JP2009285668A - Hollow columnar steel member - Google Patents

Hollow columnar steel member Download PDF

Info

Publication number
JP2009285668A
JP2009285668A JP2008138516A JP2008138516A JP2009285668A JP 2009285668 A JP2009285668 A JP 2009285668A JP 2008138516 A JP2008138516 A JP 2008138516A JP 2008138516 A JP2008138516 A JP 2008138516A JP 2009285668 A JP2009285668 A JP 2009285668A
Authority
JP
Japan
Prior art keywords
longitudinal direction
hollow columnar
torsion
section
twist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008138516A
Other languages
Japanese (ja)
Other versions
JP5114676B2 (en
Inventor
Tomohito Hirose
智史 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008138516A priority Critical patent/JP5114676B2/en
Publication of JP2009285668A publication Critical patent/JP2009285668A/en
Application granted granted Critical
Publication of JP5114676B2 publication Critical patent/JP5114676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member in which both excellent insensitivity to a collision angle and excellent shock absorbing capacity are made compatible while the member has various shapes of a thin-walled cross section. <P>SOLUTION: A hollow columnar steel member has a rectangular cross section, and torsion is formed on a part or on the whole part thereof in its longitudinal direction. The hollow columnar steel member has flanges on the outsides of the corners or on the outsides of the parts between the corners on the whole length in the longitudinal direction. When, in a cross section perpendicular to the longitudinal direction, an average length of vertical sides and lateral sides is made an average distance W[M] between ridge lines, it is preferable that the torsion is formed within the range of W[M] in the longitudinal direction from the input side of collision force and that the torsion is formed on the plurality of portions in the longitudinal direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、筐体を構成するフレーム部材として使用する、鋼製の薄肉中空柱状部材に関する。   The present invention relates to a thin hollow columnar member made of steel used as a frame member constituting a casing.

近年、燃料高・原料高に伴い製造の現場ではコスト削減が早急に要求されている。しかし、コスト削減により製品の性能が悪くなることは、メーカーの信用失墜につながる可能性がある。特に筐体を構成するフレーム部材の性能悪化は安全性の面で避けなければならない。自動車分野では衝突安全性の維持と燃費向上のため、車体に搭載されるフレーム部材に超ハイテンを適用する例が多くなっている。すなわち、材料の質の変更によりコストの削減が図られている。
製品の質を維持または向上させ、かつコスト削減を可能とする技術として、上記の材料そのものの変更によるコスト削減方法があるが、新材料の開発は長い時間と莫大な開発コストを要する。また他のコスト削減方法として、部材形状を最適化することが考えられる。この手法は開発期間と開発コストの面で優れた手法であり、過去に様々な検討が行われている。
本発明に関連する先行特許として特許文献1に中空矩形断面を有するアルミニウム合金押出部材からなる自動車用エネルギー吸収部材において、長手方向にねじりを有する部材が記載されている。
In recent years, there has been an urgent demand for cost reduction at manufacturing sites due to high fuel and high raw materials. However, the deterioration of product performance due to cost reductions may lead to the loss of manufacturer confidence. In particular, deterioration of the performance of the frame member constituting the housing must be avoided in terms of safety. In the automobile field, in order to maintain collision safety and improve fuel efficiency, there are many examples in which ultra high tension is applied to a frame member mounted on a vehicle body. That is, the cost is reduced by changing the quality of the material.
As a technique for maintaining or improving product quality and enabling cost reduction, there is a cost reduction method by changing the material itself, but development of a new material requires a long time and enormous development cost. Another possible cost reduction method is to optimize the member shape. This method is excellent in terms of development period and development cost, and various studies have been conducted in the past.
As a prior patent related to the present invention, Patent Document 1 describes a member having a twist in the longitudinal direction in an automobile energy absorbing member made of an aluminum alloy extruded member having a hollow rectangular cross section.

特開平9−109920号公報JP-A-9-109920

しかし、自動車の内部構成部材は非常に複雑であり、また自動車の衝突形態も様々であることから、予測した衝撃吸収能を示さない場合がある。例えば理想的な正面衝突では優れた衝撃吸収能を示すが、少し斜めからの衝突では衝撃吸収能が格段に減少する傾向を示す。したがって、ある程度斜角からの衝突でも高い衝撃吸収能を有する部材、いわば高い衝突角度鈍感性を有する部材の開発が衝突安全性の観点から望まれる。
衝撃吸収部材端部につぶれを誘発するくびれ部を付与した部材も開発されているが、くびれ部は他部に比べ斜めからの衝突時に顕著となる曲げモードの変形に弱く、くびれ部から折れ曲がり極端に衝撃吸収能が減少するおそれがある。
以上の点から、衝突角度鈍感性の向上のため、曲げモードに対する弱部を作らないこと、つぶれを誘発する変形形態を有すること、高い衝撃吸収能のため、個々のつぶれのエネルギー吸収量が大きいことが望ましい。
However, the internal components of the automobile are very complicated, and the collision forms of the automobile are various, so that the predicted shock absorption capability may not be exhibited. For example, in an ideal frontal collision, excellent shock absorption capability is shown, but in a collision from a slight angle, the shock absorption capability tends to decrease dramatically. Therefore, development of a member having a high impact absorbing ability even in a collision from an oblique angle to some extent, that is, a member having a high collision angle insensitivity is desired from the viewpoint of collision safety.
A member with a constricted part that induces crushing at the end of the shock absorbing member has also been developed. There is a risk that the shock absorption capacity may decrease.
From the above points, in order to improve the insensitivity of the collision angle, it does not create a weak part against the bending mode, has a deformation form that induces crushing, and has a high shock absorption capacity, so the energy absorption amount of each crushing is large It is desirable.

特許文献1に記載された部材はねじりを長手方向に一部又は全部に付与しており、衝突角度鈍感性に優れた部材と考えられる。しかし、矩形断面の部材にフランジ部を有さないため、高い衝撃吸収能を得られないおそれがある。ねじりモーメントは部材の長手方向に垂直な断面積にほぼ比例するため、フランジによりねじりモーメントの向上、すなわち、衝突角度鈍感性を有しつつ衝撃吸収能を高めることができるからである。
本発明の目的は、様々な薄肉断面形状において高い衝突角度鈍感性と衝撃吸収能の両立する部材を提供することである。
The member described in Patent Document 1 is considered to be a member excellent in collision angle insensitivity because it imparts a twist to a part or all of it in the longitudinal direction. However, since the member having a rectangular cross section does not have a flange portion, there is a possibility that a high shock absorption capability cannot be obtained. This is because the torsional moment is substantially proportional to the cross-sectional area perpendicular to the longitudinal direction of the member, so that the flange can improve the torsional moment, that is, the impact absorbing ability can be enhanced while having a collision angle insensitivity.
An object of the present invention is to provide a member that achieves both high impact angle insensitivity and shock absorption capability in various thin-walled cross-sectional shapes.

上記課題を解決するため、本発明の要旨は以下の通りである。
(1)断面が四角形の鋼製中空柱状部材であって、長手方向の一部又は全部にねじりが形成され、長手方向の全長に渡って、フランジをコーナー部の外側又はコーナー部の間の外側に有し、長手方向に直角な断面で、縦と横の長さの平均を平均稜線間距離W[M]としたとき、衝撃力の入力側から長手方向のW[M]の範囲に前記ねじりを有することを特徴とする鋼製中空柱状部材。
(2)前記ねじりが、長手方向に複数、部分的に存在することを特徴とする(1)記載の鋼製中空柱状部材。
In order to solve the above problems, the gist of the present invention is as follows.
(1) A steel hollow columnar member having a square cross section, in which a twist is formed in a part or all of the longitudinal direction, and the flange is placed outside the corner part or outside the corner part over the entire length in the longitudinal direction. In the cross section perpendicular to the longitudinal direction, the average of the longitudinal and lateral lengths is defined as an average ridge line distance W [M], and the longitudinal force is within the range of W [M] from the input side of the impact force. A steel hollow columnar member characterized by having a twist.
(2) The steel hollow columnar member according to (1), wherein a plurality of the twists are partially present in the longitudinal direction.

本発明により、様々な薄肉断面形状において高い衝突角度鈍感性と衝撃吸収能の両立する部材を提供することができる。   According to the present invention, it is possible to provide a member having both high impact angle insensitivity and shock absorption capability in various thin-walled cross-sectional shapes.

本発明による鋼製中空柱状部材を実施するための最良の形態を、添付図面を参照しながら詳述する。
まず、(1)に係る本発明について説明する。
衝突角度鈍感性の向上のため、鋼製中空状部材の長手方向の一部または全部にねじり部を付与することを発明した。ねじりの付加により、通常の矩形断面と比べ、稜線上の蛇腹状の座屈を引き起こしやすくすることで衝突角度鈍感性を向上させることができる。
鋼製中空柱状部材(以下、中空柱状部材あるいは単に部材とも記す)に長手方向の端部から衝撃力が入力される際、部材内の弱部から変形が生じるため、例えば、部材内で衝撃力入力側端部(以下、入力側端部と略称)よりも長手方向の中央部に弱部が存在してしまうと、中央部で変形が集中し、部材が中央部で折れ曲がるような変形モードとなる。すなわち、入力側端部から蛇腹状に座屈させるためには、部材の入力側端部を変形し易くしなければならない。
The best mode for carrying out the steel hollow columnar member according to the present invention will be described in detail with reference to the accompanying drawings.
First, the present invention according to (1) will be described.
In order to improve the insensitivity to the collision angle, the inventors invented to provide a torsion part to a part or all of the longitudinal direction of the steel hollow member. By adding torsion, the collision angle insensitivity can be improved by making it easier to cause a bellows-like buckling on the ridge line than in a normal rectangular cross section.
When an impact force is input from a longitudinal end to a steel hollow columnar member (hereinafter also referred to as a hollow columnar member or simply a member), deformation occurs from a weak portion in the member. If there is a weak part at the center in the longitudinal direction from the input side end (hereinafter abbreviated as the input side end), deformation is concentrated at the center and the member is bent at the center. Become. That is, in order to buckle in a bellows shape from the input side end, the input side end of the member must be easily deformed.

通常、図2(b)に示すように、矩形断面を有する鋼製中空柱状部材では、部材の稜線部に主に変形が集中する。衝撃力入力開始時、入力側端部では変形波の影響から変形が集中し始めるが、稜線部が衝撃力による引張および圧縮変形により加工硬化し、加工硬化部が変形方向(入力方向)と同一であることから蛇腹状の座屈を妨げる。結果として、加工硬化していない中央部が変形しはじめ折れ曲がり易くなる。   Usually, as shown in FIG.2 (b), in the steel hollow columnar member which has a rectangular cross section, a deformation | transformation concentrates mainly on the ridgeline part of a member. At the start of impact force input, deformation begins to concentrate at the input side end due to the influence of deformation waves, but the ridge line portion is work hardened by tensile and compression deformation due to impact force, and the work hardened portion is the same as the deformation direction (input direction) This prevents the bellows from buckling. As a result, the center part which is not work-hardened starts to deform and bend easily.

これに対し、図2(a)に示すように、ねじりを付与された部材は、稜線部が同様に加工硬化するが、稜線部に沿って引張及び圧縮変形を受けた加工硬化部が変形方向(入力方向)と異なるため、蛇腹状の座屈を妨げない。さらに、この場合は主にせん断変形による加工硬化であることから、部材の板厚の減少を抑えることができるため、極端な弱部の発生を抑えることができる。   On the other hand, as shown in FIG. 2 (a), the twisted member is work hardened at the ridge line portion in the same manner, but the work hardened portion subjected to tensile and compressive deformation along the ridge line portion is in the deformation direction. Since it is different from (input direction), bellows-like buckling is not disturbed. Furthermore, in this case, since the work hardening is mainly due to shear deformation, it is possible to suppress a reduction in the plate thickness of the member, and thus it is possible to suppress the occurrence of extremely weak parts.

部材に付与する長手方向長さ100mm当たりのねじれ角は、1度未満だと衝突角度鈍感性の向上が明確でない。一方、60度超だと、稜線の方向と衝撃力の入力方向が大きくずれすぎてしまい、稜線部の加工硬化が衝撃吸収能に寄与しなくなる。結果、衝突角度鈍感性の向上に比べ衝撃吸収能が大きく減少する。従って、100mm当たりのねじれ角の下限を1度とし、好ましくは5度以上、さらに好ましくは10度以上とするのが好適である。また、100mm当たりのねじれ角の上限を60度とし、好ましくは45度以下、さらに好ましくは30度以下とするのが好適である。   If the twist angle per 100 mm in the longitudinal direction applied to the member is less than 1 degree, the improvement of the collision angle insensitivity is not clear. On the other hand, when the angle exceeds 60 degrees, the direction of the ridge line and the input direction of the impact force are greatly deviated, and the work hardening of the ridge line portion does not contribute to the impact absorbing ability. As a result, the impact absorption ability is greatly reduced as compared with the improvement of the collision angle insensitivity. Therefore, the lower limit of the twist angle per 100 mm is set to 1 degree, preferably 5 degrees or more, more preferably 10 degrees or more. The upper limit of the twist angle per 100 mm is 60 degrees, preferably 45 degrees or less, more preferably 30 degrees or less.

また、ねじり箇所はねじりのないところに比べ、蛇腹状の座屈をしやすくなることから、用途に応じてねじり部を設ける箇所を変更することが望ましい。例えば、衝撃力入力方向が定まっておらず衝突角度鈍感性のみを高めたい場合、部材すべてをねじり箇所とし、ある程度衝撃力入力方向が決まっている場合、入力側の近傍、例えば、入力側から、全長の半分をねじり箇所とする等が考えられる。なお、ねじり箇所が少なすぎると、あるいは、ねじり部の合計の長さが小さいと、ねじりのない単純な矩形断面を有する部材と衝撃吸収能、衝突角度鈍感性ともに違いが明確とならないため、ねじり部は、部材の全体長さの1/10以上を目安とする。   In addition, the twisted portion is more likely to be accordion-like buckled than the untwisted portion. Therefore, it is desirable to change the location where the twisted portion is provided depending on the application. For example, when the impact force input direction is not fixed and only the impact angle insensitivity is to be increased, all the members are torsion points, and when the impact force input direction is determined to some extent, in the vicinity of the input side, for example, from the input side, For example, half of the total length may be a twisted part. If there are too few torsion parts, or if the total length of the torsion part is too small, the difference between the shock absorbing ability and the collision angle insensitivity will not be clear, as compared with a member having a simple rectangular cross section without torsion. The part is set to 1/10 or more of the entire length of the member.

また、鋼製中空状部材のコーナー部の外側又はコーナー部とコーナー部の間の外側にフランジ部を有することで、衝撃力入力後ねじれながら座屈するのに必要なねじりモーメントを増加させることにより、変形に対する対抗力を高め、その結果、衝撃吸収能を向上させることができる。すなわち、ねじりのない矩形断面を有する部材では、部材が蛇腹状に座屈する際、フランジ部と同様に変形し、その変形形態は単純な曲げのみであるのに対し、図1のようにねじりを付加すると、フランジ部に曲げだけでなくせん断変形も生じるため、フランジ部のエネルギー吸収量を顕著に向上させることができる。通常、あまり衝撃吸収能に寄与しないフランジ部をねじり付加により有効に活用できることを知見した。フランジを設けた中空柱状部材の長手方向に垂直な断面図の例を図11(a)〜(e)に示す。   In addition, by having a flange on the outside of the corner of the steel hollow member or outside between the corner and the corner, by increasing the torsional moment necessary for buckling while twisting after impact force input, The resistance to deformation can be increased, and as a result, the shock absorbing ability can be improved. That is, in a member having a rectangular cross section without twisting, when the member buckles in a bellows shape, the member deforms in the same manner as the flange portion, and the deformation form is only simple bending, whereas the twisting as shown in FIG. When added, not only bending but also shear deformation occurs in the flange portion, so that the energy absorption amount of the flange portion can be remarkably improved. In general, we found that flanges that do not contribute much to shock absorption ability can be effectively utilized by adding torsion. Examples of cross-sectional views perpendicular to the longitudinal direction of the hollow columnar member provided with a flange are shown in FIGS.

また、鋼製薄肉中空柱状部材でねじりが付与された箇所とそれ以外で比べると、衝撃力に対しねじり箇所は入力方向と稜線部方向が異なることから弱部となるため、ねじり部を設ける箇所は非常に重要である。例えば、部材の長手方向中央部のみにねじり部を形成した場合、折れ曲がり易くなる。衝撃吸収能を高めるため、入力側端部より蛇腹状に座屈を繰り返すことが望ましいことから、ある程度入力側端部にねじり箇所を有することが必要である。最も加工硬化が生じる箇所は、入力側端部から半波長以内に存在するため、入力側端部から座屈の半波長以内にねじり箇所を有することが望ましい。
すなわち、例えば図3に示すように、一辺80mmからなる正方形状の矩形断面を有する部材が蛇腹状に座屈してつぶれるとき、その座屈の半波長である稜線間距離(80mm)以内にねじり箇所を有することが望ましい。
このように矩形断面の形状が四角形の場合、稜線間距離は、縦、横の長さ(各辺の長さ)の平均により求めた平均稜線間距離を目安とすればよい。
In addition, compared to the place where the torsion was applied with the thin thin hollow columnar member made of steel and the other, the place where the torsion part is provided because the torsion part becomes weak because the input direction and the ridge line part direction are different with respect to the impact force. Is very important. For example, when a torsion part is formed only in the center part in the longitudinal direction of the member, it becomes easy to bend. In order to increase the shock absorption capability, it is desirable to repeat buckling in a bellows shape from the input side end, and therefore it is necessary to have a twisted portion at the input side end to some extent. Since the place where the most work hardening occurs is within a half wavelength from the input side end, it is desirable to have a twisted place within the half wavelength of buckling from the input side end.
That is, for example, as shown in FIG. 3, when a member having a square cross section with a side of 80 mm is buckled in a bellows shape and crushed, the twisted portion is within a distance between ridges (80 mm) which is a half wavelength of the buckling. It is desirable to have
Thus, when the shape of the rectangular cross section is a quadrangle, the distance between the ridge lines may be determined based on the average distance between the ridge lines obtained by averaging the vertical and horizontal lengths (lengths of each side).

一方、図4に示すように、四隅にそれぞれ曲率を有するコーナー部2を有し、コーナー部2を含んで閉断面を形成する略四角形からなる金属製中空柱状部材1であって、4辺のうちの少なくとも一辺以上に1つないし複数の凹み部3を有する場合、各辺長は、略四角形のコーナー部2および凹み部3の形成により生じた凸部4において曲率を取り除いたときの形状を元に算出すると、以下のようになる。   On the other hand, as shown in FIG. 4, a metal hollow columnar member 1 having a substantially rectangular shape having a corner portion 2 having a curvature at each of four corners and forming a closed section including the corner portion 2, In the case where one or a plurality of recesses 3 are provided on at least one side, the length of each side is the shape when the curvature is removed from the convex part 4 generated by the formation of the substantially square corner part 2 and the recess part 3. The calculation is as follows.

図4の2つのコーナー部2の間を示した図5を参照しながら説明すると、即ち、端部にある凸部4については凸部の肩部端点5から端部6までを結んだ直線の長さ(LiおよびLk)を辺長とし、凹み部3については隣接した凸部4の肩部端点5を直線で結んだ長さ(Lj)および凹みの深さ、すなわち端点5と端点7の高さLdを辺長とする。また、中間にある凸部の場合(図示しない)は凸部の肩部端点間の直線距離とする。なお、端点5および端点7に曲率を付与するときは、その曲率半径を0mmとしたときの形状を元に、各辺の辺長を算出する。また、総辺数は各頂点(端点)を直線で結んだときの直線の総数とする。図中の<>で囲んだ数字はある一辺中の辺数を左端から数えたときの例であり、図5の場合、略四角形の1辺について、辺数は5となるので、図4のように、残る3辺も同じ形状であれば、総辺数は20となる。
従って、平均稜線間距離=(4×80+8×10)/20=20mmとなる(一辺の長さが80mmの正方形断面で、10mmの深さの凹み部を4辺に有する場合)。
Referring to FIG. 5 showing between the two corners 2 in FIG. 4, that is, the convex part 4 at the end part is a straight line connecting the shoulder end point 5 to the end part 6 of the convex part. The length (Li and Lk) is the side length, and the recess 3 has a length (Lj) obtained by connecting the shoulder end points 5 of the adjacent projections 4 with a straight line and the depth of the recess, that is, the end points 5 and 7. The height Ld is the side length. In the case of a convex portion in the middle (not shown), the straight distance between the shoulder end points of the convex portion is used. In addition, when giving a curvature to the end point 5 and the end point 7, the side length of each side is calculated based on the shape when the curvature radius is set to 0 mm. The total number of sides is the total number of straight lines when the vertices (end points) are connected by straight lines. The number enclosed in <> in the figure is an example when the number of sides in a certain side is counted from the left end. In the case of FIG. 5, the number of sides is 5 for one side of a substantially square. Thus, if the remaining three sides have the same shape, the total number of sides is 20.
Therefore, the average distance between ridge lines = (4 × 80 + 8 × 10) / 20 = 20 mm (when a side of a square is 80 mm in length and has 10 mm deep recesses on four sides).

矩形断面上のひとつの稜線間を有する平面内ではその稜線間隔を半波長とする座屈が生じるが、他面との干渉によりその波長はくずされ、平均的な波長で座屈を引き起こすと考えられる。
したがって、長手方向に直角な断面で、縦と横の長さの平均を平均稜線間距離W[M]としたとき、衝撃力の入力側から長手方向のW[M]の範囲にねじり箇所を有することが望ましい(図3)。
Buckling with a half-wavelength between the ridges occurs in a plane with one ridgeline on a rectangular cross section, but the wavelength is destroyed by interference with other surfaces, and it is considered that buckling occurs at an average wavelength. It is done.
Therefore, in a cross section perpendicular to the longitudinal direction, when the average of the longitudinal and lateral lengths is the average ridge line distance W [M], the twisted portion is within the range of W [M] in the longitudinal direction from the impact force input side. It is desirable to have (FIG. 3).

次に、(2)に係る本発明について説明する。
先述のとおり、ねじり箇所はねじりのないところに比べ、座屈しやすくなることから、用途に応じてねじりを設ける長手方向位置を変更することが望ましい。例えば、部材の長手方向の中央に他部材との接触箇所がある場合、衝撃吸収部材の端部以外の場所、例えば他部材との接触箇所から衝撃力が入力される場合も考えられるため、入力側端部を含め、長手方向に2箇所以上のねじり部を設けることが有効である。(図6参照)
ねじりを設けた部材の例として、図12(a)に衝撃力の入力側から長手方向のW[M]の範囲にねじりを有する例((2)に係る発明)、同図(b)に入力側端部を含め2箇所以上にねじりを有する例、同図(c)に長手方向の全部(全長)にねじりを有する例を示す。
Next, the present invention according to (2) will be described.
As described above, the twisted portion is more likely to buckle than the untwisted portion. Therefore, it is desirable to change the longitudinal position where the twist is provided according to the application. For example, when there is a contact point with another member in the center in the longitudinal direction of the member, it may be possible that an impact force is input from a place other than the end of the shock absorbing member, for example, a contact point with another member. It is effective to provide two or more torsional portions in the longitudinal direction including the side end portions. (See Figure 6)
As an example of a member provided with a twist, FIG. 12A shows an example having a twist in the range of W [M] in the longitudinal direction from the impact force input side (invention according to (2)), and FIG. The example which has a twist in two or more places including an input side edge part, and the example which has a twist in the whole longitudinal direction (full length) in the same figure (c) are shown.

実施例を参照しながら、本発明を具体的に説明する。
本発明例及び比較例として、材料がJSC590Yで板厚が1.4mmの板材2つをハット型にプレス成形後(壁部高さ40mm、天井部の幅80mm、フランジ部長さは15mm、長手方向の長さ400mm)、フランジ部を対向させて突合せ、突合せ部をスポット溶接で接合することによりフランジ部を除くと一辺の長さが80mmの正方形断面をもつ長さ400mmの角パイプを得た。さらにこの角パイプの中空柱状部材にねじり加工により部材全体に長手方向長さ100mm当たり0°(ねじり加工なし:比較例)、30°(以降、本発明例)、60°、90°のねじりを付加した。
The present invention will be specifically described with reference to examples.
As an example of the present invention and a comparative example, after press-molding two plate materials having a material thickness of JSC590Y and a plate thickness of 1.4 mm into a hat type (wall height 40 mm, ceiling width 80 mm, flange length 15 mm, longitudinal direction 400 mm long), the flange portions were opposed to each other, and the butted portions were joined by spot welding to obtain a 400 mm long square pipe having a square cross section with a side length of 80 mm. Further, by twisting the hollow columnar member of this square pipe, the entire member is twisted at 0 ° (no twisting: comparative example), 30 ° (hereinafter, the present invention example), 60 °, and 90 ° per 100 mm length in the longitudinal direction. Added.

また、図7に示すように、上記と同じ角パイプを用いて一方の端部(入力側端部)から長手方向にねじりを付加しない部分(La)を30mm、60mm、90mmだけ持ち、残る部分(Lb)は長手方向長さ100mm当たり60°のねじれ部を持つ部材を作成した。角パイプに単純にねじり加工を加えただけなので、平均稜線間距離はいずれの場合も変わらず80mmである。   Also, as shown in FIG. 7, using the same square pipe as described above, a portion (La) that is not twisted in the longitudinal direction from one end portion (input side end portion) is held by 30 mm, 60 mm, and 90 mm, and the remaining portion For (Lb), a member having a twisted portion of 60 ° per 100 mm length in the longitudinal direction was prepared. Since the twisting process is simply added to the square pipe, the average distance between the ridge lines is 80 mm in all cases.

また、別の比較例として、上記と同じ材質、板厚の鋼板2枚をそれぞれコの字型にプレス成形後(壁部高さ40mm、天井部の幅80mm、長手方向の長さ400mm)、スポット溶接により端部同士を接合したフランジ部のない角パイプを作成し、この部材にねじり加工により部材全体を長手方向長さ100mm当たり0°(ねじり加工なし)、30°、60°のねじりを付加した。   As another comparative example, after pressing two steel plates having the same material and thickness as above into a U-shape (wall height 40 mm, ceiling width 80 mm, longitudinal length 400 mm), Create a square pipe without flanges with ends joined by spot welding, and twist the entire member by twisting at 0 ° (no twisting), 30 °, 60 ° per 100 mm length in the longitudinal direction. Added.

上記のすべての作成部材に対し、落重試験により部材の長手方向の1/2に当たる200mmだけつぶれたときのエネルギー吸収量を比較した。衝突方向を変えるため、図8に示すように部材の長軸方向から0°、2°、4°、6°、8°、10°だけ傾きを与えて落重による衝撃を加えた。なお、比較例であるフランジなしの角パイプに対する衝突方向は部材の長軸方向と平行の条件のみであり、また、図7に示したねじりなし部を有する角パイプに対する衝突方向は部材の長軸方向から4°だけ傾いた条件のみである。その結果を図9、図10および表1に示す。   With respect to all the above-mentioned prepared members, the amount of energy absorbed when collapsing by 200 mm corresponding to ½ of the longitudinal direction of the member by the drop weight test was compared. In order to change the collision direction, as shown in FIG. 8, an impact due to falling weight was applied with an inclination of 0 °, 2 °, 4 °, 6 °, 8 °, and 10 ° from the major axis direction of the member. In addition, the collision direction with respect to the square pipe without a flange which is a comparative example is only a condition parallel to the major axis direction of the member, and the collision direction with respect to the square pipe having the torsion-free portion shown in FIG. Only conditions tilted 4 ° from the direction. The results are shown in FIGS. 9 and 10 and Table 1.

図9に示すように、比較例であるねじりなしの部材は、衝突方向が部材の長軸方向と平行であるとき(衝撃角度0°)、極めて高い衝撃吸収能を発揮するが、衝突方向が部材の長軸方向からずれてくると、急激に衝撃吸収能が低減した。
一方、本発明例である長手方向長さ100mm当たり30°、60°のねじりを有する部材は衝突方向の部材の長軸方向からずれに対し、大きく衝撃吸収能が低減することはなく、ずれが大きくなるとねじりのない部材よりも大きな衝撃吸収能を発揮した。しかし、長手方向長さ100mm当たり90°と大きなねじりを有する部材は衝突方向の部材の長軸方向からずれに対し、大きく衝撃吸収能が低減することはないが、全体的に低い衝撃吸収能を示した。
As shown in FIG. 9, the non-twisted member, which is a comparative example, exhibits an extremely high shock absorption capacity when the collision direction is parallel to the major axis direction of the member (impact angle 0 °). When it deviated from the major axis direction of the member, the shock absorbing ability was drastically reduced.
On the other hand, a member having a twist of 30 ° and 60 ° per 100 mm length in the longitudinal direction, which is an example of the present invention, does not greatly reduce the shock absorption capacity with respect to the deviation from the major axis direction of the member in the collision direction, and the deviation does not occur. As it became larger, it exhibited a greater ability to absorb shock than a non-twisted member. However, a member having a large torsion of 90 ° per 100 mm in the length in the longitudinal direction does not greatly reduce the shock absorption capacity against a deviation from the major axis direction of the member in the collision direction, but the overall low shock absorption capacity. Indicated.

また、図10に示すように、比較例であるねじりを有さない部材の場合、フランジ部は衝撃吸収能向上にほぼ寄与しない。しかし、本発明例であるねじりを付加した部材は、フランジなしの比較例に比べ衝撃吸収能が大きく向上した。   Moreover, as shown in FIG. 10, in the case of the member which does not have the twist which is a comparative example, a flange part hardly contributes to an impact absorption capability improvement. However, the member added with torsion, which is an example of the present invention, greatly improved the shock absorbing ability compared to the comparative example without the flange.

また、本発明例として、一方の端部(入力側端部)から長手方向にねじりなし部を30mm、60mm、90mmだけ有する部材の落重試験では、90mmだけねじりなし部を有する部材だけ、ねじり部からくの字型に折れ曲がりが発生し衝撃吸収能を大きく低減させた。表1に示すように他の部材はねじり部において蛇腹状に座屈し、高いエネルギー吸収量を得た。   Further, as an example of the present invention, in a drop weight test of a member having only 30 mm, 60 mm, and 90 mm of a non-twisted portion in the longitudinal direction from one end portion (input side end portion), only a member having a non-twisted portion of 90 mm is twisted. The bent shape was generated in the shape of the circle and the shock absorption capacity was greatly reduced. As shown in Table 1, the other members buckled in a bellows shape at the twisted portion, and a high energy absorption amount was obtained.

Figure 2009285668
Figure 2009285668

本発明の一例である中空柱状部材を模式的に示す説明図である。It is explanatory drawing which shows typically the hollow columnar member which is an example of this invention. 入力方向と稜線方向の関係を模式的に示す説明図であり、(a)は、ねじりを有する場合、(b)は、ねじれを有しない場合をそれぞれ示す。It is explanatory drawing which shows typically the relationship between an input direction and a ridgeline direction, (a) shows the case where it has a twist, (b) shows the case where it does not have a twist, respectively. 平均稜線間距離と座屈半波長の関係を示すグラフである。It is a graph which shows the relationship between the distance between average ridgelines, and a buckling half wavelength. 本発明の一例である中空柱状部材の軸方向に垂直な断面の形状を模式的に示す説明図である。It is explanatory drawing which shows typically the shape of a cross section perpendicular | vertical to the axial direction of the hollow columnar member which is an example of this invention. 図4の断面の一部における各辺長および辺数を示す説明図である。It is explanatory drawing which shows each side length and the number of sides in a part of cross section of FIG. 中空柱状部材の中央に継ぎ手を有する場合に有効なねじり部の一例を示す図である。It is a figure which shows an example of the twist part effective when it has a joint in the center of a hollow columnar member. 入力端部側にねじりのない場合の中空柱状部材を模式的に示す説明図である。It is explanatory drawing which shows typically a hollow columnar member in case there is no twist at the input end part side. 衝突角度と部材の長手方向の関係を模式的に示す説明図である。It is explanatory drawing which shows typically the relationship between a collision angle and the longitudinal direction of a member. 100mm当たりのねじり角に関する衝突角度とエネルギー吸収量の関係を示すグラフである。It is a graph which shows the relationship between the collision angle regarding the twist angle per 100 mm, and an energy absorption amount. フランジの有無に関する100mm当たりのねじり角とエネルギー吸収量の関係を示すグラフである。It is a graph which shows the relationship between the twist angle per 100 mm regarding the presence or absence of a flange, and an energy absorption amount. 本発明の一例である中空柱状部材の断面形状を模式的に示す説明図であり、(a)、(d)はコーナー部とコーナー部の間の外側に、(b)、(c)、(e)は、コーナー部の外側にフランジを有する場合をそれぞれ示す。It is explanatory drawing which shows typically the cross-sectional shape of the hollow columnar member which is an example of this invention, (a), (d) is the outer side between a corner part, (b), (c), ( e) shows the case where a flange is provided outside the corner portion. 本発明の一例であるねじりが形成された中空柱状部材を模式的に示す説明図であり、(a)は、衝撃力の入力側から長手方向のW[M]の範囲にねじりを有する例、(b)は、2箇所以上ねじりを有する例、(c)は、長手方向の全部にねじりを有する例である。It is explanatory drawing which shows typically the hollow columnar member in which the twist which is an example of this invention was formed, (a) is an example which has a twist in the range of W [M] of a longitudinal direction from the input side of impact force, (B) is an example having two or more twists, and (c) is an example having twists in the entire longitudinal direction.

符号の説明Explanation of symbols

1 金属製中空柱状部材
2 コーナー部
3 凹み部
4 凸部
5 肩部端点
6 端部
7 端点
DESCRIPTION OF SYMBOLS 1 Metal hollow columnar member 2 Corner part 3 Recessed part 4 Convex part 5 Shoulder end point 6 End part 7 End point

Claims (2)

断面が四角形の鋼製中空柱状部材であって、長手方向の一部又は全部にねじりが形成され、長手方向の全長に渡って、フランジをコーナー部の外側又はコーナー部の間の外側に有し、長手方向に直角な断面で、縦と横の長さの平均を平均稜線間距離W[M]としたとき、衝撃力の入力側から長手方向のW[M]の範囲に前記ねじりを有することを特徴とする鋼製中空柱状部材。   It is a steel hollow columnar member having a square cross section, and a torsion is formed in a part or all of the longitudinal direction, and has a flange outside the corner part or outside the corner part over the entire length in the longitudinal direction. In the cross section perpendicular to the longitudinal direction, when the average of the longitudinal and lateral lengths is the average inter-ridge distance W [M], the twist is in the range of W [M] in the longitudinal direction from the impact force input side. A steel hollow columnar member characterized by that. 前記ねじりが、長手方向に複数、部分的に存在することを特徴とする請求項1記載の鋼製中空柱状部材。   The steel hollow columnar member according to claim 1, wherein a plurality of the twists are partially present in the longitudinal direction.
JP2008138516A 2008-05-27 2008-05-27 Steel hollow columnar member Active JP5114676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008138516A JP5114676B2 (en) 2008-05-27 2008-05-27 Steel hollow columnar member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008138516A JP5114676B2 (en) 2008-05-27 2008-05-27 Steel hollow columnar member

Publications (2)

Publication Number Publication Date
JP2009285668A true JP2009285668A (en) 2009-12-10
JP5114676B2 JP5114676B2 (en) 2013-01-09

Family

ID=41455412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008138516A Active JP5114676B2 (en) 2008-05-27 2008-05-27 Steel hollow columnar member

Country Status (1)

Country Link
JP (1) JP5114676B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226598A (en) * 2012-03-30 2013-11-07 Nippon Steel & Sumikin Metal Products Co Ltd Method and device for twisting metal tube
KR20140013086A (en) 2011-08-09 2014-02-04 신닛테츠스미킨 카부시키카이샤 Shock absorbing member
US9228629B2 (en) 2011-08-09 2016-01-05 Nippon Steel & Sumitomo Metal Corporation Shock absorbing member
JP2018187637A (en) * 2017-04-28 2018-11-29 合同会社イチセイ Device for manufacturing impact absorber and method of manufacturing impact absorber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09109920A (en) * 1995-10-17 1997-04-28 Kobe Steel Ltd Energy absorbing member
JP2004533328A (en) * 2001-07-02 2004-11-04 アックラ・テクニック・アクチボラゲット Method and apparatus for forming a three-dimensional object
JP2005324219A (en) * 2004-05-13 2005-11-24 Toyota Motor Corp Hollow parts forming die, hollow parts manufacturing method, and hollow parts
JP2007015543A (en) * 2005-07-07 2007-01-25 Nissan Motor Co Ltd Energy absorbing member and manufacturing method thereof
JP2008222097A (en) * 2007-03-14 2008-09-25 Mazda Motor Corp Vehicle body structure for automobile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09109920A (en) * 1995-10-17 1997-04-28 Kobe Steel Ltd Energy absorbing member
JP2004533328A (en) * 2001-07-02 2004-11-04 アックラ・テクニック・アクチボラゲット Method and apparatus for forming a three-dimensional object
JP2005324219A (en) * 2004-05-13 2005-11-24 Toyota Motor Corp Hollow parts forming die, hollow parts manufacturing method, and hollow parts
JP2007015543A (en) * 2005-07-07 2007-01-25 Nissan Motor Co Ltd Energy absorbing member and manufacturing method thereof
JP2008222097A (en) * 2007-03-14 2008-09-25 Mazda Motor Corp Vehicle body structure for automobile

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140013086A (en) 2011-08-09 2014-02-04 신닛테츠스미킨 카부시키카이샤 Shock absorbing member
US9228629B2 (en) 2011-08-09 2016-01-05 Nippon Steel & Sumitomo Metal Corporation Shock absorbing member
US9381881B2 (en) 2011-08-09 2016-07-05 Nippon Steel & Sumitomo Metal Corporation Shock absorbing member
JP2013226598A (en) * 2012-03-30 2013-11-07 Nippon Steel & Sumikin Metal Products Co Ltd Method and device for twisting metal tube
JP2018187637A (en) * 2017-04-28 2018-11-29 合同会社イチセイ Device for manufacturing impact absorber and method of manufacturing impact absorber

Also Published As

Publication number Publication date
JP5114676B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
EP2889188B1 (en) Crash box and automobile body
EP3037187B1 (en) Production method for press-molded body, and press molding device
JP5418724B2 (en) Metal hollow columnar member
EP2055983A2 (en) Impact absorbing member for vehicle
JP4902035B2 (en) Structure
JP5549964B2 (en) Frame structure for vehicles with excellent collision resistance
JP2009184417A (en) Crash box and its fitting structure to vehicle body
JP6070656B2 (en) Shock absorption box for vehicles
JP5114676B2 (en) Steel hollow columnar member
JP2011179579A (en) Shock absorption member
JP5179429B2 (en) Energy absorbing member
JP5179390B2 (en) Energy absorbing member
JP4604740B2 (en) Shock absorbing member
JP6973517B2 (en) Structural members for vehicles
JP5141379B2 (en) Steel hollow columnar member
JP2011056997A (en) Metal hollow columnar member
JP5723258B2 (en) Energy absorbing member and cross-sectional deformation control method of energy absorbing member
JP5034793B2 (en) Shock absorption method
JP2013087880A (en) Shock absorption member
WO2014073083A1 (en) Impact absorbing member
JP5882020B2 (en) Shock absorbing member
CN211765374U (en) Bumper reinforcement
JP7192837B2 (en) Vehicle structural member
JP5201010B2 (en) Suspension arm
JP2005301429A (en) Designing method for structural member with good bending load absorbing characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R151 Written notification of patent or utility model registration

Ref document number: 5114676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350