JP2000240429A - Exhaust gas emission control device for internal combustion engine - Google Patents

Exhaust gas emission control device for internal combustion engine

Info

Publication number
JP2000240429A
JP2000240429A JP11046181A JP4618199A JP2000240429A JP 2000240429 A JP2000240429 A JP 2000240429A JP 11046181 A JP11046181 A JP 11046181A JP 4618199 A JP4618199 A JP 4618199A JP 2000240429 A JP2000240429 A JP 2000240429A
Authority
JP
Japan
Prior art keywords
reducing agent
exhaust gas
catalyst
reduction catalyst
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11046181A
Other languages
Japanese (ja)
Other versions
JP3518391B2 (en
Inventor
Shinobu Ishiyama
忍 石山
Yukihiro Tsukasaki
之弘 塚崎
Atsushi Tawara
淳 田原
Masaaki Kobayashi
正明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP04618199A priority Critical patent/JP3518391B2/en
Publication of JP2000240429A publication Critical patent/JP2000240429A/en
Application granted granted Critical
Publication of JP3518391B2 publication Critical patent/JP3518391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform efficient regeneration of an NOX occlusion reduction catalyst regardless of an exhaust gas temperature. SOLUTION: An NOX occlusion reduction catalyst 7 is arranged in the exhaust passage 3 of an engine 1 and absorbs NOX contained in exhaust gas from an engine under lean air-fuel ratio operation. When an NOX occlusion amount of the catalyst 7 is increased, a liquid reducing agent (diesel oil) is injected in an exhaust passage on the upper stream side of the catalyst 7 through a reducing agent injection valve 91 and NOX is emitted from the catalyst 7 for reduction purification. An electronic control unit(ECU) 30 calculates the temperature of exhaust gas flowing in the catalyst 7 based on an engine running state and the more a calculated exhaust gas temperature is lower, the more an injection pressure of the reducing agent injection valve is increased and the grain size of injected reducing agent particles is decreased. By decreasing the grain size, the injected reducing agent particles are easily evaporated even at a low exhaust gas temperature. Since liquid reducing agent particles are prevented from reaching the catalyst 7, the reduction agent supplied to the catalyst 7 is effectively utilized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の排気浄化
装置に関し、詳細には流入する排気空燃比がリーンのと
きに排気中のNOX を吸収し、流入する排気中の酸素濃
度が低下したときに吸収したNOX を放出するNOX
蔵還元触媒を備えた内燃機関の排気浄化装置に関する。
Relates to an exhaust purifying apparatus of the present invention is an internal combustion engine TECHNICAL FIELD OF THE INVENTION The exhaust air-fuel ratio flows into the details absorbs NO X in the exhaust gas when the lean, the oxygen concentration in the inflowing exhaust gas drops The present invention relates to an exhaust gas purification device for an internal combustion engine provided with a NO X storage reduction catalyst that releases sometimes absorbed NO X.

【0002】[0002]

【従来の技術】流入する排気空燃比がリーンのときに排
気中のNOX を吸収し、流入する排気中の酸素濃度が低
下したときに吸収したNOX を放出するNOX 吸蔵還元
触媒が知られている。NOX 吸蔵還元触媒はリーン空燃
比雰囲気下で排気中のNOX を吸収するが、吸収したN
X 量が増大し飽和量に到達するとそれ以上NOX を吸
収できなくなる。このため、NOX 吸蔵還元触媒を用い
た排気浄化装置では定期的にNOX 吸蔵還元触媒に流入
する排気の酸素濃度を低下させてNOX 吸蔵還元触媒か
ら吸収したNOX を放出させる必要がある。NOX 吸蔵
還元触媒をガソリン機関の排気浄化装置として使用した
場合には、機関の運転空燃比を低下させると(すなわち
機関をリッチ空燃比で運転すると)排気中の酸素濃度が
低下するとともに排気中の未燃HC、CO成分が増大す
るため、上記NOX 吸蔵還元触媒からNOX が放出さ
れ、放出されたNOX がNOX 吸蔵還元触媒上でHC、
COにより還元される。
BACKGROUND ART exhaust air-fuel ratio of the inflowing absorbs NO X in the exhaust gas when the lean, NO X occluding and reducing catalyst the oxygen concentration in the inflowing exhaust gas to release NO X absorbed when reduced intellectual Have been. The NO X storage reduction catalyst absorbs NO X in the exhaust gas under a lean air-fuel ratio atmosphere, but absorbed N
When O X amount is reaches the saturation amount increases can not be absorbed any more NO X. Therefore, it is necessary to release periodically the NO X storage reduction catalyst to reduce the oxygen concentration of the exhaust gas flowing into the by the NO X storage NO X absorbed from the reduction catalyst in an exhaust gas purification apparatus using the the NO X storage reduction catalyst . When the NO X storage reduction catalyst is used as an exhaust gas purification device of a gasoline engine, when the operating air-fuel ratio of the engine is reduced (that is, when the engine is operated at a rich air-fuel ratio), the oxygen concentration in the exhaust is reduced and the exhaust gas is reduced. unburned HC, since the CO component is increased, the the NO X storage reduction catalyst from the NO X is released, the released NO X is HC on the NO X storage reduction catalyst,
Reduced by CO.

【0003】ところが、NOX 吸蔵還元触媒をディーゼ
ル機関の排気浄化装置として使用した場合には、機関を
リッチ空燃比で運転することが困難であるため他の手段
により排気中の酸素濃度を低下させることが必要とな
る。NOX 吸蔵還元触媒をディーゼル機関の排気浄化装
置として使用する場合に排気酸素濃度を低下させてNO
X 吸蔵還元触媒から吸収したNOX を放出させる方法と
しては、通常NOX 吸蔵還元触媒の上流側の排気通路に
液体炭化水素等の還元剤を供給する方法が用いられる。
上流側の排気通路に供給された還元剤が排気中に分散し
て排気とともにNOX 吸蔵還元触媒に流入すると、還元
剤がNOX 吸蔵還元触媒上で排気中の酸素と反応し酸化
されるため、NOX 吸蔵還元触媒の雰囲気酸素濃度が低
下し、NOX 吸蔵還元触媒から吸収したNOX が放出さ
れる。また、放出されたNOX はNOX 吸蔵還元触媒上
で排気中の還元剤により還元浄化される。
[0003] However, when using the NO X storage reduction catalyst as an exhaust gas purification device for a diesel engine, reduces the oxygen concentration in the exhaust gas by other means since it is difficult to operate the engine at a rich air-fuel ratio It is necessary. When the NO X storage reduction catalyst is used as an exhaust gas purification device for a diesel engine, the NO X
As a method of releasing the NO X absorbed from the X storage reduction catalyst, a method of supplying a reducing agent such as liquid hydrocarbon to an exhaust passage upstream of the NO X storage reduction catalyst is usually used.
When the reducing agent supplied to the exhaust passage on the upstream side is dispersed in the exhaust gas and flows into the NO X storage reduction catalyst together with the exhaust gas, the reducing agent reacts with the oxygen in the exhaust gas on the NO X storage reduction catalyst and is oxidized. , atmospheric oxygen concentration of the NO X occluding and reducing catalyst is decreased, the absorbed NO X is released from the NO X storage reduction catalyst. The released NO X is reduced and purified by the reducing agent in the exhaust gas on the NO X storage reduction catalyst.

【0004】NOX 吸蔵還元触媒に関するものではない
が、排気通路に配置した触媒の上流側の排気通路に還元
剤を供給する装置の例としては特開平5−44434号
公報に記載されたものがある。同公報の装置は、ディー
ゼル機関の排気通路に酸化触媒を担持したパティキュレ
ートフィルタを配置し、パティキュレートフィルタに捕
集された排気微粒子を燃焼させる際にパティキュレート
フィルタ上流側の排気通路に燃料(還元剤)を噴射する
ことにより、噴射された燃料を酸化触媒上で燃焼させて
パティキュレートフィルタの温度を上昇させるようにし
たものである。また、同公報の装置では酸化触媒の活性
化に応じて適量の燃料を供給するため、触媒に流入する
排気の温度と機関吸入空気量とに基づいて触媒に供給す
る燃料量を算出するとともに、触媒出口の排気温度に基
づいて算出された燃料量を補正するようにしている。
[0004] does not relate to the NO X storage reduction catalyst, but those examples of devices for supplying a reducing agent to the upstream side of the exhaust passage is arranged in an exhaust passage catalysts described in JP-A-5-44434 is there. In the device disclosed in the publication, a particulate filter carrying an oxidation catalyst is disposed in an exhaust passage of a diesel engine, and when burning exhaust particulates collected by the particulate filter, fuel (fuel) is supplied to an exhaust passage upstream of the particulate filter. By injecting a reducing agent), the injected fuel is burned on the oxidation catalyst to raise the temperature of the particulate filter. Further, in the device of the publication, in order to supply an appropriate amount of fuel in accordance with the activation of the oxidation catalyst, while calculating the amount of fuel to be supplied to the catalyst based on the temperature of exhaust gas flowing into the catalyst and the amount of engine intake air, The fuel amount calculated based on the exhaust gas temperature at the catalyst outlet is corrected.

【0005】一般に触媒上流側の排気通路に還元剤を供
給する場合には、供給された還元剤の全量が触媒で反応
するようにして触媒下流側に未反応の還元剤が流出する
ことを防止する必要がある。また、触媒は低温になるほ
ど触媒能力が低下するため、排気温度が低い場合に排気
温度が高い場合と同量の還元剤を供給すると供給された
還元剤の一部が未反応のまま触媒下流側に流出してしま
う場合がある。上記公報の装置は、排気温度の変化によ
り未浄化の還元剤が触媒下流側に流出することを防止す
るため、排気温度(すなわち触媒の能力)に応じて供給
する還元剤の量を決定し、供給された還元剤の全量が触
媒上で反応するようにしたものである。
In general, when a reducing agent is supplied to an exhaust passage on the upstream side of the catalyst, the entire amount of the supplied reducing agent is reacted by the catalyst to prevent the unreacted reducing agent from flowing to the downstream side of the catalyst. There is a need to. In addition, since the catalyst performance decreases as the temperature of the catalyst decreases, when the same amount of reducing agent is supplied when the exhaust temperature is low and when the exhaust temperature is high, part of the supplied reducing agent remains unreacted downstream of the catalyst. In some cases. The apparatus of the above publication determines the amount of the reducing agent to be supplied in accordance with the exhaust gas temperature (that is, the capacity of the catalyst) in order to prevent the unpurified reducing agent from flowing downstream of the catalyst due to a change in the exhaust gas temperature. The entire amount of the supplied reducing agent is reacted on the catalyst.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記特開平
5−44434号公報の装置のように触媒に流入する排
気温度に応じて適量の還元剤を触媒に供給しても、供給
された還元剤の全量が触媒上で反応しない場合があるこ
とが判明している。例えば、触媒上流側の排気通路に供
給された燃料等の液体還元剤が充分に気化することなく
比較的大きな液体粒子のままの状態で触媒に到達する
と、還元剤粒子は触媒表面に付着したり、あるいは液体
粒子のままで触媒のセルを通過してしまう場合がある。
NOX 吸蔵還元触媒からのNOX の放出、還元浄化操作
(以下、NOX 吸蔵還元触媒から吸収したNOX を放出
させ還元浄化する操作を「NO X 吸蔵還元触媒の再生操
作」と呼ぶ)を行う場合に、上記液体還元剤粒子の触媒
表面付着や通過(すり抜け)が生じると供給された還元
剤が有効に利用されず、NOX 吸蔵還元触媒から放出さ
れたNOX の全量が還元浄化されなくなる場合がある。
これを防止するために、NOX 吸蔵還元触媒に供給する
還元剤の量を増大して触媒に充分な量の還元剤を供給す
るようにすることは可能であるが、この場合、上記すり
抜けのためNOX 吸蔵還元触媒下流側に流出する未反応
の還元剤の量が増大してしまい、還元剤の消費量が増大
するのみならず排気性状が悪化する問題が生じる。
However, the above-mentioned Japanese Patent Application Laid-Open
The exhaust gas flowing into the catalyst as in the device disclosed in Japanese Patent Publication No.
Even if an appropriate amount of reducing agent is supplied to the catalyst according to the
That the entire amount of the reducing agent may not react on the catalyst.
It is known. For example, supply the exhaust passage upstream of the catalyst.
The liquid reductant such as fuel supplied does not vaporize enough
Reach the catalyst with relatively large liquid particles
And the reducing agent particles adhere to the catalyst surface or
In some cases, the particles pass through the catalyst cell as they are.
NOXNO from storage reduction catalystXRelease and reduction purification operations
(Hereinafter NOXNO absorbed from the storage reduction catalystXRelease
The operation for reducing and purifying is "NO XRegeneration operation of storage reduction catalyst
), The catalyst of the liquid reducing agent particles
Reduction provided when surface adhesion or passage (slip through) occurs
Agent is not used effectively and NOXReleased from storage reduction catalyst
NOXMay not be reduced and purified.
To prevent this, NOXSupply to storage reduction catalyst
Increase the amount of reducing agent to supply a sufficient amount of reducing agent to the catalyst.
It is possible to do so, but in this case
NO for missingXUnreacted water flowing downstream of the storage reduction catalyst
The amount of reducing agent increases, and the amount of reducing agent consumed increases
In addition, there arises a problem that the exhaust properties deteriorate.

【0007】本発明は上記問題に鑑み、NOX 吸蔵還元
触媒に液体還元剤を供給する際に還元剤の霧化状態を適
切に制御して還元剤の消費量の増大と排気性状の悪化と
を防止可能な内燃機関の排気浄化装置を提供することを
目的としている。
[0007] In view of the above problems, the present invention appropriately controls the atomization state of the reducing agent when supplying the liquid reducing agent to the NO X storage reduction catalyst, thereby increasing the consumption of the reducing agent and deteriorating the exhaust characteristics. It is an object of the present invention to provide an exhaust gas purification device for an internal combustion engine that can prevent the occurrence of the exhaust gas.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の発明に
よれば、内燃機関の排気通路に配置され、流入する排気
の空燃比がリーンのときに排気中のNOX を吸収し流入
する排気の酸素濃度が低下したときに吸収したNOX
放出するNOX 吸蔵還元触媒と、該NOX 吸蔵還元触媒
の上流側の排気通路に液体還元剤を噴射する還元剤供給
装置とを備えた内燃機関の排気浄化装置において、前記
NOX 吸蔵還元触媒に流入する排気温度に応じて前記還
元剤供給装置から排気通路に噴射される還元剤の霧化状
態を変化させる霧化制御手段を備えた、内燃機関の排気
浄化装置が提供される。
Means for Solving the Problems] According to the invention described in claim 1, disposed in an exhaust passage of an internal combustion engine, the air-fuel ratio of the exhaust gas flowing flows to absorb NO X in the exhaust gas when the lean with a the NO X storage reduction catalyst the oxygen concentration of the exhaust gas to release the absorbed NO X when reduced, and a reducing agent supply device to the upstream side of the exhaust passage of the the NO X storage reduction catalyst for injecting the liquid reducing agent In the exhaust gas purifying apparatus for an internal combustion engine, atomizing control means for changing an atomizing state of a reducing agent injected into an exhaust passage from the reducing agent supply device according to an exhaust gas temperature flowing into the NO X storage reduction catalyst is provided. An exhaust gas purification device for an internal combustion engine is provided.

【0009】すなわち、請求項1に記載の発明ではNO
X 吸蔵還元触媒上流側の排気温度に応じて還元剤の霧化
状態を変更する。液体状の還元剤を排気通路に噴射する
場合には、排気温度が低いと霧化状態が同一であっても
(例えば噴射された還元剤の粒径が同一であっても)排
気温度が高い場合に較べて排気中で気化せずに液体粒子
のままでNOX 吸蔵還元触媒に到達する還元剤の量が増
大する。一方、排気温度が高い場合には噴射された還元
剤の霧化状態が多少悪くても還元剤が高温排気中で蒸発
するため、液体粒子のままNOX 吸蔵還元触媒に到達す
る還元剤の量は減少する。このため、排気温度に応じて
噴射される還元剤の霧化状態を変化させることにより、
前述の還元剤の触媒表面付着やすり抜けが生じることが
防止される。
That is, in the first aspect of the present invention, NO
The atomization state of the reducing agent is changed according to the exhaust gas temperature on the upstream side of the X storage reduction catalyst. When the liquid reducing agent is injected into the exhaust passage, if the exhaust temperature is low, the exhaust temperature is high even if the atomization state is the same (for example, even if the particle diameter of the injected reducing agent is the same). In comparison with the case, the amount of the reducing agent that reaches the NO X storage reduction catalyst in the form of liquid particles without being vaporized in the exhaust gas increases. On the other hand, when the temperature of the exhaust gas is high, the amount of the reducing agent that reaches the NO X storage reduction catalyst as liquid particles since the reducing agent evaporates in the high-temperature exhaust gas even if the atomized state of the injected reducing agent is somewhat poor. Decreases. For this reason, by changing the atomization state of the reducing agent injected according to the exhaust gas temperature,
It is possible to prevent the aforementioned reducing agent from adhering to the catalyst surface and bleeding through.

【0010】請求項2に記載の発明によれば、前記霧化
制御手段は、前記NOX 吸蔵還元触媒に流入する排気温
度が低いほど噴射される還元剤の粒径を小さくすること
により還元剤の霧化状態を変化させる請求項1に記載の
内燃機関の排気浄化装置が提供される。すなわち、請求
項2に記載の発明では、NOX 吸蔵還元触媒に流入する
排気温度が低いほど、排気通路に噴射される液体還元剤
の粒径が小さくなるようにされる。液体還元剤の粒径が
小さい場合には還元剤は気化し易くなるため、排気中に
噴射された還元剤は排気温度が低い場合でも充分に気化
し気体の状態でNOX 吸蔵還元触媒に到達する。このた
め、排気温度が低い場合でもNOX 吸蔵還元触媒で液体
還元剤粒子の付着やすり抜けが生じることがなくなり、
供給された還元剤の全量がNOX 吸蔵還元触媒からのN
X の放出、還元浄化に有効に使用されるようになる。
このため、還元剤の消費量が低減されるとともにNOX
吸蔵還元触媒下流側に流出する未反応の還元剤の量が低
減される。
According to the invention described in claim 2, wherein the atomizing control means, the reducing agent by decreasing the particle size of the reducing agent the exhaust gas temperature flowing into the the NO X storage reduction catalyst is lower the injection An exhaust purification device for an internal combustion engine according to claim 1, wherein the atomization state of the exhaust gas is changed. In other words, according to the second aspect of the present invention, as the temperature of the exhaust gas flowing into the NO X storage reduction catalyst decreases, the particle diameter of the liquid reducing agent injected into the exhaust passage decreases. When the particle size of the liquid reducing agent is small, the reducing agent is easily vaporized, so that the reducing agent injected into the exhaust gas is sufficiently vaporized even at a low exhaust gas temperature and reaches the NO X storage reduction catalyst in a gaseous state. I do. For this reason, even when the exhaust gas temperature is low, the NO X storage-reduction catalyst does not cause attachment or slippage of the liquid reducing agent particles,
The total amount of the supplied reducing agent is N from the NO X storage reduction catalyst.
O X emissions, will be effectively used for reduction and purification.
For this reason, the consumption of the reducing agent is reduced and the NO X
The amount of unreacted reducing agent flowing downstream of the storage reduction catalyst is reduced.

【0011】請求項3に記載の発明によれば、前記還元
剤供給装置は、前記還元剤を排気通路に噴射する噴射弁
を備え、前記霧化制御手段は前記噴射弁からの還元剤の
噴射圧力を変化させることにより噴射される還元剤の粒
径を変化させる請求項2に記載の内燃機関の排気浄化装
置が提供される。すなわち、請求項3に記載の発明で
は、還元剤は噴射弁を通じて排気通路に噴射され、還元
剤の粒径は還元剤の噴射圧力を変化させることにより調
整される。これにより、噴射された還元剤の霧化状態を
簡易に変化させることができる。
According to the third aspect of the present invention, the reducing agent supply device includes an injection valve for injecting the reducing agent into an exhaust passage, and the atomization control unit performs injection of the reducing agent from the injection valve. An exhaust gas purification apparatus for an internal combustion engine according to claim 2, wherein the particle diameter of the injected reducing agent is changed by changing the pressure. That is, in the third aspect of the present invention, the reducing agent is injected into the exhaust passage through the injection valve, and the particle diameter of the reducing agent is adjusted by changing the injection pressure of the reducing agent. Thereby, the atomization state of the injected reducing agent can be easily changed.

【0012】[0012]

【発明の実施の形態】以下、添付図面を用いて本発明の
一実施形態について説明する。図1は、本発明の排気浄
化装置の一実施形態の概略構成を示す図である。図1に
おいて、1は内燃機関を示す。本実施形態では、内燃機
関1としてディーゼル機関が使用されており、機関の各
気筒排気ポートは排気マニホルド31を介して共通の排
気通路3に接続されている。更に、排気通路3上には後
述するNOX 吸蔵還元触媒7が配置されている。図1に
9で示すのはNOX 吸蔵還元触媒7再生操作時にNOX
吸蔵還元触媒7に還元剤を供給する還元剤供給装置であ
る。還元剤供給装置は、NOX 吸蔵還元触媒7の排気入
口近傍に配置された還元剤噴射弁91を備えNOX 吸蔵
還元触媒7に流入する排気中に還元剤を噴射することに
よりNOX 吸蔵還元触媒7に流入する排気中の酸素濃度
を低下させ、触媒7から吸収したNOX を放出させると
ともに、放出されたNOX を還元浄化する。後述するよ
うに、本実施形態では還元剤として機関1の燃料(ディ
ーゼル油)が使用される。還元剤供給装置9は、図示し
ない機関燃料系統から供給された燃料を加圧する電動機
駆動の燃料ポンプ92を備え、燃料を加圧して還元剤噴
射弁91から排気通路3内に噴射する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing a schematic configuration of an embodiment of the exhaust gas purification apparatus of the present invention. In FIG. 1, reference numeral 1 denotes an internal combustion engine. In this embodiment, a diesel engine is used as the internal combustion engine 1, and each cylinder exhaust port of the engine is connected to a common exhaust passage 3 via an exhaust manifold 31. Further, a NO X storage reduction catalyst 7 described later is arranged on the exhaust passage 3. Shown in 9 in Figure 1 is the NO X storage reduction catalyst 7 during the regenerating operation NO X
This is a reducing agent supply device that supplies a reducing agent to the storage reduction catalyst 7. Reducing agent supply device, the NO X storage reduction by injecting reducing agent into the exhaust gas flowing to the NO X occluding and reducing catalyst 7 provided with the NO X storage reduction the reducing agent injection valve 91 disposed in the exhaust inlet vicinity of the catalyst 7 The concentration of oxygen in the exhaust gas flowing into the catalyst 7 is reduced, the NO X absorbed from the catalyst 7 is released, and the released NO X is reduced and purified. As described below, in the present embodiment, the fuel (diesel oil) of the engine 1 is used as the reducing agent. The reducing agent supply device 9 includes an electric motor-driven fuel pump 92 that pressurizes fuel supplied from an engine fuel system (not shown), and pressurizes the fuel to inject the fuel from the reducing agent injection valve 91 into the exhaust passage 3.

【0013】図1に30で示すのは、機関1の電子制御
ユニット(ECU)である。本実施形態では、ECU3
0はRAM、ROM、CPUを備えた公知の構成のマイ
クロコンピュータとして構成され、機関1の燃料噴射
量、燃料噴射時期等の基本制御を行う他、還元剤供給装
置9を制御して後述するNOX 吸蔵還元触媒7からのN
X の放出及び還元浄化操作(NOX 吸蔵還元触媒の再
生操作)を実施する。
In FIG. 1, reference numeral 30 denotes an electronic control unit (ECU) of the engine 1. In the present embodiment, the ECU 3
Reference numeral 0 denotes a microcomputer having a known configuration including a RAM, a ROM, and a CPU. The microcomputer 0 performs basic control such as a fuel injection amount and a fuel injection timing of the engine 1 and also controls a reducing agent supply device 9 to be described below. N from X storage reduction catalyst 7
O X release and reduction purification operation (NO X catalyst regeneration operation of the reduction catalyst) is carried out.

【0014】NOX 吸蔵還元触媒7の再生操作を行うた
め、ECU30の入力ポートには、機関のアクセルペダ
ル近傍に配置されたアクセル開度センサ33から運転者
のアクセルペダル踏込み量(アクセル開度、ACCP)
に応じた電圧信号が、また、機関クランク軸近傍に配置
されたクランク回転角センサ35からクランク軸一定回
転角度毎に回転パルス信号が入力されている。ECU3
0は、クランク回転角センサ35から入力するパルス信
号の時間間隔に基づいて一定時間毎に機関1の回転数N
Eを算出する。
In order to perform the regeneration operation of the NO X storage reduction catalyst 7, an input port of the ECU 30 is provided with a driver's accelerator pedal depression amount (accelerator opening, ACCP)
, And a rotation pulse signal from the crank rotation angle sensor 35 disposed near the engine crankshaft at every constant rotation angle of the crankshaft. ECU3
0 is the rotation speed N of the engine 1 at regular intervals based on the time interval of the pulse signal input from the crank rotation angle sensor 35.
Calculate E.

【0015】また、ECU30の出力ポートは、図示し
ない駆動回路を介して燃料ポンプ92の電源制御回路9
2aと還元剤噴射弁91とに接続され、ポンプ92の回
転数(吐出圧力)と噴射弁91の開弁時間(噴射量)と
を制御している。本実施形態のNOX 吸蔵還元触媒7
は、アルミナ等の担体上に例えばカリウムK、ナトリウ
ムNa 、リチウムLi 、セシウムCs のようなアルカリ
金属、バリウムBa 、カルシウムCa のようなアルカリ
土類、ランタンLa 、セリウムCe、イットリウムYの
ような希土類から選ばれた少なくとも一つの成分と、白
金Ptのような貴金属とを担持したものである。NOX
吸蔵還元触媒は流入する排気ガスの空燃比がリーンのと
きに、排気中のNOX (NO2 、NO)を硝酸イオンN
3 - の形で吸収し、流入排気ガスの酸素濃度が低下す
ると吸収したNOX を放出するNOX の吸放出作用を行
う。
An output port of the ECU 30 is connected to a power supply control circuit 9 of the fuel pump 92 via a drive circuit (not shown).
2a is connected to the reducing agent injection valve 91, and controls the rotation speed (discharge pressure) of the pump 92 and the valve opening time (injection amount) of the injection valve 91. The NO X storage reduction catalyst 7 in this embodiment
Are prepared on a carrier such as alumina, for example, alkali metals such as potassium K, sodium Na, lithium Li and cesium Cs, alkaline earths such as barium Ba and calcium Ca, and rare earths such as lanthanum La, cerium Ce and yttrium Y. And a noble metal such as platinum Pt. NO X
When the air-fuel ratio of the inflowing exhaust gas is lean, the storage reduction catalyst converts NO x (NO 2 , NO) in the exhaust gas into nitrate ions N
O 3 - absorbed in the form of, performing absorption and release action of the NO X that releases NO X concentration of oxygen absorbed to decrease the inflow exhaust gas.

【0016】この吸放出のメカニズムについて、以下に
白金PtおよびバリウムBaを使用した場合を例にとっ
て説明するが他の貴金属、アルカリ金属、アルカリ土
類、希土類を用いても同様なメカニズムとなる。流入排
気中の酸素濃度が増大すると(すなわち排気の空燃比が
リーン空燃比になると)、これら酸素は白金Pt上にO
2 - またはO2-の形で付着し、排気中のNOX は白金P
t上のO2 - またはO2-と反応し、これによりNO2
生成される。また、流入排気中のNO2 及び上記により
生成したNO2 は白金Pt上で更に酸化されつつ触媒中
に吸収されて吸収剤として作用する酸化バリウムBaO
と結合しながら硝酸イオンNO3 - の形で触媒内に拡散
する。このため、リーン雰囲気下では排気中のNOX
NOX 吸蔵還元触媒内に硝酸塩の形で吸収されるように
なる。
The mechanism of the absorption and release will be described below by taking platinum Pt and barium Ba as an example, but the same mechanism can be obtained by using other noble metals, alkali metals, alkaline earths and rare earths. When the oxygen concentration in the inflowing exhaust gas increases (that is, when the air-fuel ratio of the exhaust gas becomes a lean air-fuel ratio), these oxygens become
2 - or deposited at O 2- form, NO X in the exhaust gas platinum P
O 2 on t - or react with O 2-, thereby NO 2 is produced. Further, NO 2 and NO 2 produced by the above in the inflowing exhaust gas is barium oxide BaO which acts as an absorbent is absorbed by the catalyst while being further oxidized on the platinum Pt
Diffuses in the catalyst in the form of - bound nitrate ions NO 3 while the. Therefore, in a lean atmosphere, NO X in the exhaust gas is absorbed in the NO X storage reduction catalyst in the form of nitrate.

【0017】また、流入排気中の酸素濃度が低下すると
(すなわち、排気の空燃比が低下すると)、白金Pt上
でのNO2 生成量が減少するため反応が逆方向に進むよ
うになり、触媒内の硝酸イオンNO3 - はNO2 の形で
NOX 吸蔵還元触媒から放出されるようになる。この場
合、排気中にHC、CO等の成分が存在すると白金Pt
上でこれらの成分によりNO2 が還元される。
Further, when the oxygen concentration in the inflowing exhaust gas decreases (ie, when the air-fuel ratio of the exhaust gas decreases), the amount of NO 2 generated on the platinum Pt decreases, so that the reaction proceeds in the reverse direction, and the catalyst proceeds. The nitrate ion NO 3 in the inside is released from the NO X storage reduction catalyst in the form of NO 2 . In this case, if components such as HC and CO are present in the exhaust gas, platinum Pt
Above, these components reduce NO 2 .

【0018】本実施形態では、機関1としてディーゼル
機関が使用されているため機関の排気空燃比はリーンで
あり、通常運転中は排気通路3のNOX 吸蔵還元触媒7
にはリーン空燃比の排気が流入し排気中のNOX がNO
X 吸蔵還元触媒7に吸収される。また、NOX 吸蔵還元
触媒7上流側の排気通路3に還元剤が供給されるとNO
X 吸蔵還元触媒7には還元剤を含んだ排気が流入し、還
元剤の一部はNOX 吸蔵還元触媒7の白金Pt上で酸素
と反応する。これにより、NOX 吸蔵還元触媒7の雰囲
気中の酸素濃度が低下するとともに、還元剤の酸化によ
り未燃HC、CO等の成分が発生する。還元剤の酸化に
よりNOX 吸蔵還元触媒7の雰囲気酸素濃度が低下する
と、上述したメカニズムによりNOX 吸蔵還元触媒7か
らNOXが放出され排気中のHC、CO成分により還元
される。
[0018] In this embodiment, the exhaust air-fuel ratio of the engine for diesel engine is used as the engine 1 is lean, the normal operation of the exhaust passage 3 NO X occluding and reducing catalyst 7
NO X in the exhaust gas flowing the exhaust of a lean air-fuel ratio in the NO
It is absorbed by the X storage reduction catalyst 7. When the reducing agent is supplied to the exhaust passage 3 on the upstream side of the NO X storage reduction catalyst 7, NO
The X occluding and reducing catalyst 7 flows is contained reductant exhaust, part of the reducing agent reacts with oxygen on the platinum Pt of the NO X occluding and reducing catalyst 7. Thereby, the oxygen concentration in the atmosphere of the NO X storage reduction catalyst 7 decreases, and components such as unburned HC and CO are generated by oxidation of the reducing agent. When the atmospheric oxygen concentration of the NO X occluding and reducing catalyst 7 by oxidation of the reducing agent decreases, HC of the NO X storage NO X from the reducing catalyst 7 is released in the exhaust by a mechanism mentioned above, it is reduced by CO component.

【0019】上記NOX 吸蔵還元触媒からのNOX の放
出、還元浄化操作(NOX 吸蔵還元触媒の再生操作)に
使用される還元剤としては、排気中でH2 等の還元成分
やHC、CO成分を生成するものが使用され、例えば水
素、一酸化炭素等の気体、プロパン、プロピレン、ブタ
ン等の液体又は気体の炭化水素、ガソリン、軽油、灯油
等の液体燃料等が使用できる。本実施形態では、内燃機
関1としてディーゼル機関が使用されているため、補
給、貯蔵の便を考慮して還元剤として機関1の燃料(デ
ィーゼル油)を使用するようにしている。
[0019] The the NO X storage reduction and release of the NO X from the catalyst, the reducing agent used in the reduction purification operation (reproducing operation of the NO X occluding and reducing catalyst), the reducing components and HC such as H 2 in the exhaust, A substance that generates a CO component is used, and for example, a gas such as hydrogen and carbon monoxide, a liquid or gaseous hydrocarbon such as propane, propylene, and butane, and a liquid fuel such as gasoline, light oil, and kerosene can be used. In the present embodiment, since a diesel engine is used as the internal combustion engine 1, the fuel (diesel oil) of the engine 1 is used as a reducing agent in consideration of the convenience of replenishment and storage.

【0020】後述するように、本実施形態ではECU3
0は、機関負荷状態(アクセル開度ACCPと回転数N
E)とに基づいてNOX 吸蔵還元触媒7に流入する排気
温度を算出するとともに、NOX 吸蔵還元触媒7の再生
操作時に排気温度に基づいて燃料ポンプ92の電源電圧
を制御して還元剤噴射弁91からの還元剤噴射圧力を制
御し、また、還元剤噴射弁91の開弁時間を制御して噴
射弁91からの還元剤の噴射量を制御している。
As will be described later, in this embodiment, the ECU 3
0 is the engine load state (accelerator opening ACCP and engine speed N
E), the exhaust gas temperature flowing into the NO X storage reduction catalyst 7 is calculated, and the power supply voltage of the fuel pump 92 is controlled based on the exhaust temperature at the time of the regeneration operation of the NO X storage reduction catalyst 7 to thereby inject the reducing agent. The reducing agent injection pressure from the valve 91 is controlled, and the opening time of the reducing agent injection valve 91 is controlled to control the injection amount of the reducing agent from the injection valve 91.

【0021】ところで、本実施形態のようにNOX 吸蔵
還元触媒7上流側の排気通路に液体還元剤(本実施形態
ではディーゼル油)を噴射する場合には、特に排気温度
が低い場合に噴射した還元剤がNOX 吸蔵還元触媒7の
再生に有効に使用されない場合が生じる。ディーゼル機
関は一般に排気温度が低く、低負荷運転では排気温度は
200℃以下になる場合がある。このような場合には還
元剤噴射弁91から噴射された燃料が排気中で充分に気
化せずに液状粒子のままNOX 吸蔵還元触媒7に到達す
る場合が生じる。還元剤が液状のままNOX 吸蔵還元触
媒7に到達すると、液体還元剤がNOX 吸蔵還元触媒の
入口部分に付着してしまい、この部分の触媒の排気との
接触面積が低下したり、液状粒子のままの還元剤がセル
壁面と接触しないままNOX 吸蔵還元触媒を通過してし
まい下流側に流出する、いわゆる還元剤のすり抜けが生
じる。この場合、NOX 吸蔵還元触媒7に付着した還元
剤、或いはNOX 吸蔵還元触媒7をすり抜けた還元剤は
NOX 吸蔵還元触媒の再生には利用されないため、NO
X 吸蔵還元触媒7では還元剤不足のため再生が充分に行
われなくなる。この問題を防止するために、予めすり抜
け等を考慮して再生操作時のNOX 吸蔵還元触媒7への
還元剤供給量を増大すればNOX 吸蔵還元触媒上での還
元剤不足が生じることはないが、この場合には再生操作
に要する還元剤量が増大し機関燃料消費率が悪化するの
みならず、すり抜け等により下流側に流出した還元剤に
より排気性状が悪化する問題が生じてしまう。
When the liquid reducing agent (diesel oil in this embodiment) is injected into the exhaust passage upstream of the NO X storage reduction catalyst 7 as in this embodiment, the injection is performed particularly when the exhaust gas temperature is low. In some cases, the reducing agent is not used effectively for the regeneration of the NO X storage reduction catalyst 7. A diesel engine generally has a low exhaust temperature, and the exhaust temperature may be 200 ° C. or less in a low load operation. In such a case, there is a case where the fuel injected from the reducing agent injection valve 91 does not sufficiently vaporize in the exhaust gas and reaches the NO X storage reduction catalyst 7 in the form of liquid particles. When the reducing agent reaches the NO X occluding and reducing catalyst 7 remains liquid, the liquid reducing agent will adhere to the inlet portion of the NO X occluding and reducing catalyst, or reduced contact area between the exhaust catalyst of this portion, the liquid Particles of the reducing agent pass through the NO X storage reduction catalyst without contacting the cell wall surface and flow out to the downstream side, so-called so-called reducing agent slippage occurs. In this case, the reducing agent adhering to the NO X occluding and reducing catalyst 7, or the reducing agent having passed through the the NO X storage reduction catalyst 7 is not used in the regeneration of the NO X occluding and reducing catalyst, NO
In the X storage reduction catalyst 7, regeneration is not sufficiently performed due to a shortage of the reducing agent. In order to prevent this problem, if the supply amount of the reducing agent to the NO X storage-reduction catalyst 7 during the regeneration operation is increased in advance in consideration of slip-through or the like, a shortage of the reducing agent on the NO X storage-reduction catalyst may occur. However, in this case, not only does the amount of reducing agent required for the regenerating operation increase and the engine fuel consumption rate deteriorates, but also there arises a problem that the exhaust properties deteriorate due to the reducing agent flowing out downstream due to slip-through or the like.

【0022】そこで、本実施形態では機関排気温度が低
いほど還元剤噴射弁91から噴射される燃料の粒径を小
さくすることにより上記問題を解決している。すなわ
ち、噴射燃料の粒径が小さくなると燃料粒子の単位体積
あたりの表面積が増大するため排気温度が低い場合でも
燃料が容易に気化するようになる。従って、排気温度が
低いときに噴射燃料の粒径を小さくすることにより、噴
射された燃料は気化した状態でNOX 吸蔵還元触媒7に
到達するようになり、供給された燃料(還元剤)がNO
X 吸蔵還元触媒7上で有効に使用されるようになる。こ
のため、排気温度が低いときにも少量の燃料でNOX
蔵還元触媒7の再生を完全に行うことができ、燃料(還
元剤)消費量の増大が抑制されるとともに、液状燃料粒
子のすり抜け等による排気性状の悪化が防止される。
Therefore, in the present embodiment, the above problem is solved by making the particle diameter of the fuel injected from the reducing agent injection valve 91 smaller as the engine exhaust temperature becomes lower. That is, when the particle diameter of the injected fuel becomes small, the surface area per unit volume of the fuel particle increases, so that the fuel is easily vaporized even when the exhaust gas temperature is low. Therefore, by reducing the particle size of the injected fuel when the exhaust gas temperature is low, the injected fuel reaches the NO X storage reduction catalyst 7 in a vaporized state, and the supplied fuel (reducing agent) NO
It is used effectively on the X storage reduction catalyst 7. Therefore, the exhaust gas temperature can also be completely carried out the regeneration of the NO X occluding and reducing catalyst 7 with a small amount of fuel when low, with the increase of the fuel (reducing agent) consumed is suppressed, slipping of the liquid fuel particles Deterioration of the exhaust properties due to the above is prevented.

【0023】次に、供給する燃料の粒径を変化させる方
法について説明する。本実施形態では、還元剤噴射弁9
1としてスワール噴射弁が使用される。図2は、本実施
形態のスワール噴射弁の概略構造を説明する図である。
図2において、噴射弁91はノズル91a、制御弁91
b及びこれらを接続する接続配管91cを備えている。
ノズル91aは排気通路3を貫通して設置される。制御
弁91は燃料ポンプ92からノズル91aに供給される
加圧燃料を遮断する遮断弁として機能する。
Next, a method for changing the particle size of the supplied fuel will be described. In the present embodiment, the reducing agent injection valve 9
As 1 a swirl injector is used. FIG. 2 is a diagram illustrating a schematic structure of the swirl injection valve of the present embodiment.
2, the injection valve 91 includes a nozzle 91a and a control valve 91.
b and a connection pipe 91c for connecting them.
The nozzle 91a is installed so as to penetrate the exhaust passage 3. The control valve 91 functions as a shutoff valve that shuts off pressurized fuel supplied from the fuel pump 92 to the nozzle 91a.

【0024】図3はノズル91aの概略構造を説明する
断面図である。図3(A) は、ノズル91(A) の軸線に沿
った断面を示す。図3(A) において、911はノズルボ
ディ、913はノズルボディ911に嵌挿された略円筒
状のノズルピースを示している。ノズルピース913中
心には軸線方向に、制御弁91bから接続配管91cを
介して加圧燃料が供給される燃料通路913aが設けら
れている。図3(A) に913bで示すのは、スプリング
913cにより、燃料通路913aを閉鎖する方向に押
圧付勢されたチェックボール、913dはチェックボー
ル913bの下側で燃料通路913aに接続するように
半径方向に穿設された燃料通路である。
FIG. 3 is a sectional view for explaining the schematic structure of the nozzle 91a. FIG. 3A shows a cross section along the axis of the nozzle 91 (A). In FIG. 3A, reference numeral 911 denotes a nozzle body, and 913 denotes a substantially cylindrical nozzle piece fitted into the nozzle body 911. At the center of the nozzle piece 913, a fuel passage 913a to which pressurized fuel is supplied from the control valve 91b via the connection pipe 91c is provided in the axial direction. In FIG. 3A, reference numeral 913b denotes a check ball urged by a spring 913c in a direction to close the fuel passage 913a, and 913d has a radius so as to connect to the fuel passage 913a below the check ball 913b. It is a fuel passage drilled in the direction.

【0025】図3(B) はノズルピース913の図3(A)
のB−B線方向矢視図である。図3(B) に示すように、
ノズルピース913は両側面に平面状の切り欠きが形成
されており、ノズルボディ911の内周とノズルピース
913外周との間にこの平面状の切欠き部により、半径
方向燃料通路913dに接続する燃料通路913eが形
成されている。
FIG. 3B shows the nozzle piece 913 shown in FIG.
FIG. 5 is a view taken in the direction of arrows BB in FIG. As shown in FIG.
The nozzle piece 913 has flat notches formed on both side surfaces, and is connected to the radial fuel passage 913d between the inner circumference of the nozzle body 911 and the outer circumference of the nozzle piece 913 by this flat notch. A fuel passage 913e is formed.

【0026】また、ノズルピース913下部はその外周
部がノズルボディ911内周と密接するように装着され
ている。ノズルピース913下面には図3(B) に示すよ
うに、溝913fが穿設されており、燃料通路913e
とノズルボディ911中心の噴射孔915とを接続する
噴射通路を形成している。図3(B) に示すように、噴射
通路913fはノズルピース913下面外周から、ノズ
ルピース913中心軸線に対してやや偏心した位置を指
向するように設けられている。
The lower part of the nozzle piece 913 is mounted so that its outer peripheral part is in close contact with the inner peripheral part of the nozzle body 911. As shown in FIG. 3B, a groove 913f is formed in the lower surface of the nozzle piece 913, and a fuel passage 913e is formed.
And an injection passage connecting the nozzle hole 915 at the center of the nozzle body 911. As shown in FIG. 3B, the injection passage 913f is provided from the outer periphery of the lower surface of the nozzle piece 913 so as to be directed at a position slightly eccentric with respect to the central axis of the nozzle piece 913.

【0027】制御弁91bが開弁すると、燃料ポンプ9
2から加圧燃料がノズルピース913の燃料通路913
aに流入する。供給された燃料圧力による力がスプリン
グ913cの付勢力を越えるとチェックボール913b
は下方に移動し、燃料通路913aが半径方向燃料通路
913dに連通する。これにより、加圧燃料は半径方向
燃料通路913dからノズルピース両側の平面状切欠に
より形成される燃料通路913eに流入し、噴射通路9
13fから噴射孔915を通って排気通路3に噴射され
る。前述したように、ノズルピース913の噴射通路9
13fは、ノズルピース913中心軸線に対して偏心し
た方向を指向しているため、噴射通路913fを通る燃
料は噴射孔915に対して接線方向速度を付与される。
このため、噴射燃料は噴射孔915内で旋回しながら排
気通路3に噴射されるようになり、噴射された燃料が微
粒化する。
When the control valve 91b is opened, the fuel pump 9
2 from the fuel passage 913 of the nozzle piece 913
flows into a. If the force due to the supplied fuel pressure exceeds the urging force of the spring 913c, the check ball 913b
Moves downward, and the fuel passage 913a communicates with the radial fuel passage 913d. As a result, the pressurized fuel flows from the radial fuel passage 913d into the fuel passage 913e formed by the planar cutouts on both sides of the nozzle piece, and the injection passage 9
The fuel is injected from 13f into the exhaust passage 3 through the injection hole 915. As described above, the injection passage 9 of the nozzle piece 913
Since 13 f is directed in a direction eccentric with respect to the central axis of the nozzle piece 913, the fuel passing through the injection passage 913 f is given a tangential velocity to the injection hole 915.
Therefore, the injected fuel is injected into the exhaust passage 3 while turning inside the injection hole 915, and the injected fuel is atomized.

【0028】上記のようなスワールノズル91aでは、
燃料噴射圧力が上昇するにつれて、噴射通路913f出
口で大きな接線方向速度が燃料に付与されるようになる
ため、燃料噴射圧力が上昇するにつれて噴射孔915か
ら噴射された燃料の霧化が良好になり、噴射された燃料
粒子の粒径が小さくなる。本実施形態では、上記のスワ
ール噴射弁91を用いて燃料噴射圧力を変化させること
により燃料粒子の霧化状態(粒径)を制御するようにし
ている。すなわち、ECU30はNOX 吸蔵還元触媒7
入口の排気温度を算出し、この排気温度に応じて還元剤
供給装置9の燃料ポンプ92の電源制御回路92aを駆
動して燃料ポンプ92の電動機に印加する電圧を調節す
る。電動機電圧が増大すると燃料ポンプ92の吐出圧が
増大し、噴射弁91の燃料噴射圧力が増大するため、噴
射燃料の粒径が低下する。また、電動機電圧が低下する
と燃料ポンプ92の吐出圧力は低下するため、噴射弁9
1から噴射される燃料の粒径が大きくなる。
In the swirl nozzle 91a as described above,
As the fuel injection pressure increases, a large tangential velocity is applied to the fuel at the outlet of the injection passage 913f. Therefore, as the fuel injection pressure increases, the atomization of the fuel injected from the injection holes 915 improves. As a result, the diameter of the injected fuel particles becomes smaller. In the present embodiment, the atomization state (particle size) of the fuel particles is controlled by changing the fuel injection pressure using the swirl injection valve 91 described above. That is, the ECU 30 sets the NO X storage reduction catalyst 7
The exhaust gas temperature at the inlet is calculated, and the voltage applied to the electric motor of the fuel pump 92 is adjusted by driving the power supply control circuit 92a of the fuel pump 92 of the reducing agent supply device 9 according to the exhaust gas temperature. When the motor voltage increases, the discharge pressure of the fuel pump 92 increases, and the fuel injection pressure of the injection valve 91 increases, so that the particle size of the injected fuel decreases. When the motor voltage decreases, the discharge pressure of the fuel pump 92 decreases.
The particle size of the fuel injected from No. 1 increases.

【0029】図4は、本実施形態におけるNOX 吸蔵還
元触媒7の上記再生操作を具体的に説明するフローチャ
ートである。本操作は、ECU30により一定時間間隔
で実行されるルーチンにより行われる。図4において、
ステップ401では、クランク回転角センサ35の出力
に基づいて算出された機関回転数NEと、アクセル開度
センサ33により検出されたアクセル開度ACCPとが
読み込まれる。そして、ステップ403ではACCPと
NEとに基づいて現在のNOX 吸蔵還元触媒7のNOX
吸蔵量CNOXが算出される。
FIG. 4 is a flowchart specifically illustrating the above-mentioned regeneration operation of the NO X storage reduction catalyst 7 in the present embodiment. This operation is performed by a routine executed by the ECU 30 at regular time intervals. In FIG.
In step 401, the engine speed NE calculated based on the output of the crank angle sensor 35 and the accelerator opening ACCP detected by the accelerator opening sensor 33 are read. Then, NO X in the current of the NO X occluding and reducing catalyst 7 on the basis of and the NE ACCP step 403
The storage amount CNOX is calculated.

【0030】本実施形態では、NOX 吸蔵量CNOXは
機関の運転状態に基づいて算出される。機関から単位時
間(例えば図4の操作の実行間隔)あたりに発生するN
X量は、機関負荷条件(例えばアクセル開度と回転数
と)により定まる。そこで、本実施形態では、予め機関
を負荷条件を変えて運転し、各負荷条件下でのNOX
生量を実測し、例えばアクセル開度と回転数とを用いた
数値テーブルの形でECU30のROMに格納してあ
る。ステップ403では、ステップ401で読み込んだ
アクセル開度ACCPと回転数NEとから上記数値テー
ブルを用いて前回操作実行時から今回操作実行時までに
機関から発生したNOX 量を算出する。そして、この発
生量に所定の定数(排気中のNOX のうちNOX 吸蔵還
元触媒7に吸収されるNOX の割合)を乗じた値をCN
OXに加算する。これにより、CNOXの値はNOX
蔵還元触媒7に吸蔵されたNOX 量に対応した値とな
る。
[0030] In this embodiment, NO X storage amount CNOX is calculated based on the operating state of the engine. N generated per unit time (for example, the execution interval of the operation in FIG. 4) from the institution
The O X amount is determined by the engine load condition (for example, accelerator opening and rotation speed). Therefore, in this embodiment, pre-engine was operated by changing the load conditions, and measuring the NO X generation amount in each load conditions, for example the ECU30 in the form of a numerical table using the accelerator opening and the rotational speed It is stored in ROM. In step 403, it calculates the amount of NO X generated from the engine by the time this operation execution from the last operation performed by using the numerical table from an accelerator opening ACCP and the rotational speed NE read in step 401. A value obtained by multiplying this generation amount by a predetermined constant (the ratio of NO X absorbed by the NO X storage reduction catalyst 7 to NO X in the exhaust gas) is defined as CN.
Add to OX. As a result, the value of CNOX becomes a value corresponding to the amount of NO X stored in the NO X storage reduction catalyst 7.

【0031】なお本実施形態では、アクセル開度と回転
数とに基づいて算出した値をNOX吸蔵還元触媒7のN
X 吸蔵量CNOXとして用いているが、例えば、前回
再生操作実施後の機関の燃料噴射量の積算値、回転数の
積算値、あるいは機関が比較的高回転で定常運転されて
いるような場合には前回再生操作完了後の機関運転時間
等をNOX 吸蔵量CNOXとして用いて計算を簡素化し
ても良い。
[0031] In the present embodiment, a value calculated based on the accelerator opening and the rotational speed of the NO X occluding and reducing catalyst 7 N
Is used as the O X storage amount CNOX, for example, the integrated value of the fuel injection amount of the previous regeneration operation performed after the engine, when the integrated value of the rotational speed, or engine relatively high rotation, as is normal operation the last regeneration operation after completion of engine operation time of the may simplify the calculation is used as the NO X storage amount CNOX to.

【0032】上記により、NOX 吸蔵還元触媒7のNO
X 吸蔵量CNOXを算出後、ステップ405では、算出
したNOX 吸蔵量CNOXが所定値CNOX0 に到達し
たか否かが判定される。ここで、CNOX0 は、NOX
吸蔵還元触媒7が吸収可能な最大NOX 量(飽和量)に
対して充分な余裕をとった値に設定され、本実施形態で
は、CNOX0 は飽和量の70パーセント程度の値に設
定されている。
[0032] According to the above, NO of the NO X storage reduction catalyst 7
After calculating the X storage amount CNOX, it is determined in step 405 whether or not the calculated NO X storage amount CNOX has reached a predetermined value CNOX 0 . Here, CNOX 0 is NO X
The value is set to a value with a sufficient margin for the maximum NO X amount (saturation amount) that can be absorbed by the storage reduction catalyst 7, and in the present embodiment, CNOX 0 is set to a value of about 70% of the saturation amount. I have.

【0033】ステップ405でCNOX≧CNOX0
あった場合には、NOX 吸蔵還元触媒7のNOX 吸蔵量
が増大しておりNOX 吸蔵還元触媒の再生操作を実行す
る必要があるため、ステップ407以下の操作を行う。
すなわち、ステップ407では現在のNOX 吸蔵還元触
媒7に流入する排気温度TEXが機関負荷状態(アクセル
開度、回転数)に基づいて算出される。
If CNOX ≧ CNOX 0 in step 405, the NO X storage amount of the NO X storage reduction catalyst 7 has increased, and it is necessary to execute the regeneration operation of the NO X storage reduction catalyst. Perform the following operations.
That is, in step 407, the present exhaust temperature T EX flowing into the NO X storage reduction catalyst 7 is calculated based on the engine load state (accelerator opening, rotation speed).

【0034】機関排気温度は機関負荷状態に対応して変
化する。このため、本実施形態では、予め機関を異なる
負荷状態で運転し、NOX 吸蔵還元触媒7入口における
排気温度を実測し、例えばアクセル開度と回転数とを用
いた数値テーブルの形でECU30のROMに格納して
ある。ステップ407では、ステップ401で読み込ん
だアクセル開度ACCPと回転数NEとから上記数値テ
ーブルを用いて現在の排気温度TEXを算出する。
The engine exhaust temperature changes in accordance with the engine load condition. Therefore, in the present embodiment, operating the pre-engine at different load conditions, NO X occluding and reducing catalyst 7 actually measured exhaust gas temperature at the inlet, for example, the ECU30 in the form of a numerical table using the accelerator opening and the rotational speed It is stored in ROM. In step 407, the current exhaust gas temperature T EX is calculated from the accelerator opening ACCP and the rotational speed NE read in step 401 using the above numerical table.

【0035】なお、本実施形態では機関負荷状態に基づ
いてNOX 吸蔵還元触媒7に流入する排気温度TEXを算
出しているが、NOX 吸蔵還元触媒7入口に排気温度を
検出する排気温度センサを配置して排気温度TEXを直接
検出するようにすることも可能である。ステップ407
で排気温度TEXが算出されると、次にステップ409で
は、排気温度TEXに基づいて予め定めた関係から燃料ポ
ンプ92の噴射圧力目標値が設定される。本実施形態で
は、予め実験により各排気温度での噴射燃料の粒径(す
なわち噴射弁91の噴射圧力)と燃料の気化状態との関
係を実測により求めてあり、各排気温度において噴射燃
料を良好に気化可能な噴射圧力が排気温度の関数として
設定されている。ステップ407では、算出された排気
温度TEXに基づいて、上記関係を用いて目標噴射圧力が
設定される。なお、目標噴射圧力は、排気温度が低いほ
ど高く設定され、噴射弁91から噴射される燃料の粒径
は小さくなる。
[0035] In the present exemplary embodiment calculates the exhaust temperature T EX flowing to the NO X occluding and reducing catalyst 7 based on the engine load condition, the exhaust gas temperature detected an the NO X storage and reduction catalyst 7 inlet exhaust temperature It is also possible to arrange a sensor to directly detect the exhaust gas temperature T EX . Step 407
In the exhaust gas temperature T EX is calculated, in the next step 409, the injection pressure target value of the fuel pump 92 is set from a predetermined relationship based on the exhaust gas temperature T EX. In the present embodiment, the relationship between the particle size of the injected fuel at each exhaust temperature (that is, the injection pressure of the injection valve 91) and the vaporized state of the fuel is previously obtained by an experiment through experiments. Is set as a function of the exhaust gas temperature. In step 407, a target injection pressure is set based on the calculated exhaust temperature T EX using the above relationship. The target injection pressure is set higher as the exhaust gas temperature is lower, and the particle diameter of the fuel injected from the injection valve 91 is smaller.

【0036】ステップ411では、再生操作に必要とさ
れる還元剤(燃料)の量が排気温度TEXに基づいて算出
される。NOX 吸蔵還元触媒7は温度に応じて触媒活性
が変化するため、再生操作時においても供給する還元剤
(燃料)量は排気温度TEXに応じて変化させることが好
ましい。本実施形態では、予め触媒にCNOXに相当す
る量のNOX が吸収された状態で再生操作に必要とされ
る還元剤量を各排気温度条件下で実験により求めてあ
り、ステップ411では、この関係に基づいて必要とさ
れる燃料の噴射量を算出する。
In step 411, the amount of the reducing agent (fuel) required for the regeneration operation is calculated based on the exhaust gas temperature TEX . Since the catalytic activity of the NO X storage reduction catalyst 7 changes according to the temperature, it is preferable to change the amount of the reducing agent (fuel) to be supplied according to the exhaust temperature T EX even during the regeneration operation. In the present embodiment, Yes found through experiments amount of reducing agent the amount of the NO X corresponding to CNOX beforehand catalyst is required playback operation in a state of being absorbed by the exhaust temperature conditions, in step 411, the The required fuel injection amount is calculated based on the relationship.

【0037】ステップ413では、燃料ポンプ92の吐
出圧力がステップ409で算出された噴射圧力となるよ
うに、電源制御回路92aが制御され、ステップ415
では設定した噴射圧力下でステップ411で算出した量
の還元剤を噴射するために必要とされる噴射弁91の開
弁時間(制御弁91bの開弁時間)が設定され、噴射弁
91が開弁される。これにより、噴射弁91からは、排
気温度TEXに応じて調節された粒径の燃料が必要量だけ
噴射されるようになる。
In step 413, the power supply control circuit 92a is controlled so that the discharge pressure of the fuel pump 92 becomes the injection pressure calculated in step 409.
Then, the opening time of the injection valve 91 (the opening time of the control valve 91b) required to inject the amount of the reducing agent calculated in step 411 under the set injection pressure is set, and the injection valve 91 is opened. Is ventured. As a result, a required amount of fuel having a particle size adjusted according to the exhaust gas temperature T EX is injected from the injection valve 91.

【0038】上記操作終了後、ステップ417ではNO
X 吸蔵量CNOXの値はリセットされ、本操作は終了す
る。上述のように、NOX 吸蔵還元触媒7に流入する排
気温度に応じて噴射弁91から噴射する燃料粒子の粒径
を変化させることにより、噴射された燃料は排気温度に
かかわらずほぼ全量が気化した状態でNOX 吸蔵還元触
媒7に到達するようになるためNOX 吸蔵還元触媒7上
では供給された燃料が有効に再生操作に使用されるよう
になり、再生操作に必要とされる燃料量(還元剤量)を
低減することができるとともに、特に排気温度が低いと
きに生じやすい燃料粒子のすり抜けによる排気性状の悪
化が防止される。
After the above operation is completed, step 417 is NO.
The value of the X storage amount CNOX is reset, and this operation ends. As described above, by changing the particle size of the fuel particles injected from the injection valve 91 in accordance with the temperature of the exhaust gas flowing into the NO X storage reduction catalyst 7, almost all the injected fuel is vaporized regardless of the exhaust gas temperature. and is on the NO X storage reduction catalyst 7 to become to reach the NO X occluding and reducing catalyst 7 in the state were now fuel supplied is used to effectively play operation, the amount of fuel required for the regenerating operation (Reducing agent amount) can be reduced, and the deterioration of the exhaust properties due to the passage of fuel particles, which tends to occur particularly when the exhaust temperature is low, is prevented.

【0039】なお、本実施形態のように還元剤噴射弁か
らNOX 吸蔵還元触媒に還元剤を供給する場合、噴射弁
とNOX 吸蔵還元触媒との距離が大きいと噴射弁から噴
射された還元剤が排気流前後方向に拡散してしまい、充
分に還元剤濃度の高い排気の層を形成できなくなる可能
性がある。このため、還元剤噴射弁はできるだけNO X
吸蔵還元触媒に近い位置に設置することが好ましい。と
ころが、噴射弁と還元剤との距離を短く設定すると、特
に排気温度が低い場合には噴射された還元剤が気化せず
に液状粒子のままNOX 吸蔵還元触媒に到達しやすくな
る問題がある。本実施形態では、排気温度に応じて噴射
される還元剤粒子の粒径を変化させることにより、排気
温度にかかわらず還元剤をほぼ全量が気化した状態でN
X 吸蔵還元触媒に到達させることが可能となる。この
ため、本実施形態によれば、液状の還元剤粒子がNOX
吸蔵還元触媒に到達することを防止しながら還元剤噴射
弁をNOX 吸蔵還元触媒に近接した位置に配置すること
が可能となり、供給された還元剤が排気で希釈されるこ
とが防止されるので、更にNOX 吸蔵還元触媒の再生を
効率的に行うことが可能となる。
It should be noted that, as in this embodiment, the reducing agent injection valve
NOXWhen supplying the reducing agent to the storage reduction catalyst, the injection valve
And NOXIf the distance to the storage reduction catalyst is large,
The injected reducing agent diffuses in the front and rear direction of the exhaust flow,
May not be able to form an exhaust layer with a high concentration of reducing agent
There is. For this reason, the reducing agent injection valve X
It is preferable to install at a position close to the storage reduction catalyst. When
If the distance between the injection valve and the reducing agent is set short,
If the exhaust temperature is too low, the injected reducing agent will not evaporate
NO as liquid particlesXEasy to reach storage reduction catalyst
Problem. In the present embodiment, the injection is performed according to the exhaust gas temperature.
By changing the particle size of the reducing agent particles
Almost all of the reducing agent is vaporized regardless of the temperature.
OXIt is possible to reach the storage reduction catalyst. this
Therefore, according to this embodiment, the liquid reducing agent particlesX
Injecting reducing agent while preventing it from reaching the storage reduction catalyst
NO valveXTo be located close to the storage reduction catalyst
That the supplied reductant is diluted by the exhaust gas.
Is prevented, so NOXRegeneration of storage reduction catalyst
It can be performed efficiently.

【0040】なお、上記実施形態では排気温度の各値に
応じて連続的に燃料噴射圧力(燃料粒径)と噴射量とを
変化させているが、例えば排気温度の所定値(例えば2
50℃程度)を境として、これより高温側と低温側とで
燃料噴射圧力と噴射量とを切り換えるようにして制御を
簡素化することも可能である。
In the above embodiment, the fuel injection pressure (fuel particle size) and the injection amount are continuously changed according to each value of the exhaust gas temperature.
(About 50 ° C.), the control can be simplified by switching the fuel injection pressure and the injection amount between the high temperature side and the low temperature side.

【0041】[0041]

【発明の効果】各請求項に記載の発明によれば、排気温
度に応じてNOX 吸蔵還元触媒に供給される還元剤の霧
化状態が制御されるため、排気温度にかかわらず少量の
還元剤で効率的にNOX 吸蔵還元触媒の再生を行うこと
が可能になるとともに、未反応の還元剤が触媒下流側に
流出することによる排気性状の悪化を防止することがで
きる。
According to the present invention, since the atomization state of the reducing agent supplied to the NO X storage reduction catalyst is controlled in accordance with the exhaust gas temperature, a small amount of reduction can be performed regardless of the exhaust gas temperature. It is possible to efficiently regenerate the NO X storage reduction catalyst with the catalyst, and to prevent deterioration of the exhaust properties due to the unreacted reducing agent flowing out downstream of the catalyst.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を自動車用ディーゼル機関に適用した実
施形態の概略構成を説明する図である。
FIG. 1 is a diagram illustrating a schematic configuration of an embodiment in which the present invention is applied to an automobile diesel engine.

【図2】図1の還元剤噴射弁の構成を説明する図であ
る。
FIG. 2 is a diagram illustrating a configuration of a reducing agent injection valve in FIG. 1;

【図3】図1の還元剤噴射弁の構成を説明する断面図で
ある。
FIG. 3 is a sectional view illustrating a configuration of a reducing agent injection valve of FIG. 1;

【図4】本実施形態のNOX 吸蔵還元触媒再生操作を説
明するフローチャートである。
FIG. 4 is a flowchart illustrating a NO X storage reduction catalyst regeneration operation of the present embodiment.

【符号の説明】[Explanation of symbols]

1…ディーゼル機関 3…排気通路 7…NOX 吸蔵還元触媒 9…還元剤供給装置 30…電子制御ユニット(ECU) 91…還元剤噴射弁DESCRIPTION OF SYMBOLS 1 ... Diesel engine 3 ... Exhaust passage 7 ... NO X storage reduction catalyst 9 ... Reducing agent supply device 30 ... Electronic control unit (ECU) 91 ... Reducing agent injection valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田原 淳 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 小林 正明 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3G091 AA12 AA18 AA28 AB06 BA03 BA14 BA33 CA18 CA19 CB02 CB08 DB06 DB08 DB10 EA01 EA07 EA17 EA31 FA02 FA04 FA12 FA13 FB02 FB10 FB11 FB12 GB01X GB02W GB03W GB04W GB05W GB06W GB10X GB16X HA36  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Atsushi Tahara 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Masaaki Kobayashi 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F Terms (reference) 3G091 AA12 AA18 AA28 AB06 BA03 BA14 BA33 CA18 CA19 CB02 CB08 DB06 DB08 DB10 EA01 EA07 EA17 EA31 FA02 FA04 FA12 FA13 FB02 FB10 FB11 FB12 GB01X GB02W GB03W GB04W GB05W GB06W GB10X GB16X GB16X

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に配置され、流入す
る排気の空燃比がリーンのときに排気中のNOX を吸収
し流入する排気の酸素濃度が低下したときに吸収したN
X を放出するNOX 吸蔵還元触媒と、該NOX 吸蔵還
元触媒の上流側の排気通路に液体還元剤を噴射する還元
剤供給装置とを備えた内燃機関の排気浄化装置におい
て、 前記NOX 吸蔵還元触媒に流入する排気温度に応じて前
記還元剤供給装置から排気通路に噴射される還元剤の霧
化状態を変化させる霧化制御手段を備えた、内燃機関の
排気浄化装置。
An N disposed in an exhaust passage of an internal combustion engine absorbs NO X in the exhaust gas when the inflowing exhaust gas has a lean air-fuel ratio, and absorbs the NO X when the oxygen concentration of the inflowing exhaust gas decreases.
And the NO X storage reduction catalyst to release the O X, in the exhaust purification apparatus for an internal combustion engine having a reducing agent supply apparatus that injects the liquid reducing agent to the upstream side of the exhaust passage of the the NO X storage reduction catalyst, the NO X An exhaust gas purification device for an internal combustion engine, comprising: atomization control means for changing an atomization state of a reducing agent injected into an exhaust passage from the reducing agent supply device according to an exhaust gas temperature flowing into a storage reduction catalyst.
【請求項2】 前記霧化制御手段は、前記NOX 吸蔵還
元触媒に流入する排気温度が低いほど噴射される還元剤
の粒径を小さくすることにより還元剤の霧化状態を変化
させる請求項1に記載の内燃機関の排気浄化装置。
2. The atomization control means changes the atomization state of the reducing agent by reducing the particle size of the injected reducing agent as the temperature of the exhaust gas flowing into the NO X storage reduction catalyst decreases. 2. The exhaust gas purification device for an internal combustion engine according to claim 1.
【請求項3】 前記還元剤供給装置は、前記還元剤を排
気通路に噴射する噴射弁を備え、前記霧化制御手段は前
記噴射弁からの還元剤の噴射圧力を変化させることによ
り噴射される還元剤の粒径を変化させる請求項2に記載
の内燃機関の排気浄化装置。
3. The reducing agent supply device includes an injection valve that injects the reducing agent into an exhaust passage, and the atomization control unit is injected by changing an injection pressure of the reducing agent from the injection valve. 3. The exhaust gas purification device for an internal combustion engine according to claim 2, wherein the particle size of the reducing agent is changed.
JP04618199A 1999-02-24 1999-02-24 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3518391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04618199A JP3518391B2 (en) 1999-02-24 1999-02-24 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04618199A JP3518391B2 (en) 1999-02-24 1999-02-24 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000240429A true JP2000240429A (en) 2000-09-05
JP3518391B2 JP3518391B2 (en) 2004-04-12

Family

ID=12739873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04618199A Expired - Lifetime JP3518391B2 (en) 1999-02-24 1999-02-24 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3518391B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083053A (en) * 2001-09-11 2003-03-19 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2005038206A1 (en) * 2003-10-17 2005-04-28 Toyota Jidosha Kabushiki Kaisha Exhaust purifier for internal combustion engine and method of exhaust purification for internal combustion engine
JP2006242190A (en) * 2005-03-02 2006-09-14 Hydraulik-Ring Gmbh Injection device for treating exhaust smoke from automobile
WO2007077973A1 (en) * 2005-12-28 2007-07-12 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device of internal combustion engine
JP2009293513A (en) * 2008-06-05 2009-12-17 Nippon Soken Inc Exhaust emission control device for internal combustion engine
US7861516B2 (en) 2003-06-18 2011-01-04 Johnson Matthey Public Limited Company Methods of controlling reductant addition
US8074673B2 (en) 2004-05-18 2011-12-13 Hydraulik-Ring Gmbh Freeze-resistant metering valve
US8201393B2 (en) 2008-03-05 2012-06-19 Hilite Germany Gmbh Exhaust-gas aftertreatment device
US8266892B2 (en) 2007-01-25 2012-09-18 Friedrich Zapf Calibrated dosing unit, especially of an exhaust gas treatment unit
JP2013036332A (en) * 2011-08-03 2013-02-21 Toyota Motor Corp Exhaust gas purification system for internal combustion engine
JP2013113267A (en) * 2011-11-30 2013-06-10 Toyota Motor Corp Exhaust emission purifying apparatus of internal combustion engine
US8875502B2 (en) 2010-12-14 2014-11-04 Cummins Ltd. SCR exhaust gas aftertreatment device
US8938949B2 (en) 2009-08-03 2015-01-27 Cummins Ltd. SCR exhaust gas aftertreatment device
US9182317B2 (en) 2011-10-18 2015-11-10 Best Instruments Co., Ltd. Simulated gas supply apparatus
WO2020137750A1 (en) * 2018-12-28 2020-07-02 株式会社デンソー Catalytic reaction system for engine
JP2020109289A (en) * 2018-12-28 2020-07-16 株式会社デンソー Catalytic reaction system for engine

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083053A (en) * 2001-09-11 2003-03-19 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP4720054B2 (en) * 2001-09-11 2011-07-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US7861516B2 (en) 2003-06-18 2011-01-04 Johnson Matthey Public Limited Company Methods of controlling reductant addition
WO2005038206A1 (en) * 2003-10-17 2005-04-28 Toyota Jidosha Kabushiki Kaisha Exhaust purifier for internal combustion engine and method of exhaust purification for internal combustion engine
US7357901B2 (en) 2003-10-17 2008-04-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine and exhaust gas purification method for an internal combustion engine
US8074673B2 (en) 2004-05-18 2011-12-13 Hydraulik-Ring Gmbh Freeze-resistant metering valve
JP2006242190A (en) * 2005-03-02 2006-09-14 Hydraulik-Ring Gmbh Injection device for treating exhaust smoke from automobile
WO2007077973A1 (en) * 2005-12-28 2007-07-12 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device of internal combustion engine
EP1967708A4 (en) * 2005-12-28 2014-10-29 Toyota Motor Co Ltd Exhaust emission control device of internal combustion engine
US7779623B2 (en) 2005-12-28 2010-08-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
EP1967708A1 (en) * 2005-12-28 2008-09-10 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device of internal combustion engine
US8875491B2 (en) 2007-01-25 2014-11-04 Cummins Ltd. Exhaust gas aftertreatment system and method
US8266892B2 (en) 2007-01-25 2012-09-18 Friedrich Zapf Calibrated dosing unit, especially of an exhaust gas treatment unit
US8201393B2 (en) 2008-03-05 2012-06-19 Hilite Germany Gmbh Exhaust-gas aftertreatment device
US8959895B2 (en) 2008-03-05 2015-02-24 Cummins Ltd. Exhaust-gas aftertreatment device
JP4558816B2 (en) * 2008-06-05 2010-10-06 株式会社日本自動車部品総合研究所 Exhaust gas purification device for internal combustion engine
JP2009293513A (en) * 2008-06-05 2009-12-17 Nippon Soken Inc Exhaust emission control device for internal combustion engine
US8938949B2 (en) 2009-08-03 2015-01-27 Cummins Ltd. SCR exhaust gas aftertreatment device
US8875502B2 (en) 2010-12-14 2014-11-04 Cummins Ltd. SCR exhaust gas aftertreatment device
JP2013036332A (en) * 2011-08-03 2013-02-21 Toyota Motor Corp Exhaust gas purification system for internal combustion engine
US9182317B2 (en) 2011-10-18 2015-11-10 Best Instruments Co., Ltd. Simulated gas supply apparatus
JP2013113267A (en) * 2011-11-30 2013-06-10 Toyota Motor Corp Exhaust emission purifying apparatus of internal combustion engine
WO2020137750A1 (en) * 2018-12-28 2020-07-02 株式会社デンソー Catalytic reaction system for engine
JP2020109289A (en) * 2018-12-28 2020-07-16 株式会社デンソー Catalytic reaction system for engine

Also Published As

Publication number Publication date
JP3518391B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
US9199197B2 (en) Exhaust gas purification apparatus for internal combustion engine
US20030089101A1 (en) Exhaust emission control apparatus of internal combustion engine and control method of the same
EP1793099A1 (en) Method of exhaust gas purification and exhaust gas purification system
JP2000240429A (en) Exhaust gas emission control device for internal combustion engine
JP4192905B2 (en) Exhaust gas purification device for internal combustion engine
WO2002008583A1 (en) Exhaust emission control device of internal combustion engine
KR20030022687A (en) Exhaust emission control system of internal combustion engine
JP2009513868A (en) Device for treating nitric oxide in automobile exhaust gas
JP3770148B2 (en) Apparatus and method for exhaust gas purification of internal combustion engine
JP2002038942A (en) Exhaust emission control device for internal combustion engine
WO2010134204A1 (en) Exhaust emission control device for internal combustion engine
JP2001059417A (en) Exhaust emission control device for internal combustion engine
JP3353650B2 (en) Catalyst poisoning regeneration equipment for internal combustion engines
JP6988648B2 (en) Exhaust purification device for internal combustion engine
JP3552603B2 (en) Exhaust gas purification device for internal combustion engine
JP2000145433A (en) Exhaust gas purifier for internal combustion engines
JP2845071B2 (en) Exhaust gas purification device for internal combustion engine
JP2011231755A (en) Exhaust emission control device of internal combustion engine
JP4311079B2 (en) Exhaust gas purification system for internal combustion engine
KR101836287B1 (en) Catalyst heating control apparatus and the method
JP4474775B2 (en) Exhaust gas purification device for internal combustion engine
JP3487269B2 (en) Exhaust gas purification device for internal combustion engine
JP2007113497A (en) Exhaust emission control device of internal combustion engine
JP3528658B2 (en) Exhaust gas purification device for internal combustion engine
JP3642159B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

EXPY Cancellation because of completion of term