rate. Incidentally, the NOx purification rate X1 is calculated based on the NOx emission amount Y1 from the engine and the NOx amount Y2 on the downstream side of the SCR catalyst 42 (X1 = (Y1-Y2) / Y1). At this time, the NOx emission amount Y1 is calculated by a map or a mathematical formula based on the respective engine operating state (engine speed, fuel injection amount). Further, the NOx amount Y2 on the downstream side of the SCR catalyst 42 is calculated from the NOx sensor output.

なお、尿素水添加量の制御に関し、SCR触媒42のアンモニア吸着量を算出し、そのアンモニア吸着量に基づいて尿素水添加量を制御する構成であってもよい。具体的には、SCR触媒42におけるアンモニア供給量とアンモニア消費量(アンモニア反応量)との収支に基づいて実際のアンモニア吸着量(実吸着量)を算出するとともに、その実吸着量と目標吸着量との偏差に基づいて尿素水添加量をフィードバック制御する。   In addition, regarding the control of the urea water addition amount, the ammonia adsorption amount of the SCR catalyst 42 may be calculated, and the urea water addition amount may be controlled based on the ammonia adsorption amount. Specifically, the actual ammonia adsorption amount (actual adsorption amount) is calculated based on the balance between the ammonia supply amount and the ammonia consumption amount (ammonia reaction amount) in the SCR catalyst 42, and the actual adsorption amount and the target adsorption amount are calculated. The amount of urea solution added is feedback-controlled based on the deviation.

尿素水添加弁44の駆動に関して具体的には、ECU60からは尿素水添加弁44に対して所定周期の開弁指令パルスが出力され、そのパルス出力に伴い尿素水添加弁44の駆動部(ソレノイド部)に駆動電流が流れる。そして、その通電に伴い尿素水添加弁44が開弁され、尿素水が添加(噴射)される。このとき、開弁指令パルスの出力周期(又は出力周波数)を可変に調整することで尿素水添加量が増減されるようになっている。尿素水添加量を減量する場合、開弁指令パルスの出力周期を大きくする。また、尿素水添加量を増量する場合、開弁指令パルスの出力周期を小さくする。なお、尿素水添加量を減量する場合には、尿素水添加弁44の開弁駆動を一定期間で停止させるようにしてもよい。   Specifically, regarding the drive of the urea water addition valve 44, the ECU 60 outputs a valve opening command pulse with a predetermined cycle to the urea water addition valve 44, and the drive unit (solenoid) of the urea water addition valve 44 according to the pulse output. Drive current flows through Then, with the energization, the urea water addition valve 44 is opened and urea water is added (injected). At this time, the urea water addition amount is increased or decreased by variably adjusting the output period (or output frequency) of the valve opening command pulse. When reducing the urea water addition amount, the output cycle of the valve opening command pulse is increased. Further, when increasing the urea water addition amount, the output period of the valve opening command pulse is reduced. In addition, when decreasing the urea water addition amount, the valve opening drive of the urea water addition valve 44 may be stopped for a certain period.

ところで、SCR触媒42におけるNOx浄化率とSCR触媒温度と尿素水の噴霧粒径とには相関があり、例えば図2の関係となることが本願発明者の実験により確認されている。図2は、尿素水の噴霧粒径を大小変更した場合についてSCR触媒温度とNOx浄化率との関係を示す図である。図2には、噴霧粒径を100μmとする場合(実線)と、噴霧粒径を20μmとする場合(二点鎖線)とを示しており、このうち前者は通常のポンプ駆動時の噴霧粒径、後者は通常駆動時に対して微細化した場合の噴霧粒径に相当する。   By the way, the NOx purification rate in the SCR catalyst 42, the SCR catalyst temperature, and the spray particle diameter of urea water have a correlation, and for example, it has been confirmed by the experiment of the present inventor that the relationship shown in FIG. FIG. 2 is a diagram showing the relationship between the SCR catalyst temperature and the NOx purification rate when the spray particle size of urea water is changed. FIG. 2 shows a case where the spray particle size is 100 μm (solid line) and a case where the spray particle size is 20 μm (two-dot chain line). Among these, the former is a spray particle size when a normal pump is driven. The latter corresponds to the spray particle size in the case of miniaturization with respect to normal driving.

図2では、SCR触媒温度が約220℃よりも高温であれば、噴霧粒径によるNOx浄化性能に差異はなく、NOx浄化率が所定の高浄化率レベル(図では約80%)に飽和するのに対し、約220℃よりも低温であれば、噴霧粒径が小さい方がNOx浄化性能が良いことが確認できる。これは、SCR触媒42が低温であれば、噴霧粒径が小さい方が雰囲気ガス(排気)から熱量を得られやすく、アンモニア生成が促進されるためであると考えられる。NOx浄化率の飽和温度は、粒径=100μmの場合には約220℃であり、粒径=20μmの場合には約200℃である。つまり、約220℃以下(粒径=100μmの場合の浄化率飽和温度以下)の低温域では微小粒径の尿素噴霧を用いることでNOx浄化率の向上が可能となる。   In FIG. 2, if the SCR catalyst temperature is higher than about 220 ° C., there is no difference in the NOx purification performance depending on the spray particle diameter, and the NOx purification rate is saturated to a predetermined high purification rate level (about 80% in the figure). On the other hand, when the temperature is lower than about 220 ° C., it can be confirmed that the smaller the spray particle size, the better the NOx purification performance. This is considered to be because if the SCR catalyst 42 is at a low temperature, the smaller the spray particle size, the easier it is to obtain the amount of heat from the atmospheric gas (exhaust gas), and the generation of ammonia is promoted. The saturation temperature of the NOx purification rate is about 220 ° C. when the particle size = 100 μm, and about 200 ° C. when the particle size = 20 μm. That is, the NOx purification rate can be improved by using a fine particle size urea spray in a low temperature range of about 220 ° C. or less (the purification rate saturation temperature or less when the particle size is 100 μm).

ちなみに、通常の尿素水添加を行う場合(噴霧粒径=100μmでの尿素水添加)においてNOx浄化率が50%となる触媒温度がSCR触媒42の活性温度であり、本実施形態では約180℃である。   Incidentally, the catalyst temperature at which the NOx purification rate is 50% in the case of performing normal urea water addition (spray particle size = 100 μm) is the activation temperature of the SCR catalyst 42, and in this embodiment about 180 ° C. It is.

また、尿素水添加弁44に供給される尿素水の圧力(尿素水圧力)と尿素水の噴霧粒径とには相関があり、例えば図3の関係となる。つまり、尿素水圧力が大きいほど尿素水の噴霧粒径が小さくなる。そこで本実施形態では、尿素水ポンプ53による尿素水圧送量を調整することで尿素水圧力を増減させ、それに伴い尿素水の噴霧粒径を変更することとしている。   In addition, there is a correlation between the pressure of urea water (urea water pressure) supplied to the urea water addition valve 44 and the spray particle diameter of urea water, for example, the relationship shown in FIG. That is, the larger the urea water pressure, the smaller the spray particle size of the urea water. Therefore, in this embodiment, the urea water pressure is increased or decreased by adjusting the urea water pumping amount by the urea water pump 53, and the spray particle diameter of the urea water is changed accordingly.

本実施形態では、SCR触媒42が比較的低温である場合(換言すれば、触媒活性の度合いが小さい場合)には、尿素水圧力を大きくした状態(高圧化した状態)で尿素水添加を実施し、SCR触媒42が比較的高温である場合(換言すれば、触媒活性の度合いが大きい場合)には、尿素水圧力を小さくした状態(高圧化しない状態)で尿素水添加を実施する。上記のように尿素水圧力を変更することにより、必要に応じて尿素水噴霧の微粒化が行われ、NOx浄化性能が高レベルのまま維持される。   In the present embodiment, when the SCR catalyst 42 is at a relatively low temperature (in other words, when the degree of catalytic activity is small), urea water addition is performed with the urea water pressure being increased (high pressure state). When the SCR catalyst 42 is at a relatively high temperature (in other words, when the degree of catalytic activity is high), the urea water addition is performed in a state where the urea water pressure is reduced (a state where the pressure is not increased). By changing the urea water pressure as described above, atomization of the urea water spray is performed as necessary, and the NOx purification performance is maintained at a high level.

なお、SCR触媒42が所定の高温状態にある場合には、尿素水の噴霧粒径に依存せず(すなわち尿素水の高圧化に関係なく)NOx浄化性能が確保できる一方、尿素水圧力を小さくすることでポンプ負荷を小さくすることができる。これにより、車載バッテリの電力消費を低減させる等の効果が得られる。   When the SCR catalyst 42 is in a predetermined high temperature state, the NOx purification performance can be secured without depending on the spray particle diameter of the urea water (that is, regardless of the increase in the pressure of the urea water), while the urea water pressure is reduced. By doing so, the pump load can be reduced. Thereby, the effect of reducing the power consumption of a vehicle-mounted battery is acquired.

図4は、尿素水添加制御の手順を示すフローチャートであり、本処理はECU60により所定の時間周期で繰り返し実行される。   FIG. 4 is a flowchart showing the procedure of urea water addition control, and this process is repeatedly executed by the ECU 60 at a predetermined time period.

図4において、ステップS11では、今現在のエンジン回転速度NEが所定値K1よりも大きいか否かを判定する。所定値K1は、エンジン10が運転状態であることを判定するためのしきい値であり、例えばK1=800rpmである。次に、ステップS12では、SCR触媒温度Tscrが所定値K2よりも大きいか否かを判定する。SCR触媒温度Tscrは、SCR触媒42の上流側に設けられた温度センサ46の出力に基づき算出されるものである。所定値K2は、SCR触媒42が活性完了状態にあるか未活性状態にあるかを判定するための温度しきい値であり、例えばK2=180℃である。この温度値(180℃)は、本実施形態のSCR触媒42においてNOx浄化率が50%となる触媒温度に相当する。   In FIG. 4, in step S11, it is determined whether or not the current engine speed NE is greater than a predetermined value K1. The predetermined value K1 is a threshold value for determining that the engine 10 is in an operating state, and for example, K1 = 800 rpm. Next, in step S12, it is determined whether or not the SCR catalyst temperature Tscr is higher than a predetermined value K2. The SCR catalyst temperature Tscr is calculated based on the output of the temperature sensor 46 provided on the upstream side of the SCR catalyst 42. The predetermined value K2 is a temperature threshold value for determining whether the SCR catalyst 42 is in an active completion state or an inactive state, and is, for example, K2 = 180 ° C. This temperature value (180 ° C.) corresponds to the catalyst temperature at which the NOx purification rate is 50% in the SCR catalyst 42 of the present embodiment.

そして、上記のステップS11,S12の少なくともいずれかがNOであればそのまま本処理を終了し、ステップS11,S12が共にYESであれば後続のステップS13に進む。   If at least one of the above steps S11 and S12 is NO, this process is terminated as it is, and if both of steps S11 and S12 are YES, the process proceeds to the subsequent step S13.

ステップS13では、今現在の尿素水圧力Pnが所定値K3よりも大きいか否かを判定する。尿素水圧力Pnは、尿素水配管52に設けられた圧力センサ54の検出結果に基づいて算出された値である。所定値K3は、尿素水添加弁44による尿素水添加が可能となったことを判定するための圧力しきい値(添加可能最小圧力)であり、例えばK3=0.4MPaである。   In step S13, it is determined whether or not the current urea water pressure Pn is greater than a predetermined value K3. The urea water pressure Pn is a value calculated based on the detection result of the pressure sensor 54 provided in the urea water pipe 52. The predetermined value K3 is a pressure threshold value (minimum pressure that can be added) for determining that urea water can be added by the urea water addition valve 44, and is, for example, K3 = 0.4 MPa.

そして、Pn≦K3であればステップS14に進み、Pn>K3であればステップS15に進む。ステップS14では、尿素水ポンプ53を所定回転速度で駆動させる。つまり、尿素水圧力Pnを尿素水添加弁44による添加可能最小圧力以上とするべくポンプ駆動を実施する。   If Pn ≦ K3, the process proceeds to step S14, and if Pn> K3, the process proceeds to step S15. In step S14, the urea water pump 53 is driven at a predetermined rotational speed. That is, the pump is driven so that the urea water pressure Pn is equal to or higher than the minimum pressure that can be added by the urea water addition valve 44.

また、ステップS15では、SCR触媒温度Tscrが所定値K4よりも大きいか否かを判定する。所定値K4は、尿素水噴霧を微粒化するか否かを判定するための温度しきい値であり、例えばK4=220℃である。所定値K4は、噴霧粒径=100μmの場合の浄化率飽和温度である(図2参照)。   In step S15, it is determined whether or not the SCR catalyst temperature Tscr is higher than a predetermined value K4. The predetermined value K4 is a temperature threshold value for determining whether or not to atomize the urea water spray. For example, K4 = 220 ° C. The predetermined value K4 is the purification rate saturation temperature when the spray particle size = 100 μm (see FIG. 2).

そして、Tscr>K4であればステップS16に進み、Tscr≦K4であればステップS17に進む。ステップS16では、第1目標圧力PT1を設定し、その第1目標圧力PT1に基づいて尿素水ポンプ53の駆動を制御する。また、ステップS17では、第2目標圧力PT2を設定し、その第2目標圧力PT2に基づいて尿素水ポンプ53の駆動を制御する。第1目標圧力PT1が通常の尿素水圧力であり、例えばPT1=0.5MPaである。これに対し、第2目標圧力PT2は、第1目標圧力PT1よりも高い圧力値であり、例えばPT2=5MPaである。このとき、尿素水圧力が図3に示す関係にあることからすれば、尿素水圧力を第1目標圧力PT1(0.5MPa)とすることで噴霧粒径が100μmとなり、尿素水圧力を第2目標圧力PT2(5MPa)とすることで噴霧粒径が20μmとなる。なお、第1目標圧力PT1は、添加可能最小圧力である所定値K3(0.4MPa)よりも大きい値となっている。   If Tscr> K4, the process proceeds to step S16, and if Tscr ≦ K4, the process proceeds to step S17. In step S16, the first target pressure PT1 is set, and the driving of the urea water pump 53 is controlled based on the first target pressure PT1. In step S17, the second target pressure PT2 is set, and the driving of the urea water pump 53 is controlled based on the second target pressure PT2. The first target pressure PT1 is a normal urea water pressure, for example, PT1 = 0.5 MPa. On the other hand, the second target pressure PT2 is a pressure value higher than the first target pressure PT1, for example, PT2 = 5 MPa. At this time, if the urea water pressure is in the relationship shown in FIG. 3, the spray particle diameter becomes 100 μm by setting the urea water pressure to the first target pressure PT1 (0.5 MPa), and the urea water pressure is the second pressure. By setting the target pressure PT2 (5 MPa), the spray particle size becomes 20 μm. The first target pressure PT1 is larger than a predetermined value K3 (0.4 MPa) which is the minimum pressure that can be added.

その後、ステップS18では、尿素水圧力を検出する。また、ステップS19では、尿素水添加弁44の制御パラメータを決定する。具体的には、例えば図5の関係を用い、その時の尿素水添加量と尿素水圧力とに基づいて尿素水添加弁44の開弁時間(1回あたりの添加時間)を決定する。尿素水添加量は、都度のNOx浄化率又はアンモニア吸着量に基づいて算出されるものである。なお、尿素水添加弁44の制御パラメータとして、その時の尿素水圧力に基づいて尿素水の添加周期を決定することも可能である。尿素水圧力の検出値を用いて制御パラメータを算出する構成に代えて、都度の目標圧力(PT1,PT2)を用いて制御パラメータを算出する構成であってもよい。   Thereafter, in step S18, the urea water pressure is detected. In step S19, a control parameter for the urea water addition valve 44 is determined. Specifically, for example, the relationship shown in FIG. 5 is used, and the valve opening time (addition time per time) of the urea water addition valve 44 is determined based on the urea water addition amount and the urea water pressure at that time. The urea water addition amount is calculated based on the NOx purification rate or ammonia adsorption amount at each time. As a control parameter of the urea water addition valve 44, it is possible to determine the urea water addition cycle based on the urea water pressure at that time. Instead of the configuration in which the control parameter is calculated using the detected value of the urea water pressure, the configuration in which the control parameter is calculated using the target pressure (PT1, PT2) for each time may be used.

最後に、ステップS20では、ステップS19で決定した制御パラメータに基づいて尿素水添加弁44による尿素添加を実行する。   Finally, in step S20, urea addition by the urea water addition valve 44 is executed based on the control parameter determined in step S19.

図6は、本実施形態の尿素水制御をより具体的に説明するためのタイムチャートである。図6において(a)はエンジン回転速度の推移を、(b)はSCR触媒温度の推移を、(c)は尿素水圧力の推移をそれぞれ示している。   FIG. 6 is a time chart for more specifically explaining the urea water control of the present embodiment. In FIG. 6, (a) shows the change in engine speed, (b) shows the change in SCR catalyst temperature, and (c) shows the change in urea water pressure.

図6において、タイミングt1ではエンジン10が始動され、t1〜t2の期間ではアイドル運転が行われる。エンジン始動後、排気熱によりSCR触媒温度が徐々に上昇する。   In FIG. 6, the engine 10 is started at the timing t1, and the idling operation is performed during the period from t1 to t2. After the engine is started, the SCR catalyst temperature gradually rises due to exhaust heat.

その後、タイミングt2で加速操作等によりエンジン回転速度が上昇すると、SCR触媒温度が急上昇し、SCR触媒温度が所定値K2(180℃)に到達するタイミングt3では、尿素水ポンプ53の駆動が開始されて尿素水圧力が上昇する。そして、尿素水圧力が所定値K3(0.4MPa)よりも大きくなると、第2目標圧力PT2(5MPa)に基づく尿素水圧力の制御が開始される。つまり、尿素水圧力が高圧化され、尿素水噴霧を微粒化させて尿素水添加が行われる(t3〜t4の期間)。   Thereafter, when the engine speed increases due to an acceleration operation or the like at timing t2, the SCR catalyst temperature rapidly rises, and at time t3 when the SCR catalyst temperature reaches a predetermined value K2 (180 ° C.), driving of the urea water pump 53 is started. As a result, the urea water pressure rises. And when urea water pressure becomes larger than predetermined value K3 (0.4 MPa), control of urea water pressure based on 2nd target pressure PT2 (5 MPa) will be started. That is, the urea water pressure is increased, the urea water spray is atomized, and urea water is added (period t3 to t4).

その後、タイミングt4でSCR触媒温度が所定値K4(220℃)に達すると、尿素水圧力の目標値が第2目標圧力PT2(5MPa)から第1目標圧力PT1(0.5MPa)に変更される。つまり、尿素水圧力が通常圧力とされ、尿素水噴霧を微粒化せず通常噴霧による尿素水添加が行われる(t4〜t5の期間)。   Thereafter, when the SCR catalyst temperature reaches a predetermined value K4 (220 ° C.) at timing t4, the target value of the urea water pressure is changed from the second target pressure PT2 (5 MPa) to the first target pressure PT1 (0.5 MPa). . That is, the urea water pressure is set to the normal pressure, and the urea water addition by the normal spray is performed without atomizing the urea water spray (period t4 to t5).

以降、減速に伴いSCR触媒温度が低下し、タイミングt5で所定値K4(220℃)以下になると、再び尿素水圧力の目標値が第2目標圧力PT2(5MPa)に変更されて尿素水噴霧の微粒化が行われる(t5〜t8の期間)。ただし、t6〜t7の期間では、SCR触媒温度が触媒活性温度である所定値K2(180℃)以下となるため、同期間では、尿素水添加が一時的に停止されるとともに、尿素水ポンプ53の圧送量が微小量に変更されるようになっている。   Thereafter, when the SCR catalyst temperature decreases with deceleration and becomes equal to or lower than the predetermined value K4 (220 ° C.) at timing t5, the target value of the urea water pressure is changed again to the second target pressure PT2 (5 MPa), and the urea water spray is performed. Atomization is performed (period from t5 to t8). However, during the period from t6 to t7, since the SCR catalyst temperature is equal to or lower than the predetermined value K2 (180 ° C.) that is the catalyst activation temperature, the urea water addition is temporarily stopped and the urea water pump 53 during the same period. The pumping amount is changed to a minute amount.

以上詳述した本実施形態によれば、以下の優れた効果が得られる。   According to the embodiment described in detail above, the following excellent effects can be obtained.

都度のSCR触媒温度に基づいて、尿素水ポンプ53により加圧される尿素水圧力を変更し、それにより尿素水添加弁44から噴射される尿素水の噴霧粒径を変更する構成とした。特に、SCR触媒温度が所定の低温域にある場合に、尿素水圧力を高圧化して尿素水の噴霧粒径を微細化した。これにより、SCR触媒42でのNOx浄化率が低くなりがちな所定の低温域において、噴霧粒径の微細化によりNOx浄化率の向上を図ることができる。また、必要に応じて尿素水圧力を変更して尿素水の噴霧粒径を変更する構成であるため、排気通路内に遮蔽部材や分散部材を設ける従来構成とは異なり、エンジンへの悪影響を抑制できる。その結果、エンジンへの悪影響を抑制しつつ好適なる尿素水の添加を行い、ひいてはNOx浄化率を向上させることができる。   Based on each SCR catalyst temperature, the urea water pressure pressurized by the urea water pump 53 is changed, thereby changing the spray particle diameter of the urea water injected from the urea water addition valve 44. In particular, when the SCR catalyst temperature is in a predetermined low temperature range, the urea water pressure was increased to reduce the spray particle size of the urea water. Thereby, in a predetermined low temperature range where the NOx purification rate in the SCR catalyst 42 tends to be low, the NOx purification rate can be improved by making the spray particle size finer. In addition, the urea water pressure is changed as necessary to change the spray particle size of the urea water, so unlike the conventional configuration in which a shielding member or dispersion member is provided in the exhaust passage, adverse effects on the engine are suppressed. it can. As a result, it is possible to add a suitable urea water while suppressing adverse effects on the engine, thereby improving the NOx purification rate.

また、噴霧粒径を微細化しない場合(尿素水圧力を高圧化しない場合)について言えば、尿素水圧力を高圧化しなくてよい分、尿素水ポンプ53への電源(バッテリ)からの通電量を減らすことができ、エネルギ低減を図ることができる。   Further, in the case where the spray particle size is not miniaturized (when the urea water pressure is not increased), the amount of current supplied from the power source (battery) to the urea water pump 53 is increased by the amount that the urea water pressure need not be increased. The energy can be reduced.

エンジン始動直後(冷間始動直後)には、SCR触媒42が低温状態にあり、NOx浄化率の上昇が遅れがちになるが、上記のように尿素水の噴霧粒径を微細化することにより、エンジン始動直後におけるNOx浄化率の上昇を早めることが可能となる。ゆえに、エンジン始動直後における排気浄化性能を向上できる。   Immediately after engine start (immediately after cold start), the SCR catalyst 42 is in a low temperature state, and the increase in the NOx purification rate tends to be delayed, but by reducing the spray particle size of urea water as described above, It is possible to speed up the NOx purification rate immediately after engine startup. Therefore, the exhaust purification performance immediately after the engine is started can be improved.

また、従来技術として説明したように排気通路内に遮蔽部材や分散部材を設ける場合、それら各部材が溶接等により通路壁(排気管壁)に取り付けられるためにそれら各部材の取付作業が煩雑であるという問題や、長期の使用により遮蔽部材や分散部材が破損するおそれがある信頼性の問題が懸念される。この点、本実施形態では、遮蔽部材や分散部材を要しないため、構成の簡素化を図るとともに取付作業の繁雑化を抑制できる。また、排気管内における遮蔽部材や分散部材の破損による不都合の発生も解消できる。   Further, as described in the prior art, when a shielding member or a dispersion member is provided in the exhaust passage, these members are attached to the passage wall (exhaust pipe wall) by welding or the like. There are concerns about the problem of reliability and the reliability problem that the shielding member and the dispersion member may be damaged by long-term use. In this respect, in this embodiment, since the shielding member and the dispersion member are not required, the configuration can be simplified and the installation work can be prevented from becoming complicated. Further, it is possible to eliminate the occurrence of inconvenience due to breakage of the shielding member and the dispersion member in the exhaust pipe.

また、尿素水の噴霧粒径を大小変更する場合においてそのうち粒径大である場合のNOx浄化率の飽和温度を温度しきい値(所定値K4=220℃)とし、その温度しきい値よりも低温側を所定の低温域であるとして尿素水噴霧の微細化を行う構成とした。これにより、尿素水の粒径が大きいままではSCR触媒42のNOx浄化率が飽和値に達しない場合に、尿素水を微粒化することでNOx浄化率を高めることができる。   Further, when changing the spray particle size of urea water, the saturation temperature of the NOx purification rate when the particle size is large is set as a temperature threshold value (predetermined value K4 = 220 ° C.), which is higher than the temperature threshold value. It was set as the structure which refines | miniaturizes urea water spray considering the low temperature side as a predetermined low temperature range. As a result, when the NOx purification rate of the SCR catalyst 42 does not reach the saturation value while the particle size of the urea water remains large, the NOx purification rate can be increased by atomizing the urea water.

尿素水圧力に応じて尿素水添加弁44による尿素水添加の周期、又は1回あたりの添加時間の少なくともいずれかを可変に設定する構成としたため、尿素水圧力が大小変更される場合にも所望量の尿素水添加を実現できる。   Since at least one of the urea water addition cycle by the urea water addition valve 44 or the addition time per time is variably set according to the urea water pressure, it is desirable even when the urea water pressure is changed in size. An amount of urea water can be added.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、例えば次のように実施されてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be implemented as follows, for example.

・上記実施形態では、SCR触媒温度と温度しきい値(所定値K4)との比較の結果に基づいて尿素水圧力を変更し、それにより尿素水の噴霧粒径を小さくする構成としたが、これを変更し、エンジン始動直後の所定期間において時間の経過に応じて噴霧粒径の変更を行う構成であってもよい。つまり、エンジン始動時(特に冷間始動時)において、始動開始からの経過時間を計測し、その経過時間が所定時間になるまでは尿素水の噴霧粒径を小さくし、所定時間が経過したタイミングで噴霧粒径を大きくする。噴霧粒径大から噴霧粒径小への切替タイミングとなる時間しきい値は、実験等に基づいてあらかじめ定めておくか、エンジン始動時の暖機状態(例えばエンジン水温等)に応じて可変に設定するとよい。本構成においても、SCR触媒42の温度上昇に合わせて尿素水の噴霧粒径を変更することができ、好適なる尿素水添加を実施できる。   In the above embodiment, the urea water pressure is changed based on the comparison result between the SCR catalyst temperature and the temperature threshold value (predetermined value K4), thereby reducing the spray particle size of the urea water. A configuration in which this is changed and the spray particle diameter is changed according to the passage of time in a predetermined period immediately after the engine is started may be employed. That is, at the time of engine start (particularly during cold start), the elapsed time from the start of the start is measured, the spray particle diameter of urea water is reduced until the elapsed time reaches a predetermined time, and the timing at which the predetermined time has elapsed. Increase spray particle size. The time threshold for switching from the large spray particle size to the small spray particle size is determined in advance based on experiments or can be varied according to the warm-up state at the time of engine start (for example, engine water temperature). It is good to set. Also in this structure, the spray particle diameter of urea water can be changed according to the temperature rise of the SCR catalyst 42, and suitable urea water addition can be implemented.

・上記実施形態では、尿素水の噴霧粒径を2段階(100μm、20μm)で切り替える構成としたが、これを変更し、3段階以上で切り替える構成としてもよい。   In the above embodiment, the urea water spray particle size is switched in two stages (100 μm, 20 μm), but this may be changed and switched in three or more stages.

・尿素水の噴霧粒径を変更する場合に、SCR触媒温度以外に、都度の尿素水添加量を加味して噴霧粒径の変更を行う構成としてもよい。例えば、尿素水添加量が多い場合には、尿素水圧力を大きくして尿素水の噴霧粒径を小さくする。   -When changing the spray particle diameter of urea water, it is good also as a structure which changes a spray particle diameter in consideration of the amount of urea water addition in addition to SCR catalyst temperature. For example, when the urea water addition amount is large, the urea water pressure is increased to reduce the spray particle size of the urea water.

・尿素水の噴霧粒径は、尿素水圧力以外に尿素水温度にも依存して変化すると考えられる。そこで、尿素水ポンプ53による尿素水の加圧に加え、加熱手段による尿素水の加熱を実施することにより尿素水の噴霧粒径を小さくする構成としてもよい。この場合、尿素水配管52に加熱手段としてのヒータを設け、尿素水の噴霧粒径を小さくする際にヒータにより尿素水を加熱するとよい。この場合、尿素水を加圧及び加熱することで、尿素水噴霧の微粒化を一層促進できる。   The spray particle diameter of urea water is considered to change depending on the urea water temperature in addition to the urea water pressure. Thus, in addition to the urea water pressurization by the urea water pump 53, the urea water spray particle size may be reduced by heating the urea water by the heating means. In this case, it is preferable to provide a heater as a heating means in the urea water pipe 52 and to heat the urea water by the heater when reducing the spray particle diameter of the urea water. In this case, atomization of the urea water spray can be further promoted by pressurizing and heating the urea water.

・上記実施形態では、SCR触媒42の上流側に設置した温度センサ46の出力によりSCR触媒温度Tscrを検出し、そのSCR触媒温度Tscrに基づいて尿素水の噴霧粒径を変更する構成としたが、これに代えて、エンジン排気温度をセンサ等により計測し、又はエンジン運転状態に基づいて演算により推定し、その排気温度に基づいて尿素水の噴霧粒径を変更する構成としてもよい。この場合、排気温度が「NOx触媒の温度情報」に相当する。   In the above embodiment, the SCR catalyst temperature Tscr is detected based on the output of the temperature sensor 46 installed on the upstream side of the SCR catalyst 42, and the spray particle size of urea water is changed based on the SCR catalyst temperature Tscr. Instead of this, the engine exhaust temperature may be measured by a sensor or the like, or may be estimated by calculation based on the engine operating state, and the spray particle diameter of urea water may be changed based on the exhaust temperature. In this case, the exhaust gas temperature corresponds to “NOx catalyst temperature information”.

また、エンジンの運転負荷とSCR触媒温度とには相関があることを利用して、都度のエンジン負荷に基づいて尿素水の噴霧粒径を変更する構成としてもよい。すなわち、エンジン負荷が低い場合には、排気温度が低くなることに伴いSCR触媒温度が低下する。したがって、エンジン負荷が所定値未満である場合には、尿素水の噴霧粒径を小さくする。なお、エンジン負荷は、エンジン回転速度、燃料噴射量、アクセル操作量、吸気流量、NOx排出量、排気温度などから推定できる。   Moreover, it is good also as a structure which changes the spray particle diameter of urea water based on engine load of every time using a correlation with an engine driving | running load and SCR catalyst temperature. That is, when the engine load is low, the SCR catalyst temperature decreases as the exhaust gas temperature decreases. Therefore, when the engine load is less than the predetermined value, the spray particle diameter of urea water is reduced. The engine load can be estimated from the engine speed, fuel injection amount, accelerator operation amount, intake air flow rate, NOx emission amount, exhaust temperature, and the like.

・本発明を、上述した尿素SCRシステム以外で具体化することも可能である。例えば、アンモニア発生源として固体の尿素を用いその尿素から還元剤としての尿素水又はアンモニア水を生成するシステム、アンモニア発生源として軽油などの燃料を用いるシステム、アンモニア水を排気通路に直接添加するシステム、アンモニア以外の還元剤(HC等)を用いるシステムなどにおいて具体化することも可能である。   -It is also possible to embody the present invention other than the urea SCR system described above. For example, a system that uses solid urea as an ammonia generation source and generates urea water or ammonia water as a reducing agent from the urea, a system that uses fuel such as light oil as an ammonia generation source, and a system that directly adds ammonia water to the exhaust passage It can also be embodied in a system using a reducing agent (HC or the like) other than ammonia.

発明の実施の形態におけるエンジン制御システムの概略を示す構成図。The block diagram which shows the outline of the engine control system in embodiment of invention. SCR触媒におけるNOx浄化率とSCR触媒温度と尿素水の噴霧粒径との関係を示す図。The figure which shows the relationship between the NOx purification rate in an SCR catalyst, SCR catalyst temperature, and the spray particle diameter of urea water. 尿素水圧力と尿素水の噴霧粒径との関係を示す図。The figure which shows the relationship between urea water pressure and the spray particle diameter of urea water. 尿素水添加制御の処理手順を示すフローチャート。The flowchart which shows the process sequence of urea water addition control. 尿素水添加量と尿素水圧力と尿素水添加弁の開弁時間との関係を示す図。The figure which shows the relationship between the urea water addition amount, urea water pressure, and the valve opening time of a urea water addition valve. 尿素水制御をより具体的に説明するためのタイムチャート。The time chart for demonstrating urea water control more concretely.

符号の説明Explanation of symbols

10…エンジン(内燃機関)、22…排気管、42…SCR触媒(NOx触媒)、44…尿素水添加弁(還元剤添加手段)、53…尿素水ポンプ(加圧手段)、60…ECU(取得手段、及び噴霧粒径制御手段)。   DESCRIPTION OF SYMBOLS 10 ... Engine (internal combustion engine), 22 ... Exhaust pipe, 42 ... SCR catalyst (NOx catalyst), 44 ... Urea water addition valve (reducing agent addition means), 53 ... Urea water pump (pressurization means), 60 ... ECU ( Acquisition means and spray particle size control means).

Claims (6)

内燃機関の排気通路に設けられ還元剤により排気中のNOxを選択的に浄化するNOx触媒と、前記NOx触媒の排気上流側に液状の還元剤を添加する還元剤添加手段と、前記還元剤添加手段に供給される還元剤を加圧する加圧手段とを備える排気浄化システムに適用され、
前記NOx触媒の温度又はそれに相関する温度情報を計測又は推定により取得する取得手段と、
前記取得手段により取得した触媒温度又は温度情報に基づいて、前記加圧手段により加圧される還元剤圧力を変更することで、前記還元剤添加手段から添加される還元剤の噴霧粒径を変更する噴霧粒径制御手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
NOx catalyst provided in an exhaust passage of an internal combustion engine for selectively purifying NOx in exhaust gas by a reducing agent, reducing agent adding means for adding a liquid reducing agent to the exhaust upstream side of the NOx catalyst, and adding the reducing agent Applied to an exhaust purification system comprising a pressurizing means for pressurizing a reducing agent supplied to the means,
Acquisition means for acquiring the temperature of the NOx catalyst or temperature information correlated therewith by measurement or estimation;
Based on the catalyst temperature or temperature information acquired by the acquisition unit, the spray particle size of the reducing agent added from the reducing agent addition unit is changed by changing the reducing agent pressure pressurized by the pressurization unit. Spraying particle size control means,
An exhaust emission control device for an internal combustion engine, comprising:
前記噴霧粒径制御手段は、前記NOx触媒の温度が所定の低温域にある場合に、前記加圧手段により還元剤圧力を高圧化する請求項1に記載の内燃機関の排気浄化装置。   2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the spray particle size control means increases the reducing agent pressure by the pressurizing means when the temperature of the NOx catalyst is in a predetermined low temperature range. 前記還元剤の粒径を大小変更する場合においてそのうち粒径大である場合の前記NOx触媒の浄化率飽和温度を温度しきい値とし、その温度しきい値よりも低温側を前記所定の低温域であるとする請求項2に記載の内燃機関の排気浄化装置。   In the case where the particle size of the reducing agent is changed, the NOx catalyst purification rate saturation temperature when the particle size is large is set as a temperature threshold, and the temperature lower than the temperature threshold is the predetermined low temperature range. The exhaust emission control device for an internal combustion engine according to claim 2, wherein 前記噴霧粒径制御手段は、内燃機関の始動時において前記還元剤の噴霧粒径を小さくし、所定時間の経過後に噴霧粒径を大きくする請求項1乃至3のいずれかに記載の内燃機関の排気浄化装置。   The internal combustion engine according to any one of claims 1 to 3, wherein the spray particle size control means reduces the spray particle size of the reducing agent when starting the internal combustion engine, and increases the spray particle size after a predetermined time has elapsed. Exhaust purification device. 前記還元剤添加手段により添加される還元剤を加熱する加熱手段を備え、
前記噴霧粒径制御手段は、前記加圧手段による還元剤の加圧に加え、前記加熱手段による還元剤の加熱を実施することにより還元剤の噴霧粒径を変更する請求項4に記載の内燃機関の排気浄化装置。
A heating means for heating the reducing agent added by the reducing agent addition means;
5. The internal combustion engine according to claim 4, wherein the spray particle size control unit changes the spray particle size of the reducing agent by performing heating of the reducing agent by the heating unit in addition to pressurization of the reducing agent by the pressurizing unit. Engine exhaust purification system.
前記還元剤の圧力を検出する手段と、
前記検出した還元剤の圧力に応じて前記還元剤添加手段による還元剤添加の周期、及び1回あたりの添加時間の少なくともいずれかを可変に設定する手段と、
を備える請求項1乃至5のいずれか一項に記載の内燃機関の排気浄化装置。
Means for detecting the pressure of the reducing agent;
Means for variably setting at least one of a reducing agent addition period by the reducing agent addition means and an addition time per one time according to the detected pressure of the reducing agent;
An exhaust emission control device for an internal combustion engine according to any one of claims 1 to 5, further comprising:
JP2008147854A 2008-06-05 2008-06-05 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4558816B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008147854A JP4558816B2 (en) 2008-06-05 2008-06-05 Exhaust gas purification device for internal combustion engine
DE102009026754A DE102009026754B4 (en) 2008-06-05 2009-06-04 Exhaust gas purification device and method for purifying exhaust gas
US12/478,870 US20090301068A1 (en) 2008-06-05 2009-06-05 Exhaust-gas purification apparatus and method for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008147854A JP4558816B2 (en) 2008-06-05 2008-06-05 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009293513A true JP2009293513A (en) 2009-12-17
JP4558816B2 JP4558816B2 (en) 2010-10-06

Family

ID=41269032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008147854A Expired - Fee Related JP4558816B2 (en) 2008-06-05 2008-06-05 Exhaust gas purification device for internal combustion engine

Country Status (3)

Country Link
US (1) US20090301068A1 (en)
JP (1) JP4558816B2 (en)
DE (1) DE102009026754B4 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128145A1 (en) * 2011-03-18 2012-09-27 日野自動車株式会社 Urea solution reformer and exhaust gas purifier using same
JP2012197695A (en) * 2011-03-18 2012-10-18 Hino Motors Ltd Urea solution reformer and exhaust gas purifier using the same
JP2013142309A (en) * 2012-01-10 2013-07-22 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2013153606A1 (en) * 2012-04-09 2013-10-17 トヨタ自動車 株式会社 Exhaust purification device for internal combustion engine
WO2013190698A1 (en) 2012-06-22 2013-12-27 トヨタ自動車株式会社 Deterioration detection system of exhaust purification device
JP2014005742A (en) * 2012-06-21 2014-01-16 Denso Corp Exhaust cleaning device of internal combustion engine
JP2014522945A (en) * 2011-08-05 2014-09-08 テネコ・オートモーティヴ・オペレーティング・カンパニー・インコーポレーテッド Reducing agent injection control system
KR20150122248A (en) * 2013-03-07 2015-10-30 스카니아 씨브이 악티에볼라그 Method pertaining to an scr system and an scr system
JP2018076801A (en) * 2016-11-08 2018-05-17 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine
JP2018150851A (en) * 2017-03-10 2018-09-27 いすゞ自動車株式会社 Urea scr system of engine
JP2019113022A (en) * 2017-12-25 2019-07-11 株式会社デンソー Exhaust purification control device
WO2020137750A1 (en) * 2018-12-28 2020-07-02 株式会社デンソー Catalytic reaction system for engine
JP2020109289A (en) * 2018-12-28 2020-07-16 株式会社デンソー Catalytic reaction system for engine
JP2021055563A (en) * 2019-09-27 2021-04-08 いすゞ自動車株式会社 Exhaust emission control apparatus for internal combustion engine, and vehicle

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8701389B2 (en) 2011-12-06 2014-04-22 Tenneco Automotive Operating Company Inc. Reagent injector control system
US9222389B2 (en) * 2012-02-02 2015-12-29 Cummins Inc. Systems and methods for controlling reductant delivery to an exhaust stream
US9492788B2 (en) * 2012-03-29 2016-11-15 Volvo Construction Equipment Ab Method for diagnosing a selective catalytic reduction catalyst
US20140199771A1 (en) * 2013-01-17 2014-07-17 Miratech Holdings, Llc METHOD AND APPARATUS FOR ANALYSIS AND SELECTIVE CATALYTIC REDUCTION OF NOx-CONTAINING GAS STREAMS
US9399942B2 (en) * 2013-09-16 2016-07-26 International Engine Intellectual Property Company, Llc. Reductant delivery performance diagnostics system
JP6365099B2 (en) * 2014-08-08 2018-08-01 いすゞ自動車株式会社 Urea water temperature management system and urea water temperature management method
DE102016205555A1 (en) * 2016-04-04 2017-10-05 Röchling Automotive SE & Co. KG SCR device with valve arrangement
DE102016215380A1 (en) * 2016-08-17 2018-02-22 Robert Bosch Gmbh Method for detecting a blocked pressure line
JP2020012433A (en) * 2018-07-19 2020-01-23 いすゞ自動車株式会社 Exhaust structure for on-vehicle engine
US11274583B1 (en) * 2019-11-05 2022-03-15 Sonix Enterprises Inc. Internal combustion engine exhaust modification system
US11591941B2 (en) 2019-11-05 2023-02-28 Sonix Enterprises Inc. Internal combustion engine exhaust modification system
CN114370318B (en) * 2022-01-19 2023-05-23 潍柴动力股份有限公司 Method for reducing post-treatment urea crystallization and automobile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240429A (en) * 1999-02-24 2000-09-05 Toyota Motor Corp Exhaust gas emission control device for internal combustion engine
JP2001059417A (en) * 1999-08-20 2001-03-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002038942A (en) * 2000-07-24 2002-02-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003083053A (en) * 2001-09-11 2003-03-19 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2877098B2 (en) * 1995-12-28 1999-03-31 株式会社日立製作所 Gas turbines, combined cycle plants and compressors
US6125629A (en) * 1998-11-13 2000-10-03 Engelhard Corporation Staged reductant injection for improved NOx reduction
US20050252201A1 (en) * 2004-05-17 2005-11-17 Lecea Oscar A Method and apparatus for reducing NOx emissions
US7644577B2 (en) * 2004-10-29 2010-01-12 Philip Morris Usa, Inc. Reducing agent metering system for reducing NOx in lean burn internal combustion engines
JP4404048B2 (en) * 2005-12-28 2010-01-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4830570B2 (en) 2006-03-24 2011-12-07 いすゞ自動車株式会社 Exhaust gas purification system
JP4656039B2 (en) * 2006-10-19 2011-03-23 株式会社デンソー Engine exhaust purification system
US8069655B2 (en) * 2007-08-13 2011-12-06 Cummins Filtration Ip, Inc. Apparatus, system, and method for using a fraction of engine exhaust to deliver a dosant
JP4470987B2 (en) * 2007-10-19 2010-06-02 株式会社デンソー Reducing agent injection control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240429A (en) * 1999-02-24 2000-09-05 Toyota Motor Corp Exhaust gas emission control device for internal combustion engine
JP2001059417A (en) * 1999-08-20 2001-03-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002038942A (en) * 2000-07-24 2002-02-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003083053A (en) * 2001-09-11 2003-03-19 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197695A (en) * 2011-03-18 2012-10-18 Hino Motors Ltd Urea solution reformer and exhaust gas purifier using the same
CN103348104A (en) * 2011-03-18 2013-10-09 日野自动车株式会社 Urea solution reformer and exhaust gas purifier using same
WO2012128145A1 (en) * 2011-03-18 2012-09-27 日野自動車株式会社 Urea solution reformer and exhaust gas purifier using same
US8875499B2 (en) 2011-03-18 2014-11-04 Hino Motors Ltd. Urea solution reformer and exhaust gas purifier using same
JP2014522945A (en) * 2011-08-05 2014-09-08 テネコ・オートモーティヴ・オペレーティング・カンパニー・インコーポレーテッド Reducing agent injection control system
JP2013142309A (en) * 2012-01-10 2013-07-22 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2013153606A1 (en) * 2012-04-09 2013-10-17 トヨタ自動車 株式会社 Exhaust purification device for internal combustion engine
JPWO2013153606A1 (en) * 2012-04-09 2015-12-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2014005742A (en) * 2012-06-21 2014-01-16 Denso Corp Exhaust cleaning device of internal combustion engine
WO2013190698A1 (en) 2012-06-22 2013-12-27 トヨタ自動車株式会社 Deterioration detection system of exhaust purification device
US9670812B2 (en) 2012-06-22 2017-06-06 Toyota Jidosha Kabushiki Kaisha Deterioration detection system for exhaust gas purification apparatus
KR20150122248A (en) * 2013-03-07 2015-10-30 스카니아 씨브이 악티에볼라그 Method pertaining to an scr system and an scr system
KR101721182B1 (en) 2013-03-07 2017-03-29 스카니아 씨브이 악티에볼라그 Method pertaining to an scr system and an scr system
JP2018076801A (en) * 2016-11-08 2018-05-17 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine
JP2018150851A (en) * 2017-03-10 2018-09-27 いすゞ自動車株式会社 Urea scr system of engine
JP2019113022A (en) * 2017-12-25 2019-07-11 株式会社デンソー Exhaust purification control device
WO2020137750A1 (en) * 2018-12-28 2020-07-02 株式会社デンソー Catalytic reaction system for engine
JP2020109289A (en) * 2018-12-28 2020-07-16 株式会社デンソー Catalytic reaction system for engine
JP2021055563A (en) * 2019-09-27 2021-04-08 いすゞ自動車株式会社 Exhaust emission control apparatus for internal combustion engine, and vehicle

Also Published As

Publication number Publication date
DE102009026754A1 (en) 2009-12-10
JP4558816B2 (en) 2010-10-06
US20090301068A1 (en) 2009-12-10
DE102009026754B4 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP4558816B2 (en) Exhaust gas purification device for internal combustion engine
US8176729B2 (en) Perturbation control strategy for low-temperature urea SCR NOx reduction
CN102312712B (en) System and method for determining an age of and controlling a selective catalytic reduction catalyst
JP4764463B2 (en) Exhaust gas purification control device and exhaust gas purification system for internal combustion engine
JP4726926B2 (en) Exhaust gas purification device for internal combustion engine
JP4470987B2 (en) Reducing agent injection control device
US10196952B2 (en) Vehicle exhaust system having variable exhaust treatment injector system
US8250857B2 (en) Exhaust aftertreatment system
US20100122525A1 (en) Exhaust purification control device and exhaust purification system of internal combustion engine
US20120085082A1 (en) System and method for detecting low quality reductant and catalyst degradation in selective catalytic reduction systems
JP2006515657A (en) Internal combustion engine with exhaust aftertreatment system
CN101994554A (en) System and method for controlling reducing agent injection in selective catalytic reduction system
US10450923B2 (en) Exhaust gas control apparatus for internal combustion engine and control method for exhaust gas control apparatus
JP2010065581A (en) Exhaust emission control system of internal combustion engine
JP2010053847A (en) Exhaust emission control system for internal combustion engine
US8789358B2 (en) Selective catalytic reduction catalyst ammonia storage control systems and methods
US9212586B2 (en) Exhaust gas purification apparatus for internal combustion engine
JP2014218973A (en) Exhaust emission control device for internal combustion engine
JP4459987B2 (en) Exhaust purification agent addition amount control device and exhaust purification system
US9745877B2 (en) Exhaust gas purification apparatus for an internal combustion engine
US20150300229A1 (en) Exhaust emission control system for internal combustion engine (as amended)
EP2682580A2 (en) Exhaust emission control system for internal combustion engine, and control method for exhaust emission control system
US10746071B2 (en) Engine aftertreatment system
JP2013142309A (en) Exhaust emission control device for internal combustion engine
JP2010190103A (en) Exhaust emission control device and exhaust emission control system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4558816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees