JP2009285728A - Heating apparatus and heating method of steel plate for hot press forming - Google Patents

Heating apparatus and heating method of steel plate for hot press forming Download PDF

Info

Publication number
JP2009285728A
JP2009285728A JP2009049101A JP2009049101A JP2009285728A JP 2009285728 A JP2009285728 A JP 2009285728A JP 2009049101 A JP2009049101 A JP 2009049101A JP 2009049101 A JP2009049101 A JP 2009049101A JP 2009285728 A JP2009285728 A JP 2009285728A
Authority
JP
Japan
Prior art keywords
heating
steel plate
hot press
batch
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009049101A
Other languages
Japanese (ja)
Other versions
JP5201003B2 (en
Inventor
Hiroshi Fukuchi
弘 福地
Yuichi Ishimori
裕一 石森
Tetsuo Shima
哲男 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009049101A priority Critical patent/JP5201003B2/en
Publication of JP2009285728A publication Critical patent/JP2009285728A/en
Application granted granted Critical
Publication of JP5201003B2 publication Critical patent/JP5201003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and highly efficient heating apparatus for continuously executing high-speed press forming of a steel plate for hot press forming. <P>SOLUTION: The heating apparatus 210 of a steel plate for hot press forming includes a heating mechanism B for heating the steel plate 3, and a soaking mechanism C for soaking and keeping the heated steel plate 3 for a fixed time. The heating mechanism B has a plurality of batch-type heating devices 101-106 which receive one steel plate or one set of steel plates from a destack 20, and store the steel plate 3. The batch-type heating devices 101-106 heat the steel plate 3 while moving to the soaking mechanism C side. The soaking mechanism C receives the plurality of steel plates 3 from the batch-type heating devices 101-106, and continuously soaks the steel plates while conveying the steel plates 3. Thereafter, the steel plates 3 are delivered to a hot press apparatus 60. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高温の鋼板を連続的にプレス成形して製品を製造する加工に用いられる鋼板の加熱装置及びその加熱装置を用いた加熱方法に関するものである。   The present invention relates to a heating apparatus for a steel sheet used in a process for manufacturing a product by continuously press-molding a high-temperature steel sheet, and a heating method using the heating apparatus.

高張力鋼板を用いた自動車部品材等の鋼板成形手段として、最近採用が拡大している熱間プレス成形は、冷間プレス成形よりも高い温度で成形することによって、変形抵抗が低下し、プレス割れ、しわ、成形後の変形等の成形不具合を発生させることなく所望の形状にプレス成形するものである。   Hot press forming, which has recently been increasingly used as a means for forming steel parts for automobile parts using high-tensile steel sheets, is deformed at a higher temperature than cold press forming. It is press-molded into a desired shape without causing molding defects such as cracks, wrinkles, and deformation after molding.

熱間プレス成形では、プレス成形前に鋼板を予め加熱する手段および鋼板の搬送手段が必要である。そのため、従来より加熱炉内に複数枚の鋼板を連続的に投入して、発熱体である輻射加熱体により加熱し、順次送りだす連続加熱装置が用いられてきた。   In hot press forming, means for preheating the steel plate and press means for transporting the steel plate are required before press forming. For this reason, conventionally, a continuous heating apparatus has been used in which a plurality of steel plates are continuously charged into a heating furnace, heated by a radiant heating element that is a heating element, and sequentially delivered.

この場合、連続加熱装置においては、加熱炉内での鋼板のスケールの発生を抑えるため、表面メッキした鋼板を用いることがある。メッキを施した鋼板を加熱する場合、加熱時間と共にメッキ層の合金化が進行するが、合金化度合いは、熱間プレス成形部品の耐食性、塗装性、溶接性等に影響を与えるため、均等な加熱を図ることは重要である。この点、連続加熱装置は、輻射加熱体を鋼板に平行して配置することにより、均一な加熱に有効な加熱装置となりうる。   In this case, in a continuous heating apparatus, in order to suppress generation | occurrence | production of the scale of the steel plate in a heating furnace, the surface-plated steel plate may be used. When heating a plated steel sheet, the alloying of the plating layer proceeds with the heating time, but the degree of alloying affects the corrosion resistance, paintability, weldability, etc. of the hot press-formed parts. It is important to attempt heating. In this regard, the continuous heating device can be a heating device effective for uniform heating by disposing the radiant heater in parallel with the steel plate.

一方、生産性を高めるため、鋼板を電極により挟み込み、直接通電することで加熱できる直接通電加熱装置が提示されている。本発明の出願前の先行技術調査では、特許文献1、2、3が発見された。特許文献1、2においては、直接通電加熱による鋼板の加熱方法が開示されている。また特許文献3においては、電気ヒータによる連続式加熱炉が開示されている。   On the other hand, in order to increase productivity, a direct current heating apparatus that can be heated by sandwiching a steel plate between electrodes and directly energized is proposed. In prior art searches prior to the filing of the present invention, Patent Documents 1, 2, and 3 were discovered. Patent Documents 1 and 2 disclose a method of heating a steel sheet by direct current heating. Patent Document 3 discloses a continuous heating furnace using an electric heater.

特開2002−248525号公報JP 2002-248525 A 特許第3882474号公報Japanese Patent No. 3882474 特開2002−102980号公報JP 2002-102980 A

しかしながら、上述した連続加熱装置における加熱炉が、鋼板を加熱する輻射加熱体として一般に広く使用されているガス燃焼を用いた連続加熱炉である場合、加熱速度が遅く、鋼板の生産性が低くなる。また熱慣性が大きいため、夜間停止といった断続運転や少量多品種生産における頻繁な加熱条件変更の際には、待ち時間を要する上、エネルギーを浪費することとなる。   However, when the heating furnace in the above-mentioned continuous heating apparatus is a continuous heating furnace using gas combustion that is generally widely used as a radiant heating body for heating a steel sheet, the heating rate is slow and the productivity of the steel sheet is low. . In addition, since the thermal inertia is large, a waiting time is required and energy is wasted during intermittent operation such as nighttime stoppage and frequent heating condition changes in small-lot, multi-product production.

また、前記連続加熱炉を用いて鋼板の生産性を高めるには、炉長が長く広大な立地スペースを必要とする。このように加熱炉が長いと、炉内での熱対流の影響を受けたり、挿入口や抽出口の扉の開閉により搬送装置の移動の際に、鋼板加熱途中で冷気を吸引する影響を受け、鋼板の精密な加熱制御が困難である。加熱中の鋼板の放射率の違いや、鋼板中央部と周辺の入熱条件の差から、均等出力の連続加熱装置のみでは、やはり温度むらを生じる。また、加熱炉内で剛性が低下して行く鋼板を炉長に沿って搬送する場合、炉長が長いと鋼板の位置ずれが生じ易く、炉から抽出後、プレス金型に挿入する前に、位置ずれの補正を必要とする場合がある。   Moreover, in order to improve the productivity of a steel plate using the said continuous heating furnace, the furnace length is long and a vast location space is required. If the heating furnace is long in this way, it will be affected by thermal convection in the furnace, and it may be affected by suction of cold air during heating of the steel sheet when the transfer device is moved by opening and closing the door of the insertion port and extraction port. Precise heating control of the steel sheet is difficult. Due to the difference in the emissivity of the steel sheet during heating and the difference in the heat input conditions between the central part and the periphery of the steel sheet, the temperature unevenness is also caused by only the continuous heating device with uniform output. Also, when transporting along the furnace length a steel plate whose rigidity decreases in the heating furnace, if the furnace length is long, the steel sheet is likely to be displaced, and after extraction from the furnace, before inserting it into the press die, In some cases, it is necessary to correct misalignment.

一方、生産性を高めるため、直接通電加熱装置を用いる場合、プレスに用いる多様な形状の鋼板に対し、鋼板面内の電流密度を均一化することが難しいため、通電加熱のみによる鋼板の加熱では、温度むらを生じ、プレス成形した成形品も均一な高張力特性が得られない。また生産設備が一時停止した場合、加熱炉内に滞留した鋼板の温度管理ができないため、歩留りも悪く、炉内滞在が長いと、鋼板表面に多量のスケールが発生し、搬送装置にスケールが付着堆積し、炉内疵の要因となっていた。さらに鋼板の表面にメッキを施した場合も同様に、加熱炉内にメッキ溶融物のたれ落ちが発生し、炉内疵の要因となっていた。このように加熱炉内にスケールやメッキ溶融物が堆積したり、搬送装置に付着した場合、加熱炉を停止して清掃、除去作業が必要であるが、長大な加熱炉内の清掃は、大掛かりな作業となり、メンテナンスコストの負担が大きい。   On the other hand, when using a direct current heating device to increase productivity, it is difficult to equalize the current density in the steel sheet surface for various shapes of steel sheets used for pressing. Further, temperature unevenness is caused, and even a press-molded molded product cannot obtain uniform high tension characteristics. In addition, when the production equipment is temporarily stopped, the temperature control of the steel sheet staying in the heating furnace cannot be performed, so the yield is poor, and if the stay in the furnace is long, a large amount of scale is generated on the surface of the steel sheet, and the scale adheres to the transfer device. Accumulated and became a factor in the furnace. Furthermore, when the surface of the steel plate is plated, the plating melt falls down in the heating furnace, which is a factor in the furnace. When scale or plating melt accumulates in the heating furnace or adheres to the transport device, it is necessary to stop the heating furnace and perform cleaning and removal work. The maintenance cost is large.

本発明は、上記のような従来の問題点を解決し、熱間プレス成形による高張力鋼板の生産性の低下や材質の劣化を招くことなく、連続的に高速プレス成形を行うための、コンパクトかつ高効率な鋼板の加熱装置およびその加熱装置を用いた加熱方法を提供するものである。   The present invention solves the above-mentioned conventional problems, and is a compact for performing high-speed press forming continuously without causing a decrease in productivity and material deterioration of high-tensile steel sheets by hot press forming. A highly efficient steel plate heating apparatus and a heating method using the heating apparatus are provided.

上記の課題を解決するためになされた本発明は下記の通りである。
(1)鋼板を連続的にプレス成形する前に、当該鋼板を加熱する加熱装置であって、
鋼板を加熱する加熱機構と、
前記加熱された鋼板を一定時間均熱保持する均熱機構と、を有し、
前記加熱機構は、移載機構から1枚もしくは1組の鋼板を受け取って、当該鋼板を収容する複数のバッチ式加熱部を有し、
前記バッチ式加熱部は、前記均熱機構側に移動しながら、当該バッチ式加熱部内の鋼板を加熱し、
前記均熱機構は、前記バッチ式加熱部から複数枚の鋼板を受け取って、当該鋼板を搬送しながら連続的に均熱し、その後鋼板を熱間プレス装置に受け渡すことを特徴とする、熱間プレス成形用鋼板の加熱装置。
(2)前記バッチ式加熱部は、前記均熱機構に鋼板を受け渡した後、前記移載機構側に移動することを特徴とする、上記(1)に記載の熱間プレス成形用鋼板の加熱装置。すなわち、バッチ式加熱部は、加熱機構内を循環する。
(3)前記移動は、前記バッチ式加熱部が予め設定された循環経路を移動するか、又は前記バッチ式加熱部が多段に積層され上下動することによって行われることを特徴とする、上記(2)に記載の熱間プレス成形用鋼板の加熱装置。
(4)前記複数のバッチ式加熱部は、輻射加熱方式、誘導加熱方式、通電加熱方式のいずれかによる加熱、またはこれらのうち2つ以上の加熱方式を組合せた加熱部であり、
前記各バッチ式加熱部は、個別に鋼板に対する投入熱量を制御する制御部を有することを特徴とする、上記(1)〜(3)のいずれかに記載の熱間プレス成形用鋼板の加熱装置。
(5)前記バッチ式加熱部は、2つ以上の発熱体、又は発熱体の集合体を有し、
前記制御部は、前記各発熱体の鋼板に対する投入熱量を個別に制御することを特徴とする、上記(4)に記載の熱間プレス成形用鋼板の加熱装置。
(6)前記加熱機構には、加熱中の鋼板の温度、又は鋼板近傍の雰囲気温度を計測する1個以上のセンサが配置され、
前記制御部は、センサによる温度計測値を基に、前記各発熱体の鋼板に対する投入熱量を制御することを特徴とする、上記(5)に記載の熱間プレス成形用鋼板の加熱装置。
(7)前記制御部は、前記各発熱体において、加熱出力、または輻射加熱方式の鋼板に対向する角度、遮熱、熱反射のいずれかを変えることにより、鋼板に対する投入熱量を制御することを特徴とする、上記(5)又は(6)に記載の熱間プレス成形用鋼板の加熱装置。
(8)前記バッチ式加熱部の輻射加熱方式が近赤外線発熱体による加熱であり、該近赤外線発熱体を鋼板の加熱面に対向するように配列し、加熱中に、加熱面に対して平行に鋼板を揺動させることを特徴とする、上記(1)〜(7)のいずれかに記載の熱間プレス成形用鋼板の加熱装置。
(9)前記バッチ式加熱部の各発熱体が、独立に取外しできることを特徴とする、上記(5)〜(8)のいずれかに記載の熱間プレス成形用鋼板の加熱装置。
(10)上記(1)〜(9)に記載の加熱装置を用いて熱間プレス成形用鋼板を加熱するにあたり、鋼板の端部からの放熱を抑制しながら加熱を行うことを特徴とする、熱間プレス成形用鋼板の加熱方法。
(11)鋼板の端部からの放熱の抑制は、鋼板の端部に断熱材を配置することにより行うことを特徴とする、上記(10)に記載の熱間プレス成形用鋼板の加熱方法。
(12)鋼板の端部からの放熱の抑制は、複数の鋼板の端部同士を互いに密着させることにより行うことを特徴とする、上記(10)または(11)のいずれかに記載の熱間プレス成形用鋼板の加熱方法。
(13)前記鋼板は、成形後に製品となるように最終切断されたものであることを特徴とする、上記(12)に記載の熱間プレス成形用鋼板の加熱方法。
(14)上記(1)〜(9)に記載の加熱装置を用いて熱間プレス成形用鋼板を加熱するにあたり、その鋼板の成形後に製品となる部分の外周もしくは外周の一部に、切断または切除可能なジョイント部が形成されていることを特徴とする、熱間プレス成形用鋼板の加熱方法。
The present invention made to solve the above problems is as follows.
(1) A heating device for heating a steel plate before continuously pressing the steel plate,
A heating mechanism for heating the steel sheet;
A soaking mechanism that keeps the heated steel plate soaked for a certain period of time,
The heating mechanism has a plurality of batch heating units that receive one or a set of steel plates from the transfer mechanism and accommodate the steel plates,
The batch-type heating unit heats the steel sheet in the batch-type heating unit while moving to the soaking mechanism side,
The soaking mechanism receives a plurality of steel plates from the batch-type heating unit, continuously soaks while transporting the steel plates, and then passes the steel plates to a hot press device. Heating device for press forming steel sheet.
(2) The batch-type heating unit moves to the transfer mechanism side after delivering the steel plate to the soaking mechanism, and heats the hot press-forming steel plate according to (1) above apparatus. That is, the batch type heating unit circulates in the heating mechanism.
(3) The movement is performed by moving the batch-type heating unit through a preset circulation path, or by moving the batch-type heating unit in multiple stages and moving up and down. The heating apparatus of the steel plate for hot press forming as described in 2).
(4) The plurality of batch-type heating units are heating units based on any one of a radiation heating method, an induction heating method, and an energization heating method, or a combination of two or more heating methods among these,
Each said batch type heating part has a control part which controls the input heat amount with respect to a steel plate separately, The heating apparatus of the steel plate for hot press forming in any one of said (1)-(3) characterized by the above-mentioned. .
(5) The batch-type heating unit has two or more heating elements, or an assembly of heating elements,
The said control part controls individually the heat input with respect to the steel plate of each said heat generating body, The heating apparatus of the steel plate for hot press forming as described in said (4) characterized by the above-mentioned.
(6) The heating mechanism is provided with one or more sensors for measuring the temperature of the steel plate being heated or the ambient temperature in the vicinity of the steel plate,
The said control part controls the heat input with respect to the steel plate of each said heat generating body based on the temperature measurement value by a sensor, The heating apparatus of the steel plate for hot press forming as described in said (5) characterized by the above-mentioned.
(7) The control unit controls the amount of heat input to the steel sheet by changing either the heating output or the angle facing the steel plate of the radiant heating method, heat shielding, or heat reflection in each heating element. The heating apparatus for a hot press-forming steel sheet according to (5) or (6), which is characterized in that
(8) The radiant heating method of the batch heating unit is heating by a near-infrared heating element, the near-infrared heating element is arranged to face the heating surface of the steel plate, and parallel to the heating surface during heating. The apparatus for heating a steel sheet for hot press forming according to any one of the above (1) to (7), wherein the steel sheet is swung.
(9) The heating apparatus for hot press-forming steel sheets according to any one of (5) to (8) above, wherein each heating element of the batch heating unit can be detached independently.
(10) When heating the hot press-formed steel sheet using the heating device according to the above (1) to (9), the heating is performed while suppressing heat radiation from the end of the steel sheet. Heating method for hot press forming steel sheet.
(11) The method for heating a steel sheet for hot press forming according to (10) above, wherein the suppression of heat dissipation from the end of the steel sheet is performed by arranging a heat insulating material at the end of the steel sheet.
(12) Suppression of heat dissipation from the end portions of the steel sheet is performed by bringing the end portions of the plurality of steel sheets into close contact with each other, and the hot according to any one of (10) or (11) above A method of heating a steel sheet for press forming.
(13) The method for heating a steel sheet for hot press forming according to (12) above, wherein the steel sheet is finally cut so as to become a product after forming.
(14) In heating the hot press-formed steel sheet using the heating device according to the above (1) to (9), the outer periphery of the part to be a product after the steel sheet is formed or a part of the outer periphery is cut or A method for heating a steel sheet for hot press forming, wherein a joint part that can be excised is formed.

本発明の加熱装置およびその加熱装置を用いた加熱方法により、鋼板の熱間プレス成形に要する装置構成をコンパクト化し、生産性を高めることができるのみでなく、高応答かつエネルギー効率よく、また歩留まりよく生産できる効果が得られる。   By the heating device of the present invention and the heating method using the heating device, not only can the device configuration required for hot press forming of steel sheets be made compact and productivity can be increased, but also high response and energy efficiency can be achieved, and the yield can be increased. The effect that can be produced well is obtained.

本発明による加熱装置の構成を示す平面配置図である。It is a plane arrangement view showing the composition of the heating device by the present invention. 図1の図中Aで示す範囲の側面配置図である。FIG. 2 is a side layout diagram of a range indicated by A in FIG. 1. バッチ式加熱装置の側面の側面配置図である。It is a side surface arrangement drawing of the side of a batch type heating device. 図3の平面配置図である。FIG. 4 is a plan layout view of FIG. 3. 本発明による加熱装置の動作を示す模式図であり、(a)は鋼板をディスタックから切り出した様子を示し、(b)は鋼板をバッチ式加熱装置内に搬送した様子を示している。It is a schematic diagram which shows operation | movement of the heating apparatus by this invention, (a) shows a mode that the steel plate was cut out from the destack, (b) has shown a mode that the steel plate was conveyed in the batch type heating device. 本発明による加熱装置の第二の実施形態を示す平面配置図である。It is a plane | planar arrangement | positioning figure which shows 2nd embodiment of the heating apparatus by this invention. 本発明による加熱装置の第三の実施形態を示す平面配置図である。It is a plane | planar arrangement | positioning figure which shows 3rd embodiment of the heating apparatus by this invention. 図7の別の実施形態を示す平面配置図である。FIG. 8 is a plan layout view showing another embodiment of FIG. 7. 本発明のバッチ式加熱装置の第二の実施形態を示し、(a)は平面配置図であり、(b)は側面配置図である。2nd embodiment of the batch type heating apparatus of this invention is shown, (a) is a plane | planar arrangement drawing, (b) is a side arrangement | positioning figure. 本発明のバッチ式加熱装置の第三の実施形態を示し、(a)は平面配置図であり、(b)は側面配置図である。3rd embodiment of the batch type heating apparatus of this invention is shown, (a) is a plane | planar arrangement | positioning figure, (b) is a side arrangement | positioning figure. 本発明のバッチ式加熱装置にエッジヒータと温度センサを付加した加熱装置であり、(a)は平面図であり、(b)は側面図である。It is the heating apparatus which added the edge heater and the temperature sensor to the batch type heating apparatus of this invention, (a) is a top view, (b) is a side view. 図10のバッチ式加熱装置の別の実施の形態を示し、(a)は平面図であり、(b)は側面図である。10 shows another embodiment of the batch-type heating device of FIG. 10, wherein (a) is a plan view and (b) is a side view. 従来技術の加熱装置の平面配置図である。It is a plane | planar arrangement drawing of the heating apparatus of a prior art. 本発明による加熱装置の昇温グラフである。It is a temperature rising graph of the heating apparatus by this invention. 鋼板を断熱材で囲んで加熱を行う様子を示す平面配置図である。It is a plane arrangement | positioning figure which shows a mode that a steel plate is enclosed with a heat insulating material and it heats. 本発明による加熱装置の第四の実施形態を示す平面配置図である。It is a plane layout view showing a fourth embodiment of the heating device according to the present invention. 本発明による加熱装置の第四の実施形態を示す平面配置図である。It is a plane layout view showing a fourth embodiment of the heating device according to the present invention. 鋼板を密着させて加熱を行う様子を示す平面配置図である。It is a plane | planar arrangement | positioning figure which shows a mode that a steel plate is closely_contact | adhered and it heats. ミクロジョイントを設けた鋼板の説明図であり、(a)は製品の全外周にミクロジョイント部を設けた様子を示し、(b)は製品の外周の一部にミクロジョイント部を設けた様子を示している。It is explanatory drawing of the steel plate which provided the micro joint, (a) shows a mode that the micro joint part was provided in the whole outer periphery of a product, (b) shows a mode that the micro joint part was provided in a part of outer periphery of the product. Show. 本発明による加熱装置の昇温グラフである。It is a temperature rising graph of the heating apparatus by this invention. 本発明による加熱装置の昇温グラフである。It is a temperature rising graph of the heating apparatus by this invention. 本発明による加熱装置の昇温グラフである。It is a temperature rising graph of the heating apparatus by this invention.

以下、本発明の第一の実施の形態について、図面を用いて説明する。熱間プレス材料は、質量%でC:0.05〜0.7%、Si:0.1〜1%、Mn:0.7〜2%、P:0.003〜0.1%、S:0.003〜0.1%を含有する鋼に被覆層の厚みが30μm以下のAlを主体とするメッキを施した鋼板である。熱間プレス前の鋼板の所定の目標温度は850℃以上1000℃以下であって、600℃から850℃への加熱は平均昇温速度を4℃/秒以上であることが好ましい。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. The hot press material is C: 0.05 to 0.7%, Si: 0.1 to 1%, Mn: 0.7 to 2%, P: 0.003 to 0.1%, S in mass%. : A steel plate containing 0.003 to 0.1% of steel and plated mainly with Al having a coating layer thickness of 30 μm or less. The predetermined target temperature of the steel sheet before hot pressing is 850 ° C. or higher and 1000 ° C. or lower, and the heating from 600 ° C. to 850 ° C. preferably has an average rate of temperature increase of 4 ° C./second or higher.

図1は、本発明による加熱装置の構成を平面的に示す摸式図である。加熱装置210に搬送される複数の未処理の鋼板3を載置するディスタック20、鋼板3を加熱する加熱装置210、加熱装置210から搬送された鋼板3を熱間プレスする熱間プレス装置60が、この順で設けられている。   FIG. 1 is a schematic diagram illustrating a configuration of a heating device according to the present invention in a plan view. Destack 20 on which a plurality of untreated steel plates 3 conveyed to heating device 210 are placed, heating device 210 that heats steel plates 3, and hot press device 60 that hot-presses steel plates 3 conveyed from heating device 210. Are provided in this order.

加熱装置210のディスタック20側には、常温の鋼板3を目標温度として例えば950℃に到達するまで急速に加熱するための複数台のバッチ式加熱部としてのバッチ式加熱装置101〜106が設けられている。バッチ式加熱装置101〜106は、後述するレール上を走行して循環することができ、本実施の形態においては、これらバッチ式加熱装置101〜106が、図示Bの加熱機構を構成している。   On the destack 20 side of the heating device 210, batch-type heating devices 101 to 106 are provided as a plurality of batch-type heating units for rapidly heating the steel plate 3 at room temperature until it reaches, for example, 950 ° C. It has been. The batch-type heating devices 101 to 106 can run and circulate on rails described later, and in the present embodiment, these batch-type heating devices 101 to 106 constitute the heating mechanism shown in FIG. .

また加熱装置210の熱間プレス装置60側には、目標温度に到達後の鋼板3を均熱保持する均熱炉50が設けられている。この灼熱炉50と熱間プレス装置60は、バッチ式加熱装置104から直列に配置されている。均熱炉50には、固定配置で常時炉温一定とするため、例えば設備コストが安価で経済的なガス燃焼による輻射加熱ヒータが用いられる。また均熱炉50は、バッチ式加熱装置104から鋼板3を受け取り、均熱炉50内に送り、熱間プレス装置60へ受け渡すまでに連続搬送できる炉内搬送装置51が設けられた連続式加熱装置である。炉内搬送装置51は、一般的には耐熱セラミックス材料で構成されるウォーキングビーム式の搬送装置やローラー式の搬送装置が用いられる。なお、本実施の形態においては、これら均熱炉50と炉内搬送装置51が、図示Cの均熱機構を構成している。   A soaking furnace 50 for soaking and holding the steel plate 3 after reaching the target temperature is provided on the hot press device 60 side of the heating device 210. The burning furnace 50 and the hot press device 60 are arranged in series from the batch heating device 104. For the soaking furnace 50, for example, a radiant heater by gas combustion that is inexpensive and has low equipment cost is used in order to keep the furnace temperature constant by a fixed arrangement. The soaking furnace 50 receives the steel plate 3 from the batch heating device 104, sends it into the soaking furnace 50, and continuously feeds it to the hot press device 60. It is a heating device. The in-furnace transport device 51 is generally a walking beam transport device or a roller transport device made of a heat-resistant ceramic material. In the present embodiment, the soaking furnace 50 and the in-furnace transport apparatus 51 constitute a soaking mechanism C shown in the figure.

バッチ式加熱装置101〜106は、急速に昇温するため鋼板3に大量の伝熱を加える急速加熱部(加熱機構による加熱)を、また均熱炉50は、鋼板3の均温化とメッキ鋼板を用いた場合の表層の熱処理のための温度保持を行う均熱加熱部(均熱機構による均熱加熱)をそれぞれ担当する。   The batch-type heating devices 101 to 106 are rapid heating units (heating by a heating mechanism) that apply a large amount of heat to the steel plate 3 in order to rapidly raise the temperature, and the soaking furnace 50 is for temperature equalization and plating of the steel plate 3. It is in charge of the soaking unit (soaking by the soaking mechanism) that keeps the temperature for heat treatment of the surface layer when using a steel plate.

熱間プレス装置60には、炉内搬送装置51より加熱した鋼板3を受け取り、金型62へ移載し、プレス後の成形品を払い出すため図示Dの出側搬送部にプレス搬送装置61を設けている。   The hot press device 60 receives the heated steel plate 3 from the in-furnace transport device 51, transfers the steel plate 3 to the mold 62, and presses the pressed transport device 61 to the exit-side transport portion in FIG. Is provided.

図2は、バッチ式加熱装置101〜106のうち、常温の鋼板3を最初に受入れる図1の図示Aの入側搬送部に位置するバッチ式加熱装置101と、積層した複数の鋼板3から1枚を切出すディスタック20と入側搬送装置30を示す側面配置図である。なお、本実施の形態においては、入側搬送装置30が移載機構を構成している。   FIG. 2 shows a batch type heating apparatus 101 positioned at the entrance side conveying section in FIG. 1A that first receives the normal temperature steel sheet 3 among the batch type heating apparatuses 101 to 106 and a plurality of stacked steel sheets 3 to 1. It is a side surface layout diagram showing the destack 20 that cuts out a sheet and the entrance-side transport device 30. In the present embodiment, the entrance-side transport device 30 constitutes a transfer mechanism.

バッチ式加熱装置101は、鋼板3の上面に配置した発熱体としてのヒータ1と、炉体を覆う断熱材2と、鋼板3を支持するために耐熱セラミックス材料で構成されるスキッド5と、炉体の前後に配置し、それぞれ図示しない駆動機構により昇降移動が可能な2箇所の開閉扉4と、を有している。   The batch type heating apparatus 101 includes a heater 1 as a heating element disposed on the upper surface of a steel plate 3, a heat insulating material 2 covering the furnace body, a skid 5 made of a heat-resistant ceramic material for supporting the steel plate 3, a furnace It has two opening / closing doors 4 that are arranged on the front and back of the body and can be moved up and down by a driving mechanism (not shown).

各バッチ式加熱装置101〜106には走行車輪7を設け、走行レール8上に搭載し、走行移動可能としている。また、走行レール8の両端では、乗り移り機構11により昇降可能な横行レール10を走行レール8と直角方向に配置し、横行車輪9により横行移動可能としている。走行レール8及び横行レール10は、平面から見て長方形状の循環経路を構成し、当該循環経路はディスタック20と均熱炉50との間に配置されている。そして、バッチ式加熱装置101〜106は、これら走行レール8及び横行レール10の循環系路上を走行移動することで、ディスタック20と均熱炉50との間を循環することができる。   Each batch-type heating device 101 to 106 is provided with traveling wheels 7 and mounted on the traveling rail 8 so that the traveling movement is possible. Further, at both ends of the traveling rail 8, a traversing rail 10 that can be moved up and down by the transfer mechanism 11 is arranged in a direction perpendicular to the traveling rail 8, and traversing movement is possible by the traversing wheels 9. The traveling rail 8 and the traverse rail 10 constitute a rectangular circulation path as viewed from above, and the circulation path is disposed between the destack 20 and the soaking furnace 50. The batch-type heating devices 101 to 106 can circulate between the destack 20 and the soaking furnace 50 by traveling on the circulation system path of the traveling rail 8 and the traverse rail 10.

ここで、ヒータ1には、輻射加熱方式では最も出力密度が高く、加熱出力指令に対する応答性および加熱停止の繰り返しに対する耐久性が高い近赤外線発熱体としての近赤外加熱ランプを用いているが、別の実施の形態として、鋼板3の加熱手段には、電気抵抗式加熱、誘導加熱、通電加熱、レーザー加熱、プラズマ加熱等の手段を用いることができる。また、ヒータ1は独立に取り外しすることもできる。   Here, the heater 1 uses a near-infrared heating lamp as a near-infrared heating element that has the highest output density in the radiant heating method, and has high responsiveness to a heating output command and high durability against repeated heating stops. As another embodiment, means for heating the steel plate 3 may be means such as electrical resistance heating, induction heating, energization heating, laser heating, plasma heating, or the like. Moreover, the heater 1 can also be removed independently.

なお、循環する各バッチ式加熱装置101〜106への給電は、トロリー線(図示せず)により供給する。この給電方法により、給電ケーブルが輻輳することなく、またヒータ1の損耗等によるメンテナンスが必要な場合は、バッチ式加熱装置101〜106を循環ループから容易に取り外すことができ、生産ライン外でメンテナンス作業を行い、予備機を循環ループに投入できるので、生産性が低下することなく連続的に生産を継続できる。   In addition, the electric power feeding to each batch type heating apparatus 101-106 to circulate is supplied with a trolley wire (not shown). With this power supply method, when the power supply cable is not congested and maintenance due to the wear of the heater 1 is necessary, the batch heating devices 101 to 106 can be easily removed from the circulation loop, and maintenance is performed outside the production line. Since the work can be performed and the spare machine can be put into the circulation loop, the production can be continued continuously without reducing the productivity.

図3、4は、バッチ式加熱装置101の側面配置図および平面配置図である。鋼板3を均等に加熱ため、天井ヒータ1aとして用いる5灯の線状のヒータ1である近赤外加熱ランプには、制御部として鋼板3に対する投入熱量を制御する出力調整器44がそれぞれ接続しており、また、鋼板3を搭載するスキッド5は、揺動モータ40とスクリュー軸41を介して連結されており、天井ヒータ1aからの輻射強度のばらつきを均等化するため、揺動動作できる機構を設けている。なお、ここでは輻射強度のばらつきを均等化するため、鋼板3側を揺動させる例を示しているが、鋼板3を固定し、天井ヒータ1aを揺動しても、輻射強度を均等化する作用は同じである。   3 and 4 are a side view and a plan view of the batch type heating apparatus 101. FIG. In order to heat the steel plate 3 evenly, an output regulator 44 for controlling the amount of heat input to the steel plate 3 is connected to each of the near infrared heating lamps, which are five linear heaters 1 used as the ceiling heater 1a. The skid 5 on which the steel plate 3 is mounted is connected via a swing motor 40 and a screw shaft 41, and a mechanism capable of swinging to equalize variation in radiation intensity from the ceiling heater 1a. Is provided. In addition, although the example which rocks the steel plate 3 side is shown here in order to equalize the dispersion | variation in radiation intensity, even if the steel plate 3 is fixed and the ceiling heater 1a is rock | fluctuated, radiation intensity is equalized. The action is the same.

天井ヒータ1aの上面には水冷配管42を設け、ヒータ1自体の加熱による損耗を防ぐようにしている。なお、スキッド5には、揺動中や加熱装置の移動中に鋼板3のずれを防止するよう、図示のような段差45もしくは突起を設けてもよい。   A water-cooled pipe 42 is provided on the upper surface of the ceiling heater 1a so as to prevent wear due to heating of the heater 1 itself. Note that the skid 5 may be provided with a step 45 or a protrusion as shown in the figure so as to prevent the steel plate 3 from being displaced during swinging or during movement of the heating device.

図5は、バッチ式加熱装置101により、鋼板3を加熱する際の作用を示す。図5(a)に示すように、ディスタック20のテーブル上から真空吸引等により1枚ずつ切り出した常温の鋼板3は、入り側搬送装置30により、図5(b)に示すように、バッチ式加熱装置101内のスキッド5上に搭載される。その後、入り側搬送装置30は、ディスタック20側に退避し、再び図5(a)のように、次の鋼板3を把持する準備を開始する。ここでは入り側搬送装置30には、鋼板3を把持することができる開閉グリップ31を有し、ディスタック20とバッチ式加熱装置101の間を往復移動できる機構を有する。往復移動の手段としては、開閉グリップ31を先端に装着した、多関節型の産業用ロボットを用いた構成としてもよい。   FIG. 5 shows an operation when the steel plate 3 is heated by the batch heating apparatus 101. As shown in FIG. 5 (a), the room-temperature steel plates 3 cut out one by one from the table of the destack 20 by vacuum suction or the like are batch-processed by the entrance-side transport device 30 as shown in FIG. 5 (b). It is mounted on the skid 5 in the type heating device 101. Thereafter, the entrance-side transport device 30 retreats to the destack 20 side and starts preparation for gripping the next steel plate 3 again as shown in FIG. Here, the entrance-side transport device 30 has an open / close grip 31 that can grip the steel plate 3 and a mechanism that can reciprocate between the destack 20 and the batch heating device 101. As a means for reciprocal movement, an articulated industrial robot equipped with an opening / closing grip 31 at the tip may be used.

一方、バッチ式加熱装置101は、両側の開閉扉4を閉じ、天井ヒータ1aの加熱を開始する。バッチ式加熱装置101は、閉空間内で鋼板3を一定条件で加熱し、揺動動作によりヒータ出力のばらつきを均等化することができるため、急速な昇温でも鋼板面内で均等な加熱ができる特徴を有する。   On the other hand, the batch type heating device 101 closes the doors 4 on both sides and starts heating the ceiling heater 1a. The batch-type heating device 101 can heat the steel plate 3 in a closed space under a constant condition and equalize the variation in the heater output by a swinging operation. It has features that can.

連続操業中は、6台のバッチ式加熱装置101〜106が図1に示すようにループ状に循環しており、バッチ式加熱装置101は、鋼板3が目標温度として例えば950℃に到達するまで急速に加熱する間に、均熱炉50の入り側、すなわち図1に示すバッチ式加熱装置104の位置に移動する。ここで、鋼板3は、バッチ式加熱装置104から炉内搬送装置51により、均熱炉50へ受け渡され、炉内を移動しながら、一定温度に所定時間保持される。さらに、炉内搬送装置51から、プレス搬送装置61へ移載され、熱間プレス装置60により部品形状に成形され、熱間プレス装置60の出側より排出される。   During continuous operation, six batch-type heating devices 101 to 106 are circulated in a loop shape as shown in FIG. 1, and the batch-type heating device 101 is used until the steel plate 3 reaches, for example, 950 ° C. as a target temperature. During the rapid heating, it moves to the entrance side of the soaking furnace 50, that is, the position of the batch heating device 104 shown in FIG. Here, the steel plate 3 is transferred from the batch heating device 104 to the soaking furnace 50 by the in-furnace transport device 51, and is held at a constant temperature for a predetermined time while moving in the furnace. Further, it is transferred from the in-furnace transport device 51 to the press transport device 61, formed into a part shape by the hot press device 60, and discharged from the outlet side of the hot press device 60.

なお、図1では、6台のバッチ式加熱装置101〜106を平面的に配置しているが、別の形態として、上下方向に積層したバッチ式加熱装置101〜106がエレベータ式に循環する配置としてもよい。またバッチ式加熱装置101〜106を上下方向に積層固定し、各バッチ式加熱装置101〜106に対応する均熱炉50と同一のバッチ炉をそれぞれ設け、搬送装置が各バッチ式加熱装置101〜106から各バッチ炉に鋼板3を受渡すため、あるいは各バッチ炉から鋼板3を受取るために移動するような配置としてもよい。   In addition, in FIG. 1, although six batch type heating apparatuses 101-106 are arrange | positioned planarly, the arrangement which the batch type heating apparatuses 101-106 laminated | stacked on the up-down direction circulates in an elevator type as another form. It is good. Further, the batch type heating devices 101 to 106 are stacked and fixed in the vertical direction, and the same batch furnace as the soaking furnace 50 corresponding to each batch type heating device 101 to 106 is provided, respectively, and the conveying device is set to each batch type heating device 101. It is good also as arrangement | positioning which moves in order to deliver the steel plate 3 to each batch furnace from 106, or to receive the steel plate 3 from each batch furnace.

図6は、図1に示す本発明の加熱装置210の第二の実施形態を示すもので、複数台のバッチ式加熱装置101〜104に、ディスタック20から鋼板3が挿入され、リング状の回転テーブル80に搭載されたバッチ式加熱装置101〜104が循環しながら、目標温度として例えば950℃に到達するまで鋼板3を急速加熱すると共に、均熱炉50の入り側に到達すると、鋼板3を均熱炉50へ移載する構成となる。   FIG. 6 shows a second embodiment of the heating device 210 of the present invention shown in FIG. 1, in which the steel plate 3 is inserted from the destack 20 into a plurality of batch-type heating devices 101 to 104, and a ring shape is formed. While the batch-type heating devices 101 to 104 mounted on the rotary table 80 circulate, the steel plate 3 is rapidly heated until the target temperature reaches, for example, 950 ° C., and reaches the entry side of the soaking furnace 50. Is transferred to the soaking furnace 50.

図6では、バッチ式加熱装置101〜104は4台の構成となっているが、加熱能力と循環速度に応じた台数を設定することができる。また、図1に示すバッチ式加熱装置101〜106の横行機構や、移載機構が省略できる上、各バッチ式加熱装置101〜104の開閉扉4は、各1箇所のみとすることができる。   In FIG. 6, the batch type heating apparatuses 101 to 104 have four units, but the number of units according to the heating capacity and the circulation speed can be set. Further, the traversing mechanism and the transfer mechanism of the batch type heating devices 101 to 106 shown in FIG. 1 can be omitted, and the opening / closing doors 4 of the batch type heating devices 101 to 104 can be provided at only one place.

図7は、図1に示す本発明の加熱装置210の第三の実施形態を示すもので、複数台のバッチ式加熱装置101〜105は、ディスタック20から鋼板3が挿入され、循環移動しながら目標温度としてたとえば図14に示すように950℃に到達するまで急速に加熱し、さらに一定時間保持する均熱まで行った後に、プレス搬送装置61により、熱間プレス装置60に搬送する構成となる。   FIG. 7 shows a third embodiment of the heating device 210 of the present invention shown in FIG. 1. A plurality of batch-type heating devices 101 to 105 circulate and move with the steel plate 3 inserted from the destack 20. However, for example, as shown in FIG. 14, the target temperature is rapidly heated until reaching 950 ° C., and further soaked for a certain period of time, and then conveyed to the hot press device 60 by the press conveying device 61. Become.

図7では、バッチ式加熱装置101〜105は5台の構成となっているが、加熱能力と循環速度に応じた台数を設定することができる。均熱段階ではバッチ式加熱装置101〜105が、低出力運転となり、バッチ式加熱装置101〜105の循環効率は低下するが、小さな鋼板3を連続して加熱するような稀な場合には、このような実施の形態が適用できる。   In FIG. 7, the batch type heating apparatuses 101 to 105 have five units, but the number of units according to the heating capacity and the circulation speed can be set. In the soaking stage, the batch-type heating devices 101 to 105 are operated at a low output, and the circulation efficiency of the batch-type heating devices 101 to 105 is reduced. However, in rare cases where the small steel plate 3 is continuously heated, Such an embodiment can be applied.

なお、図7では、5台のバッチ式加熱装置101〜105を平面的に配置しているが、別の形態として図1に示す形態から均熱炉50を除いた、図8に示す直線状の配置としてもよい。また上下方向に積層したバッチ式加熱装置101〜105がエレベータ式に循環する配置としてもよい。さらにバッチ式加熱装置101〜105を上下方向に積層固定し、各バッチ式加熱装置101〜105に対応する均熱炉50と同一のバッチ炉をそれぞれ設け、搬送装置が各バッチ式加熱装置101〜105から各バッチ炉に鋼板3を受渡すため、あるいは各バッチ炉から鋼板3を受取るために移動するような配置としてもよい。   In addition, in FIG. 7, although the five batch type heating apparatuses 101-105 are arrange | positioned planarly, the linear form shown in FIG. 8 remove | excluding the soaking furnace 50 from the form shown in FIG. 1 as another form. It is good also as arrangement of. Moreover, it is good also as arrangement | positioning which the batch type heating apparatuses 101-105 laminated | stacked on the up-down direction circulates in an elevator type. Furthermore, the batch-type heating devices 101 to 105 are stacked and fixed in the vertical direction, and the same batch furnace as the soaking furnace 50 corresponding to each batch-type heating device 101 to 105 is provided. It is good also as an arrangement | positioning which moves in order to deliver the steel plate 3 from 105 to each batch furnace, or to receive the steel plate 3 from each batch furnace.

図9は、図4に示すバッチ式加熱装置101の天井ヒータ1aの第二の実施形態を示すもので、線状のヒータ1である近赤外加熱ランプを長手方向に分割し、分割した各ヒータ1の集合体1b〜1dはそれぞれ独立して加熱出力を調整、もしくは鋼板3の表面に対する角度を調整、もしくはその両方を調整する機能を備え、鋼板3の長手方向の均熱化を図ることができる。なお、鋼板3の均熱化を図るために、鋼板3に対する遮熱、あるいは熱反射を調整してもよい。またこれらヒータ1の集合体1b〜bdの調整は、出力調整器44の制御によって行ってもよい。   FIG. 9 shows a second embodiment of the ceiling heater 1a of the batch-type heating apparatus 101 shown in FIG. 4, and the near infrared heating lamp, which is a linear heater 1, is divided in the longitudinal direction, and each divided part is divided. Each of the aggregates 1b to 1d of the heater 1 has a function of adjusting the heating output independently, adjusting the angle with respect to the surface of the steel plate 3, or adjusting both of them, so as to equalize the heat in the longitudinal direction of the steel plate 3. Can do. In order to equalize the temperature of the steel plate 3, the heat shielding or heat reflection on the steel plate 3 may be adjusted. Further, the adjustment of the aggregates 1 b to bd of the heater 1 may be performed by the control of the output adjuster 44.

図10は、図4に示すバッチ式加熱装置101の天井ヒータ1aの第三の実施形態を示すもので、鋼板3の両端に電極を接続し、直接通電加熱する。通電加熱装置70は、鋼板3の端部をクランプするクランプ電極71と、電力を供給する電源部72から構成される。   FIG. 10 shows a third embodiment of the ceiling heater 1a of the batch type heating apparatus 101 shown in FIG. 4, and electrodes are connected to both ends of the steel plate 3 and directly energized and heated. The electric heating device 70 includes a clamp electrode 71 that clamps an end of the steel plate 3 and a power supply unit 72 that supplies electric power.

通電加熱は、大量の電流を鋼板3の小断面に供給する際の抵抗発熱を利用するため、均一な加熱には、電極間の鋼板断面積が均等なことが理想である。さらに電流が通過しやすい鋼板中央部がより高温化するため、鋼板3の形状は、矩形に限定される。しかしながら、図示のように、昇温しにくい鋼板3の端部にエッジヒータ73を設けることで、鋼板形状の自由度を高めることができる。エッジヒータ73として、図10に示す上面に固定した近赤外線ランプや、図11に示す側面に固定した近赤外線ランプや、図12に示す上面に旋回自在に設置したアーム74が把持する近赤外線ランプ等が考えられる。通電加熱では、加熱後にクランプ電極71を開放し、鋼板3を次工程に搬送させる必要があるので、クランプ電極71が離れた後は、エッジヒータ73も搬送時に干渉しない側面配置とするか、待避できる機構が望ましい。   Since current heating uses resistance heat generation when a large amount of current is supplied to the small cross section of the steel plate 3, it is ideal that the cross sectional area of the steel plate between the electrodes is uniform for uniform heating. Furthermore, since the center part of the steel plate through which the current easily passes becomes higher in temperature, the shape of the steel plate 3 is limited to a rectangle. However, as shown in the figure, the degree of freedom of the steel plate shape can be increased by providing the edge heater 73 at the end of the steel plate 3 that is difficult to increase in temperature. As the edge heater 73, a near-infrared lamp fixed on the upper surface shown in FIG. 10, a near-infrared lamp fixed on the side surface shown in FIG. 11, or a near-infrared lamp held by an arm 74 installed on the upper surface shown in FIG. Etc. are considered. In the energization heating, it is necessary to open the clamp electrode 71 after heating and transport the steel plate 3 to the next process. Therefore, after the clamp electrode 71 is separated, the edge heater 73 is also arranged on the side surface that does not interfere with the transport or is saved. A mechanism that can do this is desirable.

図11では、放熱し易い鋼板3の端部の加熱に有効なエッジヒータ73を、図4に示す本発明の実施形態に付加している。また、鋼板3の温度又は鋼板3近傍の雰囲気の温度を計測する温度センサ46を設けた実施の形態を示している。温度センサ46として、非接触式の放射温度計を用いて、加熱中の鋼板3の温度を直接計測することにより、加熱品質の管理や、異常発生時の加熱や搬送の停止、さらに温度設定値との差異や成形反力等のデータを参照値として、例えば出力調整器44により天井ヒータ1aやエッジヒータ73の出力の制御を行うことができる。なお、温度センサ46は複数設けてもよい。   In FIG. 11, an edge heater 73 effective for heating the end of the steel plate 3 that easily dissipates heat is added to the embodiment of the present invention shown in FIG. 4. Further, an embodiment in which a temperature sensor 46 for measuring the temperature of the steel plate 3 or the temperature of the atmosphere in the vicinity of the steel plate 3 is provided is shown. As a temperature sensor 46, a non-contact type radiation thermometer is used to directly measure the temperature of the steel sheet 3 during heating, thereby controlling the heating quality, stopping heating or conveying when an abnormality occurs, and further setting the temperature. For example, the output adjuster 44 can control the output of the ceiling heater 1a and the edge heater 73 with reference to data such as the difference between them and the molding reaction force. A plurality of temperature sensors 46 may be provided.

図15では、放熱し易い鋼板3の端部を、例えば断熱材90で囲んだ場合の例を示している。このように断熱材90を鋼板3の端部を囲うように配置することで、端部からの放熱が抑制され、端部をエッジヒータ73で加熱する場合と同様の効果が得られる。図15の方法を用いる場合、鋼板3の形状に合わせて棒状の分割した断熱材90もしくは一体成形された断熱材90を、予めバッチ式加熱装置101内に設けておいてもよい。なお、図15は棒状の分割した断熱材90で囲んだ場合を示している。   FIG. 15 shows an example in which the end portion of the steel plate 3 that easily radiates heat is surrounded by, for example, a heat insulating material 90. By disposing the heat insulating material 90 so as to surround the end portion of the steel plate 3 in this manner, heat dissipation from the end portion is suppressed, and the same effect as that when the end portion is heated by the edge heater 73 is obtained. In the case of using the method of FIG. 15, a rod-shaped heat insulating material 90 or an integrally formed heat insulating material 90 according to the shape of the steel plate 3 may be provided in the batch heating apparatus 101 in advance. Note that FIG. 15 shows a case where it is surrounded by a bar-shaped divided heat insulating material 90.

図15に示した方法を用いて加熱を行う場合、均熱炉50と熱間プレス装置60との間に、他の移載機構として図16に示すような出側搬送装置95を設けることが好ましい。こうすることで、鋼板3が熱間プレス装置60に受け渡される前に断熱材90を取り除くことができる。   When heating is performed using the method illustrated in FIG. 15, an exit-side transport device 95 as illustrated in FIG. 16 may be provided as another transfer mechanism between the soaking furnace 50 and the hot press device 60. preferable. By doing so, the heat insulating material 90 can be removed before the steel plate 3 is transferred to the hot press device 60.

また、鋼板3の大きさが、バッチ式加熱装置101内に複数搭載可能な大きさである場合は、図17に示すように、隣り合う鋼板3、3の端部を互いに密着させてスキッド5上に搭載してもよい。これにより、図15に示す断熱材90で囲んだ場合と同様に密着した端部からの放熱を抑制することができる。なお、この場合においても、密着していない端部は、断熱材90で囲むことが好ましい。   When the size of the steel plate 3 is large enough to be mounted in the batch-type heating apparatus 101, as shown in FIG. It may be mounted on top. Thereby, it is possible to suppress the heat radiation from the close end as in the case surrounded by the heat insulating material 90 shown in FIG. Even in this case, it is preferable to surround the end portions that are not in close contact with the heat insulating material 90.

なお、熱間プレスで、例えば自動車のセンターピラー等の左右で勝手反対の形状を有している鋼板3を成形する場合、熱間プレス前の最終切断時の鋼板96は、対向する辺を密着させることができる。したがって、この場合は図18に示すように、鋼板96を互い違いに密着させた状態でスキッド5上に搭載することが提案できる。この鋼板96は、出側搬送装置95により熱間プレス装置60に受け渡される際に、金型62に合わせて位置が修正される。なお、鋼板3の最終切断時の形状が矩形の場合は、当然ながら上述のように互い違いに密着させることを考慮する必要はなく、図17に示すようにスキッド5上に搭載すればよい。この場合においても、密着していない端部は、断熱材90で囲むことが好ましい。   In addition, when forming the steel plate 3 having the opposite shape on the left and right, such as the center pillar of an automobile, for example, by hot pressing, the steel plate 96 at the time of final cutting before hot pressing adheres to the opposite sides. Can be made. Therefore, in this case, as shown in FIG. 18, it can be proposed that the steel plates 96 are mounted on the skid 5 in a state of being in close contact with each other. When the steel plate 96 is delivered to the hot press device 60 by the delivery-side transport device 95, the position of the steel plate 96 is corrected according to the mold 62. In addition, when the shape at the time of the final cutting of the steel plate 3 is a rectangle, naturally, it is not necessary to consider making it contact | adhere alternately as mentioned above, and what is necessary is just to mount on the skid 5 as shown in FIG. Even in this case, it is preferable to surround the end portions that are not in close contact with the heat insulating material 90.

また、鋼板3の形状が左右で勝手反対であっても、形状が複雑で互いの端部が当接するようにスキッド5上に搭載できない場合がある。その場合は、鋼板3を完全に最終切断せずに、図19(a)に示すように成形後の製品99の形状に合わせて切断または切除可能なジョイント部、いわゆるミクロジョイント部97を形成した状態で加熱すれば、鋼板3同士を互いに密着させ、端部からの放熱を抑制することができる。図19(a)の例では、孔98を製品99の外形に合わせて穿設し、孔98、98との間の部分がミクロジョイント部97を形成している。そして、例えば金型62のミクロジョイント部97に対応する位置にミクロジョイント部97切断用の切刃を設ける、あるいはミクロジョイント切断用の一次プレス装置(図示せず)を設けておけば、熱間プレス成形時にミクロジョイント部97を切り離すことで製品99を製造できる。また、バッチ式加熱装置101内に1枚の鋼板3のみしか搭載できないサイズの鋼板3を用いる場合でも、最終切断の代わりにミクロジョイント部97を製品99の周囲に形成した鋼板3を用いることで、製品99の端部からの放熱を抑えることができる。したがって、この場合においても、最終切断を行った場合に端部から発生したであろう放熱を抑制することができる。なお、図19(a)では、製品99の全外周にミクロジョイント部97を設けているが、図17、図18に示す形態の組合せとして、たとえば、図19(b)のように、製品99の外周の一部のみにミクロジョイント部97を設けてもよい。この場合においても、密着していない端部は、断熱材90で囲むことが好ましい。   Moreover, even if the shape of the steel plate 3 is right and left and opposite, there is a case where the shape is complicated and the steel plate 3 cannot be mounted on the skid 5 so that the ends of the steel plates 3 come into contact with each other. In that case, the steel plate 3 was not completely cut, but a joint portion that can be cut or excised according to the shape of the molded product 99 as shown in FIG. 19A, a so-called micro joint portion 97 was formed. If heated in a state, the steel plates 3 can be brought into close contact with each other, and heat dissipation from the end portions can be suppressed. In the example of FIG. 19A, the hole 98 is formed according to the outer shape of the product 99, and a portion between the holes 98 and 98 forms a micro joint part 97. For example, if a cutting blade for cutting the micro joint part 97 is provided at a position corresponding to the micro joint part 97 of the mold 62 or a primary press device (not shown) for cutting the micro joint is provided, The product 99 can be manufactured by separating the micro joint portion 97 during press molding. Further, even when using a steel plate 3 having a size that allows only one steel plate 3 to be mounted in the batch-type heating apparatus 101, by using the steel plate 3 in which the micro joint portion 97 is formed around the product 99 instead of the final cutting. The heat radiation from the end of the product 99 can be suppressed. Therefore, also in this case, it is possible to suppress heat dissipation that would have occurred from the end portion when the final cutting was performed. In FIG. 19A, the micro joint portion 97 is provided on the entire outer periphery of the product 99. However, as a combination of the modes shown in FIGS. 17 and 18, for example, as shown in FIG. The micro joint portion 97 may be provided only on a part of the outer periphery of the. Even in this case, it is preferable to surround the end portions that are not in close contact with the heat insulating material 90.

図9では、鋼板3面上の任意の位置のエッジヒータ73を選択することにより、あるいは図12では、鋼板3面上の任意の位置にエッジヒータ73を配置することにより、局部的に加熱条件を変えることができる特徴を活かし、鋼板3を部分的に焼き入れするあるいは、熱間成形された部品の一部を再加熱し、焼鈍するといった用法に用いることができる。   In FIG. 9, by selecting the edge heater 73 at an arbitrary position on the surface of the steel plate 3 or by arranging the edge heater 73 at an arbitrary position on the surface of the steel plate 3 in FIG. Taking advantage of the feature that can change the thickness of the steel plate 3, the steel plate 3 can be partially quenched, or a part of the hot-formed part can be reheated and annealed.

(従来の加熱炉と本発明の加熱装置の比較)
図14は、従来のガス加熱炉を用いた場合(図14(a))と、近赤外線ヒータを有する加熱装置を用いた場合(図14(b))と、通電加熱ヒータを有する加熱装置を用いた場合(図14(c))において、アルミメッキ鋼板を目標温度950℃まで加熱した状況を示している。
(Comparison of conventional heating furnace and heating device of the present invention)
FIG. 14 shows a case where a conventional gas heating furnace is used (FIG. 14A), a case where a heating device having a near infrared heater is used (FIG. 14B), and a case where a heating device having an energizing heater is used. When used (FIG. 14C), a situation is shown in which the aluminized steel sheet is heated to a target temperature of 950 ° C.

図14(a)におけるガス加熱炉の加熱速度は、4℃/sec程度であり、急速加熱部において、常温(20℃)から目標温度に到達するのに要する時間は233秒である。その後、均熱加熱を行い300秒後に鋼板を抽出する加熱パターンでは、熱間プレスを10秒/回で実施するためには、図13に示すように鋼板30枚以上を同時に加熱する炉が必要となる。   The heating rate of the gas heating furnace in FIG. 14A is about 4 ° C./sec, and the time required to reach the target temperature from normal temperature (20 ° C.) in the rapid heating section is 233 seconds. After that, in the heating pattern in which soaking is performed and the steel plate is extracted after 300 seconds, in order to perform hot pressing at 10 seconds / time, a furnace for simultaneously heating 30 or more steel plates is required as shown in FIG. It becomes.

一方、図14(b)における加熱装置の加熱速度は、20℃/sec程度であり、図14(a)に相当する加熱パターンを実行するためには、急速加熱部(加熱機構による加熱)で5枚、均熱加熱部(均熱機構による加熱)で7枚、同時に12枚を加熱するだけでよい。さらに、図14(c)における加熱装置の加熱速度は、150℃/sec以上の加熱が可能であり、図14(a)に相当する加熱パターンを実行するためには、急速加熱部(加熱機構による加熱)で1枚、均熱加熱部(均熱機構による加熱)で7枚、同時に8枚を加熱するのみとなる。   On the other hand, the heating rate of the heating device in FIG. 14B is about 20 ° C./sec. In order to execute the heating pattern corresponding to FIG. 14A, a rapid heating unit (heating by a heating mechanism) is used. It is only necessary to heat 5 sheets, 7 sheets with a soaking unit (heating by a soaking mechanism), and 12 sheets at the same time. Furthermore, the heating speed of the heating device in FIG. 14C is capable of heating at 150 ° C./sec or more, and in order to execute the heating pattern corresponding to FIG. 1 sheet by heating), 7 sheets by the soaking unit (heating by the soaking mechanism), and 8 sheets at the same time.

(バッチ式 近赤外線加熱)
図1に示す加熱装置の構成で図4に示すバッチ式加熱装置を用いて、鋼成分として、質量%でC:0.22%を含有する鋼に、層の厚みが約25μmのAlを主体とするメッキを施した長さ400mm×幅220mm×板厚1.4mmの任意形状の鋼板を、到達温度950℃まで平均昇温速度18℃/秒で加熱でき、到達温度で約40秒間保持した後、熱間プレス成形した結果、均一な引張強度約1500MPaで、形状寸法が良好かつ、耐食性に優れた表層組織を有する自動車部品材を製造することができた。鋼板の加熱に要した時間は、従来の加熱速度4℃/secに対し1/3.5、装置の立地スペースは従来比1/2とコンパクトで高生産な加熱装置が実現できた。なお、本実施例では、バッチ式加熱装置による加熱は、近赤外線加熱ヒータで行い、長さ700mmのランプを間隔50mmで7灯並列配置し、最大出力70kw、最大出力密度 30w/cm2のヒータ仕様により、ヒータと鋼板の距離を30mmとし、揺動距離は、±15mmとしている。また、熱間プレスは10秒/回のサイクルで実施した。
(Batch type near infrared heating)
The composition of the heating device shown in FIG. 1 is used, and the batch type heating device shown in FIG. 4 is used, and steel containing C: 0.22% by mass as a steel component is mainly composed of Al having a thickness of about 25 μm. A steel plate having an arbitrary shape having a length of 400 mm, a width of 220 mm, and a thickness of 1.4 mm, which has been plated, can be heated to an ultimate temperature of 950 ° C. at an average temperature increase rate of 18 ° C./second and held at the ultimate temperature for about 40 seconds. After that, as a result of hot press molding, it was possible to produce an automobile part material having a uniform tensile strength of about 1500 MPa, a good shape and a surface layer structure excellent in corrosion resistance. The time required for heating the steel sheet was 1 / 3.5 compared to the conventional heating rate of 4 ° C./sec, and the location space of the apparatus was ½ that of the conventional heating device. In this example, heating by the batch type heating device is performed by a near infrared heater, 7 lamps having a length of 700 mm are arranged in parallel at an interval of 50 mm, a heater specification with a maximum output of 70 kw and a maximum output density of 30 w / cm 2. Therefore, the distance between the heater and the steel plate is 30 mm, and the swing distance is ± 15 mm. The hot pressing was performed at a cycle of 10 seconds / time.

(バッチ式 通電+近赤外線加熱)
図1に示す加熱装置の構成で図10に示すバッチ式加熱装置を用いて、鋼成分として、質量%でC:0.22%を含有する鋼に、層の厚みが約25μmのAlを主体とするメッキを施した長さ400mm×幅220mm×板厚1.4mmの矩形の鋼板を、到達温度950℃まで平均昇温速度100℃/秒で加熱でき、到達温度で約40秒間保持した後、熱間プレス成形した結果、通電加熱用のクランプ電極部を除き、均一な引張強度1500MPaで、形状寸法が良好かつ、耐食性に優れた表層組織を有する自動車部品材を製造することができた。鋼板の加熱に要した時間は、従来比1/6.5、装置の立地スペースは従来比1/4とよりコンパクトで高生産な加熱装置が実現できた。なお、本実施例では、バッチ式加熱装置による加熱は、主ヒータとして通電加熱、エッジヒータとして近赤外線加熱ヒータを組み合わせて使用した。通電加熱ヒータは、最大電流2500Aで、近赤外線加熱は、長さ700mmのランプを2灯配置しており、最大出力20kw、最大出力密度 30w/cm2のヒータを用い、ヒータと鋼板の距離を30mmとし、揺動距離は、±15mmとしている。
(Batch type energization + near infrared heating)
The composition of the heating device shown in FIG. 1 is used, and the batch type heating device shown in FIG. 10 is used, and steel containing C: 0.22% by mass as a steel component is mainly composed of Al having a thickness of about 25 μm. A rectangular steel plate having a length of 400 mm, a width of 220 mm, and a thickness of 1.4 mm can be heated up to an ultimate temperature of 950 ° C. at an average rate of temperature increase of 100 ° C./sec. As a result of the intermediate press forming, an automotive part material having a uniform structure with a uniform tensile strength of 1500 MPa, a good shape size and excellent corrosion resistance was obtained, except for the clamp electrode portion for electric heating. The time required for heating the steel sheet was 1 / 6.5 compared with the conventional one, and the location space of the apparatus was 1/4 compared with the conventional one. In the present embodiment, the heating by the batch type heating device was used by combining energization heating as the main heater and near infrared heater as the edge heater. The energizing heater has a maximum current of 2500 A, and near infrared heating has two lamps with a length of 700 mm. A heater with a maximum output of 20 kW and a maximum output density of 30 w / cm 2 is used, and the distance between the heater and the steel sheet is 30 mm. The swing distance is ± 15 mm.

(本発明の加熱装置において鋼板の端部を断熱材で囲んだ場合、囲まない場合、及び鋼板の端部同士を密着させた場合の比較)
図20は、図1に示す近赤外線ヒータを有する加熱装置を用いてアルミメッキ鋼板の加熱を行った場合の当該鋼板の中央部(図20(a))と端部(図20(b))の温度上昇、図21は、図16に示す近赤外線ヒータを有する加熱装置において、アルミメッキ鋼板の端部を断熱材90で囲って加熱を行った場合の当該鋼板の中央部(図21(a))と端部(図21(b))の温度上昇、図22は図16に示す近赤外線ヒータを有する加熱装置において、アルミメッキ鋼板の端部同士を密着させ、さらに密着していない端部を断熱材で囲んで加熱を行った場合の当該鋼板の中央部(図22(a))と端部(図22(b))の温度上昇の状況をそれぞれ示している。
(Comparison when the end of the steel plate is surrounded by a heat insulating material in the heating device of the present invention, when not surrounded, and when the ends of the steel plate are brought into close contact with each other)
20 shows a central portion (FIG. 20 (a)) and an end portion (FIG. 20 (b)) of the steel plate when the aluminum-plated steel plate is heated using the heating device having the near infrared heater shown in FIG. FIG. 21 shows the center portion of the steel plate when the end portion of the aluminized steel plate is surrounded by a heat insulating material 90 in the heating apparatus having the near infrared heater shown in FIG. )) And the temperature rise at the end (FIG. 21 (b)), FIG. 22 shows a heating device having a near-infrared heater shown in FIG. The temperature rise situation of the center part (FIG. 22 (a)) and the edge part (FIG. 22 (b)) of the said steel plate at the time of heating by enclosing with a heat insulating material is each shown.

鋼成分として、質量%でC:0.22%を含有する鋼に、層の厚みが約25μmのAlを主体とするメッキを施した長さ200mm×幅220mm×板厚1.4mmの任意形状の鋼板を、目標の加熱温度950℃まで加熱した。この結果、図1に示す加熱装置を用いた場合、図20に示す通り、中央部(a)に対する端部(b)の温度差は、温度上昇と共に大きくなり、中央部(a)が950℃に到達しても端部(b)は800℃程度と150℃の差があった。その後も、端部からの放熱の影響で、温度が上昇せず、目標の加熱温度950℃までの到達時間が約80秒であった。これに対して、図16の装置を用いてアルミメッキ鋼板を断熱材90で囲んだ場合は、図21に示す通り、中央部(a)に対する端部(b)の温度差は、低温域では熱容量の大きな断熱材の温度上昇が遅れるため、80℃程度となるが、断熱効果により中央部(a)が到達温度950℃に達した時点で、端部(b)は900℃と50℃の差であった。また、アルミメッキ鋼板を密着させた場合は、図22に示す通り、中央部(a)に対する端部(b)の温度差は、加熱中ほどんど差が見られず、中央部(a)が、到達温度950℃に達した時点で、端部(b)は900℃と50℃の差があった。共に目標温度までの到達時間が約65秒であった。したがって、鋼板の端部を断熱材で囲う、あるいは鋼板の端部を密着させることで、鋼板の端部からの放熱が抑制され、加熱に要する時間をさらに短縮する効果が確認できた。図21及び図22の結果は、端部からの放熱が抑制されることで、鋼板の端部と中央部との温度差をより小さくできることを示している。したがって、鋼板の端部を囲うように断熱材を配置する、あるいは鋼板の端部を密着させることで、加熱後の均熱時間を短くできる、すなわち熱間プレス成形の生産性を向上させると共に、均熱機構Cをよりコンパクトにできる。   Arbitrary shape of length 200mm x width 220mm x plate thickness 1.4mm, in which steel containing C: 0.22% by mass as a steel component is plated mainly with Al having a layer thickness of about 25 μm Was heated to a target heating temperature of 950 ° C. As a result, when the heating device shown in FIG. 1 is used, as shown in FIG. 20, the temperature difference between the end portion (b) with respect to the center portion (a) becomes larger as the temperature rises, and the center portion (a) is 950 ° C. Even when the temperature reached the end (b), there was a difference between about 800 ° C. and 150 ° C. Thereafter, the temperature did not increase due to the heat radiation from the end, and the time required to reach the target heating temperature of 950 ° C. was about 80 seconds. On the other hand, when the aluminized steel plate is surrounded by the heat insulating material 90 using the apparatus of FIG. 16, as shown in FIG. 21, the temperature difference between the end portion (b) with respect to the center portion (a) is low in the low temperature range. Since the temperature rise of the heat insulating material having a large heat capacity is delayed, it becomes about 80 ° C., but when the central portion (a) reaches the ultimate temperature 950 ° C. due to the heat insulating effect, the end portion (b) is 900 ° C. and 50 ° C. It was a difference. Further, when the aluminum-plated steel plate is brought into close contact, as shown in FIG. 22, the temperature difference of the end portion (b) with respect to the central portion (a) is hardly seen during heating, and the central portion (a) When the ultimate temperature reached 950 ° C., the end (b) had a difference between 900 ° C. and 50 ° C. In both cases, the time to reach the target temperature was about 65 seconds. Therefore, the heat radiation from the edge part of a steel plate was suppressed by enclosing the edge part of a steel plate with a heat insulating material, or making the edge part of a steel plate closely_contact | adhered, and the effect which further shortened the time required for a heating was confirmed. The result of FIG.21 and FIG.22 has shown that the temperature difference of the edge part of a steel plate and a center part can be made smaller by suppressing the thermal radiation from an edge part. Therefore, by arranging the heat insulating material so as to surround the end of the steel plate, or by closely contacting the end of the steel plate, the soaking time after heating can be shortened, that is, the productivity of hot press forming is improved, The soaking mechanism C can be made more compact.

本発明は、鋼板を連続的にプレス成形する前に、当該鋼板を加熱する際に有用である。   The present invention is useful when heating a steel plate before continuously pressing the steel plate.

A 入側搬送部
B 加熱機構
C 均熱機構
D 出側搬送部
1 ヒータ
1a 天井ヒータ
1b〜d ヒータの集合体
2 断熱材
3 鋼板
4 開閉扉
5 スキッド
7 走行車輪
8 走行レール
9 横行車輪
10 横行レール
11 乗り移り機構
20 ディスタック
30 入側搬送装置
31 開閉グリップ
40 揺動モータ
41 スクリュー軸
42 水冷配管
44 出力調整器
45 段差
46 温度センサ
50 均熱炉
51 炉内搬送装置
60 熱間プレス装置
61 プレス搬送装置
62 金型
70 通電加熱装置
71 クランプ電極
72 電源部
73 エッジヒータ
74 アーム
80 回転テーブル
90 断熱材
95 出側搬送装置
96 鋼板
97 ミクロジョイント
98 孔
99 製品
101〜106 バッチ式加熱装置
210 加熱装置
DESCRIPTION OF SYMBOLS A Entry side conveyance part B Heating mechanism C Heat equalization mechanism D Outlet side conveyance part 1 Heater 1a Ceiling heater 1b-d Assembly of heaters 2 Heat insulating material 3 Steel plate 4 Opening / closing door 5 Skid 7 Traveling wheel 8 Traveling rail 9 Traverse wheel 10 Traverse Rail 11 Transfer mechanism 20 Destack 30 Entrance conveyor 31 Opening / closing grip 40 Oscillating motor 41 Screw shaft 42 Water-cooled piping 44 Output regulator 45 Step 46 Temperature sensor 50 Soaking furnace 51 In-furnace conveyor 60 Hot press 61 Press Conveying device 62 Mold 70 Current heating device 71 Clamp electrode 72 Power supply unit 73 Edge heater 74 Arm 80 Rotary table 90 Heat insulating material 95 Outlet conveying device 96 Steel plate 97 Micro joint 98 Hole 99 Product 101-106 Batch heating device 210 Heating device

Claims (14)

鋼板を連続的にプレス成形する前に、当該鋼板を加熱する加熱装置であって、
鋼板を加熱する加熱機構と、前記加熱された鋼板を一定時間均熱保持する均熱機構と、を有し、
前記加熱機構は、移載機構から1枚もしくは1組の鋼板を受け取って、当該鋼板を収容する複数のバッチ式加熱部を有し、
前記バッチ式加熱部は、前記均熱機構側に移動しながら、当該バッチ式加熱部内の鋼板を加熱し、
前記均熱機構は、前記バッチ式加熱部から複数枚の鋼板を受け取って、当該鋼板を搬送しながら連続的に均熱し、その後鋼板を熱間プレス装置に受け渡すことを特徴とする、熱間プレス成形用鋼板の加熱装置。
A heating device for heating the steel plate before continuously pressing the steel plate,
A heating mechanism for heating the steel sheet, and a soaking mechanism for holding the heated steel sheet for a certain period of time,
The heating mechanism has a plurality of batch heating units that receive one or a set of steel plates from the transfer mechanism and accommodate the steel plates,
The batch-type heating unit heats the steel sheet in the batch-type heating unit while moving to the soaking mechanism side,
The soaking mechanism receives a plurality of steel plates from the batch-type heating unit, continuously soaks while transporting the steel plates, and then passes the steel plates to a hot press device. Heating device for press forming steel sheet.
前記バッチ式加熱部は、前記均熱機構に鋼板を受け渡した後、前記移載機構側に移動することを特徴とする、請求項1に記載の熱間プレス成形用鋼板の加熱装置。 The hot press forming steel plate heating apparatus according to claim 1, wherein the batch type heating unit moves to the transfer mechanism side after delivering the steel plate to the soaking mechanism. 前記移動は、前記バッチ式加熱部が予め設定された循環経路を移動するか、又は前記バッチ式加熱部が多段に積層され上下動することによって行われることを特徴とする、請求項2に記載の熱間プレス成形用鋼板の加熱装置。 The said movement is performed when the said batch type heating part moves the circulation path set beforehand, or when the said batch type heating part is laminated | stacked in multiple stages and moves up and down, It is characterized by the above-mentioned. Heating device for hot press forming steel sheet. 前記複数のバッチ式加熱部は、輻射加熱方式、誘導加熱方式、通電加熱方式のいずれかによる加熱、またはこれらのうち2つ以上の加熱方式を組合せた加熱部であり、
前記各バッチ式加熱部は、個別に鋼板に対する投入熱量を制御する制御部を有することを特徴とする、請求項1〜3のいずれかに記載の熱間プレス成形用鋼板の加熱装置。
The plurality of batch-type heating units are heating units using any one of a radiant heating method, an induction heating method, and an energization heating method, or a heating unit that combines two or more of these heating methods,
Each said batch type heating part has a control part which controls the input heat amount with respect to a steel plate separately, The heating apparatus of the steel plate for hot press forming in any one of Claims 1-3 characterized by the above-mentioned.
前記バッチ式加熱部は、2つ以上の発熱体、又は発熱体の集合体を有し、
前記制御部は、前記各発熱体の鋼板に対する投入熱量を個別に制御することを特徴とする、請求項4に記載の熱間プレス成形用鋼板の加熱装置。
The batch-type heating unit has two or more heating elements, or an assembly of heating elements,
The said control part controls the heat input with respect to the steel plate of each said heat generating body separately, The heating apparatus of the steel plate for hot press forming of Claim 4 characterized by the above-mentioned.
前記加熱機構には、加熱中の鋼板の温度、又は鋼板近傍の雰囲気温度を計測する1個以上のセンサが配置され、
前記制御部は、センサによる温度計測値を基に、前記各発熱体の鋼板に対する投入熱量を制御することを特徴とする、請求項5に記載の熱間プレス成形用鋼板の加熱装置。
In the heating mechanism, one or more sensors for measuring the temperature of the steel plate being heated or the ambient temperature in the vicinity of the steel plate are arranged,
The said control part controls the heat input with respect to the steel plate of each said heat generating body based on the temperature measurement value by a sensor, The heating apparatus of the steel plate for hot press forming of Claim 5 characterized by the above-mentioned.
前記制御部は、前記各発熱体において、加熱出力、または輻射加熱方式の鋼板に対向する角度、遮熱、熱反射のいずれかを変えることにより、鋼板に対する投入熱量を制御することを特徴とする、請求項5又は6に記載の熱間プレス成形用鋼板の加熱装置。 The control unit controls the amount of heat input to the steel sheet by changing any one of a heating output or an angle facing the steel plate of the radiant heating method, heat shielding, and heat reflection in each heating element. The heating apparatus of the steel plate for hot press forming of Claim 5 or 6. 前記バッチ式加熱部の輻射加熱方式が近赤外線発熱体による加熱であり、該近赤外線発熱体を鋼板の加熱面に対向するように配列し、加熱中に、加熱面に対して平行に鋼板を揺動させることを特徴とする、請求項1〜7のいずれかに記載の熱間プレス成形用鋼板の加熱装置。 The radiant heating method of the batch heating unit is heating by a near-infrared heating element, the near-infrared heating element is arranged so as to face the heating surface of the steel plate, and the steel plate is parallel to the heating surface during heating. The apparatus for heating a steel sheet for hot press forming according to any one of claims 1 to 7, wherein the apparatus is rocked. 前記バッチ式加熱部の各発熱体が、独立に取外しできることを特徴とする、請求項5〜8のいずれかに記載の熱間プレス成形用鋼板の加熱装置。 The heating device for a hot press forming steel sheet according to any one of claims 5 to 8, wherein each heating element of the batch heating unit can be detached independently. 請求項1〜9に記載の加熱装置を用いて熱間プレス成形用鋼板を加熱するにあたり、鋼板の端部からの放熱を抑制しながら加熱を行うことを特徴とする、熱間プレス成形用鋼板の加熱方法。 A steel plate for hot press forming, wherein the steel plate for hot press forming is heated using the heating device according to claim 1 while suppressing heat dissipation from the end of the steel plate. Heating method. 鋼板の端部からの放熱の抑制は、鋼板の端部に断熱材を配置することにより行うことを特徴とする、請求項10に記載の熱間プレス成形用鋼板の加熱方法。 The method of heating a steel sheet for hot press forming according to claim 10, wherein the heat radiation from the end of the steel sheet is suppressed by disposing a heat insulating material at the end of the steel sheet. 鋼板の端部からの放熱の抑制は、複数の鋼板の端部同士を互いに密着させることにより行うことを特徴とする、請求項10または請求項11のいずれかに記載の熱間プレス成形用鋼板の加熱方法。 The hot press-forming steel plate according to claim 10 or 11, wherein the heat radiation from the end portions of the steel plates is suppressed by bringing the end portions of the plurality of steel plates into close contact with each other. Heating method. 前記鋼板は、成形後に製品となるように最終切断されたものであることを特徴とする、請求項12に記載の熱間プレス成形用鋼板の加熱方法。 The method of heating a steel sheet for hot press forming according to claim 12, wherein the steel sheet is finally cut so as to become a product after forming. 請求項1〜9に記載の加熱装置を用いて熱間プレス成形用鋼板を加熱するにあたり、
その鋼板の成形後に製品となる部分の外周もしくは外周の一部に、切断または切除可能なジョイント部が形成されていることを特徴とする、熱間プレス成形用鋼板の加熱方法。
In heating the steel sheet for hot press forming using the heating device according to claim 1,
A method for heating a steel sheet for hot press forming, characterized in that a joint part that can be cut or excised is formed on the outer periphery or part of the outer periphery of a part that becomes a product after forming the steel sheet.
JP2009049101A 2008-04-30 2009-03-03 Heating apparatus and method for hot press forming steel sheet Active JP5201003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049101A JP5201003B2 (en) 2008-04-30 2009-03-03 Heating apparatus and method for hot press forming steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008118168 2008-04-30
JP2008118168 2008-04-30
JP2009049101A JP5201003B2 (en) 2008-04-30 2009-03-03 Heating apparatus and method for hot press forming steel sheet

Publications (2)

Publication Number Publication Date
JP2009285728A true JP2009285728A (en) 2009-12-10
JP5201003B2 JP5201003B2 (en) 2013-06-05

Family

ID=41455468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049101A Active JP5201003B2 (en) 2008-04-30 2009-03-03 Heating apparatus and method for hot press forming steel sheet

Country Status (1)

Country Link
JP (1) JP5201003B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130861B1 (en) 2011-08-10 2012-03-28 에스아이에스 주식회사 Hot stamping forming system and method there for
JP2013111641A (en) * 2011-11-30 2013-06-10 Toyota Motor Corp Electric heating method
JP2013123730A (en) * 2011-12-14 2013-06-24 Toyota Motor Corp Electric heating method, press-formed component and electric heating device
KR101382181B1 (en) * 2011-12-16 2014-04-09 주식회사 성우하이텍 Pre-heating device for hot stamping
KR101604387B1 (en) * 2014-01-29 2016-03-17 한국과학기술원 Method and apparatus of rapid casting system using progressive heating
KR101620583B1 (en) * 2014-05-28 2016-05-12 주식회사 신영 High frequency heating system for hot stamping
JP2016524043A (en) * 2013-05-28 2016-08-12 ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag Equipment for conveying high-temperature thin steel parts
KR20160134170A (en) * 2015-05-15 2016-11-23 이호상 disk spring hot-working and pressing method
KR20160134171A (en) * 2015-05-15 2016-11-23 이호상 disk spring hot-working and pressing apparatus
JP2018145450A (en) * 2017-03-01 2018-09-20 ウシオ電機株式会社 Manufacturing method of heat-treated metal sheet
US10981207B2 (en) 2016-09-06 2021-04-20 Nippon Steel Corporation Hot press device
WO2022247546A1 (en) * 2021-05-25 2022-12-01 江苏科技大学 Integrated high-frequency intelligent levelling machine and working method therefor
JPWO2023037975A1 (en) * 2021-09-07 2023-03-16

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720501B1 (en) * 2016-05-09 2017-03-28 주식회사 엠에스 오토텍 High-frequency heating method for hot stamping
KR20190078788A (en) * 2017-12-27 2019-07-05 주식회사 엠에스 오토텍 Heating apparatus and method for hot stamping

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360908A (en) * 1976-11-12 1978-05-31 Minoru Sakamoto Caterpillar for continuous burning kilns capable to couple and separate
JPS6314993U (en) * 1986-07-09 1988-01-30
JPH1076321A (en) * 1996-09-03 1998-03-24 Hitachi Ltd Metal sheet formed product and its production
JP2002102980A (en) * 2000-07-28 2002-04-09 Aisin Takaoka Ltd Manufacturing method for collision reinforcing material for vehicle and collision reinforcing material
JP2002248525A (en) * 2001-02-22 2002-09-03 Sumitomo Metal Ind Ltd Method for hot pressing metal plate and apparatus therefor
JP2005271038A (en) * 2004-03-25 2005-10-06 Unipres Corp Hot press working method and apparatus
JP2006289425A (en) * 2005-04-11 2006-10-26 Nippon Steel Corp Hot press forming method, and apparatus therefor
JP3882474B2 (en) * 2000-07-06 2007-02-14 住友金属工業株式会社 Hot press forming method for metal plate
JP2007314874A (en) * 2006-04-25 2007-12-06 Nippon Steel Corp High-strength automobile member and hot pressing method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360908A (en) * 1976-11-12 1978-05-31 Minoru Sakamoto Caterpillar for continuous burning kilns capable to couple and separate
JPS6314993U (en) * 1986-07-09 1988-01-30
JPH1076321A (en) * 1996-09-03 1998-03-24 Hitachi Ltd Metal sheet formed product and its production
JP3882474B2 (en) * 2000-07-06 2007-02-14 住友金属工業株式会社 Hot press forming method for metal plate
JP2002102980A (en) * 2000-07-28 2002-04-09 Aisin Takaoka Ltd Manufacturing method for collision reinforcing material for vehicle and collision reinforcing material
JP2002248525A (en) * 2001-02-22 2002-09-03 Sumitomo Metal Ind Ltd Method for hot pressing metal plate and apparatus therefor
JP2005271038A (en) * 2004-03-25 2005-10-06 Unipres Corp Hot press working method and apparatus
JP2006289425A (en) * 2005-04-11 2006-10-26 Nippon Steel Corp Hot press forming method, and apparatus therefor
JP2007314874A (en) * 2006-04-25 2007-12-06 Nippon Steel Corp High-strength automobile member and hot pressing method therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130861B1 (en) 2011-08-10 2012-03-28 에스아이에스 주식회사 Hot stamping forming system and method there for
JP2013111641A (en) * 2011-11-30 2013-06-10 Toyota Motor Corp Electric heating method
JP2013123730A (en) * 2011-12-14 2013-06-24 Toyota Motor Corp Electric heating method, press-formed component and electric heating device
KR101382181B1 (en) * 2011-12-16 2014-04-09 주식회사 성우하이텍 Pre-heating device for hot stamping
JP2016524043A (en) * 2013-05-28 2016-08-12 ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag Equipment for conveying high-temperature thin steel parts
KR101604387B1 (en) * 2014-01-29 2016-03-17 한국과학기술원 Method and apparatus of rapid casting system using progressive heating
KR101620583B1 (en) * 2014-05-28 2016-05-12 주식회사 신영 High frequency heating system for hot stamping
KR20160134171A (en) * 2015-05-15 2016-11-23 이호상 disk spring hot-working and pressing apparatus
KR20160134170A (en) * 2015-05-15 2016-11-23 이호상 disk spring hot-working and pressing method
KR101701266B1 (en) 2015-05-15 2017-02-01 이호상 disk spring hot-working and pressing apparatus
KR101701270B1 (en) 2015-05-15 2017-02-13 이호상 disk spring hot-working and pressing method
US10981207B2 (en) 2016-09-06 2021-04-20 Nippon Steel Corporation Hot press device
JP2018145450A (en) * 2017-03-01 2018-09-20 ウシオ電機株式会社 Manufacturing method of heat-treated metal sheet
WO2022247546A1 (en) * 2021-05-25 2022-12-01 江苏科技大学 Integrated high-frequency intelligent levelling machine and working method therefor
JPWO2023037975A1 (en) * 2021-09-07 2023-03-16
JP7374385B2 (en) 2021-09-07 2023-11-06 株式会社ジーテクト Production method and conveyance equipment

Also Published As

Publication number Publication date
JP5201003B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5201003B2 (en) Heating apparatus and method for hot press forming steel sheet
JP4673656B2 (en) Hot press forming equipment
KR101045839B1 (en) Furnace Equipment for Hot Stamping
JP5934801B2 (en) Molding equipment
US8460484B2 (en) Method of making a shaped object with regions of different ductility
JP5155646B2 (en) Hot press molding apparatus and hot press molding method
US10612108B2 (en) Method for heating steel sheets and device for carrying out the method
EP2532625B1 (en) Method and device for gradually cooling glass plate
JP2009142854A (en) Electric heating device, hot press forming device having the same, and electric heating method
JP3882474B2 (en) Hot press forming method for metal plate
CN112118922B (en) Conductive preheating of sheet material for thermoforming
CN101896295B (en) Conveyance equipment and hot press forming device having it
JP6116366B2 (en) Mold assembly
TWI574833B (en) Steel plate heating method and steel plate heating device
CN113088852B (en) Strip steel entering temperature control device of hot galvanizing annealing furnace
KR20160058746A (en) Inward diffusion of aluminium-silicon into a steel sheet
KR101289105B1 (en) Furnace for heating material and heating method of use it
US9840748B2 (en) Process and furnace for treating workpieces
KR20160033530A (en) Pre-heating devise for hot stamping
KR101632895B1 (en) Pre-heating devise for hot stamping
KR101858611B1 (en) Apparatus for manufacturing of impact beam of vehicle
JP7525948B1 (en) High Temperature Furnace
WO2019084910A1 (en) Hot bending machine
JP2023123186A (en) Method for manufacturing press molding
JP2005291515A (en) Continuous baking furnace and continuous baking method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R151 Written notification of patent or utility model registration

Ref document number: 5201003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350