JP2009287508A - Cooling water circulation system - Google Patents

Cooling water circulation system Download PDF

Info

Publication number
JP2009287508A
JP2009287508A JP2008142784A JP2008142784A JP2009287508A JP 2009287508 A JP2009287508 A JP 2009287508A JP 2008142784 A JP2008142784 A JP 2008142784A JP 2008142784 A JP2008142784 A JP 2008142784A JP 2009287508 A JP2009287508 A JP 2009287508A
Authority
JP
Japan
Prior art keywords
engine
cooling water
heat recovery
circuit
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008142784A
Other languages
Japanese (ja)
Inventor
Manabu Orihashi
学芙 渡橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008142784A priority Critical patent/JP2009287508A/en
Publication of JP2009287508A publication Critical patent/JP2009287508A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling water circulation system which does not hinder cooling performance. <P>SOLUTION: If an outside air temperature is not higher than a preset temperature, a first exhaust heat recovery circuit C1 is selected as a circulation circuit, in which a cooling water whose temperature is raised by heat recovered from exhaust gas of an engine E using an exhaust heat recovery unit 5 is flown into the engine E via a hydraulic oil heat exchanger 6 and is circulated. Meanwhile, if the outside air temperature is higher than the preset temperature, a second exhaust heat recovery circuit C2 is selected as the circulation circuit, in which the cooling water whose temperature is raised by heat recovered from exhaust gas of the engine E using the exhaust heat recovery unit 5 is flown into the engine E, but not via the hydraulic oil heat exchanger 6, and is circulated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エンジンと、作動油にて浸潤された状態において作動する変速機とを備えた自動車に適用される冷却水循環装置に関する。   The present invention relates to a cooling water circulation device applied to an automobile including an engine and a transmission that operates in a state infiltrated with hydraulic oil.

一般に、エンジン冷温始動時の変速機における摩擦損失を回避するためには、エンジンの始動後、可及的速やかに変速機の作動油が少なくとも冷温状態を脱していることが重要であるとされている。   Generally, in order to avoid friction loss in the transmission at the time of engine cold start, it is important that the hydraulic fluid of the transmission is at least out of the cold state as soon as possible after engine start. Yes.

そこで、特許文献1では、エンジン冷温始動時の変速機の摩擦損失をより効果的に低減する技術が提案されている。   Therefore, Patent Document 1 proposes a technique for more effectively reducing the friction loss of the transmission at the time of engine cold start.

具体的には、特許文献1には、変速機内の作動油温度が作動油貯槽内の作動油温度より所定の温度差だけ低い温度以上に上昇したか否かに応じて、排気熱を回収して加熱した作動油を変速機に供給するか、又はバイパスさせるかを決定する旨が開示されている。
特開2004−176877号公報
Specifically, Patent Document 1 discloses that exhaust heat is recovered depending on whether the hydraulic oil temperature in the transmission has risen above a temperature that is lower than the hydraulic oil temperature in the hydraulic oil storage tank by a predetermined temperature difference. It is disclosed to determine whether to supply the heated hydraulic fluid to the transmission or to bypass the transmission.
JP 2004-176877 A

ところで、エンジンと、作動油にて浸潤された状態において作動する変速機とを備えた自動車の冷却水循環装置において、排気回収器の下流側に作動油用熱交換器がある場合には、例えば、冬場等のように、外気温度が低い場合には、変速機の暖機による燃費向上やヒータ性能の向上が見込めるが、例えば、夏場等のように、外気温度が高い場合には、排気熱を回収した熱い冷却水が作動油用熱交換器に流入するので、その冷却性能に背反してしまう。   By the way, in the cooling water circulation device of an automobile provided with an engine and a transmission that operates in a state infiltrated with hydraulic oil, when there is a hydraulic oil heat exchanger on the downstream side of the exhaust collector, for example, When the outside air temperature is low, such as in winter, the fuel economy and heater performance can be improved by warming up the transmission.For example, when the outside air temperature is high, such as in summer, the exhaust heat is reduced. Since the recovered hot cooling water flows into the hydraulic oil heat exchanger, the cooling performance is contradictory.

そこで、外気温度が設定温度以下のときには、作動油用熱交換器を温め、外気温度が設定温度よりも高いときには、作動油用熱交換器を積極的に冷やすように、排熱回収器でエンジンの排気ガスから回収した熱によって水温を高めた冷却水の循環回路の切り替えが必要とされる。   Therefore, when the outside air temperature is lower than the set temperature, the heat oil heat exchanger is warmed. When the outside air temperature is higher than the set temperature, the exhaust heat recovery unit is used to actively cool the heat oil heat exchanger. It is necessary to switch the circulation circuit of the cooling water whose temperature is increased by the heat recovered from the exhaust gas.

ところが、上記特許文献1に記載の技術では、上記の事柄に関して一切考慮されてはいないのが実情である。   However, in the technique described in Patent Document 1, the fact is that no consideration is given to the above matters.

本発明は、上記実情に鑑みなされたもので、冷却性能に背反することのない冷却水循環装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a cooling water circulation device that does not contradict the cooling performance.

上記目的を達成するため、本発明に係る冷却水循環装置は、エンジンと、作動油にて浸潤された状態において作動する変速機とを備えた自動車に適用される冷却水循環装置であって、排熱回収器でエンジンの排気ガスから回収した熱によって水温を高めた冷却水の循環に関して、作動油用熱交換器を経由させてエンジンに流入させ循環させるための第1の排気熱回収回路と、作動油用熱交換器を経由させずにエンジンに流入させ循環させるための第2の排気熱回収回路との2系統を有し、外気温度が第1の設定温度以下のときには、循環回路として上記第1の排気熱回収回路が選択され、外気温度が第1の設定温度よりも高いときには、循環回路として上記第2の排気熱回収回路が選択されるように、循環回路を切り替えるための切替手段とを含む。   In order to achieve the above object, a cooling water circulation device according to the present invention is a cooling water circulation device applied to an automobile including an engine and a transmission that operates in a state infiltrated with hydraulic oil, A first exhaust heat recovery circuit for circulating the cooling water whose temperature has been increased by heat recovered from the exhaust gas of the engine with the recovery unit, and flowing into the engine via the hydraulic oil heat exchanger, and operation When the outside air temperature is equal to or lower than the first set temperature, there are two systems including a second exhaust heat recovery circuit for flowing into the engine and circulating without passing through the oil heat exchanger. Switching means for switching the circulation circuit so that when the one exhaust heat recovery circuit is selected and the outside air temperature is higher than the first set temperature, the second exhaust heat recovery circuit is selected as the circulation circuit; Including.

上記構成において、外気温度が第1の設定温度以下の場合には、循環回路として、排熱回収器でエンジンの排気ガスから回収した熱によって水温を高めた冷却水を、作動油用熱交換器を経由させてエンジンに流入させ循環させる、第1の排気熱回収回路が選択される。一方、外気温度が第1の設定温度よりも高い場合には、循環回路として、排熱回収器でエンジンの排気ガスから回収した熱によって水温を高めた冷却水を、作動油用熱交換器を経由させずにエンジンに流入させ循環させる、第2の排気熱回収回路が選択される。そのため、例えば、冬場においてには作動油用熱交換器を温め、例えば、夏場においては、排気熱を回収した熱い冷却水が作動油用熱交換器に流入するのを防ぐことができ、作動油用熱交換器を積極的に冷やすことができる。   In the above configuration, when the outside air temperature is equal to or lower than the first set temperature, a cooling water whose temperature is increased by heat recovered from the exhaust gas of the engine by the exhaust heat recovery device is used as a circulation circuit as a heat exchanger for hydraulic oil A first exhaust heat recovery circuit is selected that flows into and circulates through the engine. On the other hand, when the outside air temperature is higher than the first set temperature, cooling water whose temperature is increased by heat recovered from the exhaust gas of the engine by the exhaust heat recovery device is used as a circulation circuit, and a heat exchanger for hydraulic oil is used. A second exhaust heat recovery circuit is selected that flows into the engine and circulates it without going through it. Therefore, for example, in the winter season, the hydraulic oil heat exchanger can be warmed, and in the summer season, for example, hot cooling water from which exhaust heat has been recovered can be prevented from flowing into the hydraulic oil heat exchanger. The heat exchanger can be actively cooled.

また、上記冷却水循環装置は、エンジンから流出した冷却水を、排熱回収器を経由させずに作動油用熱交換器に直接導いてエンジンに流入させ循環させるための作動油冷却回路をさらに含み、上記切替手段は、外気温度が第1の設定温度よりも高く且つエンジン内の水温が作動油の限界温度を考慮した第2の設定温度に達したときには、循環回路として、上記第2の排気熱回収回路に加えて上記作動油冷却回路が選択されるようにするための手段を含む。   Further, the cooling water circulation device further includes a hydraulic oil cooling circuit for directing the cooling water flowing out from the engine to the hydraulic oil heat exchanger without passing through the exhaust heat recovery unit, and circulating the cooling water into the engine. When the outside air temperature is higher than the first set temperature and the water temperature in the engine reaches the second set temperature in consideration of the limit temperature of the hydraulic oil, the switching means serves as the second exhaust gas as a circulation circuit. Means for allowing the hydraulic fluid cooling circuit to be selected in addition to the heat recovery circuit.

上記構成において、外気温度が第1の設定温度よりも高く且つエンジン内の水温が作動油の限界温度を考慮した第2の設定温度に達した場合には、循環回路として、上記第2の排気熱回収回路に加えて、エンジンから流出した冷却水を、排熱回収器を経由させずに作動油用熱交換器に直接導いてエンジンに流入させ循環させる、作動油冷却回路が選択される。したがって、例えば、夏場において高負荷運転が続いた場合でも、作動油用熱交換器をより積極的に冷やすことができる。   In the above configuration, when the outside air temperature is higher than the first set temperature and the water temperature in the engine reaches the second set temperature considering the limit temperature of the hydraulic oil, the second exhaust is used as a circulation circuit. In addition to the heat recovery circuit, a hydraulic oil cooling circuit is selected in which the cooling water flowing out from the engine is directly led to the hydraulic oil heat exchanger without passing through the exhaust heat recovery device, and flows into the engine for circulation. Therefore, for example, even when high load operation continues in summer, the hydraulic oil heat exchanger can be cooled more actively.

本発明によると、夏場のように外気温度が高いときには、作動油用熱交換器を積極的に冷やすように、排熱回収器でエンジンの排気ガスから回収した熱によって水温を高めた冷却水の循環回路を切り替えることが可能となる。その結果、冷却水循環装置の冷却性能に背反することがなくなる。   According to the present invention, when the outside air temperature is high as in summer, the cooling water whose water temperature is increased by the heat recovered from the exhaust gas of the engine by the exhaust heat recovery unit so as to actively cool the heat exchanger for hydraulic oil. The circulation circuit can be switched. As a result, there is no contradiction to the cooling performance of the cooling water circulation device.

以下、本発明の実施の形態を添付図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

<全体構成>
図1は本発明の実施の形態に係る冷却水循環装置の冷却水の循環系統を簡略化して示す回路図である。
<Overall configuration>
FIG. 1 is a circuit diagram schematically showing a cooling water circulation system of a cooling water circulation apparatus according to an embodiment of the present invention.

図1を参照して、本実施の形態に係る冷却水循環装置は、エンジンEと、作動油にて浸潤された状態において作動する変速機(図示せず。)とを備えた自動車に適用されるものであって、ラジエータ1、サーモスタット2、ウォータポンプ3、ヒータコア4、排熱回収器5、作動油用熱交換器6、並びにこれら各機器1,2,3,4,5,6を接続する配管及びホースH1,H2,H3,H4,H5,H6,H7,H8,H9,H10を含む。なお、作動油用熱交換器6としては、CVT(Continuously Variable Transmission)ウォーマやATF(Automatic Transmission Field)ウォーマ等が採用される。   Referring to FIG. 1, the cooling water circulation device according to the present embodiment is applied to an automobile provided with engine E and a transmission (not shown) that operates in a state infiltrated with hydraulic oil. A radiator 1, a thermostat 2, a water pump 3, a heater core 4, a waste heat recovery device 5, a hydraulic oil heat exchanger 6, and these devices 1, 2, 3, 4, 5 and 6. Includes piping and hoses H1, H2, H3, H4, H5, H6, H7, H8, H9, H10. In addition, as the heat exchanger 6 for hydraulic fluid, CVT (Continuously Variable Transmission) warmer, ATF (Automatic Transmission Field) warmer, etc. are employ | adopted.

具体的には、ラジエータ1のロアタンク11とサーモスタット2とは、ロアホースH1によって接続されている。   Specifically, the lower tank 11 and the thermostat 2 of the radiator 1 are connected by a lower hose H1.

ウォータポンプ3の吐出口は、エンジンEのウォータジャケットに連通している。このウォータジャケットでは、ウォータポンプ3からの冷却水がシリンダブロック側のウォータジャケットを経た後、シリンダヘッド側のウォータジャケットに導入され、その後、取り出し管H2によってエンジンEから取り出される。   The discharge port of the water pump 3 communicates with the water jacket of the engine E. In this water jacket, the coolant from the water pump 3 passes through the water jacket on the cylinder block side, is introduced into the water jacket on the cylinder head side, and is then taken out from the engine E by the take-out pipe H2.

取り出し管H2は、ラジエータ1側及びヒータコア4側に分岐されている。この取り出し管H1の一方は、第1のホースH3を介してヒータコア4に接続され、他方は、アッパホースH4を介してラジエータ1のアッパタンク12に接続されている。   The take-out pipe H2 is branched to the radiator 1 side and the heater core 4 side. One of the take-out pipes H1 is connected to the heater core 4 via the first hose H3, and the other is connected to the upper tank 12 of the radiator 1 via the upper hose H4.

ヒータコア4と排熱回収器5の流入側とは、第2のホースH5によって接続されている。   The heater core 4 and the inflow side of the exhaust heat recovery device 5 are connected by a second hose H5.

排熱回収器5の流出側は、第3のホースH6を介して4方弁7のAポートに接続されている。一方、作動油用熱交換器6の流入側は、第4のホースH7を介して4方弁7のBポートに接続されている。   The outflow side of the exhaust heat recovery device 5 is connected to the A port of the four-way valve 7 via a third hose H6. On the other hand, the inflow side of the hydraulic oil heat exchanger 6 is connected to the B port of the four-way valve 7 via a fourth hose H7.

作動油用熱交換器6の流出側とウォータポンプ3の吸入側とは、第5のホースH8によって接続されている。   The outflow side of the hydraulic oil heat exchanger 6 and the suction side of the water pump 3 are connected by a fifth hose H8.

また、上記4方弁7のCポートと第5のホースH8の途中部との間には、作動油用熱交換器6をバイパスする第6のホースH9が介装されている。加えて、上記4方弁7のDポートと第1のホースH3の途中部との間には、ヒータコア4及び排熱回収器5をバイパスする第7のホースH10が介装されている。この第7のホースH10の途中部には、2方弁8が設けられている。   Further, a sixth hose H9 that bypasses the hydraulic oil heat exchanger 6 is interposed between the C port of the four-way valve 7 and the middle portion of the fifth hose H8. In addition, a seventh hose H10 that bypasses the heater core 4 and the exhaust heat recovery device 5 is interposed between the D port of the four-way valve 7 and the middle portion of the first hose H3. A two-way valve 8 is provided in the middle of the seventh hose H10.

すなわち、本冷却水循環装置は、排熱回収器5でエンジンEの排気ガスから回収した熱によって水温を高めた冷却水の循環に関して、第1のホースH3、第2のホースH5、第3のホースH6、第4のホースH7及び第5のホースH8で構成されており、作動油用熱交換器6を経由させてエンジンEに流入させ循環させるための第1の排気熱回収回路C1と、第1のホースH3、第2のホースH5、第3のホースH6、第6のホースH9及び第5のホースH8で構成されており、作動油用熱交換器6を経由させずにエンジンEに流入させ循環させるための第2の排気熱回収回路C2との2系統を有している。さらに、本冷却水循環装置では、第1のホースH3、第7のホースH10及び第5のホースH8で構成されており、エンジンEから流出した冷却水を、排熱回収器5を経由させずに作動油用熱交換器6に直接導いてエンジンEに流入させ循環させるための作動油冷却回路C3が備えられている。   In other words, the present cooling water circulation device has the first hose H3, the second hose H5, and the third hose with respect to the circulation of the cooling water whose water temperature is increased by the heat recovered from the exhaust gas of the engine E by the exhaust heat recovery device 5. H6, a fourth hose H7, and a fifth hose H8, a first exhaust heat recovery circuit C1 for flowing into the engine E through the heat exchanger 6 for hydraulic oil and circulating, 1 hose H3, 2nd hose H5, 3rd hose H6, 6th hose H9 and 5th hose H8, which flows into engine E without going through hydraulic oil heat exchanger 6 And a second exhaust heat recovery circuit C2 for circulation. Furthermore, in this cooling water circulation device, it is composed of the first hose H3, the seventh hose H10 and the fifth hose H8, and the cooling water flowing out from the engine E is not passed through the exhaust heat recovery device 5. A hydraulic fluid cooling circuit C3 is provided for directing the hydraulic fluid to the hydraulic fluid heat exchanger 6 so as to flow into the engine E for circulation.

<排熱回収器5の構成>
図2は排熱回収器5の内部構造を示し、排気ガスの流通方向に沿って切断した縦断面図である。また、図3は図2(a)においてIII−III線に対応した位置における断面図である。
<Configuration of exhaust heat recovery unit 5>
FIG. 2 is a longitudinal sectional view showing the internal structure of the exhaust heat recovery device 5 and cut along the flow direction of the exhaust gas. FIG. 3 is a cross-sectional view at a position corresponding to the line III-III in FIG.

図2及び図3を参照して、上記排熱回収器5は、略円筒形状の部材であって、その外周側に配設された排熱回収部5Aと、排熱回収部5Aよりも内周側に配設された消音部5Bとを備え、これらが一体形成された構成となっている。   Referring to FIGS. 2 and 3, the exhaust heat recovery unit 5 is a substantially cylindrical member, and includes an exhaust heat recovery unit 5A disposed on the outer peripheral side of the exhaust heat recovery unit 5A and an exhaust heat recovery unit 5A. It is provided with a silencer 5B disposed on the peripheral side, and these are integrally formed.

具体的には、排熱回収器5は、外筒部材51、中間筒部材52、内筒部材53の3つの部材により略三重管構造で構成されている。そして、外筒部材51と中間筒部材52との間の空間において上記排熱回収部5Aが構成されていると共に、内筒部材53によって上記消音部5Bが構成されている。   Specifically, the exhaust heat recovery device 5 has a substantially triple-pipe structure including three members, an outer cylinder member 51, an intermediate cylinder member 52, and an inner cylinder member 53. And in the space between the outer cylinder member 51 and the intermediate cylinder member 52, the said exhaust heat recovery part 5A is comprised, and the said silencer part 5B is comprised by the inner cylinder member 53. As shown in FIG.

外筒部材51は、排気ガス流通方向の中央部分が、比較的大径の円筒形状で成る本体部51aとなっている一方、排気ガス流通方向の両端部が、それぞれ排気管7に接続する導入側接続管部51b及び排出側接続管部51cとして形成されている。つまり、エンジンEから排出されて排気管7を流れてきた排気ガスは導入側接続管部51bより排熱回収器5内に導入され、排熱回収動作及び消音動作を経た後、排出側接続管部51cから排気管7の下流側に向けて排出されることになる。   In the outer cylinder member 51, the central portion in the exhaust gas flow direction is a main body 51a having a relatively large diameter cylindrical shape, while both end portions in the exhaust gas flow direction are connected to the exhaust pipe 7 respectively. The side connection pipe part 51b and the discharge side connection pipe part 51c are formed. That is, the exhaust gas discharged from the engine E and flowing through the exhaust pipe 7 is introduced into the exhaust heat recovery unit 5 from the introduction side connection pipe portion 51b, and after passing through the exhaust heat recovery operation and the silencing operation, the exhaust side connection pipe The gas is discharged from the portion 51c toward the downstream side of the exhaust pipe 7.

中間筒部材52は、円筒形状の部材であり、その外周面と上記外筒部材51の本体部51aの内周面との間に排熱回収空間(ガス流路)54を形成している。そして、この中間筒部材52には、一端が上記の第2のホースH5に、他端が上記の第3のホースH6にそれぞれ接続する螺旋配管55が巻き付けられている。この螺旋配管55は、両端が上記外筒部材51の本体部51aを貫通して排熱回収空間54に配置されていると共に、排熱回収空間54の内部にあっては外筒部材51の本体部51aの内周面との間に所定間隔を存するように配設されている。つまり、この螺旋配管55の管体の外径寸法は排熱回収空間54の高さ寸法よりも僅かに小さく設定されている。このため、排熱回収部5Aを排気ガスが流れる際には、この螺旋配管55よりも外周側(外筒部材51の内周面側)の空間(排熱回収空間54)を流れる排気ガスと螺旋配管55の内部を流れる冷却水との間で熱交換が行われ、排気ガスの熱が冷却水に与えられて排気ガスの温度が低下すると共に冷却水の温度が上昇することになる。また、この螺旋配管55は、中間筒部材52における排気ガス流通方向の一端から他端に亘って配設されており、その内部における冷却水の流通方向としては、排熱回収器5の排気ガス導入側が冷却水の入口側であり、排熱回収器5の排気ガス排出側が冷却水の出口側となるように、上記の第2のホースH5及び第3のホースH6が接続されている。   The intermediate cylinder member 52 is a cylindrical member, and an exhaust heat recovery space (gas flow path) 54 is formed between the outer peripheral surface thereof and the inner peripheral surface of the main body 51 a of the outer cylinder member 51. The intermediate tube member 52 is wound with a spiral pipe 55 having one end connected to the second hose H5 and the other end connected to the third hose H6. Both ends of the spiral pipe 55 pass through the main body 51 a of the outer cylinder member 51 and are disposed in the exhaust heat recovery space 54, and within the exhaust heat recovery space 54, the main body of the outer cylinder member 51. It is arrange | positioned so that a predetermined space | interval may exist between the internal peripheral surfaces of the part 51a. In other words, the outer diameter of the spiral pipe 55 is set slightly smaller than the height of the exhaust heat recovery space 54. For this reason, when the exhaust gas flows through the exhaust heat recovery section 5A, the exhaust gas flowing in the space (exhaust heat recovery space 54) on the outer peripheral side (the inner peripheral surface side of the outer cylinder member 51) than the spiral pipe 55 Heat exchange is performed with the cooling water flowing inside the spiral pipe 55, the heat of the exhaust gas is given to the cooling water, the temperature of the exhaust gas is lowered, and the temperature of the cooling water is raised. The spiral pipe 55 is disposed from one end to the other end of the intermediate cylinder member 52 in the exhaust gas flow direction. The flow direction of the cooling water in the intermediate pipe member 52 is the exhaust gas of the exhaust heat recovery unit 5. The second hose H5 and the third hose H6 are connected so that the introduction side is the cooling water inlet side and the exhaust gas discharge side of the exhaust heat recovery unit 5 is the cooling water outlet side.

内筒部材53は、上記中間筒部材52の内周面に取り付けられた筒体で成り、排気ガス流通方向の上流側から小断面通路部56及び大断面通路部57が順に形成されている。小断面通路部56は内部の通路断面積が上記排気管7の通路断面積よりも僅かに小径であって、その軸心方向の長さ寸法は内筒部材53の全長の約1/4程度に設定されている。そして、この小断面通路部56の排気ガス流通方向の上流端が消音部5Bの排気ガス流入口56aとして形成されている。一方、大断面通路部57は内部の通路断面積が上記小断面通路部56の通路断面積及び排気管7の通路断面積よりも大径であって、その軸心方向の長さ寸法は内筒部材53の全長の約3/4程度に設定されている。そして、この大断面通路部57の排気ガス流通方向の下流端が消音部5Bの排気ガス流出口57aとして形成されている。このようにして小断面通路部56及び大断面通路部57が形成されているため、この小断面通路部56と大断面通路部57との境界部分には段部Aが形成され、小断面通路部56から大断面通路部57に亘って流路が拡張されている。   The inner cylinder member 53 is formed by a cylinder attached to the inner peripheral surface of the intermediate cylinder member 52, and a small cross-section passage portion 56 and a large cross-section passage portion 57 are sequentially formed from the upstream side in the exhaust gas flow direction. The small cross-section passage portion 56 has an inner passage cross-sectional area slightly smaller than the passage cross-sectional area of the exhaust pipe 7, and its axial length is about ¼ of the total length of the inner cylinder member 53. Is set to The upstream end of the small cross-section passage portion 56 in the exhaust gas flow direction is formed as the exhaust gas inlet 56a of the silencer 5B. On the other hand, the large cross-section passage portion 57 has an inner passage cross-sectional area larger in diameter than the passage cross-sectional area of the small cross-section passage portion 56 and the passage cross-sectional area of the exhaust pipe 7. It is set to about 3/4 of the total length of the cylindrical member 53. The downstream end of the large cross-section passage portion 57 in the exhaust gas flow direction is formed as an exhaust gas outlet 57a of the silencer 5B. Since the small cross-section passage portion 56 and the large cross-section passage portion 57 are formed in this way, a step A is formed at the boundary portion between the small cross-section passage portion 56 and the large cross-section passage portion 57, and the small cross-section passage portion is formed. The flow path is extended from the portion 56 to the large cross-sectional passage portion 57.

そして、上記大断面通路部57には、排気ガス流出口57aを開閉可能とする開閉弁58が備えられている。この開閉弁58は、排気ガス流出口57aの開口形状に略一致する円板形状で成り、上記中間筒部材52の内周面の上端部分に取り付けられた回動軸58aに支持されて水平軸回りに回動し、排気ガス流出口57aを開閉可能としている。また、この回動軸58aにはスプリングが巻き付けられており、このスプリングの付勢力によって開閉弁58は排気ガス流出口57aを閉鎖する方向への付勢力が付与されている。したがって、この開閉弁58によって排気ガス流出口57aが閉鎖されている状態では、内筒部材53の内部空間は一方側(排気ガス流通方向の上流側)のみが開放された空間となり、開閉弁58によって排気ガス流出口57aが開放されている状態では、内筒部材53の内部空間は上流側及び下流側共に開放された空間となる。   The large cross-section passage portion 57 is provided with an on-off valve 58 that can open and close the exhaust gas outlet 57a. The on-off valve 58 has a disk shape that substantially matches the opening shape of the exhaust gas outlet 57a, and is supported by a rotating shaft 58a attached to the upper end portion of the inner peripheral surface of the intermediate cylinder member 52 to be a horizontal axis. The exhaust gas outlet 57a can be opened and closed by rotating around. Further, a spring is wound around the rotating shaft 58a, and the urging force of the spring in the direction of closing the exhaust gas outlet 57a is applied to the on-off valve 58 by the urging force of the spring. Therefore, in a state where the exhaust gas outlet 57a is closed by the on-off valve 58, the inner space of the inner cylinder member 53 is a space where only one side (upstream side in the exhaust gas flow direction) is opened. In the state where the exhaust gas outlet 57a is opened, the internal space of the inner cylinder member 53 is a space opened on both the upstream side and the downstream side.

<電気的構成>
図4は冷却水循環装置の電気的構成を示すブロック図である。
<Electrical configuration>
FIG. 4 is a block diagram showing an electrical configuration of the cooling water circulation device.

図4を参照して、本冷却水循環装置は、ECU(Electronic Control Unit)100を含む。このECU100は、冷却水循環装置の制御中枢を司るものであって、CPU、ROM及びRAM等で構成される。ECU100には、外気温センサ101及び水温センサ102の各検出信号が与えられる。これら各検出信号に基づいて、ECU100は、上記の4方弁7及び2方弁8を制御する。   Referring to FIG. 4, the cooling water circulation device includes an ECU (Electronic Control Unit) 100. The ECU 100 serves as a control center of the cooling water circulation device, and includes a CPU, a ROM, a RAM, and the like. The ECU 100 is provided with detection signals from the outside air temperature sensor 101 and the water temperature sensor 102. Based on these detection signals, the ECU 100 controls the four-way valve 7 and the two-way valve 8 described above.

水温センサ102は、エンジンE内の水温を検出するためのセンサであって、図1に示すように、エンジンEのウォータジャケットに臨ませてある。   The water temperature sensor 102 is a sensor for detecting the water temperature in the engine E, and faces the water jacket of the engine E as shown in FIG.

<動作>
図5〜図7を参照して、本冷却水循環装置の動作について説明する。
<Operation>
With reference to FIGS. 5-7, operation | movement of this cooling water circulation apparatus is demonstrated.

外気温センサ101からの検出信号に基づき外気温度が第1の設定温度TH1(例えば、30℃)以下であると判断すると、ECU100は、図5に示すように、2方弁8を閉状態とすると共に4方弁7のA−Bポートを連通させることによって、循環回路として、第1の排気熱回収回路C1を選択する。そうすると、冷却水は、第1のホースH3、第2のホースH5、第3のホースH6、第4のホースH7及び第5のホースH8の順で流れる。そのため、排熱回収器5でエンジンEの排気ガスから回収した熱によって水温を高めた冷却水は、作動油用熱交換器6を経由してエンジンEに流入し、第1の排気熱回収回路C1を循環する。   If the ECU 100 determines that the outside air temperature is equal to or lower than the first set temperature TH1 (for example, 30 ° C.) based on the detection signal from the outside air temperature sensor 101, the ECU 100 opens the two-way valve 8 as shown in FIG. In addition, the first exhaust heat recovery circuit C1 is selected as a circulation circuit by communicating the AB port of the four-way valve 7. Then, the cooling water flows in the order of the first hose H3, the second hose H5, the third hose H6, the fourth hose H7, and the fifth hose H8. Therefore, the cooling water whose water temperature has been increased by the heat recovered from the exhaust gas of the engine E by the exhaust heat recovery device 5 flows into the engine E via the hydraulic oil heat exchanger 6, and the first exhaust heat recovery circuit Circulate C1.

これに対して、外気温センサ101からの検出信号に基づき外気温度が第1の設定温度TH1よりも高いと判断すると、ECU100は、図6に示すように、2方弁8の閉状態を維持させたまま4方弁7の連通ポートをA−BポートからA−Cポートに切り替えることによって、循環回路として、第2の排気熱回収回路C2を選択する。そうすると、冷却水は、第1のホースH3、第2のホースH5、第3のホースH6、第6のホースH9及び第5のホースH8の順で流れる。そのため、排熱回収器5でエンジンEの排気ガスから回収した熱によって水温を高めた冷却水は、作動油用熱交換器6を経由せずにエンジンEに流入し、第2の排気熱回収回路C2を循環する。   On the other hand, if the ECU 100 determines that the outside air temperature is higher than the first set temperature TH1 based on the detection signal from the outside air temperature sensor 101, the ECU 100 maintains the closed state of the two-way valve 8 as shown in FIG. The second exhaust heat recovery circuit C2 is selected as a circulation circuit by switching the communication port of the four-way valve 7 from the A-B port to the AC port while the state is kept. Then, the cooling water flows in the order of the first hose H3, the second hose H5, the third hose H6, the sixth hose H9, and the fifth hose H8. Therefore, the cooling water whose water temperature has been raised by the heat recovered from the exhaust gas of the engine E by the exhaust heat recovery device 5 flows into the engine E without passing through the hydraulic oil heat exchanger 6, and the second exhaust heat recovery Circuit C2 is circulated.

この図6に示す状態で高負荷運転が続くと、エンジンE内の水温ETHWが上昇する。そこで、水温センサ102からの検出信号に基づきエンジンE内の水温ETHWが作動油の限界温度を考慮した第2の設定温度TH2(例えば、125℃)に達したと判断すると、ECU100は、2方弁8を開状態とすると共に新たに4方弁7のB−Dポートも連通させることによって、循環回路として、上記第2の排気熱回収回路C2に加えて作動油冷却回路C3を選択する。そうすると、エンジンEから流出した冷却水は、第1のホースH3、第7のホースH10及び第5のホースH8の順で流れるため、排熱回収器5を経由せずに作動油用熱交換器6に直接導かれてエンジンEに流入し、作動油冷却回路C3を循環する。 When the high load operation continues in the state shown in FIG. 6, the water temperature E THW in the engine E rises. Therefore, when it is determined that the water temperature E THW in the engine E has reached the second set temperature TH2 (for example, 125 ° C.) considering the limit temperature of the hydraulic oil based on the detection signal from the water temperature sensor 102, the ECU 100 The hydraulic oil cooling circuit C3 is selected in addition to the second exhaust heat recovery circuit C2 as a circulation circuit by opening the direction valve 8 and newly communicating with the BD port of the four-way valve 7. . Then, the cooling water flowing out from the engine E flows in the order of the first hose H3, the seventh hose H10, and the fifth hose H8. 6 is led directly into the engine E and circulates in the hydraulic oil cooling circuit C3.

<作用・効果>
本実施の形態によると、以下の作用・効果を奏する。
<Action and effect>
According to the present embodiment, the following operations and effects are achieved.

(1)外気温度が第1の設定温度TH1以下の場合には、循環回路として、排熱回収器5でエンジンEの排気ガスから回収した熱によって水温を高めた冷却水を、作動油用熱交換器6を経由させてエンジンEに流入させ循環させる、第1の排気熱回収回路C1が選択される。一方、外気温度が第1の設定温度TH1よりも高い場合には、循環回路として、排熱回収器5でエンジンEの排気ガスから回収した熱によって水温を高めた冷却水を、作動油用熱交換器6を経由させずにエンジンEに流入させ循環させる、第2の排気熱回収回路C2が選択される。そのため、例えば、冬場においては作動油用熱交換器6を温め、例えば、夏場においては、排気熱を回収した熱い冷却水が作動油用熱交換器6に流入するのを防ぐことができ、作動油用熱交換器6を積極的に冷やすことができる。   (1) When the outside air temperature is equal to or lower than the first set temperature TH1, as the circulation circuit, the cooling water whose temperature is raised by the heat recovered from the exhaust gas of the engine E by the exhaust heat recovery device 5 is used as the heat for hydraulic oil. A first exhaust heat recovery circuit C1 is selected that flows into the engine E through the exchanger 6 and circulates it. On the other hand, when the outside air temperature is higher than the first set temperature TH1, the cooling water whose temperature has been raised by the heat recovered from the exhaust gas of the engine E by the exhaust heat recovery device 5 is used as the hydraulic oil heat as a circulation circuit. A second exhaust heat recovery circuit C2 is selected that flows into the engine E and circulates it without passing through the exchanger 6. Therefore, for example, in the winter season, the hydraulic oil heat exchanger 6 can be warmed, and in the summer season, for example, hot cooling water from which exhaust heat has been recovered can be prevented from flowing into the hydraulic oil heat exchanger 6. The oil heat exchanger 6 can be actively cooled.

(2)外気温度が第1の設定温度TH1よりも高く且つエンジンE内の水温ETHWが作動油の限界温度を考慮した第2の設定温度TH2(>TH1)に達した場合には、循環回路として、上記第2の排気熱回収回路C2に加えて、エンジンEから流出した冷却水を、排熱回収器5を経由させずに作動油用熱交換器6に直接導いてエンジンEに流入させ循環させる、作動油冷却回路C3が選択される。したがって、例えば、夏場において高負荷運転が続いて場合でも、作動油用熱交換器をより積極的に冷やすことができる。 (2) When the outside air temperature is higher than the first set temperature TH1 and the water temperature E THW in the engine E reaches the second set temperature TH2 (> TH1) considering the limit temperature of the hydraulic oil, circulation As a circuit, in addition to the second exhaust heat recovery circuit C2, the cooling water flowing out from the engine E is directly led to the hydraulic oil heat exchanger 6 without passing through the exhaust heat recovery unit 5 and flows into the engine E. The hydraulic oil cooling circuit C3 to be circulated is selected. Therefore, for example, even when a high load operation continues in summer, the hydraulic oil heat exchanger can be cooled more positively.

以上の結果、本冷却水循環装置では、その冷却性能に背反することはない。   As a result, the present cooling water circulation device does not contradict its cooling performance.

なお、本発明は上記実施の形態に限定されるものではない。例えば、上記実施の形態においては、本発明をCVT車やAT車に適用した例について記載した。しかし、本発明は、そのような構成には限定されない。本発明をマニュアル車に適用しても、本発明の目的は十分に達成し得る。その他、本明細書に添付の特許請求の範囲内での種々の設計変更及び修正を加え得ることは勿論である。   The present invention is not limited to the above embodiment. For example, in the above-described embodiment, an example in which the present invention is applied to a CVT vehicle or an AT vehicle has been described. However, the present invention is not limited to such a configuration. Even if the present invention is applied to a manual vehicle, the object of the present invention can be sufficiently achieved. It goes without saying that various design changes and modifications can be made within the scope of the claims attached to this specification.

本発明の実施の形態に係る冷却水循環装置の冷却水の循環系統を簡略化して示す回路図である。It is a circuit diagram which simplifies and shows the circulating system of the cooling water of the cooling water circulating apparatus which concerns on embodiment of this invention. 排熱回収器の内部構造を示す断面図であって、(a)は開閉弁の閉鎖状態を示し、(b)は開閉弁の解放状態を示す。It is sectional drawing which shows the internal structure of a waste heat recovery device, Comprising: (a) shows the closed state of an on-off valve, (b) shows the open state of an on-off valve. 図2(a)においてIII−III線に対応した位置における断面図である。It is sectional drawing in the position corresponding to the III-III line in Fig.2 (a). 冷却水循環装置の電気的構成を示すブロック図である。It is a block diagram which shows the electrical structure of a cooling water circulation apparatus. 外気温度が第1の設定温度以下のときの冷却水循環経路を示す図である。It is a figure which shows a cooling water circulation path when outside temperature is below 1st preset temperature. 外気温度が第1の設定温度以上のときの冷却水循環経路を示す図である。It is a figure which shows a cooling water circulation path when outside temperature is more than 1st setting temperature. 外気温度が第1の設定温度以上であり且つエンジン内の水温が作動油の限界温度を考慮した第2の設定温度に達した場合の冷却水循環経路を示す図である。It is a figure which shows a cooling water circulation path | route when outside temperature is more than 1st preset temperature and the water temperature in an engine has reached 2nd preset temperature in consideration of the limit temperature of hydraulic oil.

符号の説明Explanation of symbols

E エンジン
5 排熱回収器
6 作動油用熱交換器
7 4方弁
8 2方弁
100 ECU
101 外気温センサ
102 水温センサ
H1〜H10 配管及びホース
E Engine 5 Waste heat recovery device 6 Hydraulic oil heat exchanger 7 4-way valve 8 2-way valve 100 ECU
101 Outside air temperature sensor 102 Water temperature sensor H1-H10 Piping and hose

Claims (2)

エンジンと、作動油にて浸潤された状態において作動する変速機とを備えた自動車に適用される冷却水循環装置であって、
排熱回収器でエンジンの排気ガスから回収した熱によって水温を高めた冷却水の循環に関して、作動油用熱交換器を経由させてエンジンに流入させ循環させるための第1の排気熱回収回路と、作動油用熱交換器を経由させずにエンジンに流入させ循環させるための第2の排気熱回収回路との2系統を有し、
外気温度が第1の設定温度以下のときには、循環回路として上記第1の排気熱回収回路が選択され、外気温度が第1の設定温度よりも高いときには、循環回路として上記第2の排気熱回収回路が選択されるように、循環回路を切り替えるための切替手段とを含むことを特徴とする冷却水循環装置。
A cooling water circulation device applied to an automobile including an engine and a transmission that operates in a state infiltrated with hydraulic oil,
A first exhaust heat recovery circuit for circulating the cooling water whose temperature has been increased by heat recovered from the exhaust gas of the engine by the exhaust heat recovery unit, and flowing into the engine via the hydraulic oil heat exchanger; , Having two systems with a second exhaust heat recovery circuit for flowing and circulating into the engine without going through the hydraulic oil heat exchanger,
When the outside air temperature is equal to or lower than the first set temperature, the first exhaust heat recovery circuit is selected as the circulation circuit, and when the outside air temperature is higher than the first set temperature, the second exhaust heat recovery is used as the circulation circuit. A cooling water circulation device comprising switching means for switching the circulation circuit so that the circuit is selected.
請求項1に記載の冷却水循環装置において、
エンジンから流出した冷却水を、排熱回収器を経由させずに作動油用熱交換器に直接導いてエンジンに流入させ循環させるための作動油冷却回路をさらに含み、
上記切替手段は、外気温度が第1の設定温度よりも高く且つエンジン内の水温が作動油の限界温度を考慮した第2の設定温度に達したときには、循環回路として、上記第2の排気熱回収回路に加えて上記作動油冷却回路が選択されるようにするための手段を含むことを特徴とする冷却水循環装置。
The cooling water circulation device according to claim 1,
Further includes a hydraulic fluid cooling circuit for directing the coolant flowing out of the engine to the hydraulic fluid heat exchanger without passing through the exhaust heat recovery device and circulating the coolant through the engine;
When the outside air temperature is higher than the first set temperature and the water temperature in the engine reaches the second set temperature in consideration of the limit temperature of the hydraulic oil, the switching means serves as a circulation circuit to provide the second exhaust heat. A cooling water circulation device comprising means for selecting the hydraulic oil cooling circuit in addition to the recovery circuit.
JP2008142784A 2008-05-30 2008-05-30 Cooling water circulation system Pending JP2009287508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008142784A JP2009287508A (en) 2008-05-30 2008-05-30 Cooling water circulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008142784A JP2009287508A (en) 2008-05-30 2008-05-30 Cooling water circulation system

Publications (1)

Publication Number Publication Date
JP2009287508A true JP2009287508A (en) 2009-12-10

Family

ID=41456954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008142784A Pending JP2009287508A (en) 2008-05-30 2008-05-30 Cooling water circulation system

Country Status (1)

Country Link
JP (1) JP2009287508A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299548A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Cooling water circulating device
CN102529689A (en) * 2010-10-29 2012-07-04 通用汽车环球科技运作有限责任公司 Method for controlling exhaust gas heat recovery systems in vehicles
CN109084592A (en) * 2018-08-06 2018-12-25 安徽省华鑫铅业集团有限公司 It regenerates lead plaster smelting furnace circulation of tail gas and utilizes system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299548A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Cooling water circulating device
CN102529689A (en) * 2010-10-29 2012-07-04 通用汽车环球科技运作有限责任公司 Method for controlling exhaust gas heat recovery systems in vehicles
CN109084592A (en) * 2018-08-06 2018-12-25 安徽省华鑫铅业集团有限公司 It regenerates lead plaster smelting furnace circulation of tail gas and utilizes system

Similar Documents

Publication Publication Date Title
JP6330768B2 (en) Engine cooling system
JP4196802B2 (en) Cooling water circuit
JP5223389B2 (en) Cooling device for internal combustion engine
JP4840408B2 (en) Cooling water circulation device
JP4457848B2 (en) Cooling device for on-vehicle power unit
JP4863384B2 (en) Automatic transmission oil cooling system and control method thereof
JP2014034922A (en) Exhaust heat recovery device
WO2014017014A1 (en) Egr systems and exhaust heat exchanger systems
JP2007016651A (en) Device for controlling oil temperature
JP2009287508A (en) Cooling water circulation system
JP2007247638A (en) Exhaust heat recovery device
KR101123161B1 (en) Exhaust heat recovery apparatus
JP4384230B2 (en) Engine cooling system
JP6094231B2 (en) Internal combustion engine cooling system
JP2009250147A (en) Liquid circulation circuit of liquid-cooled engine
JP4134787B2 (en) Oil temperature control device
JP2007270702A (en) Exhaust heat recovery device with muffling function
JP6455159B2 (en) Vehicle exhaust heat recovery device
JP2016050545A (en) Cooling system for vehicle
JP4998390B2 (en) Cooling water circulation device
JP2010065544A (en) Hydraulic fluid temperature control system
JP2004084882A (en) Oil temperature controller of transmission
WO2007029953A1 (en) Multi heating system using internal combustion engine and heat exchanger applied thereto
JP6254822B2 (en) Engine exhaust heat recovery device
JP2006336974A (en) Cooling system