JP2009287111A - Steel for machine structure - Google Patents

Steel for machine structure Download PDF

Info

Publication number
JP2009287111A
JP2009287111A JP2008144217A JP2008144217A JP2009287111A JP 2009287111 A JP2009287111 A JP 2009287111A JP 2008144217 A JP2008144217 A JP 2008144217A JP 2008144217 A JP2008144217 A JP 2008144217A JP 2009287111 A JP2009287111 A JP 2009287111A
Authority
JP
Japan
Prior art keywords
mass
less
steel
content
rem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008144217A
Other languages
Japanese (ja)
Other versions
JP5237696B2 (en
Inventor
Tomokazu Masuda
智一 増田
Takehiro Tsuchida
武広 土田
Masaki Shimamoto
正樹 島本
Motohiro Horiguchi
元宏 堀口
Shinsuke Masuda
真輔 益田
Koichi Akazawa
浩一 赤澤
Shogo Murakami
昌吾 村上
Mutsuhisa Nagahama
睦久 永濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008144217A priority Critical patent/JP5237696B2/en
Publication of JP2009287111A publication Critical patent/JP2009287111A/en
Application granted granted Critical
Publication of JP5237696B2 publication Critical patent/JP5237696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel for a machine structure having excellent machinability in intermittent machining such as hob working. <P>SOLUTION: Disclosed is a steel for a machine structure having a composition comprising, by mass, 0.05 to 0.65% C, 0.1 to 2.0% Si, 0.5 to 2.0% Mn, 0.1 to 3.0% Cr, ≤1.2% Mo, ≤0.06% Al, ≤0.02% N and 0.0005 to 0.01% Ca, further comprising one or more kinds selected from ≤0.005% Mg and ≤0.005% REM, and in which the contents of P and S are regulated to ≤0.03%, respectively, and the balance Fe with inevitable impurities, and, provided that when the contents (mass%) of the Si, Mn, Cr, Ca, Mg and REM are expressed respectively as [Si], [Mn], [Cr], [Ca], [Mg] and [REM], 2.25≤[Si]+[Mn]+[Cr]+100×([Ca]+[Mg]+[REM])≤7.0 is satisfied. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、機械構造用鋼材に関するものであり、特に、断続切削加工が施される冷間加工用鋼に関する。   The present invention relates to a steel material for machine structure, and in particular, to a steel for cold work subjected to intermittent cutting.

自動車用変速機や差動装置等の各種歯車伝達装置に利用される歯車、シャフト、プーリ、等速ジョイント、クランクシャフト、コンロッド等の機械構造用部品は、一般に、鋼材に鍛造等の加工を施した後、切削加工を施すことによって最終形状に仕上げられる。そして、最終形状に仕上げられた機械構造用部品は、浸炭や浸炭窒化処理(大気圧、低圧、真空、プラズマ雰囲気を含む)等の表面硬化処理を施され、必要に応じて焼入れ−焼戻しや高周波焼入れ等が施されて所定の強度が確保される。このような機械構造用部品の製造において、切削加工に要するコストは占める割合が大きいことから、機械構造部品を構成する鋼材(機械構造用鋼)は被削性が良好であることが要求される。   Machine structural parts such as gears, shafts, pulleys, constant velocity joints, crankshafts, and connecting rods used in various gear transmissions such as automobile transmissions and differential gears are generally subjected to forging and other processing. After that, it is finished to the final shape by cutting. Then, the machine structural parts finished in the final shape are subjected to surface hardening treatment such as carburizing and carbonitriding (including atmospheric pressure, low pressure, vacuum, plasma atmosphere), and quenching-tempering and high frequency as necessary. Quenching or the like is performed to ensure a predetermined strength. In the manufacture of such machine structural parts, the cost required for cutting is large, and therefore the steel (machine structural steel) constituting the machine structural parts is required to have good machinability. .

機械構造用部品の一つである歯車の製造方法は、一般的に、機械構造用鋼を鍛造し、ホブ加工によって粗切し(歯切り)、シェービングにて最終形状に仕上げた後、浸炭等の熱処理を行い、再度研磨加工(ホーニング加工)を行う。さらに、近年では、歯車の寸法精度の向上のため、熱処理による形状の歪みを完全に矯正するために、前記研磨加工の前に研削加工(ハードフィニッシュ)を行うことがある。このように、歯車の製造は非常に多くの工程を必要とし、その中には切削や研削の工程が多い。したがって、特に歯車を構成する機械構造用鋼には、被削性の向上が望まれている。   The manufacturing method of gears, which are one of the parts for machine structure, is generally forged steel for machine structure, rough cutting (hobbing) by hobbing, finishing to the final shape by shaving, carburizing etc. Then, the polishing process (honing process) is performed again. Further, in recent years, in order to improve the dimensional accuracy of gears, a grinding process (hard finish) may be performed before the polishing process in order to completely correct the distortion of the shape due to the heat treatment. Thus, the production of gears requires a great number of processes, including many cutting and grinding processes. Therefore, improvement of machinability is desired especially for the steel for machine structure constituting the gear.

前記ホブ加工は断続切削に該当する。断続切削とは、工具が被削材に連続的には接触していない切削様式である。このホブ加工に用いられる工具としては、高速度工具鋼にAlTiN等のコーティングを施したもの(以下、「ハイス工具」と称する)が、現状の主流である。切削工具としては、この他に、超硬合金にAlTiN等のコーティングを施したもの(以下、「超硬工具」と称する)がある。この工具は、旋削等の連続切削に用いられることが多い。   The hobbing corresponds to intermittent cutting. Interrupted cutting is a cutting mode in which the tool is not continuously in contact with the work material. As a tool used for this hobbing, a high-speed tool steel coated with AlTiN or the like (hereinafter referred to as “high-speed tool”) is the current mainstream. Other cutting tools include a cemented carbide alloy coated with AlTiN or the like (hereinafter referred to as “carbide tool”). This tool is often used for continuous cutting such as turning.

断続切削と連続切削とでは切削機構が異なるので、それぞれの切削に応じた工具が用いられる。したがって、被削材としての機械構造用鋼にはいずれの切削においても良好な被削性が求められる。しかしながら、断続切削においては、前記の通り、工具の空転時すなわち工具に被削材が接触していない期間があり、このとき工具に付着した鋼材の新生面が空気に曝され、さらに切削で発熱しているので急速に酸化する。その結果、工具が酸化摩耗し易く、このことから、断続切削においては工具の寿命が短いという問題がある。さらに、ホブ加工に用いられる工具は高価であるため、ホブ加工等の断続切削に供される機械構造用鋼には、被削性、特に工具寿命を向上させることが求められている。   Since the cutting mechanism differs between intermittent cutting and continuous cutting, a tool corresponding to each cutting is used. Accordingly, the machine structural steel as the work material is required to have good machinability in any cutting. However, in intermittent cutting, as described above, there is a period when the tool is idling, that is, there is a period when the work material is not in contact with the tool. At this time, the new steel surface adhering to the tool is exposed to air and further generates heat during cutting. It oxidizes rapidly. As a result, the tool is subject to oxidative wear, and there is a problem that the tool life is short in intermittent cutting. Furthermore, since the tool used for hobbing is expensive, the steel for machine structure used for intermittent cutting such as hobbing is required to improve machinability, particularly the tool life.

そこで、例えば、特許文献1は、JIS鋼にB,S,Caを添加することで硫化物を生成させ、この硫化物を析出核として微細なBNを析出させることにより被削性、疲労強度、および靭性を向上させた鋼材を開示している。また、特許文献2は、被削性を向上させる元素(快削元素)であるSの代わりに、Pb,Caを添加して、靭性を保ちつつ被削性を向上させた鋼材を開示している。また、特許文献3は、S,Pb,Ca等の快削元素は添加せず、Al,Nの各含有量と両者の比を制御することでAlNを析出させ、AlNの潤滑効果により断続切削時の被削性を向上させた鋼材を開示している。
特開平6−145890公報(段落0009) 特開平3−10050号公報(請求項1) 特許第3922691号公報(段落0018〜0023)
Therefore, for example, in Patent Document 1, by adding B, S, and Ca to JIS steel, sulfide is generated, and by using this sulfide as a precipitation nucleus, fine BN is precipitated, machinability, fatigue strength, And steel materials with improved toughness. Further, Patent Document 2 discloses a steel material that has improved machinability while maintaining toughness by adding Pb and Ca instead of S, which is an element that improves machinability (free-cutting element). Yes. Patent Document 3 does not add free-cutting elements such as S, Pb, Ca, etc., and controls the content of Al and N and the ratio between the two to precipitate AlN, and intermittent cutting is performed by the lubricating effect of AlN. Steel materials with improved machinability are disclosed.
JP-A-6-145890 (paragraph 0009) JP-A-3-10050 (Claim 1) Japanese Patent No. 392691 (paragraphs 0018 to 0023)

しかしながら、特許文献1,2に開示された鋼材は、超硬工具による旋削に対応したものである。特に、特許文献2に開示された鋼材は、人体への有害性が指摘されているPbを含有しているため、これを用いることは好ましくない。なお、鋼材に限らず、近年ではPbを含有しない(Pbフリー)材料が求められている。また、特許文献3に開示された鋼材は、断続切削に対応したものではあるが、特許文献1,2に開示された鋼材と同様に、鋼材中の析出物により被削性を向上させるものである。これらのような鋼材中の介在物や析出物は、鋼材の機械的特性を劣化させ易いという問題がある。   However, the steel materials disclosed in Patent Documents 1 and 2 correspond to turning with a carbide tool. In particular, the steel material disclosed in Patent Document 2 contains Pb, which has been pointed out to be harmful to the human body, so it is not preferable to use this. In addition, not only steel materials but in recent years, Pb-free (Pb-free) materials have been demanded. Moreover, although the steel material disclosed by patent document 3 respond | corresponds to intermittent cutting, it improves machinability by the precipitate in steel materials similarly to the steel materials disclosed by patent documents 1 and 2. is there. Such inclusions and precipitates in the steel material have a problem that the mechanical properties of the steel material are easily deteriorated.

本発明は、前記問題点に鑑みてなされたものであり、被削性を向上させる手段に靭性等の機械的特性を兼備させるため、鋼材中の介在物や析出物によらずに断続切削時の被削性を向上させる、特に工具寿命を向上させる機械構造用鋼を提供することを目的とする。   The present invention has been made in view of the above problems, and in order to combine the mechanical properties such as toughness with the means for improving the machinability, during intermittent cutting regardless of the inclusions and precipitates in the steel material. An object of the present invention is to provide a steel for machine structure that improves the machinability of the steel, in particular, the tool life.

本発明者らは、Feより酸化傾向の大きい、すなわちFeと比較してO(酸素)が結合し易い元素を機械構造用鋼に添加して固溶させることにより、断続切削における機械構造用鋼の新生面の急速な酸化を防止して、工具の酸化摩耗を抑制することにした。そして、本発明者らは、このような元素として、Si,Mn,Cr,Ca,Mg,REM(希土類金属元素)について検討した結果、多量に添加できるが単独での酸化抑制効果の小さいSi,Mn,Crと、酸化抑制効果は大きいが多量に添加すると機械的特性を劣化させるCa,Mg,REMとを複合的に添加することにより、機械的特性を維持しながら、断続切削における工具の酸化摩耗を抑制できることを見出した。   The present inventors have added a solid oxidation solution to an element having a tendency to oxidize more than Fe, that is, O (oxygen) is more easily bonded to Fe than Fe. It was decided to prevent rapid oxidation of the new surface of the tool and suppress oxidative wear of the tool. As a result of studying Si, Mn, Cr, Ca, Mg, and REM (rare earth metal elements) as such elements, the present inventors have found that Si, which can be added in a large amount but has a small oxidation inhibiting effect alone. Oxidation of tools in interrupted cutting while maintaining mechanical properties by adding Mn, Cr and Ca, Mg, REM, which have large oxidation inhibition effect but deteriorate mechanical properties when added in a large amount. It has been found that wear can be suppressed.

すなわち、請求項1に係る機械構造用鋼は、C:0.05〜0.65質量%、Si:0.1〜2.0質量%、Mn:0.5〜2.0質量%、Cr:0.1〜3.0質量%、Mo:1.2質量%以下、Al:0.06質量%以下、N:0.02質量%以下、Ca:0.0005〜0.01質量%を含有し、PおよびSを各0.03質量%以下に規制し、残部がFeおよび不可避的不純物からなり、前記Si,Mn,Cr,Caの各含有量(質量%)を、[Si]、[Mn]、[Cr]、[Ca]と表したとき、2.25≦[Si]+[Mn]+[Cr]+100×[Ca]≦7.0を満足することを特徴とする。   That is, the steel for machine structure according to claim 1 is C: 0.05 to 0.65 mass%, Si: 0.1 to 2.0 mass%, Mn: 0.5 to 2.0 mass%, Cr : 0.1-3.0 mass%, Mo: 1.2 mass% or less, Al: 0.06 mass% or less, N: 0.02 mass% or less, Ca: 0.0005-0.01 mass% And P and S are each regulated to 0.03% by mass or less, the balance is Fe and inevitable impurities, and each content (mass%) of Si, Mn, Cr, Ca is [Si], When expressed as [Mn], [Cr], [Ca], 2.25 ≦ [Si] + [Mn] + [Cr] + 100 × [Ca] ≦ 7.0 is satisfied.

また、請求項2に係る機械構造用鋼は、C:0.05〜0.65質量%、Si:0.1〜2.0質量%、Mn:0.5〜2.0質量%、Cr:0.1〜3.0質量%、Mo:1.2質量%以下、Al:0.06質量%以下、N:0.02質量%以下、Ca:0.0005〜0.01質量%を含有し、さらに、Mg:0.005質量%以下、REM:0.005質量%以下のうち1種以上を含有し、PおよびSを各0.03質量%以下に規制し、残部がFeおよび不可避的不純物からなり、前記Si,Mn,Cr,Ca,Mg,REMの各含有量(質量%)を、[Si]、[Mn]、[Cr]、[Ca]、[Mg]、[REM]と表したとき、2.25≦[Si]+[Mn]+[Cr]+100×([Ca]+[Mg]+[REM])≦7.0を満足することを特徴とする。   Moreover, the steel for machine structure which concerns on Claim 2 is C: 0.05-0.65 mass%, Si: 0.1-2.0 mass%, Mn: 0.5-2.0 mass%, Cr : 0.1-3.0 mass%, Mo: 1.2 mass% or less, Al: 0.06 mass% or less, N: 0.02 mass% or less, Ca: 0.0005-0.01 mass% Further, Mg: 0.005% by mass or less, REM: 0.005% by mass or less is contained, P and S are restricted to 0.03% by mass or less, and the balance is Fe and It consists of inevitable impurities, and each content (mass%) of the Si, Mn, Cr, Ca, Mg, and REM is changed to [Si], [Mn], [Cr], [Ca], [Mg], [REM]. ] 2.25 ≦ [Si] + [Mn] + [Cr] + 100 × ([Ca] + [Mg] + [REM]) ≦ 7.0 And satisfying.

このように、Feより酸化傾向の大きいSi,Mn,Crと、さらに酸化傾向の大きいCa,Mg,REMとを複合的に添加することにより、断続切削において機械構造用鋼の新生面が急速に酸化することを防止できる。   Thus, by newly adding Si, Mn, and Cr, which have a higher oxidation tendency than Fe, and Ca, Mg, and REM, which have a higher oxidation tendency, the new surface of the machine structural steel is rapidly oxidized in intermittent cutting. Can be prevented.

請求項3に係る機械構造用鋼は、請求項1または請求項2に記載の機械構造用鋼が、さらに、B:0.005質量%以下、Ti:0.2質量%以下、Nb:0.2質量%以下、およびV:0.5質量%以下のうち1種以上を含有することを特徴とする。   In the steel for machine structure according to claim 3, the steel for machine structure according to claim 1 or 2, further, B: 0.005 mass% or less, Ti: 0.2 mass% or less, Nb: 0 .2% by mass or less, and V: one or more of 0.5% by mass or less.

これらの元素を添加することにより、浸炭処理における異常粒成長の発生を効果的に防止することができる。   By adding these elements, the occurrence of abnormal grain growth in the carburizing process can be effectively prevented.

さらに、請求項4に係る機械構造用鋼は、請求項1ないし請求項3のいずれか1項に記載の機械構造用鋼が、さらに、Cu:5.0質量%以下、およびNi:5.0質量%以下のうち1種以上を含有することを特徴とする。   Furthermore, in the steel for machine structure according to claim 4, the steel for machine structure according to any one of claims 1 to 3, further Cu: 5.0 mass% or less, and Ni: 5. 1 type or more is contained among 0 mass% or less, It is characterized by the above-mentioned.

これらの元素を添加することにより、機械構造用鋼の焼入れ性を向上させて、焼入れ後の硬さを向上させることができる。   By adding these elements, the hardenability of the steel for machine structure can be improved and the hardness after quenching can be improved.

本発明に係る機械構造用鋼は、靭性等の機械的特性を十分有し、また、被削性を向上させたものである。本発明に係る機械構造用鋼は、特に、歯車等の機械構造部品を構成する鋼材として、断続切削における被削性を向上させたものであり、これにより切削工具の酸化摩耗を抑制して工具寿命を延ばすことができる。   The steel for machine structure according to the present invention has sufficient mechanical properties such as toughness and has improved machinability. The steel for machine structure according to the present invention has improved machinability in interrupted cutting, particularly as a steel material constituting machine structural parts such as gears, thereby suppressing oxidative wear of the cutting tool. Life can be extended.

以下、本発明に係る機械構造用鋼を実施するための最良の形態について説明する。
本発明に係る機械構造用鋼は、C:0.05〜0.65質量%、Si:0.1〜2.0質量%、Mn:0.5〜2.0質量%、Cr:0.1〜3.0質量%、Mo:1.2質量%以下、Al:0.06質量%以下、N:0.02質量%以下、Ca:0.0005〜0.01質量%を含有し、PおよびSを各0.03質量%以下に規制し、残部がFeおよび不可避的不純物で構成されるものである。また、この機械構造用鋼は、さらに、Mg:0.005質量%以下、REM:0.005質量%以下のうち1種以上を含有してもよい。
Hereinafter, the best mode for carrying out the steel for machine structure according to the present invention will be described.
The steel for machine structural use according to the present invention has C: 0.05 to 0.65 mass%, Si: 0.1 to 2.0 mass%, Mn: 0.5 to 2.0 mass%, Cr: 0.00. 1 to 3.0% by mass, Mo: 1.2% by mass or less, Al: 0.06% by mass or less, N: 0.02% by mass or less, Ca: 0.0005 to 0.01% by mass, P and S are each regulated to 0.03% by mass or less, and the balance is composed of Fe and inevitable impurities. In addition, the steel for mechanical structure may further contain one or more of Mg: 0.005 mass% or less and REM: 0.005 mass% or less.

そして、本発明に係る機械構造用鋼は、前記各成分のうち、Feより酸化傾向の大きい、すなわちFeと比較してOが結合し易いSi,Mn,Crの各含有量の和と、Si,Mn,CrよりさらにOが結合し易いCa,Mg,REMの各含有量の100倍の和との総和を所定範囲に限定するものである。すなわち、Si,Mn,Cr,Ca,Mg,REMの含有量(質量%)それぞれを、[Si]、[Mn]、[Cr]、[Ca]、[Mg]、[REM]で表したとき、下式を満足するように、これらの成分の含有量が調整されるものである。
2.25≦[Si]+[Mn]+[Cr]+100×([Ca]+[Mg]+[REM])≦7.0
以下に、本発明に係る機械構造用鋼を構成する各成分の含有量の数値範囲およびその数値範囲の限定理由について説明する。
And the steel for machine structure which concerns on this invention is the sum total of each content of Si, Mn, and Cr with which the tendency of oxidation is larger than Fe among each said component, ie, O is easy to couple | bond compared with Fe, Si. , Mn, and Cr, the total sum of the contents of Ca, Mg, and REM, which are more easily combined with O, is limited to a predetermined range. That is, when the contents (mass%) of Si, Mn, Cr, Ca, Mg, and REM are represented by [Si], [Mn], [Cr], [Ca], [Mg], and [REM], respectively. The contents of these components are adjusted so as to satisfy the following formula.
2.25 ≦ [Si] + [Mn] + [Cr] + 100 × ([Ca] + [Mg] + [REM]) ≦ 7.0
Below, the numerical range of content of each component which comprises the steel for machine structure which concerns on this invention, and the reason for limitation of the numerical range are demonstrated.

(C:0.05〜0.65質量%)
Cは、機械構造用鋼の強度を向上させる効果を有し、機械構造用部品に必要な芯部の硬さを確保するために有効な元素である。機械構造用鋼の硬さを十分なものとするため、C含有量は0.05質量%以上とされ、0.10質量%以上が好ましく、0.15質量%以上がさらに好ましい。一方、Cが過剰に添加されると、硬さが過剰となって被削性や靭性が低下する。したがって、C含有量は0.65質量%以下とされ、0.60質量%以下が好ましく、0.55質量%以下がさらに好ましい。
(C: 0.05 to 0.65% by mass)
C is an element that has an effect of improving the strength of steel for machine structural use and is effective for ensuring the hardness of the core part necessary for machine structural parts. In order to make the mechanical structural steel sufficiently hard, the C content is 0.05% by mass or more, preferably 0.10% by mass or more, and more preferably 0.15% by mass or more. On the other hand, when C is added excessively, hardness becomes excessive and machinability and toughness are lowered. Therefore, the C content is 0.65% by mass or less, preferably 0.60% by mass or less, and more preferably 0.55% by mass or less.

(Si:0.1〜2.0質量%)
Siは、脱酸効果を有し、機械構造用鋼の酸化物系介在物を低減させて内部品質を向上させる。この効果を十分なものとするため、Si含有量は0.10質量%以上とされ、0.12質量%以上が好ましく、0.15質量%以上がさらに好ましい。また、FeよりもSiにOが結合し易いため、Siは断続切削時の工具の酸化摩耗を抑制する効果を有する。一方、Siが過剰に添加されると、浸炭時に異常組織が生成したり、熱処理(焼入れ)後の残留オーステナイト(残留γ相)の量が増大して浸炭相に十分な硬さが得られない。したがって、Si含有量は2.0質量%以下とされ、1.8質量%以下が好ましく、1.5質量%以下がさらに好ましい。
(Si: 0.1 to 2.0% by mass)
Si has a deoxidizing effect and reduces the oxide inclusions in the steel for machine structural use to improve the internal quality. In order to make this effect sufficient, the Si content is 0.10% by mass or more, preferably 0.12% by mass or more, and more preferably 0.15% by mass or more. Further, since O is more easily bonded to Si than Fe, Si has an effect of suppressing oxidative wear of the tool during intermittent cutting. On the other hand, if Si is added excessively, an abnormal structure is generated during carburizing, or the amount of retained austenite (residual γ phase) after heat treatment (quenching) increases, so that sufficient hardness cannot be obtained in the carburized phase. . Therefore, the Si content is 2.0% by mass or less, preferably 1.8% by mass or less, and more preferably 1.5% by mass or less.

(Mn:0.5〜2.0質量%)
Mnは、焼入れ性を向上させる効果を有し、焼入れ後の機械構造用鋼の硬さを向上させる。この効果を十分なものとするため、Mn含有量は0.5質量%以上とされ、0.6質量%以上が好ましく、0.7質量%以上がさらに好ましい。また、FeよりもMnにOが結合し易いため、Mnは断続切削時の工具の酸化摩耗を抑制する効果を有する。一方、Mnが過剰に添加されると、焼入れ性が過剰となって、焼ならし後でも過冷組織が生成して被削性を低下させる。したがって、Mn含有量は2.0質量%以下とされ、1.9質量%以下が好ましく、1.8質量%以下がさらに好ましい。
(Mn: 0.5 to 2.0% by mass)
Mn has the effect of improving the hardenability and improves the hardness of the steel for machine structure after quenching. In order to make this effect sufficient, the Mn content is 0.5% by mass or more, preferably 0.6% by mass or more, and more preferably 0.7% by mass or more. Further, since O is more easily bonded to Mn than Fe, Mn has an effect of suppressing oxidative wear of the tool during intermittent cutting. On the other hand, when Mn is added excessively, hardenability becomes excessive, and a supercooled structure is generated even after normalization, thereby reducing machinability. Therefore, the Mn content is 2.0% by mass or less, preferably 1.9% by mass or less, and more preferably 1.8% by mass or less.

(Cr:0.1〜3.0質量%)
Crは、焼入れ性を向上させる効果を有し、焼入れ後の機械構造用鋼の硬さを向上させる。この効果を十分なものとするため、Cr含有量は0.1質量%以上とされ、0.3質量%以上が好ましく、0.7質量%以上がさらに好ましい。また、FeよりもCrにOが結合し易いため、Crは断続切削時の工具の酸化摩耗を抑制する効果を有する。一方、Crが過剰に添加されると、焼入れ性が過剰となって過冷組織が発達するとともに、粒界に粗大な炭化物が生成して被削性が劣化する。したがって、Cr含有量は3.0質量%以下とされ、2.5質量%以下が好ましく、2.0質量%以下がさらに好ましい。
(Cr: 0.1-3.0% by mass)
Cr has the effect of improving hardenability and improves the hardness of the steel for machine structure after quenching. In order to make this effect sufficient, the Cr content is 0.1% by mass or more, preferably 0.3% by mass or more, and more preferably 0.7% by mass or more. Further, since O is more easily bonded to Cr than Fe, Cr has an effect of suppressing oxidative wear of the tool during intermittent cutting. On the other hand, when Cr is added excessively, the hardenability becomes excessive and a supercooled structure develops, and coarse carbides are generated at the grain boundaries to deteriorate the machinability. Therefore, the Cr content is 3.0% by mass or less, preferably 2.5% by mass or less, and more preferably 2.0% by mass or less.

(Mo:0質量%を超え1.2質量%以下)
Moは、鋼に固溶して焼入れ性を確保し、不完全焼入れ組織の生成を抑制する効果を有し、Mo含有量増加に伴いこの効果が大きくなる。Mo含有量は、下限値は特に規定されないが、この効果を得るためには0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.01質量%以上がさらに好ましい。一方、Moが過剰に添加されると、焼入れ性が過剰となって、焼ならし後でも過冷組織が生成して被削性が低下する。したがって、Mo含有量は1.2質量%以下とされ、1.1質量%以下が好ましく、1.0質量%以下がさらに好ましい。
(Mo: more than 0% by mass and 1.2% by mass or less)
Mo is dissolved in steel to ensure hardenability and has the effect of suppressing the formation of an incompletely hardened structure, and this effect increases as the Mo content increases. The lower limit of the Mo content is not particularly specified, but in order to obtain this effect, 0.005% by mass or more is preferable, 0.008% by mass or more is more preferable, and 0.01% by mass or more is more preferable. On the other hand, when Mo is added excessively, the hardenability becomes excessive, and even after normalization, a supercooled structure is generated and the machinability is lowered. Therefore, the Mo content is 1.2% by mass or less, preferably 1.1% by mass or less, and more preferably 1.0% by mass or less.

(Al:0質量%を超え0.06質量%以下)
Alは、脱酸効果を有し、機械構造用鋼の内部品質を向上させる。また、AlはNと結合してAlNを形成し、このAlNが浸炭処理において結晶粒の異常成長を抑制する効果を有する。Al含有量は、下限値は特に規定されないが、これらの効果を得るためには0.0005質量%以上が好ましく、0.0008質量%以上がより好ましく、0.001質量%以上がさらに好ましい。なお、Alにも前記のCr等のようにOが結合し易いが、AlはOと結合すると硬質のアルミナを形成する。そして、Al含有量の増加に伴いアルミナが増加して、Al含有量が0.06質量%を超えると、アブレシブ摩耗が顕著になって被削性、特に連続切削における被削性が低下する。したがって、Al含有量は0.06質量%以下とされ、0.05質量%以下が好ましく、0.04質量%以下がさらに好ましい。
(Al: more than 0% by mass and 0.06% by mass or less)
Al has a deoxidizing effect and improves the internal quality of steel for machine structural use. Further, Al combines with N to form AlN, and this AlN has an effect of suppressing abnormal growth of crystal grains in the carburizing process. The lower limit of the Al content is not particularly specified, but in order to obtain these effects, 0.0005% by mass or more is preferable, 0.0008% by mass or more is more preferable, and 0.001% by mass or more is more preferable. Note that O is easily bonded to Al like Cr and the like, but when Al is bonded to O, hard alumina is formed. And when alumina increases with an increase in Al content and the Al content exceeds 0.06 mass%, abrasive wear becomes remarkable, and machinability, particularly machinability in continuous cutting, decreases. Therefore, the Al content is 0.06% by mass or less, preferably 0.05% by mass or less, and more preferably 0.04% by mass or less.

(N:0質量%を超え0.02質量%以下)
N(窒素)は鋼の溶融工程で不可避的に混入する元素である。Nは、断続切削における機械構造用鋼の新生面の酸化反応を抑制する効果を有し、断続切削における工具の寿命を延ばす。N含有量は、下限値は特に規定されないが、この効果を得るためには0.002質量%以上が好ましく、0.004質量%以上がさらに好ましい。一方、Nが過剰に添加されると、時効硬化によって延性および靭性が低下する。したがって、N含有量は0.02質量%以下とされ、0.015質量%以下が好ましい。
(N: more than 0% by mass and 0.02% by mass or less)
N (nitrogen) is an element inevitably mixed in the steel melting step. N has the effect of suppressing the oxidation reaction of the new surface of the machine structural steel in interrupted cutting, and extends the tool life in interrupted cutting. The lower limit of the N content is not particularly defined, but 0.002% by mass or more is preferable and 0.004% by mass or more is more preferable in order to obtain this effect. On the other hand, when N is added excessively, ductility and toughness are reduced by age hardening. Therefore, the N content is 0.02% by mass or less, and preferably 0.015% by mass or less.

(P:0.03質量%以下)
Pは鋼に不可避的に含まれる元素(不純物)である。Pは、熱間加工時の割れを助長するので可能な限り低減されることが好ましい。したがって、P含有量は0.03質量%以下とされ、0.025質量%以下が好ましく、0.02質量%以下がさらに好ましい。
(P: 0.03 mass% or less)
P is an element (impurity) inevitably contained in steel. P is preferably reduced as much as possible because it promotes cracking during hot working. Therefore, the P content is 0.03% by mass or less, preferably 0.025% by mass or less, and more preferably 0.02% by mass or less.

(S:0.03質量%以下)
Sは鋼に不可避的に含まれる元素(不純物)である。Sは、被削性を向上させる効果を有するが、一方で、延性および靭性を低下させる。さらに、SはMnと反応してMnS介在物を形成する。この介在物が圧延時に圧延方向に伸展することにより、鋼材の圧延方向に対して垂直な方向(この方向を一般に「横目」という)の靭性が劣化する。したがって、S含有量は0.03質量%以下とされ、0.025質量%以下が好ましく、0.02質量%以下がさらに好ましい。
(S: 0.03 mass% or less)
S is an element (impurity) inevitably contained in steel. S has the effect of improving machinability, but on the other hand, reduces ductility and toughness. Furthermore, S reacts with Mn to form MnS inclusions. When the inclusions extend in the rolling direction during rolling, the toughness in a direction perpendicular to the rolling direction of the steel material (this direction is generally referred to as “horizontal”) deteriorates. Therefore, the S content is 0.03% by mass or less, preferably 0.025% by mass or less, and more preferably 0.02% by mass or less.

(Ca:0.0005〜0.01質量%)
Caは、アルミナ等の硬質介在物を軟質化させる作用があるので、硬質介在物による工具摩耗を抑制する。この効果を十分なものとするため、Ca含有量は0.0005質量%以上とされ、0.0007質量%以上が好ましく、0.001質量%以上がさらに好ましい。また、Caは、Oと結合し易いため、断続切削時の酸化摩耗を抑制する効果を有する。一方、Caが過剰に添加されると、CaO等の介在物が増大して、この介在物により延性および靭性が低下する。したがって、Ca含有量は0.01質量%以下とされ、0.009質量%以下が好ましく、0.008質量%以下がさらに好ましい。
(Ca: 0.0005 to 0.01% by mass)
Ca has an action of softening hard inclusions such as alumina, and therefore suppresses tool wear due to hard inclusions. In order to make this effect sufficient, the Ca content is set to 0.0005 mass% or more, preferably 0.0007 mass% or more, and more preferably 0.001 mass% or more. Moreover, since Ca is easily combined with O, it has an effect of suppressing oxidative wear during intermittent cutting. On the other hand, when Ca is added excessively, inclusions such as CaO increase, and the inclusions reduce ductility and toughness. Therefore, the Ca content is 0.01% by mass or less, preferably 0.009% by mass or less, and more preferably 0.008% by mass or less.

(Mg:0.005質量%以下、REM:0.005質量%以下)
MgおよびREM(希土類金属元素)は、Caと同様に、Oと結合し易いため、断続切削時の酸化摩耗を抑制する効果を有する。また、MgおよびREMは、アルミナ等の硬質介在物を軟質化させる作用があるので、工具摩耗を抑制する。希土類金属元素として具体的に、Ce,La,Nd等の元素が挙げられ、本明細書におけるREMの含有量とは、これらのすべての希土類金属元素の含有量の合計を指す。前記の効果を得るためには、Mg,REMの各含有量は0.0001質量%以上が好ましく、0.0002質量%以上がさらに好ましい。一方、Mg,REMは、どちらも過剰に添加されると、MgO,CeO等の介在物が増大して、これらの介在物により延性および靭性が低下する。したがって、Mg,REMの各含有量は0.005質量%以下とされ、0.004質量%以下が好ましく、0.003質量%以下がさらに好ましい。
(Mg: 0.005 mass% or less, REM: 0.005 mass% or less)
Since Mg and REM (rare earth metal elements) are easily combined with O like Ca, they have the effect of suppressing oxidative wear during intermittent cutting. Moreover, since Mg and REM have the effect | action which softens hard inclusions, such as an alumina, it suppresses tool wear. Specific examples of the rare earth metal element include Ce, La, Nd and the like, and the content of REM in this specification refers to the total content of all these rare earth metal elements. In order to acquire the said effect, each content of Mg and REM has preferable 0.0001 mass% or more, and 0.0002 mass% or more is further more preferable. On the other hand, when both Mg and REM are added excessively, inclusions such as MgO and CeO 2 are increased, and ductility and toughness are reduced by these inclusions. Therefore, each content of Mg and REM is set to 0.005 mass% or less, preferably 0.004 mass% or less, and more preferably 0.003 mass% or less.

前記の本発明に係る機械構造用鋼の各成分のうち、Feより酸化傾向の大きい、すなわちFeと比較してOが結合し易いSi,Mn,Crの各含有量の和と、さらにOが結合し易いCa,Mg,REMの各含有量の100倍の和との総和を[A]とする。すなわち、
[A]=[Si]+[Mn]+[Cr]+100×([Ca]+[Mg]+[REM])
で表される。このとき、パラメータ[A]が2.25未満では、機械構造用鋼の酸化の抑制が不十分であり、工具の酸化摩耗が生じ易い。したがって、パラメータ[A]は、2.25以上とされ、2.35以上が好ましく、2.45以上がさらに好ましい。一方、パラメータ[A]が7.0を超えると、機械構造用鋼中の固溶元素の増大により硬さが過剰となって、逆に被削性が低下する。また、機械構造用鋼中の介在物が増加して被削性が劣化する。したがって、パラメータ[A]は7.0以下とされ、6.5以下が好ましく、6.0以下がさらに好ましい。パラメータ[A]が前記範囲となるように、本発明に係る機械構造用鋼のSi,Mn,Cr,Ca,Mg,REMの各含有量は調整される。
Among the components of the steel for machine structure according to the present invention, the oxidation tendency is greater than that of Fe, that is, the sum of the contents of Si, Mn, and Cr in which O is easy to bond as compared with Fe, and further O is The sum total of 100 times the content of each of Ca, Mg, and REM that can be easily combined is defined as [A]. That is,
[A] = [Si] + [Mn] + [Cr] + 100 × ([Ca] + [Mg] + [REM])
It is represented by At this time, when the parameter [A] is less than 2.25, the oxidation of the mechanical structural steel is not sufficiently suppressed, and the oxidative wear of the tool is likely to occur. Accordingly, the parameter [A] is set to 2.25 or more, preferably 2.35 or more, and more preferably 2.45 or more. On the other hand, when the parameter [A] exceeds 7.0, the hardness becomes excessive due to an increase in the solid solution element in the steel for machine structural use, and the machinability is lowered. Moreover, the inclusion in machine structural steel increases and machinability deteriorates. Therefore, the parameter [A] is set to 7.0 or less, preferably 6.5 or less, and more preferably 6.0 or less. Each content of Si, Mn, Cr, Ca, Mg, and REM of the steel for machine structure according to the present invention is adjusted so that the parameter [A] falls within the above range.

本発明に係る機械構造用鋼は、さらに、B:0.005質量%以下、Ti:0.2質量%以下、Nb:0.2質量%以下、およびV:0.5質量%以下のうち1種以上、または、あるいはさらに、Cu:5.0質量%以下、およびNi:5.0質量%以下のうち1種以上を含有してもよい。   The mechanical structural steel according to the present invention is further selected from among B: 0.005 mass% or less, Ti: 0.2 mass% or less, Nb: 0.2 mass% or less, and V: 0.5 mass% or less. You may contain 1 or more types in Cu: 5.0 mass% or less and Ni: 5.0 mass% or less.

(B:0.005質量%以下、Ti:0.2質量%以下、Nb:0.2質量%以下、V:0.5質量%以下)
機械構造用鋼の中でも特に肌焼鋼は、通常、表面硬化のために浸炭処理が施される。この浸炭処理時に、処理温度および処理時間、加熱速度等によっては異常粒成長が発生する場合がある。B,Ti,Nb,Vは、この異常粒成長を防止する効果を有するので、これらの元素を添加することが有効である。この効果を得るためには、B含有量は0.0001質量%以上が好ましく、0.0003質量%以上がより好ましく、0.0005質量%以上がさらに好ましい。同様に、Ti,Nb,Vの各含有量は0.001質量%以上が好ましく、0.002質量%以上がさらに好ましい。一方、これらの元素が過剰に添加されると、硬質炭化物が生成して被削性が劣化する。したがって、B含有量は0.005質量%以下とされ、0.003質量%以下が好ましく、0.001質量%以下がさらに好ましい。同様に、Ti,Nbの各含有量は0.2質量%以下とされ、0.15質量%以下が好ましく、0.1質量%以下がさらに好ましい。そして、V含有量は0.5質量%以下とされ、0.4質量%以下が好ましく、0.3質量%以下がさらに好ましい。
(B: 0.005 mass% or less, Ti: 0.2 mass% or less, Nb: 0.2 mass% or less, V: 0.5 mass% or less)
Among machine structural steels, case-hardened steel is usually carburized for surface hardening. During this carburizing process, abnormal grain growth may occur depending on the processing temperature, processing time, heating rate, and the like. Since B, Ti, Nb, and V have the effect of preventing this abnormal grain growth, it is effective to add these elements. In order to obtain this effect, the B content is preferably 0.0001% by mass or more, more preferably 0.0003% by mass or more, and further preferably 0.0005% by mass or more. Similarly, each content of Ti, Nb, and V is preferably 0.001% by mass or more, and more preferably 0.002% by mass or more. On the other hand, when these elements are added excessively, hard carbides are generated and the machinability deteriorates. Therefore, the B content is 0.005 mass% or less, preferably 0.003 mass% or less, and more preferably 0.001 mass% or less. Similarly, each content of Ti and Nb is 0.2% by mass or less, preferably 0.15% by mass or less, and more preferably 0.1% by mass or less. And V content shall be 0.5 mass% or less, 0.4 mass% or less is preferable, and 0.3 mass% or less is further more preferable.

(Cu:5.0質量%以下、Ni:5.0質量%以下)
CuおよびNiは、焼入れ性を向上させる効果を有し、焼入れ後の機械構造用鋼の硬さを向上させる。さらに、CuおよびNiの含有量増加に伴いこの効果が大きくなる。この効果を得るためには、Cu,Niの各含有量は0.1質量%以上が好ましく、0.3質量%以上がさらに好ましい。一方、これらの元素が過剰に添加されると、焼入れ性が増大して過冷組織が生成し、延性および靭性が低下する。したがって、Cu,Niの各含有量は5.0質量%以下とされ、4.0質量%以下が好ましく、3.0質量%以下がさらに好ましい。
(Cu: 5.0 mass% or less, Ni: 5.0 mass% or less)
Cu and Ni have the effect of improving the hardenability and improve the hardness of the steel for machine structure after quenching. Furthermore, this effect increases as the content of Cu and Ni increases. In order to acquire this effect, each content of Cu and Ni is preferably 0.1% by mass or more, and more preferably 0.3% by mass or more. On the other hand, when these elements are added excessively, the hardenability increases, a supercooled structure is generated, and the ductility and toughness decrease. Therefore, each content of Cu and Ni is set to 5.0% by mass or less, preferably 4.0% by mass or less, and more preferably 3.0% by mass or less.

以上、本発明を実施するための最良の形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例によって制限を受けるものではなく、請求項に示した範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Although the best mode for carrying out the present invention has been described above, examples in which the effects of the present invention have been confirmed will be specifically described in comparison with comparative examples that do not satisfy the requirements of the present invention. . It should be noted that the present invention is not limited by this embodiment, and can be implemented with appropriate modifications within the scope of the claims, all of which are included in the technical scope of the present invention. The

〔供試材作製〕
表1および表2に示される化学成分組成の鋼150kgが、真空誘導炉で溶解され、上面:φ245mm、下面:φ210mm×高さ480mmのインゴットに鋳造された。このインゴットは、1200℃×3hr程度でソーキングされた後、1100℃×1hrで、150mm角×長さ680mmの四角材に鍛造されて、長さ100mm程度に切断された。この切断された四角材は、1100℃×1hr程度で、厚さ30mm×幅150mmの板材に鍛造され、さらに長さ100mm程度に切断された。また、前記の切断された四角材は、1100℃×1hr程度で、φ80mm×長さ100mmの丸棒材に鍛造された。これらの板材および丸棒材は、焼ならし(900℃×2hrの熱処理後、空冷)されて、供試材(実施例1〜25、比較例26〜41)に作製された。作製された供試材で、以下の測定および評価が行われた。前記化学成分組成から算出したパラメータ[A]は表1および表2に併記されている。
[Sample preparation]
150 kg of steel having the chemical composition shown in Table 1 and Table 2 was melted in a vacuum induction furnace and cast into an ingot having an upper surface of φ245 mm and a lower surface of φ210 mm × height 480 mm. The ingot was soaked at about 1200 ° C. × 3 hr, forged into a square material of 150 mm square × length 680 mm at 1100 ° C. × 1 hr, and cut to a length of about 100 mm. The cut square material was forged into a plate material having a thickness of 30 mm and a width of 150 mm at about 1100 ° C. × 1 hr, and further cut to a length of about 100 mm. Further, the cut square material was forged into a round bar material of about 80 mm × 100 mm in length at about 1100 ° C. × 1 hr. These plate materials and round bar materials were subjected to normalization (after heat treatment at 900 ° C. × 2 hr, and then air-cooled), and produced as test materials (Examples 1 to 25, Comparative Examples 26 to 41). The following measurements and evaluations were performed on the prepared specimens. The parameters [A] calculated from the chemical composition are listed in Tables 1 and 2.

〔測定、評価〕
(被削性)
断続切削時の被削性を評価するために、エンドミル工具による断続切削試験が行われた後、工具摩耗が観察された。供試材(板材)は、スケールを除去されて、その表面を厚さ方向に2mm研削されて、厚さ25mm×幅145mm×長さ100mmの切削試験片に作製された。マニシングセンタ主軸にエンドミル工具(三菱マテリアル製ハイスエンドミル、型番K−2SL、外径φ10mm、TiAlNコーティング厚さ2.6μm)が取り付けられ、バイスにより固定された切削試験片に対して、乾式の切削雰囲気下で断続切削が行われた。断続切削条件は下記に示される。200カット(切削距離:約3000m)の断続切削の後、使用されたエンドミル工具が光学顕微鏡にて観察され、平均逃げ面摩耗幅(工具摩耗量)が測定された。被削性の合格基準は、工具摩耗量が70μm以下とされた。なお、同じ切削試験片の表面のビッカース硬さが測定された。工具摩耗量およびビッカース硬さは表1および表2に示される。
[Measurement and evaluation]
(Machinability)
In order to evaluate the machinability during intermittent cutting, tool wear was observed after an intermittent cutting test with an end mill tool. The test material (plate material) was made into a cut specimen having a thickness of 25 mm, a width of 145 mm, and a length of 100 mm by removing the scale and grinding the surface by 2 mm in the thickness direction. An end mill tool (Mitsubishi Materials High-Speed End Mill, model number K-2SL, outer diameter φ10 mm, TiAlN coating thickness 2.6 μm) is attached to the main spindle of the machining center. Intermittent cutting was performed in an atmosphere. The interrupted cutting conditions are shown below. After intermittent cutting of 200 cuts (cutting distance: about 3000 m), the used end mill tool was observed with an optical microscope, and the average flank wear width (tool wear amount) was measured. The acceptance criteria for machinability was a tool wear amount of 70 μm or less. In addition, the Vickers hardness of the surface of the same cutting test piece was measured. Table 1 and Table 2 show the tool wear amount and Vickers hardness.

(断続切削条件)
軸方向切り込み量:1.0mm
径方向切り込み量:1.0mm
送り量 :0.117mm/rev
送り速度 :558.9mm/min
切削速度 :150m/min
回転速度 :4777rpm
(Intermittent cutting conditions)
Axial cut depth: 1.0mm
Radial cut depth: 1.0mm
Feed amount: 0.117 mm / rev
Feeding speed: 558.9 mm / min
Cutting speed: 150 m / min
Rotation speed: 4777 rpm

(横目の靭性)
機械的特性として、浸炭処理後の供試材の横目の靭性が評価された。供試材(丸棒材)は、圧延(鍛伸)方向に垂直な方向(横目)に沿ったノッチ(R:10mm、深さ:2mm)を形成され、10mm×10mm×55mmのサイズに削り出されて、シャルピー衝撃試験片に作製された。この試験片は、下記の条件で浸炭処理され、次に60℃のコールド油を用いて油焼入れされた後、焼戻しされた(170℃×120minの熱処理後、空冷)。以上の処理後の試験片でシャルピー衝撃値(シャルピー吸収エネルギー)が測定された。測定したシャルピー吸収エネルギーは表1および表2に示される。横目の靭性の合格基準は、シャルピー吸収エネルギーが10.0J以上とされた。
(Toughness of lateral eye)
As the mechanical properties, the toughness of the cross-section of the specimen after carburization was evaluated. The test material (round bar material) is formed with a notch (R: 10 mm, depth: 2 mm) along a direction (horizontal line) perpendicular to the rolling (forging) direction, and is cut into a size of 10 mm × 10 mm × 55 mm. And made into a Charpy impact test piece. The test piece was carburized under the following conditions, then quenched with 60 ° C. cold oil and then tempered (after heat treatment at 170 ° C. × 120 min, air-cooled). The Charpy impact value (Charpy absorbed energy) was measured on the test piece after the above treatment. The measured Charpy absorbed energy is shown in Tables 1 and 2. The acceptance criterion for the toughness of the transverse eye was a Charpy absorbed energy of 10.0 J or more.

(浸炭処理条件)
900℃×90min(CO濃度:0.11%、カーボンポテンシャル(以下、CP):1.0%狙い)→900℃×90min(CO濃度:0.17%、CP:0.8%狙い)→840℃×60min(CO濃度:0.39%、CP:0.8%狙い)
(Carburizing conditions)
900 ° C. × 90 min (CO 2 concentration: 0.11%, carbon potential (hereinafter CP): aiming at 1.0%) → 900 ° C. × 90 min (CO 2 concentration: 0.17%, CP: aiming at 0.8%) ) → 840 ° C. × 60 min (CO 2 concentration: 0.39%, CP: 0.8% aim)

Figure 2009287111
Figure 2009287111

Figure 2009287111
Figure 2009287111

(評価)
表1に示すように、実施例1〜25は、その各成分の含有量およびパラメータ[A]が本発明の範囲であるので、断続切削試験後の工具摩耗量が小さくて断続切削時の被削性に優れており、横目の靭性も良好であった。
(Evaluation)
As shown in Table 1, in Examples 1 to 25, since the content of each component and the parameter [A] are within the scope of the present invention, the amount of tool wear after the intermittent cutting test is small, and the amount of wear during intermittent cutting is low. The machinability was excellent and the toughness of the transverse eye was also good.

これに対して、表2に示すように、比較例26は、C含有量が不足しているため、工具摩耗量が大きく、また、ビッカース硬さが低下した。一方、比較例27は、C含有量が過剰なため、被削性および横目の靱性が低下した。また、比較例28はSi含有量が過剰なため、比較例29はMn含有量が過剰なため、それぞれの被削性および横目の靱性が低下した。比較例30はCr含有量が過剰なため、比較例31はMo含有量が過剰なため、比較例32はAl含有量が過剰なため、それぞれの被削性が低下した。   On the other hand, as shown in Table 2, in Comparative Example 26, since the C content was insufficient, the amount of tool wear was large, and the Vickers hardness decreased. On the other hand, in Comparative Example 27, since the C content was excessive, the machinability and the toughness of the transverse eye were lowered. Further, since Comparative Example 28 has an excessive Si content, Comparative Example 29 has an excessive Mn content, and therefore, the machinability and the toughness of each side decreased. Since Comparative Example 30 had an excessive Cr content, Comparative Example 31 had an excessive Mo content, and Comparative Example 32 had an excessive Al content, so that the machinability was reduced.

比較例33は、P含有量が過剰なため横目の靱性が低下した。比較例34はS含有量が過剰なため、比較例35はN含有量が過剰なため、それぞれの被削性は向上したが横目の靱性は低下した。また、比較例36は、Ca含有量が過剰なため、被削性は向上したが横目の靱性が低下した。一方、比較例37は、Ca含有量が不足している(無添加である)ため、被削性が低下した。   In Comparative Example 33, the toughness of the lateral eye was lowered because the P content was excessive. Since the comparative example 34 has an excessive S content, the comparative example 35 has an excessive N content. In Comparative Example 36, since the Ca content was excessive, the machinability was improved, but the toughness of the transverse eye was lowered. On the other hand, since the comparative example 37 has insufficient Ca content (it is no addition), machinability fell.

比較例39,40は、各成分の含有量は本発明の範囲であるが、パラメータ[A]が不足しているため、比較例38はさらにCa含有量が不足している(無添加である)ため、酸化の抑制が不十分となったことにより酸化摩耗が生じて工具摩耗量が増大した。一方、比較例41は、各成分の含有量は本発明の範囲であるが、パラメータ[A]が過剰なため、介在物が増加して被削性が低下し、また硬さが過剰となって被削性および横目の靱性が低下した。   In Comparative Examples 39 and 40, the content of each component is within the scope of the present invention, but since the parameter [A] is insufficient, Comparative Example 38 is further insufficient in Ca content (no addition). Therefore, the oxidation wear was caused by insufficient suppression of oxidation, and the amount of tool wear increased. On the other hand, in Comparative Example 41, the content of each component is within the scope of the present invention, but since the parameter [A] is excessive, inclusions increase, machinability decreases, and hardness becomes excessive. As a result, the machinability and the toughness of the transverse eye decreased.

Claims (4)

C:0.05〜0.65質量%、Si:0.1〜2.0質量%、Mn:0.5〜2.0質量%、Cr:0.1〜3.0質量%、Mo:1.2質量%以下、Al:0.06質量%以下、N:0.02質量%以下、Ca:0.0005〜0.01質量%を含有し、PおよびSを各0.03質量%以下に規制し、残部がFeおよび不可避的不純物からなり、
前記Si,Mn,Cr,Caの各含有量(質量%)を、[Si]、[Mn]、[Cr]、[Ca]と表したとき、2.25≦[Si]+[Mn]+[Cr]+100×[Ca]≦7.0を満足することを特徴とする機械構造用鋼。
C: 0.05-0.65 mass%, Si: 0.1-2.0 mass%, Mn: 0.5-2.0 mass%, Cr: 0.1-3.0 mass%, Mo: 1.2 mass% or less, Al: 0.06 mass% or less, N: 0.02 mass% or less, Ca: 0.0005-0.01 mass%, P and S are each 0.03 mass% Restricted to the following, the balance consists of Fe and inevitable impurities,
When each content (mass%) of Si, Mn, Cr, and Ca is expressed as [Si], [Mn], [Cr], and [Ca], 2.25 ≦ [Si] + [Mn] + [Cr] + 100 × [Ca] ≦ 7.0 satisfies the structural structural steel.
C:0.05〜0.65質量%、Si:0.1〜2.0質量%、Mn:0.5〜2.0質量%、Cr:0.1〜3.0質量%、Mo:1.2質量%以下、Al:0.06質量%以下、N:0.02質量%以下、Ca:0.0005〜0.01質量%を含有し、さらに、Mg:0.005質量%以下、REM:0.005質量%以下のうち1種以上を含有し、PおよびSを各0.03質量%以下に規制し、残部がFeおよび不可避的不純物からなり、
前記Si,Mn,Cr,Ca,Mg,REMの各含有量(質量%)を、[Si]、[Mn]、[Cr]、[Ca]、[Mg]、[REM]と表したとき、2.25≦[Si]+[Mn]+[Cr]+100×([Ca]+[Mg]+[REM])≦7.0を満足することを特徴とする機械構造用鋼。
C: 0.05-0.65 mass%, Si: 0.1-2.0 mass%, Mn: 0.5-2.0 mass%, Cr: 0.1-3.0 mass%, Mo: 1.2 mass% or less, Al: 0.06 mass% or less, N: 0.02 mass% or less, Ca: 0.0005-0.01 mass%, and Mg: 0.005 mass% or less REM: containing one or more of 0.005% by mass or less, P and S are restricted to 0.03% by mass or less, and the balance is Fe and inevitable impurities,
When each content (mass%) of the Si, Mn, Cr, Ca, Mg, and REM is expressed as [Si], [Mn], [Cr], [Ca], [Mg], and [REM], 2.25 ≦ [Si] + [Mn] + [Cr] + 100 × ([Ca] + [Mg] + [REM]) ≦ 7.0 satisfying the mechanical structural steel.
さらに、B:0.005質量%以下、Ti:0.2質量%以下、Nb:0.2質量%以下、およびV:0.5質量%以下のうち1種以上を含有することを特徴とする請求項1または請求項2に記載の機械構造用鋼。   Further, B: 0.005% by mass or less, Ti: 0.2% by mass or less, Nb: 0.2% by mass or less, and V: 0.5% by mass or less, The steel for machine structure according to claim 1 or 2. さらに、Cu:5.0質量%以下、およびNi:5.0質量%以下のうち1種以上を含有することを特徴とする請求項1ないし請求項3のいずれか1項に記載の機械構造用鋼。   The mechanical structure according to any one of claims 1 to 3, further comprising at least one of Cu: 5.0 mass% or less and Ni: 5.0 mass% or less. Steel.
JP2008144217A 2008-06-02 2008-06-02 Steel for machine structure Active JP5237696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144217A JP5237696B2 (en) 2008-06-02 2008-06-02 Steel for machine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144217A JP5237696B2 (en) 2008-06-02 2008-06-02 Steel for machine structure

Publications (2)

Publication Number Publication Date
JP2009287111A true JP2009287111A (en) 2009-12-10
JP5237696B2 JP5237696B2 (en) 2013-07-17

Family

ID=41456608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144217A Active JP5237696B2 (en) 2008-06-02 2008-06-02 Steel for machine structure

Country Status (1)

Country Link
JP (1) JP5237696B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792889A (en) * 2010-03-30 2010-08-04 莱芜钢铁集团有限公司 Medium-carbon multi-alloying wear-resistant hot rolling round steel and production method thereof
JP2013166997A (en) * 2012-02-15 2013-08-29 Jfe Bars & Shapes Corp Steel material for nitriding and nitrided member using the same
CN103993234A (en) * 2014-04-23 2014-08-20 中建材宁国新马耐磨材料有限公司 Medium carbon and chromium alloy steel wear resistant liner and making method thereof
WO2019054448A1 (en) * 2017-09-13 2019-03-21 新日鐵住金株式会社 Steel material having excellent rolling fatigue characteristics
CN113106346A (en) * 2021-04-12 2021-07-13 达力普石油专用管有限公司 High-strength seamless line pipe and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034538A (en) * 1998-07-14 2000-02-02 Daido Steel Co Ltd Steel for machine structure excellent in machinability
JP2003226934A (en) * 2001-11-28 2003-08-15 Daido Steel Co Ltd Steel for machine structure having excellent machinability
JP2006089779A (en) * 2004-09-21 2006-04-06 Aichi Steel Works Ltd Method for producing gear blank for high speed dry-cutting, and method for producing gear using this gear blank

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034538A (en) * 1998-07-14 2000-02-02 Daido Steel Co Ltd Steel for machine structure excellent in machinability
JP2003226934A (en) * 2001-11-28 2003-08-15 Daido Steel Co Ltd Steel for machine structure having excellent machinability
JP2006089779A (en) * 2004-09-21 2006-04-06 Aichi Steel Works Ltd Method for producing gear blank for high speed dry-cutting, and method for producing gear using this gear blank

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792889A (en) * 2010-03-30 2010-08-04 莱芜钢铁集团有限公司 Medium-carbon multi-alloying wear-resistant hot rolling round steel and production method thereof
CN101792889B (en) * 2010-03-30 2011-07-20 莱芜钢铁集团有限公司 Medium-carbon multi-alloying wear-resistant hot rolling round steel and production method thereof
JP2013166997A (en) * 2012-02-15 2013-08-29 Jfe Bars & Shapes Corp Steel material for nitriding and nitrided member using the same
CN103993234A (en) * 2014-04-23 2014-08-20 中建材宁国新马耐磨材料有限公司 Medium carbon and chromium alloy steel wear resistant liner and making method thereof
WO2019054448A1 (en) * 2017-09-13 2019-03-21 新日鐵住金株式会社 Steel material having excellent rolling fatigue characteristics
JPWO2019054448A1 (en) * 2017-09-13 2020-03-26 日本製鉄株式会社 Steel material with excellent rolling fatigue characteristics
CN111065755A (en) * 2017-09-13 2020-04-24 日本制铁株式会社 Steel material having excellent rolling fatigue characteristics
CN113106346A (en) * 2021-04-12 2021-07-13 达力普石油专用管有限公司 High-strength seamless line pipe and preparation method thereof

Also Published As

Publication number Publication date
JP5237696B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP4193998B1 (en) Machine structural steel excellent in machinability and manufacturing method thereof
KR101369113B1 (en) Steel for machine structural use, manufacturing method for same, case hardened steel components, and manufacturing method for same
JP5138991B2 (en) Machine structural steel with excellent machinability
CN110036129B (en) Steel for soft nitriding and member
JP4964063B2 (en) Case-hardened steel with excellent cold forgeability and grain coarsening prevention properties and machine parts obtained therefrom
KR20100099749A (en) Steel for machine structural use with excellent machinability
JP5368885B2 (en) Machine structural steel with excellent hot workability and machinability
JP5260460B2 (en) Case-hardened steel parts and manufacturing method thereof
JP5237696B2 (en) Steel for machine structure
WO2016152167A1 (en) Steel for soft nitriding, components, and method for manufacturing same
JP2006299296A (en) Rolled bar steel for case hardening having excellent fatigue property and crystal grain coarsening resistance, and method for producing the same
JP5370073B2 (en) Alloy steel for machine structural use
JP5314509B2 (en) Steel for machine structure
JP5166959B2 (en) Machine structural steel for oxygen-enriched atmosphere cutting
JP6263390B2 (en) Gear steel and gears with excellent fatigue resistance
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor
JP6801542B2 (en) Mechanical steel and its cutting method
JP2021028414A (en) Steel for carburized gear, carburized gear, and manufacturing method of carburized gear
JP5318638B2 (en) Machine structural steel with excellent machinability
JP6197467B2 (en) Steel for machine structure
WO2016121371A1 (en) Case hardened steel
JP6569650B2 (en) Case-hardened steel
JP7175082B2 (en) Mechanical structural steel and its cutting method
JP2021161462A (en) Steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Effective date: 20121218

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20130108

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20130308

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Effective date: 20130329

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3