JP2009285642A - Rotary atomizing coater - Google Patents

Rotary atomizing coater Download PDF

Info

Publication number
JP2009285642A
JP2009285642A JP2008144138A JP2008144138A JP2009285642A JP 2009285642 A JP2009285642 A JP 2009285642A JP 2008144138 A JP2008144138 A JP 2008144138A JP 2008144138 A JP2008144138 A JP 2008144138A JP 2009285642 A JP2009285642 A JP 2009285642A
Authority
JP
Japan
Prior art keywords
air
shaping air
ejection
rotary atomizing
coating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008144138A
Other languages
Japanese (ja)
Other versions
JP5361251B2 (en
Inventor
Kenji Murata
賢二 村田
Kenichiro Shiramatsu
憲一郎 白松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Sunac Corp
Original Assignee
Asahi Sunac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Sunac Corp filed Critical Asahi Sunac Corp
Priority to JP2008144138A priority Critical patent/JP5361251B2/en
Publication of JP2009285642A publication Critical patent/JP2009285642A/en
Application granted granted Critical
Publication of JP5361251B2 publication Critical patent/JP5361251B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nozzles (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary atomizing coater that can adjust the flow velocity of shaping air so as to be suitable to each kind of paint while maintaining a specified pattern diameter even when the discharge rate of the paint fluctuates in the case that a plurality kinds of paint each of which has a different suitable flow velocity of the shaping air are used. <P>SOLUTION: Two air passages 16A and 16B which are to be connected to independent air sources 17A and 17B respectively are formed in the coater 10. Jet nozzles 24A and 24B are separated into two systems so as to correspond to two air passages 16A and 16B respectively. The jetting directions of the jet nozzles 24A and 24B are set so that two systems of the shaping air S jetting from the two jet nozzles 24A and 24B join each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転霧化塗装機に関するものである。   The present invention relates to a rotary atomizing coating machine.

特許文献1には、回転霧化頭の外周縁から放射状に放出させた塗料を、シェーピングエアで包囲することにより所定のパターン径に成形して被塗物に塗着させるようにした回転霧化塗装機が開示されている。シェーピングエアは、回転霧化頭と同心で径の異なる2つの円に沿うように配した2系統の噴出口から噴出され、2系統の噴出口のうち内側に配された噴出口から噴出される第1のシェーピングエアは、外側に配された噴出口から噴出される第2のシェーピングエアに比べると、高圧で小流量に設定されている。   Patent Document 1 discloses a rotary atomization in which a paint discharged radially from the outer peripheral edge of a rotary atomizing head is formed into a predetermined pattern diameter by being surrounded by shaping air and applied to an object to be coated. A coating machine is disclosed. Shaping air is ejected from two outlets arranged along two circles that are concentric with the rotary atomizing head and have different diameters, and is ejected from an outlet arranged inside the two outlets. The first shaping air is set at a high pressure and a small flow rate as compared with the second shaping air ejected from the ejection port disposed outside.

シェーピングエアが高圧で噴出されることは、流速が速く、塗料を加速する力が強いことを意味する。また、シェーピングエアの流量が大きいことは、塗料の飛散量を抑えて所定のパターン径に成形する力が強いことを意味する。したがって、上記の回転霧化塗装機において、第1のシェーピングエアは主として塗料を加速する役割を担い、第2のシェーピングエアは主として塗料を所定のパターン径に成形する役割を担う。
特開平07−265746号公報
The fact that the shaping air is ejected at a high pressure means that the flow velocity is fast and the force for accelerating the paint is strong. Further, the large flow rate of the shaping air means that the force for forming a predetermined pattern diameter while suppressing the scattering amount of the paint is strong. Therefore, in the above-described rotary atomizing coating machine, the first shaping air mainly plays a role of accelerating the paint, and the second shaping air mainly plays a role of forming the paint into a predetermined pattern diameter.
JP 07-265746 A

塗料の種類としてはメタリック塗料とソリッド塗料がある。メタリック塗料では、塗装品質がシェーピングエアの流速に大きく影響されるため、塗装品質を優先してシェーピングエアの流速を高速にすることが好ましい。これに対し、ソリッド塗料では、塗装品質がシェーピングエアの流速に左右されないので、塗装効率を優先してシェーピングエアの流速を低速にすることが好ましい。また、塗料のパターン成形の点においては、塗料の種類を問わず、塗料の吐出量が多くなるほど、シェーピングエアの流量を増大させることが必要となる。   There are metallic paints and solid paints as paint types. In the metallic paint, since the coating quality is greatly affected by the flow velocity of the shaping air, it is preferable that the flow velocity of the shaping air is increased with priority on the coating quality. On the other hand, in the case of a solid paint, since the coating quality is not affected by the flow velocity of the shaping air, it is preferable to lower the flow velocity of the shaping air in order to give priority to the painting efficiency. Also, in terms of paint pattern formation, it is necessary to increase the flow rate of shaping air as the amount of paint discharged increases, regardless of the type of paint.

これらの点に鑑みた場合、上記のように第1のシェーピングエアと第2のシェーピングエアとの間で流速と流量の大小関係が定められている回転霧化塗装機において、メタリックとソリッドの2種類の塗料を用いて塗装を行おうとすると、次のような不具合が生じる。   In view of these points, in the rotary atomizing coating machine in which the magnitude relationship between the flow velocity and the flow rate is defined between the first shaping air and the second shaping air as described above, the metallic and solid 2 If you try to paint using different types of paint, the following problems will occur.

例えば、塗料の吐出量を少なく抑えてメタリック塗装を行う場合には、所定のパターン径を保つために第2のシェーピングエアの流量を減少させる必要があるが、これに伴い、第1のシェーピングエアについても、供給するエア圧を抑えることにより流量を第2のシェーピングエアよりも小さくすることになる。ところが、第1のシェーピングエアの供給エア圧を抑えることは、第1のシェーピングエアの流速が低下することを意味するため、高速のシェーピングエアが必要とされるメタリック塗装においては、塗装品質の低下を来すことになる。   For example, when metallic coating is performed with a small amount of paint discharged, it is necessary to reduce the flow rate of the second shaping air in order to maintain a predetermined pattern diameter. For the above, the flow rate is made smaller than that of the second shaping air by suppressing the supplied air pressure. However, suppressing the supply air pressure of the first shaping air means that the flow velocity of the first shaping air is reduced, so that the coating quality is deteriorated in metallic coating that requires high-speed shaping air. Will come.

また、塗料の吐出量を多めにしてソリッド塗装を行う場合には、所定のパターン径を保つために第2のシェーピングエアの供給エア圧を高めて流量を増大させる必要があるが、これに伴い、第1のシェーピングエアについては、供給エア圧を高めて第2のシェーピングエアよりも高圧の状態を維持することになる。しかし、第1のシェーピングエアを高圧にしてその流速を高めると、塗装効率が低下してしまうことになる。
本発明は上記のような事情に基づいて完成されたものであって、好適なシェーピングエアの流速が異なる複数種類の塗料を用いた場合において、塗料の吐出量が変動しても、所定のパターン径を保ちながらシェーピングエアの流速を各塗料に好適な速度に調整できるようにすることを目的とする。
In addition, when solid coating is performed with a large amount of paint discharged, it is necessary to increase the flow rate by increasing the supply air pressure of the second shaping air in order to maintain a predetermined pattern diameter. As for the first shaping air, the supply air pressure is increased to maintain a higher pressure than the second shaping air. However, if the first shaping air is set to a high pressure and its flow rate is increased, the coating efficiency is reduced.
The present invention has been completed on the basis of the above circumstances, and when a plurality of types of paints having different flow rates of suitable shaping air are used, even if the amount of paint discharged varies, a predetermined pattern is obtained. An object of the present invention is to adjust the flow velocity of the shaping air to a speed suitable for each paint while maintaining the diameter.

上記の目的を達成するための手段として、請求項1の発明は、塗装機本体と、前記塗装機本体の前端部に回転可能に設けられた回転霧化頭と、前記塗装機本体の前端部に前記回転霧化頭と同心の円に沿うように設けた噴出口とを備え、前記回転霧化頭の外周縁から放射状に放出させた塗料を、前記噴出口から噴出させたシェーピングエアで包囲することにより所定のパターン径に成形するとともに、前記シェーピングエアの流れに乗じて被塗物に塗着させるようにした回転霧化塗装機において、前記塗装機本体内には、個別のエア供給源に接続される複数系統のエア流路が形成され、前記噴出口は、前記複数系統のエア流路と対応するように複数系統に分けられているとともに、前記噴出口の噴出方向は、異なる系統の前記噴出口から噴出された複数系統のシェーピングエアを合流させる向きとなっているところに特徴を有する。   As means for achieving the above object, the invention of claim 1 is directed to a coating machine main body, a rotary atomizing head rotatably provided at a front end portion of the coating machine main body, and a front end portion of the coating machine main body. And a jet outlet provided along a circle concentric with the rotary atomizing head, and the paint discharged radially from the outer peripheral edge of the rotary atomizing head is surrounded by shaping air jetted from the jet outlet. In the rotary atomizing coating machine that is shaped to have a predetermined pattern diameter and is applied to the object by multiplying the flow of the shaping air, an individual air supply source is provided in the coating machine main body. A plurality of air flow paths connected to the plurality of air flow paths are formed, and the jet ports are divided into a plurality of systems so as to correspond to the plurality of air flow paths, and the jet directions of the jet ports are different from each other. Spouted from the spout Having said shaping air of a plurality of systems where that is the direction for combining the.

請求項2の発明は、請求項1に記載のものにおいて、前記複数系統の噴出口が、ほぼ同一径の円周上において周方向に交互に並ぶように配され、互いに異なる系統であって周方向に隣り合うように並ぶ2つの前記噴出口からのシェーピングエアの噴出方向が、ほぼ同じ方向とされているところに特徴を有する。   According to a second aspect of the present invention, in the first aspect of the present invention, the plurality of nozzles are arranged so as to be alternately arranged in a circumferential direction on a circumference having substantially the same diameter, and are different from each other. It is characterized in that the jetting directions of the shaping air from the two jet outlets arranged adjacent to each other in the direction are substantially the same.

請求項3の発明は、請求項2に記載のものにおいて、前記塗装機本体は、前面に前記複数系統の噴出口が開口されたリング状部材を有しており、前記リング状部材における前記噴出口よりも後方の領域には、円形の隔壁により径方向に区画されて同心円状に配された複数の環状流路が、前記複数系統の前記噴出口に対して系統別に対応するように形成されており、前記リング状部材内には、前記噴出口から前記環状流路に至る噴出孔が形成されており、前記噴出孔は、前記回転霧化頭の回転中心軸を含み且つ前記噴出口を横切る仮想面に対して斜め方向に直線状に貫通する形態とされているところに特徴を有する。   According to a third aspect of the present invention, the main body of the coating machine according to the second aspect of the present invention has a ring-shaped member having a plurality of nozzles opened on the front surface thereof, and the jets in the ring-shaped member. In the region behind the outlet, a plurality of annular flow passages that are partitioned in a radial direction by circular partition walls and arranged concentrically are formed so as to correspond to the plurality of jet outlets according to the system. In the ring-shaped member, an ejection hole extending from the ejection port to the annular flow path is formed, and the ejection hole includes a rotation center axis of the rotary atomizing head and includes the ejection port. It is characterized in that it is configured to penetrate linearly in an oblique direction with respect to a virtual plane that crosses.

<請求項1の発明>
高速のシェーピングエアが必要な塗料を用い、その塗料の吐出量を抑えて塗装を行う場合には、複数の系統のうち1系統又は一部の系統の噴出口のみからシェーピングエアを高圧で噴出させる。このようにすれば、塗料の吐出量に合わせてシェーピングエアの流量が抑えられるので、所定のパターン径に成形できるとともに、高速のシェーピングエアが噴出されるので、塗装品質に優れている。
<Invention of Claim 1>
When coating is performed using paint that requires high-speed shaping air and the discharge amount of the paint is suppressed, shaping air is ejected at a high pressure from only one or a part of the plurality of systems. . In this way, since the flow rate of the shaping air can be suppressed in accordance with the discharge amount of the paint, it can be formed into a predetermined pattern diameter and high-speed shaping air is ejected, so that the coating quality is excellent.

また、塗装効率を考慮してシェーピングエアが低速であることが好ましいとされる塗料を大量に用いて塗装を行う場合には、複数の系統のうち全ての系統又は多数の系統の噴出口からシェーピングエアを低圧で噴出させる。このようにすれば、塗料の吐出量に合わせて大量のシェーピングエアが噴出されるので、所定のパターン径に成形できるとともに、低速のシェーピングエアが噴出されるので、塗装効率に優れている。   In addition, when coating is performed using a large amount of paint for which it is preferable that the shaping air is low in consideration of the coating efficiency, shaping is performed from all of a plurality of systems or a large number of outlets. Air is blown out at low pressure. In this way, since a large amount of shaping air is ejected in accordance with the discharge amount of the paint, it can be formed into a predetermined pattern diameter, and low-speed shaping air is ejected, so that the coating efficiency is excellent.

<請求項2の発明>
複数の系統の噴出口をほぼ同一径の円周上において周方向に交互に並ぶように配し、互いに異なる系統であって周方向に隣り合うように並ぶ2つの噴出口からのシェーピングエアの噴出方向をほぼ同じ方向としているので、複数系統の噴出口から噴出されるシェーピングエアを、極端に交差させずに整流状に合流させることができる。
<Invention of Claim 2>
Spouts of shaping air from two jet outlets that are arranged in a circumferential direction on a circle having substantially the same diameter and are arranged in a circumferential direction, and are arranged in different systems and adjacent to each other in the circumferential direction. Since the directions are substantially the same, the shaping air ejected from the plurality of system ejection ports can be merged in a rectifying manner without extremely intersecting.

<請求項3の発明>
1つの系統を構成する複数の噴出口からのシェーピングエアの流量と流速を均一にするためには、1つの系統を構成する複数の噴出口に対してその噴出口の並び方向に沿った1つの環状流路を設け、この環状流路から各噴出口に連通する複数の噴出孔を形成する構造が望ましい。したがって、噴出口が複数系統設けられている場合には、複数の環状流路を同心円状に設けることになる。
<Invention of Claim 3>
In order to make the flow rate and flow velocity of the shaping air from a plurality of jets constituting one system uniform, one of the plurality of jets constituting one system along the direction in which the jets are arranged. A structure in which an annular channel is provided and a plurality of ejection holes communicating from the annular channel to each ejection port is desirable. Therefore, when a plurality of jet outlets are provided, a plurality of annular flow paths are provided concentrically.

このような構造において、複数系統の噴出口をほぼ同一径の円周上において周方向に交互に並ぶように配置した上で、更に異なる系統であって周方向に隣り合うように並ぶ2つの噴出口からのシェーピングエアの噴出方向をほぼ同じ方向にしようとする場合、噴出孔の形態としては、噴出口から後方に延ばし、途中で径方向に屈曲させることにより、噴出孔の後端を対応する環状流路に開口させる形態が考えられる。しかし、屈曲した噴出孔を形成するためには、複数の部品を組み合わせる必要があるため、部品点数が増え、コストが高くつく等のデメリットがある。   In such a structure, two jet nozzles arranged in two or more different systems that are adjacent to each other in the circumferential direction are arranged on the circumference of substantially the same diameter so as to be alternately arranged in the circumferential direction. When trying to make the ejection direction of the shaping air from the outlet almost the same direction, the shape of the ejection hole corresponds to the rear end of the ejection hole by extending backward from the ejection port and bending it in the radial direction in the middle. The form opened to an annular flow path can be considered. However, since it is necessary to combine a plurality of parts in order to form a bent ejection hole, there are disadvantages such as an increase in the number of parts and high cost.

そこで本発明では、噴出孔を、回転霧化頭の回転中心軸を含み且つ噴出口を横切る仮想面に対して斜め方向に直線状に貫通する形態とした。このような形態にすれば、周方向に隣り合う2つの異系統の噴出口から環状流路へ斜め後方に延びた2つの噴出孔の後端は、環状流路において、径方向に位置ずれした位置関係で開口させることが可能となる。これにより、周方向に並ぶ異系統の噴出口と、径方向に区画した環状流路とを、直線状の噴出孔によって連通させることが可能となり、噴出孔の形成母体であるリング状部材を1つの部品とすることができる。   Therefore, in the present invention, the ejection hole is configured to linearly penetrate in an oblique direction with respect to a virtual plane that includes the rotation center axis of the rotary atomizing head and crosses the ejection port. With such a configuration, the rear ends of the two ejection holes extending obliquely rearward from the two different outlets adjacent to each other in the circumferential direction to the annular channel are displaced in the radial direction in the annular channel. It is possible to open the aperture in a positional relationship. Thereby, it becomes possible to connect the spout of different systems lined up in the circumferential direction and the annular flow passage partitioned in the radial direction by means of a straight jet hole, and the ring-shaped member that is the matrix for forming the jet hole is 1 Can be one part.

<実施形態1>
以下、本発明を具体化した実施形態1を図1乃至図10を参照して説明する。本実施形態の回転霧化塗装機Pは、塗装機本体10と、塗装機本体10の前端部に設けられた周知形態の円形をなす回転霧化頭26とを備えて構成されている。塗装機本体10内には、軸線を前後方向に向けた円筒状の回転軸11が、図示しない周知形態のタービン機構により高速で回転駆動されるように設けられ、回転軸11の前端部には、回転霧化頭26が同心状に且つ一体となって回転駆動されるように取り付けられている。回転軸11の内部に設けた塗料供給管12を通して回転霧化頭26の中心部に供給された塗料は、回転駆動されている回転霧化頭26の前面を、遠心力により外周側へ流れ、回転霧化頭26の外周縁から放射状に放出されるようになっている。放出された塗料は、後述するシェーピングエアで包囲されることにより、所定のパターン径に成形されるとともに、シェーピングエアの流れに乗じて被塗物(図示せず)に塗着されるようになっている。
<Embodiment 1>
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 10. The rotary atomizing coating machine P of the present embodiment includes a coating machine main body 10 and a well-known circular rotary atomizing head 26 provided at the front end of the coating machine main body 10. In the coating machine main body 10, a cylindrical rotary shaft 11 whose axis is directed in the front-rear direction is provided to be rotated at a high speed by a well-known turbine mechanism (not shown). The rotary atomizing head 26 is attached so as to be rotated concentrically and integrally. The paint supplied to the central portion of the rotary atomizing head 26 through the paint supply pipe 12 provided inside the rotary shaft 11 flows to the outer peripheral side by centrifugal force on the front surface of the rotary atomizing head 26 that is rotationally driven. Radiation is emitted from the outer peripheral edge of the rotary atomizing head 26. The discharged paint is surrounded by shaping air, which will be described later, so that it has a predetermined pattern diameter and is applied to an object to be coated (not shown) by taking advantage of the flow of shaping air. ing.

塗装機本体10の前端部は、図1〜図3に示すように、第1環状部材13と第2環状部材14と第3環状部材15とリング状部材20とを備えて構成され、これらの部品13,14,15,20は、いずれも、回転軸11と同心の円形をなしている。塗装機本体10内には、第1エア流路16Aと第2エア流路16Bとが互いに連通しない独立した系統の流路として形成されている。第1エア流路16Aには、第1エア供給源17Aから圧送されたエアが供給されるようになっており、第2エア流路16Bには、第2エア供給源17Bから圧送されたエアが供給されるようになっている。第1エア供給源17Aから圧送されるエアと、第2エア供給源17Bから圧送されるエアは、互いに独立して圧力制御できるようになっている。   As shown in FIGS. 1 to 3, the front end portion of the coating machine body 10 includes a first annular member 13, a second annular member 14, a third annular member 15, and a ring-shaped member 20. The parts 13, 14, 15, and 20 are all concentric with the rotating shaft 11. In the coating machine body 10, the first air flow path 16A and the second air flow path 16B are formed as independent flow paths that do not communicate with each other. The air fed from the first air supply source 17A is supplied to the first air flow path 16A, and the air fed from the second air supply source 17B to the second air flow path 16B. Is to be supplied. The pressure of air fed from the first air supply source 17A and the pressure of air fed from the second air supply source 17B can be controlled independently of each other.

第1環状部材13には、その後端面から前端面に貫通する第1貫通孔18Aと、同じく後端面から前端面に貫通する第2貫通孔18Bとが、互いに連通しない形態で形成されている。第1環状部材13の前面には第2環状部材14が組み付けられ、第1環状部材13と第2環状部材14との間には、第2貫通孔18Bに連通する環状連通路19が形成されている。第2環状部材14の外周にはリング状部材20が組み付けられており、第2環状部材14とリング状部材20との間には、全周に亘って連続し、回転軸11と同心の円形をなす第2環状流路21Bが形成されている。この第2環状流路21Bは、第2環状部材14に形成した連通孔22を介して環状連通路19に連通している。   The first annular member 13 is formed with a first through hole 18A penetrating from the rear end face to the front end face and a second through hole 18B penetrating from the rear end face to the front end face in a manner that does not communicate with each other. A second annular member 14 is assembled on the front surface of the first annular member 13, and an annular communication passage 19 communicating with the second through hole 18 </ b> B is formed between the first annular member 13 and the second annular member 14. ing. A ring-shaped member 20 is assembled on the outer periphery of the second annular member 14, and the second annular member 14 and the ring-shaped member 20 are continuous over the entire circumference and are concentric with the rotating shaft 11. A second annular flow path 21B is formed. The second annular channel 21 </ b> B communicates with the annular communication passage 19 through a communication hole 22 formed in the second annular member 14.

第1環状部材13の外周とリング状部材20の外周には、第3環状部材15が組み付けられている。第3環状部材15の内側には、第1環状部材13の前面と第2環状部材14の外周とリング状部材20の外周とによって区画された第1環状流路21Aが、全周に亘って連続して回転軸11と同心の円形に形成されている。この第1環状流路21Aは第2環状流路21Bよりも外周側に配され、第1環状流路21Aと第2環状流路21Bとは、リング状部材20に形成されている円形の隔壁23により径方向に区画されている。   A third annular member 15 is assembled to the outer periphery of the first annular member 13 and the outer periphery of the ring-shaped member 20. Inside the third annular member 15, the first annular channel 21 </ b> A defined by the front surface of the first annular member 13, the outer periphery of the second annular member 14, and the outer periphery of the ring-shaped member 20 extends over the entire periphery. It is continuously formed in a circular shape concentric with the rotating shaft 11. The first annular channel 21A is arranged on the outer peripheral side of the second annular channel 21B, and the first annular channel 21A and the second annular channel 21B are circular partition walls formed in the ring-shaped member 20. 23 in the radial direction.

リング状部材20の前面には、シェーピングエアを前方へ噴出するための複数の第1噴出口24Aと、第1噴出口24Aと同数の第2噴出口24Bとが開口されている。この第1噴出口24Aと第2噴出口24Bは、回転霧化頭26と同心であって回転霧化頭26の外周縁よりも大径である1つ(共通)の仮想円周上において周方向に交互に並ぶように配置されている。リング状部材20を前方(正面側)から視た図5において、第1噴出口24Aと、その時計回り方向前方に隣り合って位置する第2噴出口24Bとの距離は、反時計回り方向前方に隣り合って位置する第2噴出口24Bとの距離に比べて小さい。   On the front surface of the ring-shaped member 20, a plurality of first outlets 24A for ejecting the shaping air forward and the same number of second outlets 24B as the first outlets 24A are opened. The first jet outlet 24A and the second jet outlet 24B are concentric with the rotary atomizing head 26 and have a circumference on one (common) virtual circumference that is larger in diameter than the outer peripheral edge of the rotary atomizing head 26. They are arranged alternately in the direction. In FIG. 5 in which the ring-shaped member 20 is viewed from the front (front side), the distance between the first jet outlet 24A and the second jet outlet 24B located adjacent to the front in the clockwise direction is the front in the counterclockwise direction. Is smaller than the distance from the second jet outlet 24B located adjacent to each other.

各第1噴出口24Aは、夫々、リング状部材20を貫通してその後面に第1流入口27Aとして開口する第1噴出孔25Aを介して第1環状流路21Aに連通されている。各第1噴出孔25Aは、図6に示すように、回転霧化頭26の回転中心軸26aを含み、且つその第1噴出孔25Aの第1噴出口24Aを横切る仮想面Sa(図1〜図3にあらわれる面)に対して斜め方向に直線状にリング状部材20を貫通している。この第1噴出孔25Aの傾斜の向きは、第1環状流路21Aから第1噴出口24Aに向かって反時計回り方向に傾いた向きとなっている。   Each first jet outlet 24A communicates with the first annular flow path 21A through a first jet hole 25A that penetrates the ring-shaped member 20 and opens as a first inlet 27A on the rear surface thereof. As shown in FIG. 6, each first ejection hole 25 </ b> A includes a rotation center axis 26 a of the rotary atomizing head 26, and an imaginary plane Sa (FIG. 1 to FIG. 1) crossing the first ejection outlet 24 </ b> A of the first ejection hole 25 </ b> A. The ring-shaped member 20 is linearly penetrated in an oblique direction with respect to the surface shown in FIG. The inclination direction of the first ejection hole 25A is inclined in the counterclockwise direction from the first annular channel 21A toward the first ejection port 24A.

図5におけるX−X線断面は、回転霧化頭26の回転中心軸26aを含んで第1噴出口24Aを通る断面と直交し且つ回転中心軸26aを含まずに第1噴出口24Aを横切る断面であり、図6にあらわれている。このX−X線断面上において、回転中心軸26a(仮想面Sa)と第1噴出孔25Aの貫通方向線(即ち、第1噴出口24Aからのシェーピングエアの噴出方向)とのなす角度αは、55°である。また、図2に示すように、回転霧化頭26の回転中心軸26aを含んで第1噴出口24Aを横切る仮想面Sa(即ち、図2の紙面と平行な面)上において、回転中心軸26aと第1噴出孔25Aの貫通方向(即ち、シェーピングエアの噴出方向)とのなす角度θaは、15°である。さらに、図9にあらわした回転中心軸26aと直交する断面(即ち、図8のC−C線断面)上において、第1噴出孔25Aは、径方向とほぼ直角な概ね接線方向に延びた形態となっている。この第1噴出孔25Aの断面形状(第1噴出孔25Aの貫通方向と直角な横断面の形状)は真円である。したがって、リング状部材20の前面における第1噴出口24Aの開口形状は、周方向に長い楕円形となる。   The cross section along the line XX in FIG. 5 is perpendicular to the cross section including the rotation center axis 26a of the rotary atomizing head 26 and passing through the first outlet 24A, and crosses the first outlet 24A without including the rotation center axis 26a. FIG. 6 is a cross-sectional view. On the X-X line cross section, the angle α formed between the rotation center axis 26a (virtual plane Sa) and the penetrating direction line of the first ejection hole 25A (that is, the ejection direction of the shaping air from the first ejection outlet 24A) is 55 °. In addition, as shown in FIG. 2, the rotation center axis on the virtual plane Sa (that is, a plane parallel to the paper surface of FIG. 2) that includes the rotation center axis 26a of the rotary atomizing head 26 and crosses the first ejection port 24A. An angle θa formed by 26a and the penetrating direction of the first ejection hole 25A (that is, the shaping air ejection direction) is 15 °. Further, on the cross section orthogonal to the rotation center axis 26a shown in FIG. 9 (that is, the cross section taken along the line CC in FIG. 8), the first ejection hole 25A extends in a substantially tangential direction substantially perpendicular to the radial direction. It has become. The cross-sectional shape of this first ejection hole 25A (the shape of the transverse cross section perpendicular to the penetrating direction of the first ejection hole 25A) is a perfect circle. Therefore, the opening shape of the first jet outlet 24A on the front surface of the ring-shaped member 20 is an ellipse that is long in the circumferential direction.

各第2噴出口24Bは、夫々、リング状部材20を貫通してその後面に第2流入口27Bとして開口する第2噴出孔25Bを介して第2環状流路21Bに連通されている。各第2噴出孔25Bは、図7に示すように、回転霧化頭26の回転中心軸26aを含み、且つその第2噴出孔25Bの第2噴出口24Bを横切る仮想面Sb(図1〜図3にあらわれる面)に対して斜め方向に直線状にリング状部材20を貫通している。この第2噴出孔25Bの傾斜の向きは、第2環状流路21Bから第2噴出口24Bに向かって反時計回り方向に傾いた向き(即ち、第1噴出孔25Aとほぼ同じ向き)となっている。   Each of the second ejection ports 24B communicates with the second annular channel 21B through a second ejection hole 25B that penetrates the ring-shaped member 20 and opens as a second inflow port 27B on the rear surface thereof. As shown in FIG. 7, each second ejection hole 25 </ b> B includes a rotation center axis 26 a of the rotary atomizing head 26, and an imaginary plane Sb that crosses the second ejection opening 24 </ b> B of the second ejection hole 25 </ b> B (FIG. 1 to FIG. 1). The ring-shaped member 20 is linearly penetrated in an oblique direction with respect to the surface shown in FIG. The direction of the inclination of the second ejection hole 25B is a direction inclined in the counterclockwise direction from the second annular flow path 21B toward the second ejection outlet 24B (that is, substantially the same direction as the first ejection hole 25A). ing.

図5におけるY−Y線断面は、回転霧化頭26の回転中心軸26aを含んで第2噴出口24Bを通る断面と直交し且つ回転中心軸26aを含まずに第2噴出口24Bを横切る断面であり、図7にあらわれている。このY−Y線断面上において、回転中心軸26a(仮想面Sb)と第2噴出孔25Bの貫通方向とのなす角度βは、55.61°であり、第1噴出孔25Aとほぼ同じ角度(正確には、第1噴出孔25Aよりも僅かに大きい角度)となっている。また、図3に示すように、回転霧化頭26の回転中心軸26aを含んで第2噴出口24Bを横切る仮想面Sb(即ち、図3の紙面と平行な面)上において、回転中心軸26aと第2噴出孔25Bの貫通方向線(即ち、シェーピングエアの噴出方向)とのなす角度θbは、5°であり、第1噴出孔25Aよりも小さい。さらに、図9にあらわした回転中心軸26aと直交する断面(即ち、図8のC−C線断面)上において、第2噴出孔25Bは、径方向とほぼ直角な概ね接線方向(即ち、第1噴出孔25Aとほぼ平行)に延びた形態となっている。   The cross section along line YY in FIG. 5 is orthogonal to the cross section passing through the second jet outlet 24B including the rotation center axis 26a of the rotary atomizing head 26 and crosses the second jet outlet 24B without including the rotation center axis 26a. FIG. 7 is a cross-sectional view. On the YY line cross section, the angle β formed by the rotation center axis 26a (virtual surface Sb) and the penetrating direction of the second ejection hole 25B is 55.61 °, which is substantially the same angle as the first ejection hole 25A. (To be precise, the angle is slightly larger than the first ejection holes 25A). Further, as shown in FIG. 3, on the virtual plane Sb including the rotation center axis 26a of the rotary atomizing head 26 and crossing the second ejection port 24B (that is, a plane parallel to the paper surface of FIG. 3), the rotation center axis The angle θb formed between the line 26a and the penetrating direction line of the second ejection hole 25B (ie, the shaping air ejection direction) is 5 °, which is smaller than the first ejection hole 25A. Further, on the cross section orthogonal to the rotation center axis 26a shown in FIG. 9 (that is, the cross section taken along the line CC in FIG. 8), the second ejection hole 25B has a substantially tangential direction (that is, a first direction substantially perpendicular to the radial direction). 1 jetting hole 25A).

この第2噴出孔25Bの断面形状(第2噴出孔25Bの貫通方向と直角な横断面の形状)は真円である。したがって、リング状部材20の前面における第2噴出口24Bの開口形状は、周方向に長い楕円形となる。また、第2噴出孔25Bの断面積は第1噴出孔25Aの断面積と同じであり、したがって、全ての第2噴出口24Bの開口総面積は、全ての第1噴出口24Aの開口総面積と同じである。   The cross-sectional shape of this second ejection hole 25B (the shape of the transverse cross section perpendicular to the penetrating direction of the second ejection hole 25B) is a perfect circle. Therefore, the opening shape of the 2nd jet nozzle 24B in the front surface of the ring-shaped member 20 becomes an ellipse long in the circumferential direction. Further, the sectional area of the second ejection holes 25B is the same as the sectional area of the first ejection holes 25A. Therefore, the total opening area of all the second ejection openings 24B is the total opening area of all the first ejection openings 24A. Is the same.

上記の第1貫通孔18A、第1環状流路21A及び第1噴出孔25Aは、第1エア流路16Aを構成する。第1エア流路16Aに供給されたエアは、複数の第1噴出口24Aからシェーピングエアとして筒状に噴出される。第1噴出口24Aから前方へ噴出されるシェーピングエアの噴出方向は、第1噴出孔25Aの貫通方向と平行であり、回転霧化頭26の回転中心軸26aを含んで第1噴出口25Aを横切る仮想面Sa(図2を参照)上において、回転霧化頭26の回転中心軸26aに接近するように斜め内向きとなっている。但し、図6に示すように、シェーピングエアの噴出方向は、仮想面Saに対して斜め方向となっているので、このシェーピングエアの噴出方向線は回転中心軸26aと交差しない。   The first through hole 18A, the first annular flow path 21A, and the first ejection hole 25A constitute a first air flow path 16A. The air supplied to the first air flow path 16A is ejected in a cylindrical shape as shaping air from the plurality of first ejection ports 24A. The ejection direction of the shaping air ejected forward from the first ejection port 24A is parallel to the penetration direction of the first ejection hole 25A, and includes the rotation center axis 26a of the rotary atomizing head 26 and the first ejection port 25A. On the crossing virtual plane Sa (see FIG. 2), it is inclined inward so as to approach the rotation center axis 26 a of the rotary atomizing head 26. However, as shown in FIG. 6, since the ejection direction of the shaping air is oblique with respect to the virtual plane Sa, the ejection direction line of the shaping air does not intersect the rotation center axis 26a.

また、第2貫通孔18B、環状連通路19、連通孔22、第2環状流路21B及び第2噴出孔25Bは、第2エア流路16Bを構成する。第2エア流路16Bに供給されたエアは、複数の第2噴出口24Bからシェーピングエアとして筒状に噴出される。第2噴出口24Bから前方へ噴出されるシェーピングエアの噴出方向は、第2噴出孔25Bの貫通方向と平行であり、回転霧化頭26の回転中心軸26aを含んで第2噴出口24Bを横切る仮想面Sb(図3を参照)上において、回転霧化頭26の回転中心軸26aに接近するように斜め内向きとなっている。但し、図7に示すように、シェーピングエアの噴出方向は、仮想面Sbに対して斜め方向となっているので、このシェーピングエアの噴出方向線は回転中心軸26aと交差しない。   Further, the second through hole 18B, the annular communication path 19, the communication hole 22, the second annular flow path 21B, and the second ejection hole 25B constitute a second air flow path 16B. The air supplied to the second air flow path 16B is ejected in a cylindrical shape as shaping air from the plurality of second ejection ports 24B. The ejection direction of the shaping air ejected forward from the second ejection port 24B is parallel to the penetration direction of the second ejection hole 25B, and includes the rotation center axis 26a of the rotary atomizing head 26 and the second ejection port 24B. On the imaginary plane Sb (see FIG. 3) that crosses, it is inclined inward so as to approach the rotation center axis 26 a of the rotary atomizing head 26. However, as shown in FIG. 7, since the ejection direction of the shaping air is an oblique direction with respect to the virtual plane Sb, the ejection direction line of the shaping air does not intersect the rotation center axis 26a.

次に、本実施形態の作用を説明する。本実施形態の回転霧化塗装機Pでは、メタリック塗料、ソリッド塗料、クリア塗料等の各種の塗料を用いて塗装を行うことができる。一般に、塗料のパターン成形の点においては、塗料の種類を問わず、塗料の吐出量が多くなるほど、シェーピングエアの流量を増大させることが必要となる。また、塗装効率の点においては、塗料の種類を問わず、シェーピングエアの流速が速くなり過ぎると、周囲に飛散して被塗物に塗着しない塗料の量が増えることから、適正な流速には上限がある。   Next, the operation of this embodiment will be described. In the rotary atomizing coating machine P of the present embodiment, coating can be performed using various paints such as metallic paint, solid paint, and clear paint. In general, in terms of paint pattern formation, it is necessary to increase the flow rate of shaping air as the amount of paint discharged increases, regardless of the type of paint. Also, in terms of coating efficiency, regardless of the type of paint, if the flow velocity of shaping air becomes too fast, the amount of paint that scatters around and does not adhere to the workpiece increases. Has an upper limit.

メタリック塗料では、塗装品質がシェーピングエアの流速に大きく影響されるため、塗装効率よりも塗装品質を優先することが求められる。品質の高い塗装を行うためには、シェーピングエアを、例えば18m/sec程度の比較的速い速度で噴出させることが必要となる。   In metallic paint, since the coating quality is greatly influenced by the flow velocity of shaping air, it is required to prioritize the coating quality over the painting efficiency. In order to perform high-quality coating, it is necessary to eject shaping air at a relatively high speed, for example, about 18 m / sec.

したがって、比較的少量のメタリック塗料を用いて塗装を行う場合には、第1エア供給源17Aから比較的高圧でエアを供給するが、第2エア供給源17Bからのエアの供給は行わず、第1噴出口24Aのみからシェーピングエアを噴出させる。このときのシェーピングエアの流量は、第1噴出口24A及び第2噴出口24Bの両方から噴出させる場合に比べると少ないので、少量のメタリック塗料を所定のパターン径に成形することができる。また、第1エア供給源17Aから供給されるエアの圧力を高圧としているので、シェーピングエアの流速は速く、塗装品質は高い。尚、少量のメタリック塗料を用いて塗装を行う場合には、第1噴出口24Aのみからシェーピングエアを噴出させる方法に替えて、第2噴出口24Bのみからシェーピングエアのみを噴出させても、所定のパターン径に成形しながら、高い塗装品質を得ることができる。   Accordingly, when coating is performed using a relatively small amount of metallic paint, air is supplied at a relatively high pressure from the first air supply source 17A, but air is not supplied from the second air supply source 17B. Shaping air is ejected from only the first ejection port 24A. Since the flow rate of the shaping air at this time is small as compared with the case of ejecting from both the first ejection port 24A and the second ejection port 24B, a small amount of metallic paint can be formed into a predetermined pattern diameter. Further, since the pressure of the air supplied from the first air supply source 17A is high, the flow speed of the shaping air is fast and the coating quality is high. In addition, when performing coating using a small amount of metallic paint, it is possible to change only the shaping air from only the second ejection port 24B instead of the method of ejecting the shaping air only from the first ejection port 24A. A high coating quality can be obtained while forming to a pattern diameter of.

また、比較的大量のメタリック塗料を用いて塗装を行う場合には、第1エア供給源17Aと第2エア供給源17Bの双方から比較的高圧のエアを供給を行い、第1噴出口24Aと第2噴出口24Bの両方からシェーピングエアを噴出させる。噴出した2系統のシェーピングエアは合流して1つの筒状のシェーピングエアとなり、メタリック塗料を所定のパターンに成形する。このときのシェーピングエアの流量は、第1噴出口24Aと第2噴出口24Bのうち一方のみから噴出させる場合に比べて多いので、大量のメタリック塗料を所定のパターン径に成形することができる。また、第1エア供給源17A及び第2エア供給源17Bから供給されるエアの圧力を高圧としているので、シェーピングエアの流速は速く、塗装品質は高い。   In addition, when coating is performed using a relatively large amount of metallic paint, relatively high-pressure air is supplied from both the first air supply source 17A and the second air supply source 17B, Shaping air is ejected from both of the second ejection ports 24B. The two types of ejected shaping air merge to form one cylindrical shaping air, and the metallic paint is formed into a predetermined pattern. Since the flow rate of the shaping air at this time is larger than that in the case of ejecting from only one of the first ejection port 24A and the second ejection port 24B, a large amount of metallic paint can be formed into a predetermined pattern diameter. Further, since the pressure of the air supplied from the first air supply source 17A and the second air supply source 17B is high, the flow speed of the shaping air is fast and the coating quality is high.

上述のメタリック塗料に対し、ソリッド塗料(クリア塗料や濃色メタリック塗装も同様である)の場合には、塗装品質がシェーピングエアの流速に左右されないので、塗装効率を優先してシェーピングエアが制御される。塗装効率を向上させるためには、流速を低く抑えることが必要である。具体的には、ソリッド塗料では7〜8m/sec程度の流速が好ましく、クリア塗料では5m/sec以下の流速が好ましく、濃色メタリック塗料では10m/sec程度の流速が好ましい。いずれも、メタリック塗料に比べて好適な流速は遅い。   In contrast to the metallic paint described above, in the case of a solid paint (clear paint and dark metallic paint are the same), the paint quality is not affected by the flow speed of the shaping air, so the shaping air is controlled with priority on the painting efficiency. The In order to improve the coating efficiency, it is necessary to keep the flow velocity low. Specifically, a flow rate of about 7 to 8 m / sec is preferable for the solid paint, a flow rate of 5 m / sec or less is preferable for the clear paint, and a flow rate of about 10 m / sec is preferable for the dark metallic paint. In any case, the preferred flow rate is slower than that of metallic paint.

さて、比較的少量のソリッド塗料を用いて塗装を行う場合には、第1エア供給源17Aから比較的低圧でエアを供給するが、第2エア供給源17Bからのエアの供給は行わず、第1噴出口24Aのみからシェーピングエアを噴出させる。このときのシェーピングエアの流量は、第1噴出口24A及び第2噴出口24Bの両方から噴出させる場合に比べると少ないので、少量のソリッド塗料を所定のパターン径に成形することができる。   When coating is performed using a relatively small amount of solid paint, air is supplied from the first air supply source 17A at a relatively low pressure, but air is not supplied from the second air supply source 17B. Shaping air is ejected from only the first ejection port 24A. Since the flow rate of the shaping air at this time is small as compared with the case of jetting from both the first jet port 24A and the second jet port 24B, a small amount of solid paint can be formed into a predetermined pattern diameter.

また、第1エア供給源17Aから供給されるエアの圧力を低圧としているので、シェーピングエアの流速は遅く、塗装効率は高い。尚、少量のソリッド塗料を用いて塗装を行う場合には、第1噴出口24Aのみからシェーピングエアを噴出させる方法に替えて、第2噴出口24Bのみからシェーピングエアのみを噴出させても、所定のパターン径に成形しながら高い塗装品質を得ることが可能である。   Further, since the pressure of the air supplied from the first air supply source 17A is low, the flow speed of the shaping air is slow and the coating efficiency is high. In addition, when performing painting using a small amount of solid paint, it is possible to change the method in which the shaping air is ejected from only the first ejection port 24A, or to eject only the shaping air from only the second ejection port 24B. It is possible to obtain high coating quality while molding to a pattern diameter of.

また、比較的大量のソリッド塗料を用いて塗装を行う場合には、第1エア供給源17Aと第2エア供給源17Bの双方から比較的低圧のエアを供給を行い、第1噴出口24Aと第2噴出口24Bの両方からシェーピングエアを噴出させる。噴出した2系統のシェーピングエアは合流して1つのシェーピングエアとなり、ソリッド塗料を所定のパターンに成形する。このときのシェーピングエアの流量は、第1噴出口24Aと第2噴出口24Bのうち一方のみから噴出させる場合に比べて多いので、大量のソリッド塗料を所定のパターン径に成形することができる。また、第1エア供給源17A及び第2エア供給源17Bから供給されるエアの圧力を低圧としているので、シェーピングエアの流速は遅く、塗装効率は高い。   Further, when coating is performed using a relatively large amount of solid paint, relatively low-pressure air is supplied from both the first air supply source 17A and the second air supply source 17B, and the first jet outlet 24A Shaping air is ejected from both of the second ejection ports 24B. The two types of shaped air that has been ejected merge to form one shaped air, and the solid paint is formed into a predetermined pattern. Since the flow rate of the shaping air at this time is larger than that in the case of ejecting from only one of the first ejection port 24A and the second ejection port 24B, a large amount of solid paint can be formed into a predetermined pattern diameter. Further, since the pressure of the air supplied from the first air supply source 17A and the second air supply source 17B is low, the flow rate of the shaping air is slow and the coating efficiency is high.

上述のように、本実施形態においては、塗装機本体10内に個別のエア供給源17A,17Bに接続される2系統のエア流路16A,16Bを形成し、噴出口24A,24Bを、2系統のエア流路16A,16Bと対応するように2系統に分け、噴出口24A,24Bの噴出方向を、2つの系統の噴出口24A,24Bから噴出した2系統のシェーピングエアが合流するような向きとしている。これにより、好適なシェーピングエアの流速が異なる複数種類の塗料を用いた場合において、塗料の吐出量が変動しても、所定のパターン径を保ちながらシェーピングエアの流速を各塗料に好適な速度に調整することができる。   As described above, in the present embodiment, the two air flow paths 16A and 16B connected to the individual air supply sources 17A and 17B are formed in the coating machine body 10, and the jet outlets 24A and 24B are connected to the two outlets 24A and 24B. The system is divided into two systems so as to correspond to the air flow paths 16A and 16B of the system, and the two directions of the shaping air ejected from the two system outlets 24A and 24B are merged. Oriented. As a result, when multiple types of paints with different preferred shaping air flow rates are used, the shaping air flow rate is adjusted to a speed suitable for each paint while maintaining a predetermined pattern diameter even if the discharge rate of the paint fluctuates. Can be adjusted.

また、2系統の噴出口24A,24Bをほぼ同一径の円周上において周方向に交互に並ぶように配し、互いに異なる系統であって周方向に隣り合うように並ぶ2つの噴出口24A,24Bからのシェーピングエアの噴出方向をほぼ同じ方向としているので、2つの系統の噴出口24A,24Bから噴出されるシェーピングエアを、極端に交差させずに整流状に合流させることができる。   Further, two jet outlets 24A, 24B are arranged so as to be alternately arranged in the circumferential direction on a circumference having substantially the same diameter, and two jet outlets 24A, 24A, 24A, which are different from each other and are arranged adjacently in the circumferential direction Since the jetting direction of the shaping air from 24B is made substantially the same direction, the shaping air jetted from the two system outlets 24A and 24B can be merged in a rectifying manner without extremely intersecting.

また、本実施形態では、1つの系統を構成する複数の噴出口24A,24Bに対してそれらの噴出口24A,24Bの並び方向に沿うように対応する1つの環状流路を設け、この環状流路から各噴出口24A,24Bに連通する複数の噴出孔25A,25Bを形成することにより、1つの系統を構成する複数の噴出口24A,24Bからのシェーピングエアの流量と流速を均一にするようにしている。また、噴出口24A,24Bは2系統に分かれて設けられているので、2つの環状流路21A,21Bを径が異なる同心の円状に設けている。さらに、2つの系統の噴出口24A,24Bをほぼ同一径の円周上において周方向に交互に並ぶように配置し、その上で、異なる系統であって周方向に隣り合うように並ぶ2つの噴出口24A,24Bからのシェーピングエアの噴出方向をほぼ同じ方向にしている。   Further, in the present embodiment, one annular flow path corresponding to the plurality of jet outlets 24A, 24B constituting one system is provided so as to follow the arrangement direction of the jet outlets 24A, 24B. By forming a plurality of ejection holes 25A and 25B communicating with the ejection ports 24A and 24B from the road, the flow rate and flow velocity of the shaping air from the plurality of ejection ports 24A and 24B constituting one system are made uniform. I have to. Moreover, since the jet nozzles 24A and 24B are provided in two systems, the two annular channels 21A and 21B are provided in concentric circles having different diameters. Further, the two outlets 24A, 24B are arranged so as to be alternately arranged in the circumferential direction on the circumference of substantially the same diameter, and then two different systems are arranged adjacent to each other in the circumferential direction. The ejection direction of the shaping air from the ejection ports 24A and 24B is set to be substantially the same direction.

このような構造の場合、噴出口24A,24Bから環状流路21A,21Bに至る噴出孔の形態としては、噴出口24A,24Bから後方に延ばし、途中で径方向に屈曲させることにより、噴出孔の後端を対応する環状流路21A,21Bに開口させる形態が考えられる。しかし、屈曲した噴出孔を形成するためには、噴出孔の形成母体を、複数の部品を組み合わせた形態にする必要があるため、部品点数が増え、コストが高くつく等のデメリットがある。   In the case of such a structure, the form of the ejection holes extending from the ejection outlets 24A, 24B to the annular flow paths 21A, 21B extends rearward from the ejection outlets 24A, 24B, and is bent in the radial direction in the middle, thereby A configuration in which the rear ends of the rear ends are opened to the corresponding annular flow paths 21A and 21B is conceivable. However, in order to form a bent ejection hole, it is necessary to form the ejection hole forming matrix in a form in which a plurality of parts are combined. Thus, there are disadvantages such as an increase in the number of parts and high cost.

そこで本実施形態では、図6及び図7に示すように、噴出孔25A,25Bを、回転霧化頭26の回転中心軸26aを含み且つ噴出口24A,24Bを横切る仮想面Sa,Sbに対して斜め方向に直線状に貫通する形態とした。このような形態にすれば、図9に拡大して示すように、周方向に隣り合う2つの異系統の噴出口24A,24Bから環状流路21A,21Bへ斜め後方に延びた2つの噴出孔25A,25Bの後端の流入口27A,27Bは、環状流路21A,21Bにおいて、径方向に位置ずれした位置関係で開口させることが可能となる。これにより、周方向に並ぶ異系統の噴出口24A,24Bと、径方向に区画した環状流路21A,21Bとを、直線状の噴出孔25A,25Bによって連通させることが可能となり、噴出孔25A,25Bの形成母体であるリング状部材20を1つの部品とすることが実現できた。   Therefore, in the present embodiment, as shown in FIGS. 6 and 7, the ejection holes 25A and 25B are arranged with respect to virtual surfaces Sa and Sb including the rotation center axis 26a of the rotary atomizing head 26 and crossing the ejection ports 24A and 24B. Thus, it is configured to penetrate linearly in an oblique direction. With such a configuration, as shown in an enlarged view in FIG. 9, two jet holes extending obliquely rearward from the two different outlets 24A, 24B adjacent in the circumferential direction to the annular flow paths 21A, 21B. The inlets 27A and 27B at the rear ends of 25A and 25B can be opened in the annular flow paths 21A and 21B in a positional relationship that is displaced in the radial direction. Thereby, it becomes possible to connect the outlets 24A and 24B of different systems arranged in the circumferential direction and the annular flow paths 21A and 21B partitioned in the radial direction by the linear ejection holes 25A and 25B. , 25B forming the ring-shaped member 20 as a single component.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施態様も本発明の技術的範囲に含まれる。
(1)上記実施形態では2系統の噴出口を設けたが、これに限らず、噴出口の系統の数は3以上であってもよい。
(2)上記実施形態では2系統の噴出口をほぼ同一径の円周上に配したが、これに限らず、2系統の噴出口は、互いに径が異なる円周上に別々に配されていてもよい。
(3)上記実施形態では2系統の噴出口の数を互いに同数としたが、これに限らず、2系統の噴出口の数は互いに異なっていてもよい。この場合、一方の系統の噴出口の数は、他方の系統の噴出口の数の整数倍であっても、整数倍でなくてもよい。
(4)上記実施形態では2系統の噴出口の開口面積をほぼ同一としたが、これに限らず、2系統の噴出口の開口面積は互いに異なっていてもよい。
(5)上記実施形態では互いに異なる系統であって周方向に隣り合うように並ぶ2つの噴出口からのシェーピングエアの噴出方向が、回転霧化頭の回転中心軸を含んで噴出口を横切る仮想面(図1〜3を参照)上において互いに異なる方向となるようにしたが、これに限らず、周方向に隣り合うように配された系統の異なる2つの噴出口からのシェーピングエアの噴出方向が、上記仮想面上において同じ方向となるようにしてもよい。
(6)上記実施形態では互いに異なる系統であって周方向に隣り合うように並ぶ2つの噴出口からのシェーピングエアの噴出方向が、回転霧化頭の回転中心軸を含んで噴出口を横切る仮想面(図1〜3を参照)上において、いずれも回転霧化頭の回転中心軸に接近するように斜め内向きとなるようにしたが、これに限らず、周方向に隣り合うように配された系統の異なる2つの噴出口からのシェーピングエアの噴出方向は、上記仮想面上において、2系統がいずれも回転霧化頭の回転中心軸から離間するように斜め外向きとなる形態でもよく、一方の系統の噴出口からの噴出方向が斜め内向きで他方の噴出口からの噴出方向が斜め外向きとなる形態であってもよい。
(7)上記実施形態では互いに異なる系統であって周方向に隣り合うように並ぶ2つの噴出口からのシェーピングエアの噴出方向が、回転霧化頭の回転中心軸と直交する仮想面(図9を参照)上において概ね同じ方向となるようにしたが、これに限らず、周方向に隣り合うように配された系統の異なる2つの噴出口からのシェーピングエアの噴出方向を、上記仮想面上において互いに異なる方向としてもよい。
(8)上記実施形態では互いに異なる系統であって周方向に隣り合うように並ぶ2つの噴出口からのシェーピングエアの噴出方向が、回転霧化頭の回転中心軸を含んで噴出口を通る断面と直交し且つ回転中心軸を含まずに噴出口を横切る仮想面(図6及び図7を参照)上において概ね同じ方向となるようにしたが、これに限らず、周方向に隣り合うように配された系統の異なる2つの噴出口からのシェーピングエアの噴出方向が、上記仮想面上において互いに異なる方向となるようにしてもよい。
(9)上記実施形態ではシェーピングエアの噴出方向を、回転霧化頭の回転中心軸を含んで噴出口を横切る仮想面(図1〜図3にあらわれた面)に対して斜め方向としたが、これに限らず、シェーピングエアの噴出方向を、回転霧化頭の回転中心軸を含んで噴出口を横切る仮想面に沿った方向(つまり、回転中心軸に対して平行な方向又は回転中心軸と交差する方向)としてもよい。
(10)上記実施形態では噴出口の開口形状を楕円形としたが、噴出口の開口形状は、これに限らず、例えば、周方向に沿って細長く延びる円弧形に開口していてもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In the above-described embodiment, two spouts are provided. However, the present invention is not limited to this, and the number of spouts may be three or more.
(2) In the above embodiment, the two systems of jets are arranged on the circumference of substantially the same diameter. However, the present invention is not limited to this, and the two systems of jets are separately arranged on the circumferences having different diameters. May be.
(3) In the above-described embodiment, the number of the two system outlets is the same. However, the number is not limited thereto, and the number of the two system outlets may be different from each other. In this case, the number of jet outlets of one system may be an integer multiple of the number of jet outlets of the other system or may not be an integer multiple.
(4) In the above-described embodiment, the opening areas of the two nozzles are substantially the same. However, the present invention is not limited to this, and the opening areas of the two nozzles may be different from each other.
(5) In the above-described embodiment, the direction in which the shaping air is ejected from two ejection ports that are different from each other and are arranged adjacent to each other in the circumferential direction includes a virtual axis that includes the rotation center axis of the rotary atomizing head and crosses the ejection port. Although it was made to become a mutually different direction on a surface (refer FIGS. 1-3), it is not restricted to this, The ejection direction of the shaping air from two different jet nozzles distribute | arranged so that it may adjoin to the circumferential direction However, you may make it become the same direction on the said virtual surface.
(6) In the above embodiment, the imaginary direction in which the shaping air is ejected from the two ejection ports that are different from each other and are arranged adjacent to each other in the circumferential direction includes the rotation center axis of the rotary atomizing head and crosses the ejection port. On the surface (see FIGS. 1 to 3), all of them are inclined inward so as to approach the rotation center axis of the rotary atomizing head. The jetting direction of the shaping air from the two different jet outlets of the different systems may be such that the two systems are obliquely outward on the virtual plane so that both of them are separated from the rotation center axis of the rotary atomizing head. The jet direction from the jet outlet of one system may be obliquely inward, and the jet direction from the other jet outlet may be obliquely outward.
(7) In the above embodiment, the virtual plane in which the jetting direction of the shaping air from the two jetting ports that are different from each other and are arranged adjacent to each other in the circumferential direction is orthogonal to the rotation center axis of the rotary atomizing head (FIG. 9). However, the present invention is not limited to this, and the jetting direction of the shaping air from two different jet outlets arranged adjacent to each other in the circumferential direction is determined on the virtual plane. The directions may be different from each other.
(8) In the above embodiment, the cross-sections of the shaping air from the two outlets that are different from each other and are arranged adjacent to each other in the circumferential direction include the rotation center axis of the rotary atomizing head and pass through the outlet. Are substantially the same direction on a virtual plane (see FIGS. 6 and 7) that intersects with the nozzle and does not include the rotation center axis, but is not limited to this, and is adjacent to the circumferential direction. The jetting direction of the shaping air from the two jetting outlets of different arranged systems may be different from each other on the virtual plane.
(9) In the above embodiment, the shaping air is ejected in an oblique direction with respect to a virtual plane (a surface appearing in FIGS. 1 to 3) that includes the rotation center axis of the rotary atomizing head and crosses the ejection port. However, the present invention is not limited to this, and the direction in which the shaping air is ejected is the direction along the imaginary plane that crosses the ejection port including the rotation center axis of the rotary atomizing head (that is, the direction parallel to the rotation center axis or the rotation center axis). Or the direction intersecting).
(10) In the above embodiment, the opening shape of the jet port is an ellipse. However, the opening shape of the jet port is not limited to this, and may be, for example, an arc shape that is elongated along the circumferential direction. .

実施形態1の回転霧化塗装機の前端部をあらわす縦断面図A longitudinal sectional view showing a front end portion of the rotary atomizing coating machine of the first embodiment 第1噴出孔をあらわす部分拡大縦断面図Partial enlarged vertical sectional view showing the first ejection hole 第2噴出孔をあらわす部分拡大縦断面図Partially enlarged vertical sectional view showing the second ejection hole 回転霧化塗装機の前端部をあらわす斜視図Perspective view showing the front end of a rotary atomizing coating machine リング状部材の正面図Front view of ring-shaped member 図5のX−X線断面図XX sectional view of FIG. 図5のY−Y線断面図YY sectional view of FIG. リング状部材の側面図Side view of ring-shaped member 図8のZ−Z線断面図ZZ sectional view of FIG. シェーピングエアを噴出している状態をあらわす側面図Side view showing the state of shaping air being blown out

符号の説明Explanation of symbols

10…塗装機本体
16A…第1エア流路
16B…第2エア流路
17A…第1エア供給源
17B…第2エア供給源
20…リング状部材
21A…第1環状流路
21B…第2環状流路
24A…第1噴出口
24B…第2噴出口
26…回転霧化頭
26a…回転霧化頭の回転中心軸
Pa,Pb…回転霧化頭の回転中心軸を含み噴出口を横切る仮想面
S…シェーピングエア
DESCRIPTION OF SYMBOLS 10 ... Coating machine main body 16A ... 1st air flow path 16B ... 2nd air flow path 17A ... 1st air supply source 17B ... 2nd air supply source 20 ... Ring-shaped member 21A ... 1st annular flow path 21B ... 2nd annular Flow path 24A ... 1st jet nozzle 24B ... 2nd jet nozzle 26 ... Rotary atomization head 26a ... Rotation center axis of rotary atomization head Pa, Pb ... Virtual plane including rotation center axis of rotary atomization head and crossing jet nozzle S ... Shaping air

Claims (3)

塗装機本体と、
前記塗装機本体の前端部に回転可能に設けられた回転霧化頭と、
前記塗装機本体の前端部に前記回転霧化頭と同心の円に沿うように設けた噴出口とを備え、
前記回転霧化頭の外周縁から放射状に放出させた塗料を、前記噴出口から噴出させたシェーピングエアで包囲することにより所定のパターン径に成形するとともに、前記シェーピングエアの流れに乗じて被塗物に塗着させるようにした回転霧化塗装機において、
前記塗装機本体内には、個別のエア供給源に接続される複数系統のエア流路が形成され、
前記噴出口は、前記複数系統のエア流路と対応するように複数系統に分けられているとともに、
前記噴出口の噴出方向は、異なる系統の前記噴出口から噴出された複数系統のシェーピングエアを合流させる向きとなっていることを特徴とする回転霧化塗装機。
The main body of the coating machine,
A rotary atomizing head provided rotatably at the front end of the coating machine body;
A spout provided along the circle concentric with the rotary atomizing head at the front end of the coating machine body;
The paint discharged radially from the outer peripheral edge of the rotary atomizing head is formed into a predetermined pattern diameter by surrounding with the shaping air ejected from the ejection port, and the coating is applied by taking advantage of the flow of the shaping air. In a rotary atomizing coating machine designed to be applied to objects,
In the coating machine body, a plurality of air flow paths connected to individual air supply sources are formed,
The spout is divided into a plurality of systems so as to correspond to the plurality of air flow paths,
The rotary atomizing coating machine is characterized in that the ejection direction of the ejection port is a direction in which a plurality of types of shaping air ejected from the ejection ports of different systems are merged.
前記複数系統の噴出口が、ほぼ同一径の円周上において周方向に交互に並ぶように配され、
互いに異なる系統であって周方向に隣り合うように並ぶ2つの前記噴出口からのシェーピングエアの噴出方向が、ほぼ同じ方向とされていることを特徴とする請求項1記載の回転霧化塗装機。
The plurality of spouts are arranged so as to be alternately arranged in the circumferential direction on a circumference having substantially the same diameter,
The rotary atomizing coating machine according to claim 1, wherein the jetting directions of the shaping air from the two jetting ports that are different from each other and are arranged adjacent to each other in the circumferential direction are substantially the same. .
前記塗装機本体は、前面に前記複数系統の噴出口が開口されたリング状部材を有しており、
前記リング状部材における前記噴出口よりも後方の領域には、円形の隔壁により径方向に区画されて同心円状に配された複数の環状流路が、前記複数系統の前記噴出口に対して系統別に対応するように形成されており、
前記リング状部材内には、前記噴出口から前記環状流路に至る噴出孔が形成されており、
前記噴出孔は、前記回転霧化頭の回転中心軸を含み且つ前記噴出口を横切る仮想面に対して斜め方向に直線状に貫通する形態とされていることを特徴とする請求項2記載の回転霧化塗装機。
The coating machine main body has a ring-shaped member having a plurality of spouts opened on the front surface,
A plurality of annular channels concentrically arranged in a radial direction by a circular partition wall in a region rearward of the jet outlet in the ring-shaped member are systematic with respect to the plurality of jet outlets. It is formed to correspond separately,
In the ring-shaped member, a jet hole extending from the jet port to the annular flow path is formed,
The said ejection hole is made into the form penetrated linearly in the diagonal direction with respect to the virtual surface which includes the rotation center axis | shaft of the said rotary atomization head, and crosses the said ejection port. Rotary atomizing coating machine.
JP2008144138A 2008-06-02 2008-06-02 Rotary atomizer Expired - Fee Related JP5361251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144138A JP5361251B2 (en) 2008-06-02 2008-06-02 Rotary atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144138A JP5361251B2 (en) 2008-06-02 2008-06-02 Rotary atomizer

Publications (2)

Publication Number Publication Date
JP2009285642A true JP2009285642A (en) 2009-12-10
JP5361251B2 JP5361251B2 (en) 2013-12-04

Family

ID=41455389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144138A Expired - Fee Related JP5361251B2 (en) 2008-06-02 2008-06-02 Rotary atomizer

Country Status (1)

Country Link
JP (1) JP5361251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188651A (en) * 2012-03-12 2013-09-26 Ransburg Industry Kk Rotary atomization type electrostatic coating machine and head member therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724367A (en) * 1993-07-12 1995-01-27 Toyota Motor Corp Method and apparatus for rotary atomization static coating application
JPH0899052A (en) * 1994-09-29 1996-04-16 Abb Ransburg Kk Rotary atomizing head-type coating apparatus
JPH08196947A (en) * 1995-01-31 1996-08-06 Mazda Motor Corp Rotary atomization type coating apparatus and method
JPH0985134A (en) * 1995-09-27 1997-03-31 Nissan Motor Co Ltd Rotary atomizing electrostatic coating method and device therefor
JPH0994488A (en) * 1995-07-27 1997-04-08 Mazda Motor Corp Bell type coating device
JP2008093521A (en) * 2006-10-06 2008-04-24 Ransburg Ind Kk Rotary electrostatic coating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724367A (en) * 1993-07-12 1995-01-27 Toyota Motor Corp Method and apparatus for rotary atomization static coating application
JPH0899052A (en) * 1994-09-29 1996-04-16 Abb Ransburg Kk Rotary atomizing head-type coating apparatus
JPH08196947A (en) * 1995-01-31 1996-08-06 Mazda Motor Corp Rotary atomization type coating apparatus and method
JPH0994488A (en) * 1995-07-27 1997-04-08 Mazda Motor Corp Bell type coating device
JPH0985134A (en) * 1995-09-27 1997-03-31 Nissan Motor Co Ltd Rotary atomizing electrostatic coating method and device therefor
JP2008093521A (en) * 2006-10-06 2008-04-24 Ransburg Ind Kk Rotary electrostatic coating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188651A (en) * 2012-03-12 2013-09-26 Ransburg Industry Kk Rotary atomization type electrostatic coating machine and head member therefor

Also Published As

Publication number Publication date
JP5361251B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
RU2502566C2 (en) Rotary sprayer and method of spraying therewith
JP6908215B2 (en) Pressurized air assisted full cone spray nozzle assembly
US8794177B2 (en) Coating method and coating apparatus
KR101721118B1 (en) Projector and member for spraying a coating material, and spraying method using such a sprayer
JP6270896B2 (en) COATING NOZZLE, COATING DEVICE, AND COATING METHOD USING THEM
JP5865406B2 (en) Rotating sprayer for spraying coating material and apparatus comprising the sprayer
WO2012033155A1 (en) Rotary atomizing painting device
JPH0884941A (en) Rotary atomization electrostatic coating and device thereof
JP5698143B2 (en) Coating material sprayer
ES2584238T3 (en) Procedure and sprayer for serial coating of parts
JP5361251B2 (en) Rotary atomizer
JP5336763B2 (en) Spray gun for internal coating.
TWI765920B (en) Showerhead and showerhead engine for rotating spray
JP4621085B2 (en) Painting machine
JP5149566B2 (en) Painting gun
JP5684672B2 (en) Coating method and coating apparatus
KR20220161196A (en) Rotory bell atomizer shaping air configuration and air cap apparatus
JP5342600B2 (en) Rotary atomization coating equipment
JP7188845B2 (en) Bell type coating equipment
JP2005103367A (en) Spraying nozzle
CN112892901A (en) Cluster head nozzle for spraying a fluid, arrangement having cluster head nozzles, and method for producing a cluster head nozzle
JP5191239B2 (en) Spraying equipment
JP2020081921A (en) Bell type coating device
JP4729183B2 (en) Painting gun
JP2011230013A (en) Rotary atomizing coater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R150 Certificate of patent or registration of utility model

Ref document number: 5361251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees