JP2009290971A - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
JP2009290971A
JP2009290971A JP2008139804A JP2008139804A JP2009290971A JP 2009290971 A JP2009290971 A JP 2009290971A JP 2008139804 A JP2008139804 A JP 2008139804A JP 2008139804 A JP2008139804 A JP 2008139804A JP 2009290971 A JP2009290971 A JP 2009290971A
Authority
JP
Japan
Prior art keywords
phase
capacitor
voltage
full
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008139804A
Other languages
Japanese (ja)
Other versions
JP5130117B2 (en
Inventor
Kazuya Okabe
和也 岡部
Taisuke Endo
泰輔 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2008139804A priority Critical patent/JP5130117B2/en
Publication of JP2009290971A publication Critical patent/JP2009290971A/en
Application granted granted Critical
Publication of JP5130117B2 publication Critical patent/JP5130117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply system for charging a battery even when an engine operates at a low speed. <P>SOLUTION: The power supply system has a three-phase AC generator; a group of first capacitors to be charged by the line output voltage of the three-phase AC generator; a group of second capacitors connected between one output end of a full-wave rectification type multiple voltage circuit and each of connection points of Δ connections of the three-phase AC generator or between the one output end of the full-wave rectification type multiple voltage circuit and a terminal of each phase opposite to the neutral point of Y connections of the three-phase AC generator; a group of first diodes each connected between the other output end of the full-wave rectification type multiple voltage circuit and one end of each of the group of first capacitors, and preventing discharging of each of the group of first capacitors; and a group of second diodes each connected between one output end of the full-wave rectification type multiple voltage circuit and one end of each of the group of second capacitors, and preventing discharging of each of the group of second capacitors. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、交流発電機により発電される電力を負荷に供給する電力供給システムに係り、特に車両に搭載され、エンジン出力により駆動される交流発電機を含んで構成され、バッテリ及びその他の負荷に電力を供給する場合に好適な電力供給システムに関する。   The present invention relates to a power supply system that supplies power generated by an alternating current generator to a load, and particularly includes an alternating current generator that is mounted on a vehicle and driven by an engine output, and is used for a battery and other loads. The present invention relates to a power supply system suitable for supplying power.

ショート式レギュレータを用いた、二輪車などに採用されている従来の電力供給システムでは、発電機により、エンジンの高回転時にはバッテリの充電に必要な電力より大きい電力が発電され、上記発電機の出力電圧がバッテリの上限電圧を超えてしまう。このため、発電機の出力電圧上昇時には発電機の出力端子間を短絡させることにより、電力供給システムの負荷抵抗を小さくし、整流回路の出力電圧がバッテリの充電電圧より若干高い電圧に維持されるようにしている。   In a conventional power supply system that is used in motorcycles using a short regulator, the generator generates more power than is necessary for charging the battery when the engine is running at high speed, and the output voltage of the generator Exceeds the upper limit voltage of the battery. For this reason, when the output voltage of the generator rises, the output terminals of the generator are short-circuited to reduce the load resistance of the power supply system, and the output voltage of the rectifier circuit is maintained at a voltage slightly higher than the charging voltage of the battery. I am doing so.

すなわち、電力供給システムの発電機の出力電圧が上昇したときは、発電機の出力端子間を短絡することにより等価的に負荷抵抗値を減少させ、不要な電力を損失させることにより、発電機の出力電圧を一定に維持するようにしている。
このようにショート式レギュレータは、余分なエネルギーを熱として発生させて捨てているので、エネルギー効率が悪く、発熱が大きいという問題が有った。
That is, when the output voltage of the generator of the power supply system rises, the load resistance value is equivalently reduced by short-circuiting between the output terminals of the generator, and unnecessary power is lost. The output voltage is kept constant.
As described above, the short regulator generates excess energy as heat and throws it away, so that there is a problem that energy efficiency is low and heat generation is large.

これに対して、交流発電機の最大電力動作点に対応する出力電流よりも低電流側で動作するように、交流発電機の動作点を制御することにより、交流発電機の内部抵抗によるエネルギー損失を最小限に抑制することができる電力供給システムが提案されている(例えば、特許文献1参照)。   On the other hand, the energy loss due to the internal resistance of the AC generator is controlled by controlling the operating point of the AC generator so that it operates at a lower current side than the output current corresponding to the maximum power operating point of the AC generator. Has been proposed (see, for example, Patent Document 1).

従来の電力供給システムの構成の一例を図5に示す。同図において、従来の電力供給システムは、三相のU,V,W相の各相回路100a,100b,100cがY結線された三相交流発電機100と、ダイオードD1〜D6からなる整流回路102と、整流回路102の出力電圧のレベルを調整するDC−DCコンバータ104とを有している。
DC−DCコンバータ104の出力端には負荷RLが接続されており、負荷RLに並列にバッテリ106が接続されている
An example of the configuration of a conventional power supply system is shown in FIG. In the figure, the conventional power supply system includes a three-phase AC generator 100 in which three-phase U, V, and W-phase circuits 100a, 100b, and 100c are Y-connected, and a rectifier circuit that includes diodes D1 to D6. 102 and a DC-DC converter 104 that adjusts the level of the output voltage of the rectifier circuit 102.
A load RL is connected to the output end of the DC-DC converter 104, and a battery 106 is connected in parallel to the load RL.

上記構成において、図6に示すように交流発電機100からは、互いに位相が(2/3)π異なる電圧Vu,Vv,VwがU,V,W相の各相回路100a,100b,100cより出力され、整流回路102により全波整流される。このときの整流回路102の出力電圧は、ピーク電圧で表現すると、(√3)×V(ただし、Vは、Vu,Vv,Vwの各ピーク電圧である。)である。   In the above configuration, as shown in FIG. 6, from the AC generator 100, the voltages Vu, Vv, and Vw whose phases are different by (2/3) π from the U, V, and W phase circuits 100a, 100b, and 100c, respectively. It is output and full-wave rectified by the rectifier circuit 102. The output voltage of the rectifier circuit 102 at this time is (√3) × V (where V is each peak voltage of Vu, Vv, and Vw) in terms of peak voltage.

整流回路102の出力電圧はDC−DCコンバータ104により電圧レベルが調整され、DC−DCコンバータ104の出力電圧は負荷RLに供給されると共に、バッテリ106は、DC−DCコンバータ104の出力電圧により充電される。
特開2000−341997号公報
The voltage level of the output voltage of the rectifier circuit 102 is adjusted by the DC-DC converter 104, the output voltage of the DC-DC converter 104 is supplied to the load RL, and the battery 106 is charged by the output voltage of the DC-DC converter 104. Is done.
JP 2000-341997 A

しかしながら、特許文献1に示す電力供給システムにあっては、エネルギー効率は改善されるが、エンジンの低回転時には負荷側に供給する交流発電機の出力電圧が低下し、バッテリへの充電ができないという問題があった。   However, in the power supply system shown in Patent Document 1, the energy efficiency is improved, but the output voltage of the AC generator supplied to the load side decreases at the time of low engine rotation, and the battery cannot be charged. There was a problem.

本発明は、このような事情に鑑みてなされたもので、エンジンの低回転時においてもバッテリへの充電を行うことができる電力供給システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a power supply system capable of charging a battery even when the engine is running at a low speed.

上記目的を達成するために、本発明の電力供給システムは、三相交流発電機により発電される電力を負荷に供給する電力供給システムであって、三相の各相回路がΔ結線またはY結線された三相交流発電機と、前記三相交流発電機の出力電圧を整流し、かつ倍電圧にする全波整流型倍電圧回路とを有し、前記全波整流型倍電圧回路は、前記三相交流発電機のΔ結線またはY結線の各線間出力端間に接続され、該線間出力電圧により充電される第1のコンデンサ群と、前記全波整流型倍電圧回路の一方の出力端と前記三相交流発電機のΔ結線の各結合点との間、または記全波整流型倍電圧回路の一方の出力端と前記三相交流発電機のY結線の中性点とは反対側の各相の端子との間に接続される第2のコンデンサ群と、前記全波整流型倍電圧回路の他方の出力端と前記第1のコンデンサ群の各コンデンサの一方の端子との間にそれぞれ接続され、前記第1のコンデンサ群の各コンデンサに充電された電荷の放電を阻止する第1のダイオード群と、前記全波整流型倍電圧回路の一方の出力端と前記第2のコンデンサ群の各コンデンサの一方の端子との間にそれぞれ接続され、前記第2のコンデンサ群の各コンデンサに充電された電荷の放電を阻止する第2のダイオード群とを含んで構成されたことを特徴とする。   In order to achieve the above object, a power supply system according to the present invention is a power supply system that supplies power generated by a three-phase AC generator to a load, and each of the three-phase circuits is Δ-connected or Y-connected. The three-phase AC generator, and a full-wave rectification type voltage doubler circuit that rectifies and doubles the output voltage of the three-phase AC generator, the full-wave rectification type voltage doubler circuit, A first capacitor group connected between the output terminals of the Δ-connection or Y-connection of the three-phase AC generator and charged by the output voltage between the lines, and one output terminal of the full-wave rectification type voltage doubler circuit Between the delta connection of the three-phase AC generator and the output point of one of the full-wave rectification type voltage doubler circuit and the neutral point of the Y-connection of the three-phase AC generator A second capacitor group connected between terminals of each phase of the full-wave rectification type voltage doubler circuit A first diode group which is connected between one output terminal and one terminal of each capacitor of the first capacitor group and prevents discharge of electric charge charged in each capacitor of the first capacitor group And one of the output terminals of the full-wave rectification type voltage doubler circuit and one terminal of each capacitor of the second capacitor group, and charged to each capacitor of the second capacitor group And a second diode group for preventing discharge of electric charge.

また、本発明の電力供給システムは、三相交流発電機により発電される電力を負荷に供給する電力供給システムであって、三相の各相回路がΔ結線またはY結線された三相交流発電機と、前記三相交流発電機の各線間電圧を全波整流し、かつ倍電圧にする全波整流型倍電圧回路とを有し、前記全波整流型倍電圧回路は、前記三相交流発電機のΔ結線またはY結線の各線間出力端間に接続され、該線間出力電圧により充電される第1のコンデンサ群と、前記全波整流型倍電圧回路の一方の出力端と前記三相交流発電機のΔ結線の各結合点との間、または記全波整流型倍電圧回路の一方の出力端と前記三相交流発電機のY結線の中性点とは反対側の各相の端子との間に接続される第2のコンデンサ群と、前記全波整流型倍電圧回路の他方の出力端と前記第1のコンデンサ群の各コンデンサの一方の端子との間にそれぞれ接続され、前記第1のコンデンサ群の各コンデンサに充電された電荷の放電を阻止する第1のダイオード群と、前記全波整流型倍電圧回路の一方の出力端と前記第2のコンデンサ群の各コンデンサの一方の端子との間に接続され、前記第2のコンデンサ群に充電された電荷の放電を阻止する第2のダイオード群とを含んで構成され、前記負荷には、該負荷に対して給電時に該負荷を含む放電経路中に含まれる前記三相交流発電機の各線間電圧出力と、前記各線間電圧出力が出力される前記三相交流発電機の各線間出力端間に接続された第1のコンデンサ群のうち該当するコンデンサの充電電圧と、前記第2のコンデンサ群のうち該当するコンデンサの充電電圧とが加算された電圧に応じた電圧が供給されることを特徴とする。   The power supply system of the present invention is a power supply system that supplies power generated by a three-phase alternating current generator to a load, wherein the three-phase circuits are Δ-connected or Y-connected. And a full-wave rectification type voltage doubler circuit that full-wave rectifies and doubles each line voltage of the three-phase AC generator, and the full-wave rectification type voltage doubler circuit includes the three-phase alternating current circuit. A first capacitor group connected between the output terminals of the Δ connection or Y connection of the generator and charged by the output voltage between the lines, one output terminal of the full-wave rectification type voltage doubler circuit, and the three Phases between the connection points of the Δ connection of the phase alternator or one of the output terminals of the full-wave rectification type voltage doubler circuit and the neutral point of the Y connection of the three-phase alternator A second capacitor group connected to the other terminal, and the other output terminal of the full-wave rectification type voltage doubler circuit; A first diode group connected between one terminal of each capacitor of the first capacitor group and blocking discharge of charges charged in each capacitor of the first capacitor group; and the full wave A second terminal connected between one output terminal of the rectifier type voltage doubler circuit and one terminal of each capacitor of the second capacitor group, and prevents discharge of charges charged in the second capacitor group. Each of the line voltage outputs of the three-phase AC generator included in a discharge path including the load and the line voltage outputs of the load. The charging voltage of the corresponding capacitor among the first capacitor groups connected between the line-to-line output terminals of the three-phase AC generator to be output and the charging voltage of the corresponding capacitor among the second capacitor groups Added A voltage corresponding to the voltage, characterized in that it is supplied with.

上記構成からなる本発明の電力供給システムでは、全波整流型倍電圧回路により、三相の各相回路がΔ結線またはY結線された三相交流発電機の各線間電圧が全波整流され、かつ三相交流発電機のΔ結線またはY結線の各線間出力端間に接続され、該線間出力電圧により充電される第1のコンデンサ群と、前記全波整流型倍電圧回路の一方の出力端と前記三相交流発電機のΔ結線の各結合点との間、または記全波整流型倍電圧回路の一方の出力端と前記三相交流発電機のY結線の中性点とは反対側の各相の端子との間に接続される第2のコンデンサ群の各コンデンサが充電される。
このとき、前記全波整流型倍電圧回路の他方の出力端と前記第1のコンデンサ群の各コンデンサの一方の端子との間にそれぞれ接続された第1のダイオード群により、前記第1のコンデンサ群の各コンデンサに充電された電荷が放電されるのが阻止され、かつ前記全波整流型倍電圧回路の一方の出力端と前記第2のコンデンサ群の各コンデンサの一方との間に接続された第2のダイオード群により、前記第2のコンデンサ群に充電された電荷が放電されるのが阻止される。
In the power supply system of the present invention having the above configuration, the full-wave rectification type voltage doubler circuit full-wave rectifies each line voltage of the three-phase AC generator in which each of the three-phase circuits is Δ-connected or Y-connected, And a first capacitor group connected between the output terminals of the Δ-connection or Y-connection of the three-phase AC generator and charged by the output voltage between the lines, and one output of the full-wave rectification type voltage doubler circuit Between one end of the three-phase AC generator and the connection point of the Δ-connection of the three-phase AC generator, or one of the output ends of the full-wave rectification type voltage doubler circuit and the neutral point of the Y-connection of the three-phase AC generator Each capacitor of the second capacitor group connected between the terminals of each phase on the side is charged.
At this time, the first capacitor group is connected by the first diode group connected between the other output terminal of the full-wave rectification type voltage doubler circuit and one terminal of each capacitor of the first capacitor group. The charge charged in each capacitor of the group is prevented from being discharged, and is connected between one output terminal of the full-wave rectification type voltage doubler circuit and one of the capacitors of the second capacitor group. The second diode group prevents the charge charged in the second capacitor group from being discharged.

前記負荷には、該負荷に対して給電時に該負荷を含む放電経路中に含まれる前記三相交流発電機の各線間電圧出力と、前記各線間電圧出力が出力される前記三相交流発電機の各線間出力端間に接続された第1のコンデンサ群のうちの該当するコンデンサの充電電圧と、前記第2のコンデンサ群のうちの該当するコンデンサの充電電圧とが加算され
た電圧に応じた電圧が供給される。
これにより、エンジンの低回転時においても十分に高い電圧を負荷側に供給できるので、エンジンの低回転時においてもバッテリへの充電を行うことが可能となる。
The load includes a line voltage output of each of the three-phase AC generators included in a discharge path including the load when power is supplied to the load, and the three-phase AC generator from which the line voltage outputs are output. In accordance with a voltage obtained by adding the charging voltage of the corresponding capacitor of the first capacitor group connected between the output terminals of the respective lines and the charging voltage of the corresponding capacitor of the second capacitor group. Voltage is supplied.
As a result, a sufficiently high voltage can be supplied to the load side even when the engine is running at a low speed, so that the battery can be charged even when the engine is running at a low speed.

以上説明したように、本発明の電力供給システムによれば、エンジンの低回転時においても十分に高い電圧を負荷側に供給でき、エンジンの低回転時においてもバッテリへの充電を行うことが可能となる。   As described above, according to the power supply system of the present invention, a sufficiently high voltage can be supplied to the load even when the engine is running at a low speed, and the battery can be charged even when the engine is running at a low speed. It becomes.

以下、本発明の実施形態を、図面を参照して詳細に説明する。図1に本発明の第1実施形態に係る電力供給システムの構成を示す。同図において、本発明の第2実施形態に係る電力供給システムは、三相のU,V,W相の各相回路10a,10b,10cがY結線された三相交流発電機10と、三相交流発電機10の各線間出力端間に接続されているコンデンサC1〜C6、ダイオードD1〜D12からなる全波整流型倍電圧回路20と、全波整流型倍電圧回路20の出力電圧のレベルを調整するDC−DCコンバータ30とを有している。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration of a power supply system according to the first embodiment of the present invention. In the figure, the power supply system according to the second embodiment of the present invention includes a three-phase AC generator 10 in which three-phase U, V, and W-phase circuits 10a, 10b, and 10c are Y-connected, Full-wave rectification type voltage doubler circuit 20 composed of capacitors C1 to C6 and diodes D1 to D12 connected between the output terminals between the lines of phase AC generator 10, and the output voltage level of full-wave rectification type voltage doubler circuit 20 And a DC-DC converter 30 for adjusting the frequency.

DC−DCコンバータ30の出力端には負荷RLが接続されており、負荷RLに並列にバッテリ40が接続されている。
全波整流型倍電圧回路20において、ダイオードD1〜D6は整流を行うダイオードブリッジを構成し、ダイオードD7〜D9は全波整流型倍電圧回路20の
一の出力端とコンデンサC1,C3,C5の各コンデンサの一方の端子との間にそれぞれ接続され、コンデンサC1,C3,C5に充電された電荷が放電されるのを阻止する機能を有している。
A load RL is connected to the output end of the DC-DC converter 30, and a battery 40 is connected in parallel to the load RL.
In the full-wave rectification type voltage doubler circuit 20, the diodes D1 to D6 constitute a diode bridge that performs rectification, and the diodes D7 to D9 are one output terminal of the full-wave rectification type voltage doubler circuit 20 and capacitors C1, C3, and C5. Each capacitor is connected to one terminal of each capacitor and has a function of preventing the charges charged in the capacitors C1, C3, and C5 from being discharged.

また、ダイオードD10〜D12は、全波整流型倍電圧回路20の他の出力端とコンデンサC2,C4,C6の各コンデンサの一方の端子との間にそれぞれ接続され、コンデンサC2,C4,C6に充電された電荷が放電されるのを阻止する機能を有している。ここで、ダイオードD7〜D9は本発明の第1のダイオード群に、ダイオードD10〜D12は本発明の第2のダイオード群に、それぞれ相当する。
また、コンデンサC1,C3,C5は本発明の第1のコンデンサ群に、コンデンサC2,C4,C6は本発明の第2のコンデンサ群に、それぞれ相当する。
The diodes D10 to D12 are respectively connected between the other output terminal of the full-wave rectification type voltage doubler circuit 20 and one terminal of each of the capacitors C2, C4, C6, and are connected to the capacitors C2, C4, C6. It has a function of preventing the charged charge from being discharged. Here, the diodes D7 to D9 correspond to the first diode group of the present invention, and the diodes D10 to D12 correspond to the second diode group of the present invention.
The capacitors C1, C3, and C5 correspond to the first capacitor group of the present invention, and the capacitors C2, C4, and C6 correspond to the second capacitor group of the present invention.

DC−DCコンバータ30は全波整流型倍電圧回路20の出力電圧の電圧レベルを調整する機能を有している。
上記構成において、図2に示すように、三相交流発電機10からは、互いに位相が(2/3)π異なる電圧Vu,Vv,VwがU,V,W相の各相回路10a,10b,10cより出力され、全波整流型倍電圧回路20により倍電圧整流された出力電圧VoutがDC−DCコンバータ30に出力される。
The DC-DC converter 30 has a function of adjusting the voltage level of the output voltage of the full-wave rectification type voltage doubler circuit 20.
In the above configuration, as shown in FIG. 2, the three-phase AC generator 10 is supplied with voltages Vu, Vv, and Vw whose phases are different from each other by (2/3) π with respect to the U, V, and W phase circuits 10 a and 10 b. , 10 c and the output voltage Vout subjected to voltage doubler rectification by the full-wave rectification type voltage doubler circuit 20 is output to the DC-DC converter 30.

コンデンサC1〜C6は、Y結線されたU,V,W相の各相回路10a,10b,10cの線間電圧により充電される。ここで、U,V,W相の各相回路10a,10b,10cにより発生する電圧Vu,Vv,Vw(ピーク値)は、Vu=Vv=Vw=Vとする。
コンデンサC1は、W相回路10c−U相回路10a間の線間電圧Vwu(=√3V)により、コンデンサC3は、U相回路10a−V相回路10b間の線間電圧Vuv(=√3V)により、コンデンサC5はV相回路10b−W相回路10c間の線間電圧Vvw(=√3V)により、それぞれ充電される。
Capacitors C1 to C6 are charged by the line voltages of the respective U, V, and W phase circuits 10a, 10b, and 10c that are Y-connected. Here, the voltages Vu, Vv, and Vw (peak values) generated by the U, V, and W phase circuits 10a, 10b, and 10c are Vu = Vv = Vw = V.
The capacitor C1 has a line voltage Vwu (= √3V) between the W-phase circuit 10c and the U-phase circuit 10a, and the capacitor C3 has a line voltage Vuv (= √3V) between the U-phase circuit 10a and the V-phase circuit 10b. Thus, the capacitor C5 is charged by the line voltage Vvw (= √3V) between the V-phase circuit 10b and the W-phase circuit 10c.

すなわち、コンデンサC1は、W相回路10c−U相回路10a間の線間電圧VwuによりW相回路10c→ダイオードD1→コンデンサC1→U相回路10aの経路で図1に示す極性で充電され,コンデンサC1の両端間電圧はVwu(=√3V)となる。
また、コンデンサC3は、U相回路10a−V相回路10b間の線間電圧VuvによりU相回路10a→ダイオードD3→コンデンサC3→V相回路10bの経路で図1に示す極性で充電され、コンデンサC3の両端間電圧はVuv(=√3V)となる。
That is, the capacitor C1 is charged with the polarity shown in FIG. 1 in the path of the W-phase circuit 10c → the diode D1 → the capacitor C1 → the U-phase circuit 10a by the line voltage Vwu between the W-phase circuit 10c and the U-phase circuit 10a. The voltage across C1 is Vwu (= √3V).
The capacitor C3 is charged with the polarity shown in FIG. 1 in the path of the U-phase circuit 10a → the diode D3 → the capacitor C3 → the V-phase circuit 10b by the line voltage Vuv between the U-phase circuit 10a and the V-phase circuit 10b. The voltage across C3 is Vuv (= √3V).

さらに、コンデンサC5は、V相回路10b−W相回路10c間の線間電圧VvwによりV相回路10b→ダイオードD5→コンデンサC5→W相回路10cの経路で図1に示す極性で充電され、コンデンサC5の両端間電圧はVvw(=√3V)となる。
ここで、全波整流型倍電圧回路20の一の出力端とのコンデンサC1、C3、C5(第1のコンデンサ群)の各コンデンサの一方の端子との間にそれぞれ接続されたダイオードD7、D8、D9(第1のダイオード群)により、コンデンサC1、C3、C5の各コンデンサに充電された電荷が放電されるのが阻止される。
Further, the capacitor C5 is charged by the line voltage Vvw between the V-phase circuit 10b and the W-phase circuit 10c in the path of the V-phase circuit 10b → the diode D5 → the capacitor C5 → the W-phase circuit 10c with the polarity shown in FIG. The voltage across C5 is Vvw (= √3V).
Here, diodes D7, D8 respectively connected between one output terminal of the full-wave rectification type voltage doubler circuit 20 and one terminal of each capacitor of the capacitors C1, C3, C5 (first capacitor group). , D9 (first diode group) prevents the charges charged in the capacitors C1, C3, and C5 from being discharged.

一方、コンデンサC2は、U相回路10a−W相回路10c間の線間電圧Vuw(=√3V)により、コンデンサC4は、V相回路10b−U相回路10a間の線間電圧Vvu(=√3V)により、コンデンサC6はW相回路10c−V相回路10b間の線間電圧Vwv(=√3V)により、それぞれ充電される。   On the other hand, the capacitor C2 has a line voltage Vuw (= √3V) between the U-phase circuit 10a and the W-phase circuit 10c, and the capacitor C4 has a line voltage Vvu (= √V) between the V-phase circuit 10b and the U-phase circuit 10a. 3V), the capacitor C6 is charged by the line voltage Vwv (= √3V) between the W-phase circuit 10c and the V-phase circuit 10b.

すなわち、コンデンサC2は、U相回路10a−W相回路10c間の線間電圧VuwによりU相回路10a→コンデンサC2→ダイオードD2→W相回路10cの経路で図1に示す極性で充電され、コンデンサC2の両端間電圧はVuw(=√3V)となる。
また、コンデンサC4は、V相回路10b−U相回路10a間の線間電圧VvuによりV相回路10b→コンデンサC4→ダイオードD4→U相回路10aの経路で図1に示す極性で充電され、コンデンサC4の両端間電圧はVvu(=√3V)となる。
That is, the capacitor C2 is charged by the line voltage Vuw between the U-phase circuit 10a and the W-phase circuit 10c in the path of the U-phase circuit 10a → the capacitor C2 → the diode D2 → the W-phase circuit 10c with the polarity shown in FIG. The voltage across C2 is Vuw (= √3V).
Capacitor C4 is charged with the polarity shown in FIG. 1 in the path of V-phase circuit 10b → capacitor C4 → diode D4 → U-phase circuit 10a by line voltage Vvu between V-phase circuit 10b and U-phase circuit 10a. The voltage across C4 is Vvu (= √3V).

また、コンデンサC6は、W相回路10c−V相回路10b間の線間電圧VwvによりW相回路10c→コンデンサC6→ダイオードD6→V相回路10bの経路で図1に示す極性で充電され、コンデンサC6の両端間電圧はVwv(=√3V)となる。   The capacitor C6 is charged with the polarity shown in FIG. 1 in the path of the W-phase circuit 10c → the capacitor C6 → the diode D6 → the V-phase circuit 10b by the line voltage Vwv between the W-phase circuit 10c and the V-phase circuit 10b. The voltage across C6 is Vwv (= √3V).

ここで、全波整流型倍電圧回路20の一の出力端とのコンデンサC2、C4、C6(第2のコンデンサ群)の各コンデンサの一方の端子との間にそれぞれ接続されたダイオードD10、D11、D12(第2のダイオード群)により、コンデンサC2、C4、C6の各コンデンサに充電された電荷が放電されるのが阻止される。   Here, diodes D10 and D11 respectively connected between one output terminal of the full-wave rectification type voltage doubler circuit 20 and one terminal of each capacitor of the capacitors C2, C4 and C6 (second capacitor group). , D12 (second diode group) prevents the electric charges charged in the capacitors C2, C4, and C6 from being discharged.

このようにして、コンデンサC1〜C6は、Y結線されたU,V,W相の各相回路10a,10b,10cの各線間電圧により充電されるために、全波整流型倍電圧回路20の出力電圧Voutは、U,V,W相の各相回路10a,10b,10cの何れかの線間電圧に第1のコンデンサ群のうちの一のコンデンサの端子間電圧及び第2のコンデンサ群のうちの一のコンデンサの端子間電圧を加算した電圧となる。   In this way, the capacitors C1 to C6 are charged by the line voltages of the U-phase circuits 10a, 10b, and 10c of the Y-connected U, V, and W phases. The output voltage Vout is the line voltage of any of the U, V, and W phase circuits 10a, 10b, and 10c. This is a voltage obtained by adding the voltage across terminals of one of the capacitors.

すなわち、第1のコンデンサ群(C1、C3、C5)及び第2のコンデンサ群(C2、C4、C6)が放電時には、これらのコンデンサの充電電圧が電源として機能し、U,V,W相の各相回路10a,10b,10cの何れかの線間電圧に、上記コンデンサの充電電圧が加算された電圧が全波整流型倍電圧回路20の出力電圧VoutとしてDC−DCコンバータ30に出力される。   That is, when the first capacitor group (C1, C3, C5) and the second capacitor group (C2, C4, C6) are discharged, the charging voltage of these capacitors functions as a power source, and the U, V, W phase A voltage obtained by adding the charging voltage of the capacitor to the line voltage of any of the phase circuits 10a, 10b, and 10c is output to the DC-DC converter 30 as the output voltage Vout of the full-wave rectification type voltage doubler circuit 20. .

以下に具体的に説明する。
U相回路10a−W相回路10c間の線間電圧Vuw(=√3V)が波整流型倍電圧回路20の出力端に出力される際には、U相回路10a→コンデンサC1→ダイオードD7→全波整流型倍電圧回路20の出力端→ダイオードD12→コンデンサC6→W相回路10cの経路でコンデンサC1、C6が放電される。
This will be specifically described below.
When the line voltage Vuw (= √3V) between the U-phase circuit 10a and the W-phase circuit 10c is output to the output terminal of the wave rectification type voltage doubler circuit 20, the U-phase circuit 10a → the capacitor C1 → the diode D7 → Capacitors C1 and C6 are discharged through the path of output terminal of full-wave rectification type voltage doubler circuit 20, diode D12, capacitor C6, and W-phase circuit 10c.

この結果、全波整流型倍電圧回路20の出力電圧Voutとしては、U相回路10a−W相回路10c間の線間電圧VuwにコンデンサC1の充電電圧Vvw(=√3V)及びコンデンサC6の充電電圧Vwv(=√3V)が加算された電圧(√3V×3)、すなわちU相回路10a−W相回路10c間の線間電圧Vuwの3倍の電圧が出力される。これと同時にU相回路10a−W相回路10c間の線間電圧VuwによりコンデンサC2への充電が行われる。   As a result, the output voltage Vout of the full-wave rectification type voltage doubler circuit 20 includes the line voltage Vuw between the U-phase circuit 10a and the W-phase circuit 10c, the charging voltage Vvw (= √3V) of the capacitor C1, and the charging of the capacitor C6. A voltage (√3V × 3) obtained by adding the voltage Vwv (= √3V), that is, a voltage three times the line voltage Vuw between the U-phase circuit 10a and the W-phase circuit 10c is output. At the same time, the capacitor C2 is charged by the line voltage Vuw between the U-phase circuit 10a and the W-phase circuit 10c.

同様に、U相回路10a−V相回路10b間の線間電圧Vuv(=√3V)が全波整流型倍電圧回路20の出力端に出力される際には、U相回路10a→コンデンサC1→ダイオードD7→全波整流型倍電圧回路20の出力端→ダイオードD11→コンデンサC4→V相回路10bの経路でコンデンサC1、C4が放電される。   Similarly, when the line voltage Vuv (= √3V) between the U-phase circuit 10a and the V-phase circuit 10b is output to the output terminal of the full-wave rectification type voltage doubler circuit 20, the U-phase circuit 10a → the capacitor C1. → Diode D7 → Output terminal of full-wave rectification type voltage doubler circuit 20 → Diode D11 → Capacitor C4 → Capacitors C1 and C4 are discharged through a path of V-phase circuit 10b.

この結果、全波整流型倍電圧回路20の出力電圧Voutとしては、U相回路10a−V相回路10b間の線間電圧VuvにコンデンサC1の充電電圧Vvw(=√3V)及びコンデンサC4の充電電圧Vvu(=√3V)が加算された電圧(√3V×3)、すなわち、U相回路10a−V相回路10b間の線間電圧Vuvの3倍の電圧が出力される。
これと同時にU相回路10a−V相回路10b間の線間電圧VuvによりコンデンサC3への充電が行われる。
As a result, the output voltage Vout of the full-wave rectification type voltage doubler circuit 20 includes the line voltage Vuv between the U-phase circuit 10a and the V-phase circuit 10b, the charging voltage Vvw (= √3V) of the capacitor C1, and the charging of the capacitor C4. A voltage (√3V × 3) obtained by adding the voltage Vvu (= √3V), that is, a voltage that is three times the line voltage Vuv between the U-phase circuit 10a and the V-phase circuit 10b is output.
At the same time, the capacitor C3 is charged by the line voltage Vuv between the U-phase circuit 10a and the V-phase circuit 10b.

また、V相回路10b−W相回路10c間の線間電圧Vvw(=√3V)が全波整流型倍電圧回路20の出力端に出力される際には、V相回路10b→コンデンサC3→ダイオードD8→全波整流型倍電圧回路20の出力端→ダイオードD12→コンデンサC6→W相回路10cの経路でコンデンサC3、C6が放電される。   When the line voltage Vvw (= √3 V) between the V-phase circuit 10b and the W-phase circuit 10c is output to the output terminal of the full-wave rectification type voltage doubler circuit 20, the V-phase circuit 10b → the capacitor C3 → Capacitors C3 and C6 are discharged through a path of diode D8 → output terminal of full-wave rectification type voltage doubler circuit 20 → diode D12 → capacitor C6 → W phase circuit 10c.

この結果、全波整流型倍電圧回路20の出力電圧Voutとしては、V相回路10b−W相回路10c間の線間電圧VvwにコンデンサC3の充電電圧Vuv(=√3V)及びコンデンサC6の充電電圧Vwv(=√3V)が加算された電圧(√3V×3)、すなわち、V相回路10b−W相回路10c間の線間電圧Vvwの3倍の電圧が出力される。
これと同時にV相回路10b−W相回路10c間の線間電圧VvwによりコンデンサC5への充電が行われる。
As a result, the output voltage Vout of the full-wave rectification type voltage doubler circuit 20 includes the line voltage Vvw between the V-phase circuit 10b and the W-phase circuit 10c, the charging voltage Vuv (= √3V) of the capacitor C3, and the charging of the capacitor C6. A voltage (√3V × 3) obtained by adding the voltage Vwv (= √3V), that is, a voltage three times the line voltage Vvw between the V-phase circuit 10b and the W-phase circuit 10c is output.
At the same time, the capacitor C5 is charged by the line voltage Vvw between the V-phase circuit 10b and the W-phase circuit 10c.

また、V相回路10b−U相回路10a間の線間電圧Vvu(=√3V)が全波整流型倍電圧回路20の出力端に出力される際には、V相回路10b→コンデンサC3→ダイオードD8→全波整流型倍電圧回路20の出力端→ダイオードD10→コンデンサC2→U相回路10aの経路でコンデンサC3、C2が放電される。   When the line voltage Vvu (= √3 V) between the V-phase circuit 10b and the U-phase circuit 10a is output to the output terminal of the full-wave rectification type voltage doubler circuit 20, the V-phase circuit 10b → the capacitor C3 → Capacitors C3 and C2 are discharged through a path of diode D8 → output terminal of full-wave rectification type voltage doubler circuit 20 → diode D10 → capacitor C2 → U-phase circuit 10a.

この結果、全波整流型倍電圧回路20の出力電圧Voutとしては、V相回路10b−U相回路10a間の線間電圧VvuにコンデンサC3の充電電圧Vuv(=√3V)及びコンデンサC2の充電電圧Vuw(=√3V)が加算された電圧(√3V×3)、すなわち、V相回路10b−U相回路10a間の線間電圧Vvuの3倍の電圧が出力される。
これと同時にV相回路10b−U相回路10a間の線間電圧VvuによりコンデンサC4への充電が行われる。
As a result, the output voltage Vout of the full-wave rectification type voltage doubler circuit 20 includes the line voltage Vvu between the V-phase circuit 10b and the U-phase circuit 10a, the charging voltage Vuv (= √3V) of the capacitor C3, and the charging of the capacitor C2. A voltage (√3V × 3) obtained by adding the voltage Vuw (= √3V), that is, a voltage that is three times the line voltage Vvu between the V-phase circuit 10b and the U-phase circuit 10a is output.
At the same time, the capacitor C4 is charged by the line voltage Vvu between the V-phase circuit 10b and the U-phase circuit 10a.

また、W相回路10c−U相回路10a間の線間電圧Vwu(=√3V)が全波整流型倍電圧回路20の出力端に出力される際には、W相回路10c→コンデンサC5→ダイオードD9→全波整流型倍電圧回路20の出力端→ダイオードD10→コンデンサC2→U相回路10aの経路でコンデンサC5、C2が放電される。   When the line voltage Vwu (= √3 V) between the W-phase circuit 10c and the U-phase circuit 10a is output to the output terminal of the full-wave rectification type voltage doubler circuit 20, the W-phase circuit 10c → the capacitor C5 → Capacitors C5 and C2 are discharged through a path of diode D9 → output terminal of full-wave rectification type voltage doubler circuit 20 → diode D10 → capacitor C2 → U-phase circuit 10a.

この結果、全波整流型倍電圧回路20の出力電圧Voutとしては、W相回路10c−U相回路10a間の線間電圧VwuにコンデンサC5の充電電圧Vvw((=√3V)及びコンデンサC2の充電電圧Vuw(=√3V)が加算された電圧(√3V×3)、すなわち、W相回路10c−U相回路10a間の線間電圧Vwuの3倍の電圧が出力される。
これと同時にW相回路10c−U相回路10a間の線間電圧VwuによりコンデンサC1への充電が行われる。
As a result, the output voltage Vout of the full-wave rectification type voltage doubler circuit 20 includes the line voltage Vwu between the W-phase circuit 10c and the U-phase circuit 10a, the charging voltage Vvw ((= √3V) of the capacitor C5, and the capacitor C2 A voltage (√3V × 3) obtained by adding the charging voltage Vuw (= √3V), that is, a voltage three times the line voltage Vwu between the W-phase circuit 10c and the U-phase circuit 10a is output.
At the same time, the capacitor C1 is charged by the line voltage Vwu between the W-phase circuit 10c and the U-phase circuit 10a.

また、W相回路10c−V相回路10b間の線間電圧Vwv(=√3V)が全波整流型倍電圧回路20の出力端に出力される際には、W相回路10c→コンデンサC5→ダイオードD9→全波整流型倍電圧回路20の出力端→ダイオードD11→コンデンサC4→−V相回路10bの経路でコンデンサC5、C4が放電される。   When the line voltage Vwv (= √3V) between the W-phase circuit 10c and the V-phase circuit 10b is output to the output terminal of the full-wave rectification type voltage doubler circuit 20, the W-phase circuit 10c → the capacitor C5 → Capacitors C5 and C4 are discharged through the path of diode D9 → output terminal of full-wave rectification type voltage doubler circuit 20 → diode D11 → capacitor C4 → −V phase circuit 10b.

この結果、全波整流型倍電圧回路20の出力電圧Voutとしては、W相回路10c−V相回路10b間の線間電圧VwvにコンデンサC5の充電電圧Vvw((=√3V)及びコンデンサC4の充電電圧Vvu(=√3V)が加算された電圧(√3V×3)、すなわち、W相回路10c−V相回路10b間の線間電圧Vwvの3倍の電圧が出力される。
これと同時にW相回路10c−V相回路10b間の線間電圧VwvによりコンデンサC6への充電が行われる。
As a result, the output voltage Vout of the full-wave rectification type voltage doubler circuit 20 includes the line voltage Vwv between the W-phase circuit 10c and the V-phase circuit 10b, the charging voltage Vvw ((= √3V) of the capacitor C5, and the capacitor C4. A voltage (√3V × 3) obtained by adding the charging voltage Vvu (= √3V), that is, a voltage three times the line voltage Vwv between the W-phase circuit 10c and the V-phase circuit 10b is output.
At the same time, the capacitor C6 is charged by the line voltage Vwv between the W-phase circuit 10c and the V-phase circuit 10b.

このようにして、全波整流型倍電圧回路20より出力電圧Vout(=√3V×3)がDC−DCコンバータ30に供給される。
全波整流型倍電圧回路20出力電圧VoutはDC−DCコンバータ30により電圧レベルが調整され、DC−DCコンバータ30の出力電圧は負荷RLに供給されると共に、バッテリ40は、DC−DCコンバータ30の出力電圧により充電される。
In this way, the output voltage Vout (= √3V × 3) is supplied from the full-wave rectification type voltage doubler circuit 20 to the DC-DC converter 30.
The voltage level of the output voltage Vout of the full-wave rectification type voltage doubler circuit 20 is adjusted by the DC-DC converter 30, the output voltage of the DC-DC converter 30 is supplied to the load RL, and the battery 40 is connected to the DC-DC converter 30. It is charged by the output voltage.

本発明の第1実施形態に係る電力供給システムによれば、従来のY結線された交流発電機を使用した電力供給システムより大きい出力電圧を得ることができる。
したがって、エンジンの低回転時においても十分に高い電圧を負荷側に供給することができ、エンジンの低回転時においてもバッテリへの充電を行うことが可能となる。
According to the power supply system according to the first embodiment of the present invention, an output voltage larger than that of a power supply system using a conventional Y-connected AC generator can be obtained.
Therefore, a sufficiently high voltage can be supplied to the load side even when the engine is running at a low speed, and the battery can be charged even when the engine is running at a low speed.

次に、本発明の第2実施形態に係る電力供給システムについて説明する。図3に本発明の第2実施形態に係る電力供給システムの構成を示す。同図において、本発明の第2実施形態に係る電力供給システムは、三相のU,V,W相の各相回路10a,10b,10cがΔ結線された三相交流発電機10Aと、三相交流発電機10Aの各線間出力端間に接続されているコンデンサC1〜C6、ダイオードD1〜D12からなる全波整流型倍電圧回路20Aと、全波整流型倍電圧回路20Aの出力電圧のレベルを調整するDC−DCコンバータ30とを有している。
DC−DCコンバータ30の出力端には負荷RLが接続されており、負荷RLに並列にバッテリ40が接続されている。
Next, a power supply system according to a second embodiment of the present invention will be described. FIG. 3 shows a configuration of a power supply system according to the second embodiment of the present invention. In the figure, a power supply system according to a second embodiment of the present invention includes a three-phase AC generator 10A in which three-phase U, V, and W-phase circuits 10a, 10b, and 10c are Δ-connected, Full-wave rectification type voltage doubler circuit 20A composed of capacitors C1 to C6 and diodes D1 to D12 connected between the line-to-line output terminals of phase AC generator 10A, and the output voltage level of full-wave rectification type voltage doubler circuit 20A And a DC-DC converter 30 for adjusting the frequency.
A load RL is connected to the output end of the DC-DC converter 30, and a battery 40 is connected in parallel to the load RL.

本発明の第2実施形態に係る電力供給システムが第1実施形態に係る電力供給システムと構成上、異なるのは三相交流発電機の各相回路がΔ結線されている点であり、その他の構成は第1実施形態に係る電力供給システムと同様である。   The power supply system according to the second embodiment of the present invention is different in configuration from the power supply system according to the first embodiment in that each phase circuit of the three-phase AC generator is Δ-connected. The configuration is the same as that of the power supply system according to the first embodiment.

全波整流型倍電圧回路20Aにおいて、ダイオードD1〜D6は整流を行うダイオードブリッジを構成し、ダイオードD7〜D9は全波整流型倍電圧回路20Aの一の出力端とコンデンサC1,C3,C5の各コンデンサの一方の端子との間にそれぞれ接続され、コンデンサC1,C3,C5に充電された電荷が放電されるのを阻止する機能を有している。   In the full-wave rectification type voltage doubler circuit 20A, the diodes D1 to D6 constitute a diode bridge that performs rectification, and the diodes D7 to D9 are one output terminal of the full-wave rectification type voltage doubler circuit 20A and capacitors C1, C3, and C5. Each capacitor is connected to one terminal of each capacitor and has a function of preventing the charges charged in the capacitors C1, C3, and C5 from being discharged.

また、ダイオードD10〜D12は、全波整流型倍電圧回路20Aの他の出力端とコンデンサC2,C4,C6の各コンデンサの一方の端子との間にそれぞれ接続され、コンデンサC2,C4,C6に充電された電荷が放電されるのを阻止する機能を有している。ここで、ダイオードD7〜D9は本発明の第1のダイオード群に、ダイオードD10〜D12は本発明の第2のダイオード群に、それぞれ相当する。   The diodes D10 to D12 are respectively connected between the other output terminal of the full-wave rectification type voltage doubler circuit 20A and one terminal of each of the capacitors C2, C4, C6, and are connected to the capacitors C2, C4, C6. It has a function of preventing the charged charge from being discharged. Here, the diodes D7 to D9 correspond to the first diode group of the present invention, and the diodes D10 to D12 correspond to the second diode group of the present invention.

また、コンデンサC1,C3,C5は本発明の第1のコンデンサ群に、コンデンサC2,C4,C6は本発明の第2のコンデンサ群に、それぞれ相当する。
DC−DCコンバータ30は全波整流型倍電圧回路20Aの出力電圧の電圧レベルを調整する機能を有している。
上記構成において、図4に示すように三相交流発電機10からは、互いに位相が(2/3)π異なる電圧Vu,Vv,VwがU,V,W相の各相回路10a,10b,10cより出力され、全波整流型倍電圧回路20Aにより倍電圧整流された出力電圧VoutがDC−DCコンバータ30に出力される。
The capacitors C1, C3, and C5 correspond to the first capacitor group of the present invention, and the capacitors C2, C4, and C6 correspond to the second capacitor group of the present invention.
The DC-DC converter 30 has a function of adjusting the voltage level of the output voltage of the full-wave rectification type voltage doubler circuit 20A.
In the above configuration, as shown in FIG. 4, the three-phase AC generator 10 has voltages Vu, Vv, and Vw whose phases are different from each other by (2/3) π from each of the U, V, and W phase circuits 10a, 10b, The output voltage Vout output from 10c and voltage doubled by the full-wave rectification type voltage doubler circuit 20A is output to the DC-DC converter 30.

コンデンサC1〜C6は、Δ結線されたU,V,W相の各相回路10a,10b,10cの線間電圧により充電される。ここで、U,V,W相の各相回路10a,10b,10cにより発生する電圧Vu,Vv,Vw(ピーク値)は、Vu=Vv=Vw=Vとする。
コンデンサC1、C2は、U相回路10aの線間電圧Vu(=V)により、コンデンサC3、C4は、V相回路10bの線間電圧Vv(=V)により、コンデンサC5、C6はW相回路10cの線間電圧Vw(=V)により、それぞれ充電される。
Capacitors C1 to C6 are charged by the line voltage of U-phase, V-phase, and W-phase circuits 10a, 10b, and 10c that are Δ-connected. Here, the voltages Vu, Vv, and Vw (peak values) generated by the U, V, and W phase circuits 10a, 10b, and 10c are Vu = Vv = Vw = V.
Capacitors C1 and C2 are due to the line voltage Vu (= V) of the U-phase circuit 10a, capacitors C3 and C4 are due to the line-to-line voltage Vv (= V) of the V-phase circuit 10b, and capacitors C5 and C6 are W-phase circuits. The battery is charged by the line voltage Vw (= V) of 10c.

すなわち、コンデンサC1は、U相回路10aの線間電圧Vuにより、U相回路10a→ダイオードD1→コンデンサC1→U相回路10aの経路で図1に示す極性で充電され,コンデンサC1の両端間電圧はVu(=V)となる。
同様に、コンデンサC2は、U相回路10aの線間電圧Vuにより、U相回路10a→コンデンサC2→ダイオードD2→U相回路10aの経路で図1に示す極性で充電され,コンデンサC2の両端間電圧はVu(=V)となる。
That is, the capacitor C1 is charged by the line voltage Vu of the U-phase circuit 10a with the polarity shown in FIG. 1 in the path of the U-phase circuit 10a → the diode D1 → the capacitor C1 → the U-phase circuit 10a. Becomes Vu (= V).
Similarly, the capacitor C2 is charged by the line voltage Vu of the U-phase circuit 10a with the polarity shown in FIG. 1 in the path of the U-phase circuit 10a → the capacitor C2 → the diode D2 → the U-phase circuit 10a, and is connected between both ends of the capacitor C2. The voltage is Vu (= V).

また、コンデンサC3は、V相回路10b間の線間電圧VvによりV相回路10b→ダイオードD3→コンデンサC3→V相回路10bの経路で図1に示す極性で充電され、コンデンサC3の両端間電圧はVv(=V)となる。
同様に、コンデンサC4は、V相回路10b間の線間電圧VvによりV相回路10b→コンデンサC4→ダイオードD4→V相回路10bの経路で図1に示す極性で充電され、コンデンサC4の両端間電圧はVv(=V)となる。
The capacitor C3 is charged with the polarity shown in FIG. 1 in the path of the V-phase circuit 10b → the diode D3 → the capacitor C3 → the V-phase circuit 10b by the line voltage Vv between the V-phase circuits 10b, and the voltage across the capacitor C3. Becomes Vv (= V).
Similarly, the capacitor C4 is charged with the polarity shown in FIG. 1 in the path of the V-phase circuit 10b → the capacitor C4 → the diode D4 → the V-phase circuit 10b by the line voltage Vv between the V-phase circuits 10b, and between both ends of the capacitor C4. The voltage is Vv (= V).

さらに、コンデンサC5は、W相回路10c間の線間電圧VwによりW相回路10c→ダイオードD5→コンデンサC5→W相回路10cの経路で図1に示す極性で充電され、コンデンサC5の両端間電圧はVw(=V)となる。
同様に、コンデンサC6は、W相回路10c間の線間電圧VwによりW相回路10c→コンデンサC6→ダイオードD6→W相回路10cの経路で図1に示す極性で充電され、コンデンサC5の両端間電圧はVw(=V)となる。
Furthermore, the capacitor C5 is charged with the polarity shown in FIG. 1 in the path of the W-phase circuit 10c → the diode D5 → the capacitor C5 → the W-phase circuit 10c by the line voltage Vw between the W-phase circuit 10c, and the voltage across the capacitor C5 Becomes Vw (= V).
Similarly, the capacitor C6 is charged by the line voltage Vw between the W-phase circuits 10c with the polarity shown in FIG. 1 in the path of the W-phase circuit 10c → the capacitor C6 → the diode D6 → the W-phase circuit 10c, and between both ends of the capacitor C5. The voltage is Vw (= V).

ここで、全波整流型倍電圧回路20Aの一の出力端とのコンデンサC1、C3、C5(第1のコンデンサ群)の各コンデンサの一方の端子との間にそれぞれ接続されたダイオードD7、D8、D9(第1のダイオード群)により、コンデンサC1、C3、C5の各コンデンサに充電された電荷が放電されるのが阻止される。
また、全波整流型倍電圧回路20Aの一の出力端とのコンデンサC2、C4、C6(第2のコンデンサ群)の各コンデンサの一方の端子との間にそれぞれ接続されたダイオードD10、D11、D12(第2のダイオード群)により、コンデンサC2、C4、C6の各コンデンサに充電された電荷が放電されるのが阻止される。
Here, diodes D7, D8 respectively connected between one output terminal of the full-wave rectification type voltage doubler circuit 20A and one terminal of each capacitor C1, C3, C5 (first capacitor group). , D9 (first diode group) prevents the charges charged in the capacitors C1, C3, and C5 from being discharged.
Further, diodes D10, D11, respectively connected between one output terminal of the full-wave rectification type voltage doubler circuit 20A and one terminal of each capacitor of the capacitors C2, C4, C6 (second capacitor group), D12 (second diode group) prevents the electric charges charged in the capacitors C2, C4, and C6 from being discharged.

このようにして、コンデンサC1〜C6は、Δ結線されたU,V,W相の各相回路10a,10b,10cの各線間電圧により充電されるために、全波整流型倍電圧回路20の出力電圧Voutは、U,V,W相の各相回路10a,10b,10cの何れかの線間電圧に第1のコンデンサ群のうちの一のコンデンサの端子間電圧及び第2のコンデンサ群のうちの一のコンデンサの端子間電圧を加算した電圧となる。   In this manner, the capacitors C1 to C6 are charged by the line voltages of the U-phase circuits 10a, 10b, and 10c of Δ-connected, so that the full-wave rectification type voltage doubler circuit 20 The output voltage Vout is the line voltage of any of the U, V, and W phase circuits 10a, 10b, and 10c. This is a voltage obtained by adding the voltage across terminals of one of the capacitors.

すなわち、第1のコンデンサ群(C1、C3、C5)及び第2のコンデンサ群(C2、C4、C6)が放電時には、これらのコンデンサの充電電圧が電源として機能し、U,V,W相の各相回路10a,10b,10cの何れかの線間電圧に、上記コンデンサの充電電圧が加算された電圧が全波整流型倍電圧回路20の出力電圧VoutとしてDC−DCコンバータ30に出力される。   That is, when the first capacitor group (C1, C3, C5) and the second capacitor group (C2, C4, C6) are discharged, the charging voltage of these capacitors functions as a power source, and the U, V, W phase A voltage obtained by adding the charging voltage of the capacitor to the line voltage of any of the phase circuits 10a, 10b, and 10c is output to the DC-DC converter 30 as the output voltage Vout of the full-wave rectification type voltage doubler circuit 20. .

以下に具体的に説明する。
U相回路10aの線間電圧Vu(=V)が波整流型倍電圧回路20の出力端に出力される際には、U相回路10a→コンデンサC1→ダイオードD7→全波整流型倍電圧回路20Aの出力端→ダイオードD12→コンデンサC6→U相回路10aの経路でコンデンサC1、C6が放電される。
This will be specifically described below.
When the line voltage Vu (= V) of the U phase circuit 10a is output to the output terminal of the wave rectification type voltage doubler circuit 20, the U phase circuit 10a → the capacitor C1 → the diode D7 → the full wave rectification type voltage doubler circuit. Capacitors C1 and C6 are discharged through a path of 20A output terminal → diode D12 → capacitor C6 → U-phase circuit 10a.

この結果、全波整流型倍電圧回路20Aの出力電圧Voutとしては、U相回路10aの線間電圧VuにコンデンサC1の充電電圧Vu(=V)及びコンデンサC6の充電電圧Vw(=V)が加算された電圧(3V)、すなわちU相回路10aの線間電圧Vuの3倍の電圧が出力される。
これと同時にU相回路10aの線間電圧VuによりコンデンサC2への充電が行われる。
As a result, the output voltage Vout of the full-wave rectification type voltage doubler circuit 20A includes the line voltage Vu of the U-phase circuit 10a, the charging voltage Vu (= V) of the capacitor C1, and the charging voltage Vw (= V) of the capacitor C6. The added voltage (3V), that is, a voltage that is three times the line voltage Vu of the U-phase circuit 10a is output.
At the same time, the capacitor C2 is charged by the line voltage Vu of the U-phase circuit 10a.

同様に、V相回路10bの線間電圧Vv(=V)が全波整流型倍電圧回路20Aの出力端に出力される際には、V相回路10b→コンデンサC3→ダイオードD8→全波整流型倍電圧回路20Aの出力端→ダイオードD10→コンデンサC2→V相回路10bの経路でコンデンサC3、C2が放電される。   Similarly, when the line voltage Vv (= V) of the V-phase circuit 10b is output to the output terminal of the full-wave rectification type voltage doubler circuit 20A, the V-phase circuit 10b → capacitor C3 → diode D8 → full-wave rectification. Capacitors C3 and C2 are discharged through the path of the output terminal of the type voltage doubler circuit 20A → the diode D10 → the capacitor C2 → the V-phase circuit 10b.

この結果、全波整流型倍電圧回路20Aの出力電圧Voutとしては、V相回路10bの線間電圧VvにコンデンサC3の充電電圧Vv(=V)及びコンデンサC2の充電電圧Vu(=V)が加算された電圧(3V)、すなわち、V相回路10bの線間電圧Vvの3倍の電圧が出力される。
これと同時にV相回路10bの線間電圧VvによりコンデンサC4への充電が行われる。
As a result, the output voltage Vout of the full-wave rectification type voltage doubler circuit 20A includes the line voltage Vv of the V-phase circuit 10b, the charging voltage Vv (= V) of the capacitor C3, and the charging voltage Vu (= V) of the capacitor C2. The added voltage (3V), that is, a voltage that is three times the line voltage Vv of the V-phase circuit 10b is output.
At the same time, the capacitor C4 is charged by the line voltage Vv of the V-phase circuit 10b.

また、W相回路10cの線間電圧Vw(=V)が全波整流型倍電圧回路20Aの出力端に出力される際には、W相回路10c→コンデンサC5→ダイオードD9→全波整流型倍電圧回路20Aの出力端→ダイオードD11→コンデンサC4→W相回路10cの経路でコンデンサC5、C4が放電される。   When the line voltage Vw (= V) of the W-phase circuit 10c is output to the output terminal of the full-wave rectification type voltage doubler circuit 20A, the W-phase circuit 10c → capacitor C5 → diode D9 → full-wave rectification type. Capacitors C5 and C4 are discharged along the path of output terminal of voltage doubler circuit 20A → diode D11 → capacitor C4 → W-phase circuit 10c.

この結果、全波整流型倍電圧回路20Aの出力電圧Voutとしては、W相回路10cの線間電圧VwにコンデンサC5の充電電圧Vw(=V)及びコンデンサC4の充電電圧Vv(=V)が加算された電圧(3V)、すなわち、W相回路10cの線間電圧Vwの3倍の電圧が出力される。
これと同時にW相回路10cの線間電圧VwによりコンデンサC6への充電が行われる。
As a result, the output voltage Vout of the full-wave rectification type voltage doubler circuit 20A includes the line voltage Vw of the W-phase circuit 10c, the charging voltage Vw (= V) of the capacitor C5, and the charging voltage Vv (= V) of the capacitor C4. The added voltage (3V), that is, a voltage that is three times the line voltage Vw of the W-phase circuit 10c is output.
At the same time, the capacitor C6 is charged by the line voltage Vw of the W-phase circuit 10c.

このようにして、全波整流型倍電圧回路20Aより出力電圧Vout(=3V)がDC−DCコンバータ30に供給される。
全波整流型倍電圧回路20Aの出力電圧VoutはDC−DCコンバータ30により電圧レベルが調整され、DC−DCコンバータ30の出力電圧は負荷RLに供給されると共に、バッテリ40は、DC−DCコンバータ30の出力電圧により充電される。
In this way, the output voltage Vout (= 3 V) is supplied to the DC-DC converter 30 from the full-wave rectification type voltage doubler circuit 20A.
The voltage level of the output voltage Vout of the full-wave rectification type voltage doubler circuit 20A is adjusted by the DC-DC converter 30, the output voltage of the DC-DC converter 30 is supplied to the load RL, and the battery 40 includes a DC-DC converter. It is charged by 30 output voltage.

本発明の第2実施形態に係る電力供給システムによれば、三相のU,V,W相の各相回路10a,10b,10cがΔ結線された三相交流発電機を用いているにもかかわらず、従来のY結線された交流発電機を使用した電力供給システムより大きい出力電圧を得ることができる。
したがって、エンジンの低回転時においても十分に高い電圧を負荷側に供給することができ、エンジンの低回転時においてもバッテリへの充電を行うことが可能となる。
The power supply system according to the second embodiment of the present invention uses a three-phase AC generator in which the three-phase U, V, and W phase circuits 10a, 10b, and 10c are Δ-connected. Regardless, it is possible to obtain an output voltage larger than that of a power supply system using a conventional Y-connected AC generator.
Therefore, a sufficiently high voltage can be supplied to the load side even when the engine is running at a low speed, and the battery can be charged even when the engine is running at a low speed.

本発明の第1実施形態に係る電力供給システムの構成を示す回路図。1 is a circuit diagram showing a configuration of a power supply system according to a first embodiment of the present invention. 図1に示した本発明の第1実施形態に係る電力供給システムの動作を示す波形図。The wave form diagram which shows the operation | movement of the electric power supply system which concerns on 1st Embodiment of this invention shown in FIG. 本発明の第2実施形態に係る電力供給システムの構成を示す回路図。The circuit diagram which shows the structure of the electric power supply system which concerns on 2nd Embodiment of this invention. 図3に示した本発明の第2実施形態に係る電力供給システムの動作を示す波形図。The wave form diagram which shows operation | movement of the electric power supply system which concerns on 2nd Embodiment of this invention shown in FIG. 従来の電力供給システムの構成を示す回路図。The circuit diagram which shows the structure of the conventional power supply system. 図5に示した従来の電力供給システムの動作を示す波形図。The wave form diagram which shows operation | movement of the conventional electric power supply system shown in FIG.

符号の説明Explanation of symbols

10、10A…三相交流発電機、20、20A…半波整流型倍電圧回路、30…DC−DCコンバータ、40…バッテリ、RL…負荷   DESCRIPTION OF SYMBOLS 10, 10A ... Three-phase alternating current generator, 20, 20A ... Half wave rectification type voltage doubler circuit, 30 ... DC-DC converter, 40 ... Battery, RL ... Load

Claims (2)

三相交流発電機により発電される電力を負荷に供給する電力供給システムであって、
三相の各相回路がΔ結線またはY結線された三相交流発電機と、
前記三相交流発電機の出力電圧を整流し、かつ倍電圧にする全波整流型倍電圧回路と、
を有し、
前記全波整流型倍電圧回路は、
前記三相交流発電機のΔ結線またはY結線の各線間出力端間に接続され、該線間出力電圧により充電される第1のコンデンサ群と、
前記全波整流型倍電圧回路の一方の出力端と前記三相交流発電機のΔ結線の各結合点との間、または記全波整流型倍電圧回路の一方の出力端と前記三相交流発電機のY結線の中性点とは反対側の各相の端子との間に接続される第2のコンデンサ群と、
前記全波整流型倍電圧回路の他方の出力端と前記第1のコンデンサ群の各コンデンサの一方の端子との間にそれぞれ接続され、前記第1のコンデンサ群の各コンデンサに充電された電荷の放電を阻止する第1のダイオード群と、
前記全波整流型倍電圧回路の一方の出力端と前記第2のコンデンサ群の各コンデンサの一方の端子との間にそれぞれ接続され、前記第2のコンデンサ群の各コンデンサに充電された電荷の放電を阻止する第2のダイオード群と、
を含んで構成されたことを特徴とする電力供給システム。
A power supply system that supplies power generated by a three-phase AC generator to a load,
A three-phase AC generator in which each of the three-phase circuits is Δ-connected or Y-connected;
A full-wave rectification type voltage doubler circuit that rectifies and doubles the output voltage of the three-phase AC generator;
Have
The full wave rectification type voltage doubler circuit is:
A first capacitor group connected between the output terminals of the Δ connection or Y connection of the three-phase AC generator and charged by the output voltage between the lines;
Between one output end of the full-wave rectification type voltage doubler circuit and each connection point of Δ connection of the three-phase AC generator, or one output end of the full-wave rectification type voltage doubler circuit and the three-phase AC A second capacitor group connected between terminals of each phase opposite to the neutral point of the Y connection of the generator;
Connected between the other output terminal of the full-wave rectifier type voltage doubler circuit and one terminal of each capacitor of the first capacitor group, the charge of each capacitor of the first capacitor group is charged. A first diode group for blocking discharge;
Connected between one output terminal of the full-wave rectifier type voltage doubler circuit and one terminal of each capacitor of the second capacitor group, the charge of each capacitor of the second capacitor group is charged. A second diode group for preventing discharge;
A power supply system comprising:
三相交流発電機により発電される電力を負荷に供給する電力供給システムであって、
三相の各相回路がΔ結線またはY結線された三相交流発電機と、
前記三相交流発電機の各線間電圧を全波整流し、かつ倍電圧にする全波整流型倍電圧回路と、
を有し、
前記全波整流型倍電圧回路は、
前記三相交流発電機のΔ結線またはY結線の各線間出力端間に接続され、該線間出力電圧により充電される第1のコンデンサ群と、
前記全波整流型倍電圧回路の一方の出力端と前記三相交流発電機のΔ結線の各結合点との間、または記全波整流型倍電圧回路の一方の出力端と前記三相交流発電機のY結線の中性点とは反対側の各相の端子との間に接続される第2のコンデンサ群と、
前記全波整流型倍電圧回路の他方の出力端と前記第1のコンデンサ群の各コンデンサの一方の端子との間にそれぞれ接続され、前記第1のコンデンサ群の各コンデンサに充電された電荷の放電を阻止する第1のダイオード群と、
前記全波整流型倍電圧回路の一方の出力端と前記第2のコンデンサ群の各コンデンサの一方の端子との間に接続され、前記第2のコンデンサ群に充電された電荷の放電を阻止する第2のダイオード群と、
を含んで構成され、
前記負荷には、該負荷に対して給電時に該負荷を含む放電経路中に含まれる前記三相交流発電機の各線間電圧出力と、前記各線間電圧出力が出力される前記三相交流発電機の各線間出力端間に接続された第1のコンデンサ群のうち該当するコンデンサの充電電圧と、前記第2のコンデンサ群のうち該当するコンデンサの充電電圧とが加算された電圧に応じた電圧が供給されることを特徴とする電力供給システム。
A power supply system that supplies power generated by a three-phase AC generator to a load,
A three-phase AC generator in which each of the three-phase circuits is Δ-connected or Y-connected;
A full-wave rectification type voltage doubler circuit that full-wave rectifies and doubles each line voltage of the three-phase AC generator;
Have
The full wave rectification type voltage doubler circuit is:
A first capacitor group connected between the output terminals of the Δ connection or Y connection of the three-phase AC generator and charged by the output voltage between the lines;
Between one output end of the full-wave rectification type voltage doubler circuit and each connection point of Δ connection of the three-phase AC generator, or one output end of the full-wave rectification type voltage doubler circuit and the three-phase AC A second capacitor group connected between terminals of each phase opposite to the neutral point of the Y connection of the generator;
Connected between the other output terminal of the full-wave rectifier type voltage doubler circuit and one terminal of each capacitor of the first capacitor group, the charge of each capacitor of the first capacitor group is charged. A first diode group for blocking discharge;
Connected between one output terminal of the full-wave rectification type voltage doubler circuit and one terminal of each capacitor of the second capacitor group, and prevents discharge of the charge charged in the second capacitor group. A second diode group;
Comprising
The load includes a line voltage output of each of the three-phase AC generators included in a discharge path including the load when power is supplied to the load, and the three-phase AC generator from which the line voltage outputs are output. The voltage according to the voltage obtained by adding the charging voltage of the corresponding capacitor among the first capacitor group connected between the output terminals of the lines and the charging voltage of the corresponding capacitor of the second capacitor group is A power supply system characterized by being supplied.
JP2008139804A 2008-05-28 2008-05-28 Power supply system Active JP5130117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008139804A JP5130117B2 (en) 2008-05-28 2008-05-28 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008139804A JP5130117B2 (en) 2008-05-28 2008-05-28 Power supply system

Publications (2)

Publication Number Publication Date
JP2009290971A true JP2009290971A (en) 2009-12-10
JP5130117B2 JP5130117B2 (en) 2013-01-30

Family

ID=41459599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008139804A Active JP5130117B2 (en) 2008-05-28 2008-05-28 Power supply system

Country Status (1)

Country Link
JP (1) JP5130117B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993721A (en) * 2015-06-25 2015-10-21 西安工程大学 Three-phase voltage tripling rectifying circuit
KR20150125487A (en) * 2014-04-30 2015-11-09 한화테크윈 주식회사 Wide range input DC power supply system using single power conversion unit in a flying machine
CN105048827A (en) * 2015-07-01 2015-11-11 国家电网公司 Voltage multiplying rectification circuit
US9948203B2 (en) 2011-10-28 2018-04-17 Mitsubishi Electric Corporation Direct-current power supply device and electric motor driving device
WO2024053197A1 (en) * 2022-09-07 2024-03-14 Ntn株式会社 Power supply device and bearing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099227B (en) * 2014-05-23 2017-12-19 广东美的暖通设备有限公司 Three-phase semiwave times voltage commutation device and motor driver and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347579A (en) * 1991-05-24 1992-12-02 Hitachi Medical Corp Rectifing circuit and inverter type x-ray device using the same
JP2001028843A (en) * 1999-05-10 2001-01-30 Toyota Motor Corp Generation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347579A (en) * 1991-05-24 1992-12-02 Hitachi Medical Corp Rectifing circuit and inverter type x-ray device using the same
JP2001028843A (en) * 1999-05-10 2001-01-30 Toyota Motor Corp Generation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9948203B2 (en) 2011-10-28 2018-04-17 Mitsubishi Electric Corporation Direct-current power supply device and electric motor driving device
KR20150125487A (en) * 2014-04-30 2015-11-09 한화테크윈 주식회사 Wide range input DC power supply system using single power conversion unit in a flying machine
CN104993721A (en) * 2015-06-25 2015-10-21 西安工程大学 Three-phase voltage tripling rectifying circuit
CN105048827A (en) * 2015-07-01 2015-11-11 国家电网公司 Voltage multiplying rectification circuit
CN105048827B (en) * 2015-07-01 2017-10-31 国家电网公司 Voltage doubling rectifing circuit
WO2024053197A1 (en) * 2022-09-07 2024-03-14 Ntn株式会社 Power supply device and bearing device

Also Published As

Publication number Publication date
JP5130117B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
US6750633B2 (en) Electrical circuit for generating a three-phase alternating current
US8541989B2 (en) Power supply apparatus
JP5130117B2 (en) Power supply system
MX2011005028A (en) Improved dc bus regulator.
JP4641823B2 (en) Rectifier circuit for power generator for distributed power supply
Valipour et al. Extended range bridgeless pfc converter with high-voltage dc bus and small inductor
JP2008274882A (en) Hybrid wind power generation system
KR20190115364A (en) Single and three phase combined charger
JP5130116B2 (en) Power supply system
JP2010022133A (en) Charger device
JP2007082317A (en) Power system
JP6642014B2 (en) Power system
JP4245369B2 (en) Rectifier circuit for power generator for distributed power supply
JP2009136106A (en) Rectifier circuit for wind power generator
JP5300427B2 (en) Rectifier circuit for power generator for distributed power supply
Foti et al. An integrated battery charger for EV applications based on an open end winding multilevel converter configuration
JP3681050B2 (en) Power supply using a magnet generator
US11283364B2 (en) Power supply and power system having a step-down circuit and an inverse-conversion circuit
JP6775455B2 (en) Rectifier circuit for distributed power generator
CN107785972A (en) A kind of control system and control method of uninterruptible power system rectifier
CN101834538A (en) Multi-input rectifying circuit for distributed power generation
JP2013021849A (en) Rectifier circuit of power generator for distributed power supply
EP4120532A1 (en) Rectifier
RU2419949C1 (en) Rectifying installation
CN117223212A (en) Creation device for creating a direct voltage busbar for a multiphase electrical system, motor vehicle comprising such a device and renewable energy generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3