JP4764463B2 - Exhaust gas purification control device and exhaust gas purification system for internal combustion engine - Google Patents
Exhaust gas purification control device and exhaust gas purification system for internal combustion engine Download PDFInfo
- Publication number
- JP4764463B2 JP4764463B2 JP2008242318A JP2008242318A JP4764463B2 JP 4764463 B2 JP4764463 B2 JP 4764463B2 JP 2008242318 A JP2008242318 A JP 2008242318A JP 2008242318 A JP2008242318 A JP 2008242318A JP 4764463 B2 JP4764463 B2 JP 4764463B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust
- internal combustion
- combustion engine
- exhaust gas
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000746 purification Methods 0.000 title claims description 51
- 238000002485 combustion reaction Methods 0.000 title claims description 39
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 117
- WTHDKMILWLGDKL-UHFFFAOYSA-N urea;hydrate Chemical group O.NC(N)=O WTHDKMILWLGDKL-UHFFFAOYSA-N 0.000 claims description 74
- 239000007789 gas Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 27
- 239000003638 chemical reducing agent Substances 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 24
- 238000011144 upstream manufacturing Methods 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 5
- 238000004904 shortening Methods 0.000 claims 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 61
- 239000004202 carbamide Substances 0.000 description 61
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 44
- 238000002347 injection Methods 0.000 description 23
- 239000007924 injection Substances 0.000 description 23
- 229910021529 ammonia Inorganic materials 0.000 description 21
- 239000003054 catalyst Substances 0.000 description 19
- 230000007423 decrease Effects 0.000 description 7
- 238000006722 reduction reaction Methods 0.000 description 7
- 230000007704 transition Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
- F01N3/2073—Selective catalytic reduction [SCR] with means for generating a reducing substance from the exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/06—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
本発明は、内燃機関の排気通路に設けられて且つ排気中の窒素酸化物を浄化する浄化手段と、前記浄化手段の上流側の排気中に還元剤を添加する添加手段とを備える排気浄化装置に適用され、前記添加手段の操作に基づき前記還元剤の添加量を調節しつつ前記浄化手段による窒素酸化物の浄化制御を行う内燃機関の排気浄化制御装置、及びこれを備える排気浄化システムに関する。 The present invention provides an exhaust emission control device provided with a purification means provided in an exhaust passage of an internal combustion engine for purifying nitrogen oxides in exhaust gas, and an addition means for adding a reducing agent to the exhaust gas upstream of the purification means. The present invention relates to an exhaust gas purification control apparatus for an internal combustion engine that performs purification control of nitrogen oxides by the purification means while adjusting the amount of addition of the reducing agent based on the operation of the addition means, and an exhaust purification system including the same.
近年、車載内燃機関(特にディーゼル機関)において、還元剤として尿素水を用いて排気中のNOx(窒素酸化物)を選択的に浄化する選択還元型触媒(SCR:Selective Catalytic Reduction)を採用した排気浄化システム(尿素SCRシステム)の開発が進められており、一部実用化に至っている。尿素SCRシステムでは、機関本体に接続された排気管に選択還元型のNOx触媒が設けられるとともに、その上流側に、NOx還元剤としての尿素水(尿素水溶液)を排気管内に添加する尿素水添加弁が設けられている。 In recent years, in-vehicle internal combustion engines (particularly diesel engines), exhaust that employs a selective catalytic reduction (SCR) that selectively purifies NOx (nitrogen oxides) in exhaust using urea water as a reducing agent. A purification system (urea SCR system) is being developed, and some have been put to practical use. In the urea SCR system, a selective reduction type NOx catalyst is provided in the exhaust pipe connected to the engine body, and urea water addition for adding urea water (urea aqueous solution) as a NOx reducing agent into the exhaust pipe is provided upstream of the exhaust gas. A valve is provided.
上記システムにおいては、尿素水添加弁により排気管内に尿素水が添加されることで、NOx触媒上で排気中のNOxが選択的に還元除去される。すなわち、尿素水が排気熱で加水分解されることによりアンモニア(NH3)が生成され、そのアンモニアがNOx触媒に吸着するととともに同NOx触媒上にてアンモニアによる還元反応が行われることによってNOxが還元、浄化される。 In the above system, urea water is added into the exhaust pipe by the urea water addition valve, so that NOx in the exhaust gas is selectively reduced and removed on the NOx catalyst. That is, ammonia (NH 3) is generated by hydrolyzing urea water with exhaust heat, the ammonia is adsorbed to the NOx catalyst, and the reduction reaction with ammonia is performed on the NOx catalyst, whereby NOx is reduced, Purified.
ところで、内燃機関の排気温度が低い場合には、尿素水からアンモニアへの加水分解効率が低下し、シアヌル酸等の尿素熱分解生成物が排気通路に析出するおそれがある。そこで従来は、例えば下記特許文献1に見られるように、排気通路に微少量の排気を通過させるバイパス通路を設け、バイパス通路に尿素水の加水分解触媒とヒータとを備えることも提案されている。これにより、排気温度が低い場合には、バイパス通路を介して尿素水からアンモニアを抽出し、これをNOx触媒に供給することで、排気通路に尿素熱分解生成物が析出することを好適に抑制又は回避することができる。
上記従来技術では、排気温度が低い領域におけるNOx浄化制御のために、バイパス通路や加水分解触媒、ヒータといったハードウェアを新たに備えるため、コストパフォーマンスが落ちることも無視できない。更に、ヒータを用いるため、エネルギ消費量が増大するという問題もある。 In the above-described prior art, since hardware such as a bypass passage, a hydrolysis catalyst, and a heater is newly provided for NOx purification control in a region where the exhaust gas temperature is low, it cannot be ignored that cost performance is lowered. Furthermore, since a heater is used, there is a problem that energy consumption increases.
本発明は、上記課題を解決するためになされたものであり、その目的は、浄化手段の上流側の排気中に還元剤を添加する電子制御式の添加手段を操作することで浄化手段による窒素酸化物の浄化制御を行うものにあって、部品点数の増加を抑制しつつも排気通路への付着物の付着を好適に抑制することのできる内燃機関の排気浄化制御装置、及びこれを備える排気浄化システムを提供することにある。 The present invention has been made in order to solve the above-described problems, and an object of the present invention is to operate nitrogen controlled by the purifying means by operating an electronically controlled adding means for adding a reducing agent to the exhaust gas upstream of the purifying means. An exhaust purification control device for an internal combustion engine, which performs oxide purification control, and can suitably suppress adhesion of deposits to an exhaust passage while suppressing an increase in the number of components, and an exhaust equipped with the same It is to provide a purification system.
以下、上記課題を解決するための手段、及びその作用効果について記載する。 Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.
請求項1記載の発明は、内燃機関の排気通路に設けられて且つ排気中の窒素酸化物を浄化する浄化手段と、前記浄化手段の上流側の排気中に還元剤を添加する添加手段とを備える排気浄化装置に適用され、前記添加手段の操作に基づき前記還元剤の添加量を調節しつつ前記浄化手段による窒素酸化物の浄化制御を行う内燃機関の排気浄化制御装置において、前記内燃機関の排気系の温度と相関を有するパラメータの値を取得する取得手段と、前記取得されたパラメータとしての排気温度及び外気温度に基づき前記排気通路の内壁の温度を把握しつつ前記添加手段の操作態様を変更する変更手段とを備え、前記変更手段は、前記操作態様の変更によって、前記還元剤に起因した付着物が前記排気通路に付着する上限温度よりも前記排気通路の内壁の温度の方が低い場合に前記還元剤が前記内壁に到達する量を低減すべく、前記添加手段の1回の開弁時間を短縮して且つ、前記1回の開弁時間の短縮に伴って添加間隔の逆数にて定義される添加周波数を上昇させることを特徴とする。 The invention according to claim 1 is provided with a purifying means that is provided in an exhaust passage of the internal combustion engine and purifies nitrogen oxides in the exhaust, and an adding means that adds a reducing agent to the exhaust gas upstream of the purifying means. An exhaust gas purification control apparatus for an internal combustion engine, which is applied to an exhaust gas purification apparatus, and performs purification control of nitrogen oxides by the purification means while adjusting an addition amount of the reducing agent based on an operation of the addition means . An acquisition means for acquiring a parameter value having a correlation with the temperature of the exhaust system, and an operation mode of the addition means while grasping the temperature of the inner wall of the exhaust passage based on the exhaust temperature and the outside air temperature as the acquired parameters. Change means for changing, and the change means is configured to change the operation mode so that the deposit caused by the reducing agent is less than the upper limit temperature at which the deposits adhere to the exhaust passage. In order to reduce the amount of the reducing agent that reaches the inner wall when the temperature is lower, the one-time valve opening time of the adding means is shortened, and the one-time valve opening time is shortened. Thus, the addition frequency defined by the reciprocal of the addition interval is increased .
添加手段の一回の開弁時間が短いほど、添加手段から噴射された還元剤が排気通路の内壁に付着しにくくなることが発明者らによって見出されている。上記発明では、この点に着目し、排気通路の内壁の温度が低いために排気通路の内壁に還元剤に起因した付着物が付着し易い状況下、添加手段の1回の開弁時間を短縮することで、部品点数の増加を抑制しつつも付着物の付着を好適に抑制することができる。 The inventors have found that the shorter the valve opening time of the adding means, the less the reducing agent injected from the adding means adheres to the inner wall of the exhaust passage. In the above invention, paying attention to this point, the temperature of the inner wall of the exhaust passage is low, so that the deposit caused by the reducing agent easily adheres to the inner wall of the exhaust passage, and the time for opening the valve once is reduced. By doing so, it is possible to suitably suppress the adhesion of deposits while suppressing an increase in the number of parts.
さらに、上記発明では、開弁時間の可変設定にかかわらず、所定期間内における添加量を要求添加量とすることができる。なお、要求添加量を、排気中の窒素酸化物濃度に応じて設定する手段を備えることが望ましい。 Furthermore, in the said invention, the addition amount in a predetermined period can be made into a request | requirement addition amount irrespective of the variable setting of valve opening time. In addition, it is desirable to provide means for setting the required addition amount according to the nitrogen oxide concentration in the exhaust gas.
請求項2記載の発明は、請求項1記載の発明において、前記内燃機関は、車載内燃機関であり、前記変更手段は、前記変更処理に際して車両の走行速度を加味することを特徴とする。 According to a second aspect of the invention of claim 1 Symbol placement, the internal combustion engine is an internal combustion engine, said changing means, characterized by adding the running speed of the vehicle during the changing process.
車両の走行速度が速いほど、単位時間当たりに内燃機関に吹き付けられる吸気量が増加するため、排気通路の壁面から奪われる熱量も増加する。このため、車両の走行速度は、排気通路の内壁の温度と相関を有するパラメータである。上記発明では、この点に鑑み、上記パラメータとして車両の走行速度を含めることで、排気通路の内壁の温度をより高精度に把握することができる。 As the traveling speed of the vehicle increases, the amount of intake air blown to the internal combustion engine per unit time increases, so the amount of heat taken from the wall surface of the exhaust passage also increases. For this reason, the traveling speed of the vehicle is a parameter having a correlation with the temperature of the inner wall of the exhaust passage. In the above invention, in view of this point, the temperature of the inner wall of the exhaust passage can be grasped with higher accuracy by including the traveling speed of the vehicle as the parameter.
請求項3記載の発明は、請求項1または2記載の発明において、前記内燃機関の排気通路のうち浄化手段の上流側に、排気を旋回させる旋回流発生手段が備えられることを特徴とする。 According to a third aspect of the present invention, in the first or second aspect of the present invention, a swirl flow generating means for swirling the exhaust gas is provided upstream of the purifying means in the exhaust passage of the internal combustion engine.
上記発明では、旋回流発生手段によって還元剤を拡散させることができ、ひいては排気通路の内壁に還元剤に起因した付着物が付着することを好適に抑制することができる。また、排気の還流が、排気通路の内壁の受熱量を増加させるものであるなら、排気通路の内壁に還元剤に起因した付着物が付着することをいっそう好適に抑制することができる。 In the above-described invention, the reducing agent can be diffused by the swirling flow generating means, and accordingly, it is possible to suitably suppress the deposits caused by the reducing agent from adhering to the inner wall of the exhaust passage. Further, if the exhaust gas recirculation increases the amount of heat received by the inner wall of the exhaust passage, it is possible to more suitably suppress the deposits due to the reducing agent from adhering to the inner wall of the exhaust passage.
請求項4記載の発明は、請求項1〜3のいずれか1項に記載の発明において、前記還元剤が尿素水であることを特徴とする。 The invention according to claim 4 is the invention according to any one of claims 1 to 3 , wherein the reducing agent is urea water.
尿素水を還元剤とする場合、十分に加熱されない状況下にあっては、排気通路の内壁に尿素熱分解生成物が析出することが知られている。このため、上記発明は、変更手段の利用価値が特に大きい。 When urea water is used as the reducing agent, it is known that a urea thermal decomposition product is deposited on the inner wall of the exhaust passage under a situation where the urea water is not sufficiently heated. For this reason, the above invention has particularly great utility value of the changing means.
請求項5記載の発明は、請求項1〜4のいずれか1項に記載の内燃機関の排気浄化制御装置と、前記浄化手段とを備えることを特徴とする。 An invention according to claim 5 is characterized by comprising the exhaust gas purification control device for an internal combustion engine according to any one of claims 1 to 4 and the purification means.
上記発明は、変更手段を備えるために、信頼性の高いシステムを実現している。 Since the above invention includes the changing means, a highly reliable system is realized.
(第1の実施形態)
以下、本発明にかかる内燃機関の排気浄化制御装置の第1の実施形態を図面を参照しつつ説明する。
(First embodiment)
Hereinafter, a first embodiment of an exhaust gas purification control apparatus for an internal combustion engine according to the present invention will be described with reference to the drawings.
ディーゼル機関10は、レシプロエンジン構造を有する内燃機関である。ディーゼル機関10の吸気通路12の上流には、エアクリーナ14が設けられており、エアクリーナ14には、吸気温度を検出する吸気温センサ16や、吸気流量を検出するエアフローメータ18が設けられている。エアクリーナ14の下流には、ターボチャージャ20が設けられている。そして、ターボチャージャ20によって過給された空気は、インタークーラ22によって冷却された後、吸気通路12の下流側に供給される。この空気は、吸気通路12の流路面積を調節するスロットルバルブ24やディーゼル機関10の燃焼室28及び吸気通路12間を開閉する吸気バルブ26を介して、燃焼室28に供給される。 The diesel engine 10 is an internal combustion engine having a reciprocating engine structure. An air cleaner 14 is provided upstream of the intake passage 12 of the diesel engine 10. The air cleaner 14 is provided with an intake air temperature sensor 16 that detects the intake air temperature and an air flow meter 18 that detects the intake air flow rate. A turbocharger 20 is provided downstream of the air cleaner 14. The air supercharged by the turbocharger 20 is cooled by the intercooler 22 and then supplied to the downstream side of the intake passage 12. This air is supplied to the combustion chamber 28 via a throttle valve 24 that adjusts the flow passage area of the intake passage 12, a combustion chamber 28 of the diesel engine 10, and an intake valve 26 that opens and closes the intake passage 12.
こうして燃焼室28に供給された空気は、燃焼室28に先端部が突出する燃料噴射弁30によって噴射された高圧(例えば「数十〜200MPa」)の燃料(例えば軽油)とともに圧縮され、燃焼に供される。この燃焼によって生成されるエネルギは、ピストン32を介してクランク軸34の回転エネルギに変換される。ちなみに、クランク軸34付近には、その回転角度を検出するクランク角センサ36が設けられている。 The air thus supplied to the combustion chamber 28 is compressed together with high-pressure (for example, “several tens to 200 MPa”) fuel (for example, light oil) injected by the fuel injection valve 30 whose front end projects into the combustion chamber 28, and is combusted. Provided. The energy generated by this combustion is converted into rotational energy of the crankshaft 34 via the piston 32. Incidentally, a crank angle sensor 36 for detecting the rotation angle is provided near the crankshaft 34.
燃焼室28において燃焼に供された上記空気及び燃料は、排気バルブ38の開動作に伴って、排気として排気通路40に排出される。排気通路40のうち、ターボチャージャ20の上流は、排気還流通路42を介して吸気通路12に接続されており、排気還流通路42の流路面積を調節する排気還流バルブ(EGRバルブ46)の開度に応じて、排気通路40に排出された排気の一部が、EGRクーラ44によって冷却された後に、吸気通路12に供給される。 The air and fuel used for combustion in the combustion chamber 28 are discharged into the exhaust passage 40 as exhaust gas as the exhaust valve 38 is opened. Of the exhaust passage 40, the upstream of the turbocharger 20 is connected to the intake passage 12 via the exhaust recirculation passage 42, and an exhaust recirculation valve (EGR valve 46) that adjusts the flow area of the exhaust recirculation passage 42 is opened. Depending on the degree, a part of the exhaust discharged to the exhaust passage 40 is cooled by the EGR cooler 44 and then supplied to the intake passage 12.
排気通路40のうちターボチャージャ20の下流には、後処理装置が設けられている。後処理装置は、排気通路40の上流側から順に、酸化触媒50、尿素選択還元型触媒(以下、尿素SCR52)、及びアンモニアスリップ触媒54を備えて構成される。ここで、アンモニアスリップ触媒54は、尿素SCR52においてNOxと反応しきれずに余剰となったアンモニアが尿素SCR52の下流に排出される場合に、これを除去するためのものである。アンモニアスリップ触媒54は、例えば酸化触媒にて構成されている。 A post-processing device is provided downstream of the turbocharger 20 in the exhaust passage 40. The post-treatment device includes an oxidation catalyst 50, a urea selective reduction catalyst (hereinafter referred to as urea SCR 52), and an ammonia slip catalyst 54 in order from the upstream side of the exhaust passage 40. Here, the ammonia slip catalyst 54 is used to remove ammonia that has not reacted with NOx and has been exhausted downstream of the urea SCR 52 in the urea SCR 52. The ammonia slip catalyst 54 is composed of, for example, an oxidation catalyst.
酸化触媒50と尿素SCR52との間には、排気中のNOx濃度を検出する上流側NOxセンサ56と、排気温度を検出する排気温センサ58とが設けられている。また、尿素SCR52とアンモニアスリップ触媒54との間には、NOx濃度を検出する下流側NOxセンサ60が設けられている。なお、後処理装置は、更に、排気中の粒子状物質(PM)を捕集するディーゼルパティキュレートフィルタ(DPF)を備えているが、これについては、酸化触媒50と一体とされるものとしてもよいし、また、その下流に備えられるとしてもよい。 Between the oxidation catalyst 50 and the urea SCR 52, an upstream NOx sensor 56 for detecting the NOx concentration in the exhaust gas and an exhaust temperature sensor 58 for detecting the exhaust gas temperature are provided. Further, a downstream NOx sensor 60 that detects the NOx concentration is provided between the urea SCR 52 and the ammonia slip catalyst 54. The post-treatment device further includes a diesel particulate filter (DPF) that collects particulate matter (PM) in the exhaust gas. However, this may be integrated with the oxidation catalyst 50. It may also be provided downstream thereof.
上記酸化触媒50と尿素SCR52との間には、更に、排気通路40の下流側に噴射口を設けた尿素水添加弁62が設けられている。尿素水添加弁62は、尿素水タンク64から供給される尿素水を排気通路40内に噴射することで、尿素水を排気に添加する電子制御式の弁体である。尿素水タンク64は給液キャップ付きの密閉容器にて構成されており、その内部に所定濃度(例えば32.5%)の尿素水が貯蔵されている。尿素水タンク64は、尿素水配管66を介して尿素水添加弁62に接続されており、尿素水配管66の途中には、尿素水タンク64内の尿素水を汲み上げ尿素水添加弁62に加圧供給(圧送)する電子制御式の尿素水ポンプ68が設けられている。なお、尿素水ポンプ68の下流には、圧送される尿素水の圧力を検出する圧力センサ70が設けられている。 Between the oxidation catalyst 50 and the urea SCR 52, a urea water addition valve 62 having an injection port provided downstream of the exhaust passage 40 is further provided. The urea water addition valve 62 is an electronically controlled valve body that adds urea water to exhaust gas by injecting urea water supplied from the urea water tank 64 into the exhaust passage 40. The urea water tank 64 is configured by a sealed container with a liquid supply cap, and urea water having a predetermined concentration (for example, 32.5%) is stored therein. The urea water tank 64 is connected to the urea water addition valve 62 via the urea water pipe 66, and the urea water in the urea water tank 64 is pumped up and added to the urea water addition valve 62 in the middle of the urea water pipe 66. An electronically controlled urea water pump 68 for supplying pressure (pressure feeding) is provided. A pressure sensor 70 that detects the pressure of the urea water that is pumped is provided downstream of the urea water pump 68.
上記尿素水添加弁62の上流には、排気通路40内を流れる排気に旋回流を生じさせるための旋回流発生部材72が設けられている。旋回流発生部材72は、排気通路40内の流通経路の断面構造を変更することで、排気に旋回流を生成する部材である。図2に、本実施形態にかかる旋回流発生部材72の構成を示す。図示されるように、旋回流発生部材72は、複数の羽(ここでは、8枚を例示)を備える羽根部72aを備える。ここで、羽根部72aの形状としては、排気の流動エネルギの一部を、排気通路40の周方向成分に変換するものであればよい。図では、特に、羽根部72aの各羽の形状として、内部がくぼんだ楕円形状のものを例示している。 A swirling flow generating member 72 for generating a swirling flow in the exhaust gas flowing in the exhaust passage 40 is provided upstream of the urea water addition valve 62. The swirl flow generating member 72 is a member that generates a swirl flow in the exhaust by changing the cross-sectional structure of the flow path in the exhaust passage 40. FIG. 2 shows a configuration of the swirl flow generating member 72 according to the present embodiment. As shown in the drawing, the swirl flow generating member 72 includes a blade portion 72a including a plurality of blades (eight examples here). Here, the shape of the blade portion 72 a may be any shape that converts a part of the flow energy of the exhaust into the circumferential component of the exhaust passage 40. In the figure, in particular, as the shape of each wing of the blade portion 72a, an elliptical shape having a hollow inside is illustrated.
上記尿素SCR52や尿素水添加弁62等を備えて構成される尿素SCRシステムでは、尿素水添加弁62により排気通路40内に尿素水を添加供給することで、排気通路40内において排気と共に尿素水が尿素SCR52に供給される。これにより、尿素SCR52においては、NOxの還元反応が行われることによってその排気が浄化される。 In the urea SCR system configured to include the urea SCR 52, the urea water addition valve 62, and the like, urea water is added to the exhaust passage 40 by the urea water addition valve 62 to supply urea water together with the exhaust in the exhaust passage 40. Is supplied to the urea SCR 52. Thus, the urea SCR 52 purifies the exhaust gas by performing a NOx reduction reaction.
詳しくは、尿素水添加弁62から噴射された尿素水が排気熱で加水分解され、その際、下記の式(c1)にて表現される化学反応にて、還元物質としてのアンモニア(NH3)が生成される。 Specifically, the urea water injected from the urea water addition valve 62 is hydrolyzed by the exhaust heat, and in this case, ammonia (NH3) as a reducing substance is converted by a chemical reaction expressed by the following formula (c1). Generated.
(NH2)2CO+H2O→2NH3+CO2 …(c1)
そして、尿素SCR52を排気が通過する際、アンモニアによって排気中のNOxが選択的に還元浄化される。詳しくは、以下の式(c2)〜(c4)に示すような還元反応が行われることによって、NOxが還元浄化されることになる。
(NH2) 2CO + H2O → 2NH3 + CO2 (c1)
When the exhaust gas passes through the urea SCR 52, NOx in the exhaust gas is selectively reduced and purified by ammonia. Specifically, NOx is reduced and purified by performing a reduction reaction as shown in the following formulas (c2) to (c4).
4NO+4NH3+O2→4N2+6H2O …(c2)
6NO2+8NH3→7N2+12H2O …(c3)
NO+NO2+2NH3→2N2+3H2O …(c4)
電子制御装置(ECU80)は、ディーゼル機関10を制御対象とし、燃料噴射弁30等の各種アクチュエータを操作する制御装置である。ECU80は、ディーゼル機関10の運転状態を検出する上述した各種センサの検出信号や、ユーザによるアクセル操作量を検出するためのアクセルセンサ82の検出信号、車両の走行速度を検出する車速センサ84の検出信号等を逐次入力し、これらに基づき、ディーゼル機関10の制御量(トルク、排気特性等)を制御する。
4NO + 4NH3 + O2 → 4N2 + 6H2O (c2)
6NO2 + 8NH3 → 7N2 + 12H2O (c3)
NO + NO2 + 2NH3 → 2N2 + 3H2O (c4)
The electronic control device (ECU 80) is a control device that controls the diesel engine 10 and operates various actuators such as the fuel injection valve 30. The ECU 80 detects the detection signals of the above-described various sensors that detect the operating state of the diesel engine 10, the detection signal of the accelerator sensor 82 for detecting the accelerator operation amount by the user, and the detection of the vehicle speed sensor 84 that detects the traveling speed of the vehicle. A signal or the like is sequentially input, and the control amount (torque, exhaust characteristics, etc.) of the diesel engine 10 is controlled based on these signals.
特にECU80は、上記制御量としての排気通路40から排出される排気の特性を制御すべく、尿素水添加弁62や尿素水ポンプ68を操作することで、尿素SCR52によるNOxの浄化制御を行う。ここで、尿素水添加弁62の操作は、尿素水添加弁62に対して所定周期の開弁指令パルスを出力することで行われる。すなわち、パルス出力に伴って尿素水添加弁62の駆動部(ソレノイド部)に駆動電流が流れることで、尿素水添加弁62が開弁され、尿素水が添加(噴射)される。 In particular, the ECU 80 controls the NOx purification by the urea SCR 52 by operating the urea water addition valve 62 and the urea water pump 68 to control the characteristics of the exhaust gas discharged from the exhaust passage 40 as the control amount. Here, the operation of the urea water addition valve 62 is performed by outputting a valve opening command pulse of a predetermined period to the urea water addition valve 62. That is, when the drive current flows to the drive part (solenoid part) of the urea water addition valve 62 with the pulse output, the urea water addition valve 62 is opened and urea water is added (injected).
ところで、ディーゼル機関10の排気系の温度が低い場合には、尿素水からアンモニアへの加水分解効率が低下し、シアヌル酸等の尿素熱分解生成物が排気通路40の内壁面に析出するおそれがある。そこで、本実施形態では、排気通路40の内壁面温度が低い場合には、尿素水添加弁62から噴射された尿素が排気通路40に到達することを抑制するように尿素水添加弁62の操作態様を変更する。以下、これについて詳述する。 By the way, when the temperature of the exhaust system of the diesel engine 10 is low, the hydrolysis efficiency from urea water to ammonia decreases, and urea thermal decomposition products such as cyanuric acid may be deposited on the inner wall surface of the exhaust passage 40. is there. Therefore, in the present embodiment, when the inner wall surface temperature of the exhaust passage 40 is low, the urea water addition valve 62 is operated so as to suppress urea injected from the urea water addition valve 62 from reaching the exhaust passage 40. Change the aspect. This will be described in detail below.
図3は、尿素水添加弁62による尿素の1回の噴射に伴う開弁時間と、尿素の飛距離(ペネトレーション)との関係についての実験結果である。図示されるように、開弁時間が長いほどペネトレーションが拡大する。このため、開弁時間が長いほど、排気通路40の内壁面に到達する尿素の量が増大すると考えられる。そしてこの際、排気通路40の内壁面温度が低い場合には、尿素に起因する付着物が内壁面に付着すると考えられる。 FIG. 3 is an experimental result on the relationship between the valve opening time associated with one injection of urea by the urea water addition valve 62 and the urea flight distance (penetration). As shown in the figure, the penetration increases as the valve opening time increases. For this reason, it is considered that the amount of urea reaching the inner wall surface of the exhaust passage 40 increases as the valve opening time increases. At this time, if the inner wall surface temperature of the exhaust passage 40 is low, it is considered that the deposits resulting from urea adhere to the inner wall surface.
このため、本実施形態では、排気通路40の内壁面温度が低い場合には、尿素水添加弁62の1回の開弁時間を短縮する。図4に、本実施形態にかかるNOx浄化制御の処理手順を示す。この処理は、ECU80により、例えば所定周期で繰り返し実行される。 For this reason, in this embodiment, when the inner wall surface temperature of the exhaust passage 40 is low, the time for opening the urea water addition valve 62 once is shortened. FIG. 4 shows a processing procedure for NOx purification control according to the present embodiment. This process is repeatedly executed by the ECU 80, for example, at a predetermined cycle.
この一連の処理では、まずステップS10において、ディーゼル機関10の回転速度が規定速度αより大きいか否かを判断する。この処理は、ディーゼル機関10が稼動しているか否かを判断するものである。ステップS10において肯定判断される場合、ステップS12において、尿素水の添加を許可する旨のフラグである添加許可フラグがオンであるか否かを判断する。そして、ステップS12において否定判断される場合には、ステップS14において、上記排気温センサ58によって検出される排気温度TEXが添加開始温度β以上であるか否かを判断する。この処理は、尿素水の添加を許可するタイミングであるか否かを判断するためのものである。ここで、添加開始温度βは、尿素SCR52がNOx浄化能力を有する下限温度以上であって極力低い値(例えば「180°C」)に設定されている。そして添加開始温度β以上であると判断される場合、ステップS16において、添加許可フラグをオンとする。 In this series of processes, first, in step S10, it is determined whether or not the rotational speed of the diesel engine 10 is greater than a specified speed α. This process determines whether the diesel engine 10 is operating. When an affirmative determination is made in step S10, it is determined in step S12 whether or not an addition permission flag, which is a flag for permitting the addition of urea water, is on. If a negative determination is made in step S12, it is determined in step S14 whether or not the exhaust temperature TEX detected by the exhaust temperature sensor 58 is equal to or higher than the addition start temperature β. This process is for determining whether or not it is time to permit addition of urea water. Here, the addition start temperature β is set to a value as low as possible (for example, “180 ° C.”) that is equal to or higher than the lower limit temperature at which the urea SCR 52 has the NOx purification capability. If it is determined that the temperature is equal to or higher than the addition start temperature β, the addition permission flag is turned on in step S16.
一方、上記ステップS12において肯定判断される場合、ステップS18において、排気温度TEXが閾値温度以下であるか否かを判断する。この処理は、尿素の添加を禁止するタイミングであるか否かを判断するためのものである。ここで、閾値温度は、添加開始温度βから所定値ΔTだけ低い値に設定されている。ここで所定値ΔTは、尿素の添加の許可及び禁止が頻繁に繰り返されるいわゆるハンチング現象を回避するために設けられるヒステリシス幅である。ステップS18において肯定判断される場合には、ステップS20において、添加許可フラグをオフとする。 On the other hand, when an affirmative determination is made in step S12, it is determined in step S18 whether or not the exhaust gas temperature TEX is equal to or lower than a threshold temperature. This process is for determining whether or not it is time to prohibit the addition of urea. Here, the threshold temperature is set to a value lower than the addition start temperature β by a predetermined value ΔT. Here, the predetermined value ΔT is a hysteresis width provided in order to avoid a so-called hunting phenomenon in which the addition and prohibition of urea addition are frequently repeated. If an affirmative determination is made in step S18, the addition permission flag is turned off in step S20.
これに対し上記ステップS18において否定判断される場合やステップS16の処理が完了する場合には、ステップS22において、燃焼室28からのNOx排出濃度に基づき、要求尿素量を算出する。ここで、NOx排出濃度としては、上流側NOxセンサ56の検出値を利用する。詳しくは、要求尿素量は、NOx排出濃度と、尿素SCR52のアンモニア吸蔵量とに基づき算出される。ちなみに、アンモニア吸蔵量は、周知の手法にて推定されるものである。ステップS22の処理が完了すると、ステップS24に移行する。 On the other hand, when a negative determination is made in step S18 or when the process of step S16 is completed, the required urea amount is calculated based on the NOx emission concentration from the combustion chamber 28 in step S22. Here, the detected value of the upstream NOx sensor 56 is used as the NOx emission concentration. Specifically, the required urea amount is calculated based on the NOx emission concentration and the ammonia storage amount of the urea SCR 52. Incidentally, the ammonia storage amount is estimated by a known method. When the process of step S22 is completed, the process proceeds to step S24.
ステップS24においては、排気温度TEXと外気温度と車速とに基づき、排気通路40の内壁面の温度(排気通路内壁温度TIW)を推定する。ここでは、排気温度TEXが高いほど、排気通路40の壁面が排気から受ける熱量が増加すると考えられることから、排気通路内壁温度TIWを高く推定する。また、外気温度が低いほど、排気通路40の壁面から外部へと流出する熱量が増加すると考えられることから、排気通路内壁温度TIWを低く推定する。更に、車速が大きいほど、排気通路40壁面に吹き付けられる外気の流量が増加すると考えられることから、排気通路内壁温度TIWを低く推定する。この推定は、排気通路40の壁面の比熱等に基づき、例えば熱の授受に関するモデルを用いて行えばよい。なお、上記外気温度として、本実施形態では、吸気温センサ16にて検出される吸気温度を用いる。 In step S24, the temperature of the inner wall surface of the exhaust passage 40 (exhaust passage inner wall temperature TIW) is estimated based on the exhaust temperature TEX, the outside air temperature, and the vehicle speed. Here, it is considered that the higher the exhaust gas temperature TEX is, the more heat the wall surface of the exhaust passage 40 receives from the exhaust gas. Therefore, the exhaust passage inner wall temperature TIW is estimated to be higher. Further, since the amount of heat flowing out from the wall surface of the exhaust passage 40 to the outside increases as the outside air temperature is lower, the exhaust passage inner wall temperature TIW is estimated to be lower. Furthermore, since it is considered that the flow rate of the outside air blown to the wall surface of the exhaust passage 40 increases as the vehicle speed increases, the exhaust passage inner wall temperature TIW is estimated to be low. This estimation may be performed using, for example, a model related to heat transfer based on the specific heat of the wall surface of the exhaust passage 40 or the like. As the outside air temperature, in the present embodiment, the intake air temperature detected by the intake air temperature sensor 16 is used.
排気通路内壁温度TIWが推定されると、ステップS26において、排気通路内壁温度TIWが規定温度γ以上であるか否かを判断する。この処理は、排気通路40の内壁面に尿素に起因した付着物が付着するおそれがある状況か否かを判断するためのものである。上記規定温度γは、尿素の析出する温度の上限値程度の値に設定されている。そして、排気通路内壁温度TIWが規定温度γ以上であるか否かに応じて、ステップS28、S30において、尿素水添加弁62からの尿素の添加の間隔の逆数である尿素添加周波数を選択する。ここでは、排気通路内壁温度TIWが規定温度γ以上である場合に選択される第1添加周波数f1よりも、規定温度γ未満である場合に選択される第2添加周波数f2の方が高周波とされる。これは、尿素水添加弁62の1回の開弁時間を短縮しても、上記ステップS22において算出された要求添加量を維持するための設定である。すなわち、1回の開弁時間が短いほど1回の開弁に伴う添加量が減少するため、所定期間当たりの添加量を同一とするためには、開弁時間が短いほど添加間隔を短縮する必要が生じるのである。 When the exhaust passage inner wall temperature TIW is estimated, it is determined in step S26 whether or not the exhaust passage inner wall temperature TIW is equal to or higher than a specified temperature γ. This process is for determining whether or not there is a possibility that deposits resulting from urea adhere to the inner wall surface of the exhaust passage 40. The specified temperature γ is set to a value about the upper limit of the temperature at which urea is deposited. Then, according to whether or not the exhaust passage inner wall temperature TIW is equal to or higher than the specified temperature γ, a urea addition frequency that is the reciprocal of the urea addition interval from the urea water addition valve 62 is selected in steps S28 and S30. Here, the second addition frequency f2 selected when the exhaust passage inner wall temperature TIW is lower than the specified temperature γ is higher than the first addition frequency f1 selected when the exhaust passage inner wall temperature TIW is equal to or higher than the specified temperature γ. The This is a setting for maintaining the required addition amount calculated in step S22 even if the time for opening the urea water addition valve 62 once is shortened. That is, the amount of addition accompanying one valve opening decreases as the valve opening time for one time decreases. To make the amount added per predetermined period the same, the addition interval is shortened as the valve opening time is short. The need arises.
上記ステップS28、S30の処理が完了する場合、ステップS32において、要求尿素量と添加周波数とに基づき、尿素水添加弁62の1回の開弁時間を算出する。図5に、要求尿素量を同一とする条件下、第1添加周波数f1、第2添加周波数f2のそれぞれについての開弁時間を例示する。ここで、所定期間当たりの尿素添加量を同一とするためには、第2添加周波数f2による添加処理時の開弁時間の上記所定期間当たりの和を、第1添加周波数f1による添加処理時の開弁時間の上記所定期間当たりの和以上とすることが望ましい。ここでこれらの和を必ずしも同一とすればよいのではない理由は、尿素水添加弁62の開弁開始時と比較して、その後のタイミングにおける噴射率の方が大きくなり得ることによる。 When the processes in steps S28 and S30 are completed, in step S32, one opening time of the urea water addition valve 62 is calculated based on the required urea amount and the addition frequency. FIG. 5 illustrates valve opening times for each of the first addition frequency f1 and the second addition frequency f2 under the condition that the required urea amount is the same. Here, in order to make the urea addition amount per predetermined period the same, the sum of the valve opening time during the addition process at the second addition frequency f2 per the predetermined period is equal to the sum during the addition process at the first addition frequency f1. It is desirable that the valve opening time be equal to or greater than the sum per the predetermined period. The reason why these sums are not necessarily the same is that the injection rate at the subsequent timing can be larger than when the urea water addition valve 62 starts to open.
先の図4の上記ステップS32の処理が完了すると、ステップS34において、尿素水添加弁62を操作することで、尿素の添加操作を実行する。なお、上記ステップS10、S14において否定判断される場合や、ステップS20、S34の処理が完了する場合には、この一連の処理を一旦終了する。 When the process of step S32 in FIG. 4 is completed, the urea addition operation is executed by operating the urea water addition valve 62 in step S34. If a negative determination is made in steps S10 and S14, or if the processes in steps S20 and S34 are completed, this series of processes is temporarily terminated.
図6に、上記処理による尿素水の添加処理態様を例示する。詳しくは、図6(a)に、車両の走行速度の推移を示し、図6(b)に、外気温度の推移を示し、図6(c)に、排気温度TEXの推移を示し、図6(d)に、排気通路内壁温度TIWの推移を示し、図6(e)に、NOx排出濃度の推移を示し、図6(f)に、尿素添加量の推移を示し、図6(g)に、尿素添加周波数の推移を示す。 FIG. 6 illustrates a urea water addition processing mode by the above processing. Specifically, FIG. 6 (a) shows the transition of the running speed of the vehicle, FIG. 6 (b) shows the transition of the outside air temperature, FIG. 6 (c) shows the transition of the exhaust temperature TEX, (D) shows the transition of the exhaust passage inner wall temperature TIW, FIG. 6 (e) shows the transition of NOx emission concentration, FIG. 6 (f) shows the transition of urea addition amount, and FIG. Shows the transition of the urea addition frequency.
図示されるように、排気温度が添加開始温度β以上となっており尿素SCR52によるNOxの浄化が可能となっているにもかかわらず、排気通路内壁温度TIWが規定温度γ未満となることで排気通路40に尿素に起因した付着物が付着する状況が生じえる。しかし本実施形態では、こうした状況下、第2添加周波数f2を選択することで、付着物の付着を好適に抑制することができる。ここで、排気通路40の壁面に付着する付着物である尿素重合体は、「300°C」以上となることで気化してアンモニアが生成される。このため、排気通路40に付着物が付着する場合には、上記尿素SCR52のアンモニア吸蔵量の推定精度が低下したり、尿素SCR52の下流にアンモニアが漏洩するアンモニアスリップを生じたりおそれがある。これに対し、本実施形態では、排気通路内壁温度に着目することで、こうした事態を好適に回避することができる。 As shown in the figure, the exhaust passage inner wall temperature TIW becomes lower than the specified temperature γ even though the exhaust gas temperature is equal to or higher than the addition start temperature β and the NOx purification by the urea SCR 52 is possible. A situation may occur in which deposits due to urea adhere to the passage 40. However, in this embodiment, the adhesion of deposits can be suitably suppressed by selecting the second addition frequency f2 under such circumstances. Here, the urea polymer, which is a deposit that adheres to the wall surface of the exhaust passage 40, is vaporized by being “300 ° C.” or more, and ammonia is generated. For this reason, when deposits adhere to the exhaust passage 40, there is a possibility that the estimation accuracy of the ammonia storage amount of the urea SCR 52 is lowered, or an ammonia slip in which ammonia leaks downstream of the urea SCR 52 may occur. On the other hand, in this embodiment, such a situation can be suitably avoided by focusing on the exhaust passage inner wall temperature.
ちなみに、排気通路内壁温度TIWにかかわらず第2添加周波数f2を選択することによっても、排気通路40への付着物の付着を抑制することはできるものの、この場合には、尿素水添加弁62の噴射回数が増加することから、尿素水添加弁62の消耗速度が増大し、ひいては信頼性の低下を招く事態が懸念される。 Incidentally, even if the second addition frequency f2 is selected regardless of the exhaust passage inner wall temperature TIW, the adhesion of deposits to the exhaust passage 40 can be suppressed, but in this case, the urea water addition valve 62 Since the number of injections increases, the consumption rate of the urea water addition valve 62 increases, and there is a concern that the reliability may be lowered.
以上詳述した本実施形態によれば、以下の効果が得られるようになる。 According to the embodiment described in detail above, the following effects can be obtained.
(1)排気通路40の内壁の温度が低い場合に尿素水添加弁62の1回の開弁時間を短縮した。これにより、部品点数の増加を抑制しつつも、排気通路40の内壁に尿素に起因した付着物が付着し易い状況下において付着物の付着を好適に抑制することができる。 (1) When the temperature of the inner wall of the exhaust passage 40 is low, the time for opening the urea water addition valve 62 once is shortened. Thereby, while suppressing the increase in the number of parts, it is possible to suitably suppress the adhesion of deposits in a situation where deposits due to urea easily adhere to the inner wall of the exhaust passage 40.
(2)1回の開弁時間を短縮するに伴って添加間隔の逆数にて定義される添加周波数を上昇させた。これにより、所定期間内における添加量を要求添加量とすることができる。 (2) The addition frequency defined by the reciprocal of the addition interval was increased as the valve opening time for one time was shortened. Thereby, the addition amount in a predetermined period can be made into a request | requirement addition amount.
(3)排気温度TEX及び外気温度に基づき排気通路内壁温度を推定した。これにより、排気通路内壁温度を適切に推定することができる。 (3) The exhaust passage inner wall temperature was estimated based on the exhaust temperature TEX and the outside air temperature. Thereby, the exhaust passage inner wall temperature can be appropriately estimated.
(4)排気通路内壁温度の推定に際して、車両の走行速度を加味した。これにより、排気通路内壁温度をより高精度に推定することができる。 (4) In estimating the exhaust passage inner wall temperature, the traveling speed of the vehicle is taken into account. Thereby, the exhaust passage inner wall temperature can be estimated with higher accuracy.
(5)排気通路40のうち尿素SCR52の上流側に、排気を旋回させる旋回流発生部材72を備えた。これにより、尿素を拡散させることができ、ひいては排気通路40の内壁に尿素に起因した付着物が付着することを好適に抑制することができる。 (5) A swirling flow generating member 72 that swirls exhaust is provided upstream of the urea SCR 52 in the exhaust passage 40. Thereby, urea can be diffused and by extension, it can suppress suitably that the deposit | attachment resulting from urea adheres to the inner wall of the exhaust passage 40. FIG.
(第2の実施形態)
以下、第2の実施形態について、先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to the drawings with a focus on differences from the first embodiment.
図7に、本実施形態にかかるNOx浄化制御の処理手順を示す。この処理は、ECU80により、例えば所定周期で繰り返し実行される。なお、図7において、先の図4に示した処理に対応する処理については、便宜上同一のステップ番号を付している。 FIG. 7 shows a processing procedure for NOx purification control according to the present embodiment. This process is repeatedly executed by the ECU 80, for example, at a predetermined cycle. In FIG. 7, processes corresponding to the processes shown in FIG. 4 are given the same step numbers for convenience.
この一連の処理では、ステップS26において排気通路内壁温度TIWが規定温度γ以上であるか否かに応じて、尿素水添加弁62から噴射される尿素の噴射圧を可変設定する。詳しくは、排気通路内壁温度TIWが規定温度γ以上である場合に選択される第1噴射圧P1(ステップS28a)よりも、規定温度γ未満である場合に選択される第2噴射圧P2(ステップS30a)の方が低い圧力とされる。これは、排気通路40の内壁面に尿素に起因した付着物が付着するおそれがある状況下、尿素水添加弁62から噴射される尿素水の初速度を低下させるための設定である。 In this series of processes, in step S26, the injection pressure of urea injected from the urea water addition valve 62 is variably set according to whether or not the exhaust passage inner wall temperature TIW is equal to or higher than the specified temperature γ. Specifically, the second injection pressure P2 selected when the exhaust passage inner wall temperature TIW is lower than the specified temperature γ than the first injection pressure P1 selected when the specified temperature γ is equal to or higher than the specified temperature γ (step S28a). S30a) is at a lower pressure. This is a setting for reducing the initial velocity of the urea water injected from the urea water addition valve 62 in a situation where deposits due to urea may adhere to the inner wall surface of the exhaust passage 40.
ステップS28a,30aの処理が完了する場合、ステップS32aにおいて、要求尿素量と噴射圧とに基づき、開弁時間を算出する。ここでは、所定期間当たりの添加量を同一とすべく、噴射圧が高い方が開弁時間を短く設定すればよい。 When the processes of steps S28a and 30a are completed, the valve opening time is calculated based on the required urea amount and the injection pressure in step S32a. Here, in order to make the addition amount per predetermined period the same, the higher the injection pressure, the shorter the valve opening time may be set.
なお、排気通路内壁温度TIWにかかわらず第2噴射圧P2を選択することによっても排気通路40への付着物の付着を抑制することはできる。ただし、尿素水の噴射圧が低いほど噴霧粒径が大きくなり、NOxの浄化能力が低下する。したがって、排気通路40の内壁への付着物の付着を抑制しつつ極力NOxの浄化能力を高めるべく、本実施形態では、第1噴射圧P1と第2噴射圧P2との切り替えを行う。 It should be noted that adhesion of deposits to the exhaust passage 40 can also be suppressed by selecting the second injection pressure P2 regardless of the exhaust passage inner wall temperature TIW. However, the lower the injection pressure of urea water, the larger the spray particle size, and the NOx purification capacity decreases. Therefore, in the present embodiment, switching between the first injection pressure P1 and the second injection pressure P2 is performed in order to increase the NOx purification ability as much as possible while suppressing the adhesion of deposits to the inner wall of the exhaust passage 40.
以上説明した本実施形態によれば、先の第1の実施形態の上記(2)〜(5)の効果に加えて、更に以下の効果が得られるようになる。 According to this embodiment described above, in addition to the effects (2) to (5) of the first embodiment, the following effects can be obtained.
(6)排気通路内壁温度が低い場合に尿素水添加弁62による尿素の噴射圧を低下させた。これにより、部品点数の増加を抑制しつつも、排気通路40の内壁に尿素に起因した付着物が付着し易い状況下において付着物の付着を好適に抑制することができる。 (6) When the exhaust passage inner wall temperature is low, the urea injection pressure by the urea water addition valve 62 is reduced. Thereby, while suppressing the increase in the number of parts, it is possible to suitably suppress the adhesion of deposits in a situation where deposits due to urea easily adhere to the inner wall of the exhaust passage 40.
(その他の実施形態)
なお、上記各実施形態は、以下のように変更して実施してもよい。
(Other embodiments)
Each of the above embodiments may be modified as follows.
・上記第1の実施形態では、排気通路内壁温度TIWが規定温度γ以上か否かに応じて添加周波数を2通りに設定したがこれに限らない。例えば、排気通路内壁温度が低下するにつれて、添加周波数を2段階以上に段階的に増大させたり、連続的に増大させたりしてもよい。 In the first embodiment, the addition frequency is set in two ways depending on whether the exhaust passage inner wall temperature TIW is equal to or higher than the specified temperature γ, but the present invention is not limited to this. For example, as the exhaust passage inner wall temperature decreases, the addition frequency may be increased in two steps or more, or may be increased continuously.
・上記第2の実施形態では、排気通路内壁温度TIWが規定温度γ以上か否かに応じて噴射圧を2通りに設定したがこれに限らない。例えば、排気通路内壁温度が低下するにつれて、噴射圧を2段階以上に段階的に低下させたり、連続的に低下させたりしてもよい。 In the second embodiment, the injection pressure is set in two ways depending on whether the exhaust passage inner wall temperature TIW is equal to or higher than the specified temperature γ, but the present invention is not limited to this. For example, as the exhaust passage inner wall temperature decreases, the injection pressure may be decreased in two or more stages or continuously.
・上記第1の実施形態において、排気通路内壁温度TIWが規定温度γ以下である場合に、添加周波数を増大させるとともに、尿素水添加弁62から噴射される噴霧粒径を低減すべく噴射圧を上昇させてもよい。このように噴霧粒径を低減させることでアンモニアの生成を促進することができるため、NOxの浄化性能が低下しやすい低温時においてNOxの浄化性能を高く維持することが可能となる。もっとも、尿素水の噴射圧を上昇させると、排気通路40の内壁面に到達する尿素水量が増加するおそれがある。このため、こうした事態を回避すべく、上記第2添加周波数f2よりも添加周波数を増大させることで、1回の開弁時間をより短縮することが望ましい。 In the first embodiment, when the exhaust passage inner wall temperature TIW is not more than the specified temperature γ, the injection pressure is increased to increase the addition frequency and reduce the spray particle size injected from the urea water addition valve 62. It may be raised. Since the generation of ammonia can be promoted by reducing the spray particle size in this way, the NOx purification performance can be maintained high at low temperatures when the NOx purification performance tends to be low. However, when the injection pressure of urea water is increased, the amount of urea water reaching the inner wall surface of the exhaust passage 40 may increase. For this reason, in order to avoid such a situation, it is desirable to shorten the valve opening time once by increasing the addition frequency more than the second addition frequency f2.
・上記各実施形態では、排気通路40の内壁面の温度(排気通路内壁温度TIW)をディーゼル機関10の運転状態を示すパラメータに基づき推定したが、これに限らず、専用のハードウェア手段を用いて検出してもよい。 In each of the above embodiments, the temperature of the inner wall surface of the exhaust passage 40 (exhaust passage inner wall temperature TIW) is estimated based on the parameter indicating the operating state of the diesel engine 10, but this is not a limitation, and dedicated hardware means are used. May be detected.
・排気通路40の内壁面の温度を把握しつつ添加手段(尿素水添加弁62や尿素水ポンプ68)の操作態様を変更する手段としては、排気通路内壁温度TIWに基づき操作態様を変更するものに限らない。例えば、排気温度TEXと閾値との比較に基づき操作態様を変更して且つ、この閾値を、外気温度に応じて可変設定するものであってもよい。この場合であっても、排気通路40の内壁面の温度が規定温度以下であるか否かを適切に判断することができ、ひいては規定温度以下であるか否かに応じて操作態様を変更することができる。なお、上記閾値の可変設定に際し、車速を加味するなら、上記判断をより高精度に行うことができる。 As means for changing the operation mode of the adding means (urea water addition valve 62 and urea water pump 68) while grasping the temperature of the inner wall surface of the exhaust passage 40, the operation mode is changed based on the exhaust wall inner wall temperature TIW. Not limited to. For example, the operation mode may be changed based on the comparison between the exhaust gas temperature TEX and the threshold value, and the threshold value may be variably set according to the outside air temperature. Even in this case, it is possible to appropriately determine whether or not the temperature of the inner wall surface of the exhaust passage 40 is equal to or lower than the specified temperature. As a result, the operation mode is changed depending on whether or not the temperature is equal to or lower than the specified temperature. be able to. Note that the above determination can be made with higher accuracy if the vehicle speed is taken into account when the threshold value is variably set.
・上記各実施形態では、尿素SCR52のアンモニア吸蔵量に基づき要求尿素量を算出したがこれに限らない。例えば、NOx浄化率に基づき算出してもよい。ここで、NOx浄化率は、例えば、尿素SCR52の上流側におけるNOx排出濃度(上流側NOxセンサ56の検出値に基づく量)から下流側におけるNOx排出濃度(下流側NOxセンサ60の検出値に基づく量)を減算した値を上流側におけるNOx排出濃度にて除算した値にて定義すればよい。 In each of the above embodiments, the required urea amount is calculated based on the ammonia storage amount of the urea SCR 52, but the present invention is not limited to this. For example, it may be calculated based on the NOx purification rate. Here, the NOx purification rate is based on, for example, the NOx emission concentration on the upstream side of the urea SCR 52 (the amount based on the detection value of the upstream NOx sensor 56) to the NOx emission concentration on the downstream side (the detection value of the downstream NOx sensor 60). The value obtained by subtracting (amount) may be defined by a value obtained by dividing the value by the NOx emission concentration on the upstream side.
・上記各実施形態では、燃焼室28からのNOx排出濃度を、上流側NOxセンサ56を用いて検出したがこれに限らず、例えばディーゼル機関10の運転状態を示すパラメータ(例えば、噴射量及び回転速度)に基づき推定してもよい。 In each of the above embodiments, the NOx emission concentration from the combustion chamber 28 is detected using the upstream side NOx sensor 56, but the present invention is not limited to this. For example, parameters indicating the operating state of the diesel engine 10 (for example, injection amount and rotation) It may be estimated based on (speed).
・上記各実施形態では、外気温度を、吸気温センサ16の検出値にて代用したがこれに限らず、吸気温センサ16とは別に外気の温度を検出するセンサを備えるようにしてもよい。 In each of the above embodiments, the outside air temperature is substituted by the detected value of the intake air temperature sensor 16, but the present invention is not limited to this, and a sensor that detects the outside air temperature may be provided separately from the intake air temperature sensor 16.
・上記各実施形態では、排気温度TEXを、排気温センサ58を用いて検出したがこれに限らない。例えばディーゼル機関10の運転状態を示すパラメータ(例えば、噴射量、回転速度、吸入空気量、及び吸気温)に基づき推定してもよい。 In each of the above embodiments, the exhaust temperature TEX is detected using the exhaust temperature sensor 58, but is not limited thereto. For example, the estimation may be performed based on parameters (for example, the injection amount, the rotation speed, the intake air amount, and the intake air temperature) indicating the operation state of the diesel engine 10.
・排気を旋回させる旋回流発生手段としては、先の図2に例示したものに限らない。例えば、図8に例示する旋回流発生部材90のように、羽根部90aの各羽根を、二等辺三角形状の薄板部材としてもよい。更に、図9(a)に例示する旋回流発生部材92のようなものであってもよい。ここでは、排気の流動方向からこれに直交する方向へと偏向した部材92a,92bを複数設けて且つ、図9(b)に示すように、この部材の偏向角度が排気通路40の中央よりも外側の方が大きくなるように設定されている。こうした構成によれば、排気通路40の壁面側の方が中央部よりも排気の流速が遅くなるため、排気の還流が、排気通路40の受熱量を増加させる構成となる。このため、排気通路40の内壁に尿素に起因した付着物が付着することをいっそう好適に抑制することができる。 The swirl flow generating means for swirling the exhaust is not limited to that illustrated in FIG. For example, as in the swirl flow generating member 90 illustrated in FIG. 8, each blade of the blade portion 90a may be a thin plate member having an isosceles triangle shape. Further, a swirl flow generating member 92 illustrated in FIG. 9A may be used. Here, a plurality of members 92a and 92b deflected from the flow direction of the exhaust gas to a direction perpendicular thereto are provided, and the deflection angle of these members is larger than the center of the exhaust passage 40 as shown in FIG. It is set so that the outside is larger. According to such a configuration, the flow rate of the exhaust gas on the wall surface side of the exhaust passage 40 is slower than that of the central portion, so that the exhaust gas recirculation increases the amount of heat received by the exhaust passage 40. For this reason, it can suppress more suitably that the deposit | attachment resulting from urea adheres to the inner wall of the exhaust passage 40. FIG.
また、旋回流発生手段としては、排気通路40の断面形状を静的に変更する固定部材に限らず、羽根車のように排気が吹き付けられることで自身が回転するものであってもよい。 Further, the swirling flow generating means is not limited to a fixed member that statically changes the cross-sectional shape of the exhaust passage 40, but may be one that rotates itself by being blown with exhaust gas like an impeller.
・排気中の窒素酸化物を浄化する浄化手段としては、上記尿素SCR52に限らない。例えば、上流側の排気中に尿素水以外の還元剤が添加される選択還元型触媒としてもよい。この場合であっても、排気通路40の内壁面温度が低い場合に還元剤に起因した付着物が付着するおそれがあるなら、本発明の適用が有効である。 -Purifying means for purifying nitrogen oxide in the exhaust is not limited to the urea SCR 52. For example, a selective reduction catalyst in which a reducing agent other than urea water is added to the exhaust on the upstream side may be used. Even in this case, the application of the present invention is effective if the deposit caused by the reducing agent may adhere when the inner wall surface temperature of the exhaust passage 40 is low.
・内燃機関としては、ディーゼル機関のような圧縮着火式内燃機関に限らない。例えば筒内噴射式ガソリン機関等の火花点火式内燃機関にあっても、NOxの浄化に選択還元型触媒を用いる場合には、本発明の適用は有効である。 -The internal combustion engine is not limited to a compression ignition type internal combustion engine such as a diesel engine. For example, even in a spark ignition type internal combustion engine such as an in-cylinder injection type gasoline engine, the application of the present invention is effective when a selective reduction catalyst is used for NOx purification.
10…ディーゼル機関、52…尿素SCR(浄化手段の一実施形態)、62…尿素水添加弁、68…尿素水ポンプ、80…ECU(排気浄化装置の一実施形態)。 DESCRIPTION OF SYMBOLS 10 ... Diesel engine, 52 ... Urea SCR (one embodiment of purification | cleaning means), 62 ... Urea water addition valve, 68 ... Urea water pump, 80 ... ECU (one embodiment of exhaust gas purification device).
Claims (5)
前記内燃機関の排気系の温度と相関を有するパラメータの値を取得する取得手段と、
前記取得されたパラメータとしての排気温度及び外気温度に基づき前記排気通路の内壁の温度を把握しつつ前記添加手段の操作態様を変更する変更手段とを備え、
前記変更手段は、前記操作態様の変更によって、前記還元剤に起因した付着物が前記排気通路に付着する上限温度よりも前記排気通路の内壁の温度の方が低い場合に前記還元剤が前記内壁に到達する量を低減すべく、前記添加手段の1回の開弁時間を短縮して且つ、前記1回の開弁時間の短縮に伴って添加間隔の逆数にて定義される添加周波数を上昇させることを特徴とする内燃機関の排気浄化制御装置。 Applied to an exhaust gas purification device provided with a purification means that is provided in an exhaust passage of an internal combustion engine and purifies nitrogen oxides in exhaust gas, and an addition means that adds a reducing agent to the exhaust gas upstream of the purification means, In an exhaust gas purification control device for an internal combustion engine that performs purification control of nitrogen oxides by the purification means while adjusting the amount of addition of the reducing agent based on the operation of the addition means,
Obtaining means for obtaining a value of a parameter having a correlation with a temperature of an exhaust system of the internal combustion engine;
Changing means for changing the operation mode of the adding means while grasping the temperature of the inner wall of the exhaust passage based on the exhaust temperature and the outside air temperature as the acquired parameters,
The changing means is configured to change the operation mode so that the reducing agent is disposed on the inner wall when the temperature of the inner wall of the exhaust passage is lower than the upper limit temperature at which the deposit caused by the reducing agent adheres to the exhaust passage. In order to reduce the amount to reach, the one-time valve opening time of the adding means is shortened, and the addition frequency defined by the reciprocal of the addition interval is increased with the shortening of the one-time valve opening time. An exhaust gas purification control apparatus for an internal combustion engine, characterized by comprising:
前記変更手段は、前記操作態様を変更する処理に際して前記排気通路の内壁の温度を把握する際に車両の走行速度を加味することを特徴とする請求項1記載の内燃機関の排気浄化制御装置。 The internal combustion engine is an in-vehicle internal combustion engine,
The changing means, the exhaust gas purification controller according to claim 1 Symbol placement of the internal combustion engine, characterized in that considering the traveling speed of the vehicle when grasping the temperature of the inner wall of the exhaust passage during the process of changing the operation mode .
前記浄化手段とを備えることを特徴とする内燃機関の排気浄化システム。 An exhaust gas purification control device for an internal combustion engine according to any one of claims 1 to 4 ,
An exhaust gas purification system for an internal combustion engine comprising the purification means.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008242318A JP4764463B2 (en) | 2008-09-22 | 2008-09-22 | Exhaust gas purification control device and exhaust gas purification system for internal combustion engine |
CN200910175137XA CN101683589B (en) | 2008-09-22 | 2009-09-16 | Waste gas cleaning mechanism and system |
DE102009042087A DE102009042087B4 (en) | 2008-09-22 | 2009-09-18 | Exhaust gas purifier and cleaning system and method of operating same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008242318A JP4764463B2 (en) | 2008-09-22 | 2008-09-22 | Exhaust gas purification control device and exhaust gas purification system for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010071255A JP2010071255A (en) | 2010-04-02 |
JP4764463B2 true JP4764463B2 (en) | 2011-09-07 |
Family
ID=42047101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008242318A Expired - Fee Related JP4764463B2 (en) | 2008-09-22 | 2008-09-22 | Exhaust gas purification control device and exhaust gas purification system for internal combustion engine |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4764463B2 (en) |
CN (1) | CN101683589B (en) |
DE (1) | DE102009042087B4 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5610956B2 (en) * | 2010-09-27 | 2014-10-22 | 三菱重工業株式会社 | Exhaust gas purification device control method and control device |
WO2012052799A1 (en) * | 2010-10-21 | 2012-04-26 | Renault Trucks | Method for detecting urea deposits in an exhaust line of an automotive vehicle, method for eliminating urea deposits and automotive vehicle adapted to such methods |
DE102010055642B4 (en) * | 2010-11-08 | 2013-11-21 | Volkswagen Ag | Method and control unit for metering a reducing agent carrier upstream of an SCR catalyst |
DE102011012441A1 (en) * | 2011-02-25 | 2012-08-30 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Method for heating a conveyor system |
JP5608137B2 (en) * | 2011-08-16 | 2014-10-15 | 日立建機株式会社 | Exhaust gas purification device |
JP2013044238A (en) * | 2011-08-22 | 2013-03-04 | Toyota Industries Corp | Exhaust emission control device |
WO2013165309A1 (en) * | 2012-05-03 | 2013-11-07 | Scania Cv Ab | Exhaust aftertreatment system and method pertaining to such a system |
WO2013190698A1 (en) | 2012-06-22 | 2013-12-27 | トヨタ自動車株式会社 | Deterioration detection system of exhaust purification device |
JP6105230B2 (en) * | 2012-08-24 | 2017-03-29 | フタバ産業株式会社 | Exhaust stirrer |
JP5626481B2 (en) * | 2012-09-07 | 2014-11-19 | トヨタ自動車株式会社 | Additive supply device for internal combustion engine |
JP5977375B2 (en) * | 2013-01-25 | 2016-08-24 | フタバ産業株式会社 | Exhaust gas purification device |
JP2015028312A (en) * | 2013-07-30 | 2015-02-12 | トヨタ自動車株式会社 | Exhaust emission control device for internal combustion engine |
US9284872B2 (en) | 2013-09-17 | 2016-03-15 | Cummins Emission Solutions Inc. | System, methods, and apparatus for low temperature dosing in diesel exhaust systems |
JP5962631B2 (en) * | 2013-11-14 | 2016-08-03 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP6083370B2 (en) * | 2013-11-21 | 2017-02-22 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP6301233B2 (en) * | 2014-11-05 | 2018-03-28 | ヤンマー株式会社 | engine |
JP6379057B2 (en) | 2015-02-18 | 2018-08-22 | 株式会社デンソー | Exhaust gas purification device for internal combustion engine |
DE102016121441A1 (en) * | 2016-11-09 | 2018-05-09 | Avl Emission Test Systems Gmbh | Condensate discharge system for an exhaust gas meter |
EP3339591B1 (en) * | 2016-12-21 | 2019-08-14 | Perkins Engines Company Limited | Control method and apparatus for a selective catalytic reduction system |
FR3071871B1 (en) | 2017-09-29 | 2020-02-07 | Continental Automotive France | SELECTIVE CATALYTIC REDUCTION PROCESS WITH AMMONIA DESORPTION FROM A CARTRIDGE IN AN EXHAUST LINE |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05103951A (en) * | 1991-10-14 | 1993-04-27 | Ebara Corp | Exhaust gas-denitrating method and device therefor |
DE69711031T2 (en) * | 1996-04-02 | 2002-11-14 | Kleenair Systems, Inc. | AMMONIA INJECTION TO REDUCE NOx EMISSION |
JP2000303826A (en) * | 1999-04-16 | 2000-10-31 | Isuzu Motors Ltd | Exhaust emission control device for diesel engine |
JP4352516B2 (en) * | 1999-08-03 | 2009-10-28 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP3632573B2 (en) * | 2000-07-24 | 2005-03-23 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP4396026B2 (en) * | 2000-11-29 | 2010-01-13 | 三菱自動車工業株式会社 | Catalyst temperature estimation device |
JP4720054B2 (en) * | 2001-09-11 | 2011-07-13 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP2003120279A (en) * | 2001-10-05 | 2003-04-23 | Toyota Motor Corp | Exhaust emission control device of internal combustion engine |
JP4464613B2 (en) * | 2003-02-28 | 2010-05-19 | 三菱自動車工業株式会社 | Catalyst temperature estimation apparatus and catalyst temperature estimation method |
JP2005002854A (en) * | 2003-06-11 | 2005-01-06 | Nissan Motor Co Ltd | Exhaust gas emission control device for engine |
US20050252201A1 (en) * | 2004-05-17 | 2005-11-17 | Lecea Oscar A | Method and apparatus for reducing NOx emissions |
CN100416056C (en) * | 2005-08-17 | 2008-09-03 | 株式会社电装 | Exhaust gas cleaning device and its method |
JP4687431B2 (en) * | 2005-12-07 | 2011-05-25 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP2007327377A (en) | 2006-06-07 | 2007-12-20 | Hitachi Ltd | Exhaust emission control device |
-
2008
- 2008-09-22 JP JP2008242318A patent/JP4764463B2/en not_active Expired - Fee Related
-
2009
- 2009-09-16 CN CN200910175137XA patent/CN101683589B/en not_active Expired - Fee Related
- 2009-09-18 DE DE102009042087A patent/DE102009042087B4/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE102009042087A1 (en) | 2010-06-02 |
JP2010071255A (en) | 2010-04-02 |
DE102009042087B4 (en) | 2012-11-22 |
CN101683589A (en) | 2010-03-31 |
CN101683589B (en) | 2013-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4764463B2 (en) | Exhaust gas purification control device and exhaust gas purification system for internal combustion engine | |
JP2010121478A (en) | Exhaust emission control device and exhaust emission control system for internal combustion engine | |
JP4558816B2 (en) | Exhaust gas purification device for internal combustion engine | |
CN101646846B (en) | Method of estimating rate of n2o formation on ammonia oxidation catalyst and exhaust purification system for internal combustion engine | |
EP2060756B1 (en) | Method and system using a reduction catalyst to reduce nitrate oxide | |
CN102414405B (en) | Exhaust emission control device for engine | |
US8720189B2 (en) | Apparatus and method for onboard performance monitoring of oxidation catalyst | |
JP4470987B2 (en) | Reducing agent injection control device | |
CN101769190B (en) | Thermal protection system for reducing agent injector | |
CN101943044A (en) | Use electric heating selection of catalysts catalyst reduction system | |
CN103470345A (en) | Vehicle-based strategy for removing urea deposits from an SCR catalyst | |
JP2008303821A (en) | Exhaust emission control device for internal combustion engine | |
CN102345494B (en) | Exhaust and component temperature estimation systems and methods | |
EP2940280B1 (en) | Fuel-cetane-number estimation method and apparatus | |
CN104583550A (en) | Exhaust purification device and exhaust purification method for internal combustion engine | |
AU2016201027B2 (en) | Systems and methods for determining the quantity of a combustion product in a vehicle exhaust | |
JP2010065581A (en) | Exhaust emission control system of internal combustion engine | |
WO2011152830A1 (en) | System and method for injecting ammonia into an exhaust gas stream | |
EP3025036A1 (en) | Scr exhaust emission control system and method therefore, for filling the urea reducing agent after returning to the tank | |
JP6120020B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2013142309A (en) | Exhaust emission control device for internal combustion engine | |
KR102406044B1 (en) | Scr purifying system and method for improving purifying efficiency of scr purifying system | |
JP6071636B2 (en) | Control device and control method for internal combustion engine | |
JP7243576B2 (en) | ADDITIVE LIQUID SUPPLY DEVICE AND ADDITIVE LIQUID SUPPLY METHOD FOR INTERNAL COMBUSTION ENGINE | |
JP6939528B2 (en) | Exhaust purification control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100302 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100615 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110607 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110610 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4764463 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |