JP2009284570A - Compact wind power generation charging device - Google Patents

Compact wind power generation charging device Download PDF

Info

Publication number
JP2009284570A
JP2009284570A JP2008131125A JP2008131125A JP2009284570A JP 2009284570 A JP2009284570 A JP 2009284570A JP 2008131125 A JP2008131125 A JP 2008131125A JP 2008131125 A JP2008131125 A JP 2008131125A JP 2009284570 A JP2009284570 A JP 2009284570A
Authority
JP
Japan
Prior art keywords
output
power
wind power
voltage
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008131125A
Other languages
Japanese (ja)
Inventor
Manabu Tsutsumi
学 堤
Akikuni Kato
彰訓 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Electric Inc
Original Assignee
Kawamura Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Electric Inc filed Critical Kawamura Electric Inc
Priority to JP2008131125A priority Critical patent/JP2009284570A/en
Publication of JP2009284570A publication Critical patent/JP2009284570A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the efficiency of energy conversion from wind power to electric power. <P>SOLUTION: The system 1a is constituted of: a wind turbine generator 2 of a rated output voltage 24 V which generates three-phase AC power by using a rotor which rotates by receiving wind power under each wind speed, and is constituted so as to be connectable to a 24 V battery via a smoothing circuit; a charging device 4a which charges the generated power of the wind turbine generator 2; and a load 8. The charging device 4a is constituted of: a chopper circuit 11a which increases and decreases a reactor current I2 of a reactor L fed from the wind turbine generator 2 by using a switching element Q which performs switching operation by a PWM drive signal; a reactor current control means 13a which controls the reactor current I2 so as to be increased and decreased by generating the PWM derive signal G; and the battery 21a of the rated charging voltage 24 V which charges the output power of the wind turbine generator 2 via the chopper circuit 11a. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、小型風力発電機で生成された発電電力を充電する小型風力発電充電装置に関し、特に風速変化に高速に追随できるものに関する。   The present invention relates to a small wind power charging device that charges generated power generated by a small wind power generator, and more particularly to a device capable of following a change in wind speed at high speed.

小型風力発電システムにおいて、風力発電機出力は常に変動し不安定であるため、風力発電電力を一旦バッテリに充電し、このバッテリから安定した電力を負荷に供給するようにしている。そして、充電方法は、特許文献1で開示されているように、風力発電機出力を整流後直接バッテリに接続する方法が一般的であった。
この充電方法には、出力電圧がバッテリで固定されるため(ある風速における動作点=回転数は、出力電圧がバッテリ電圧と等しくなる一点のみとなる)、風力発電機の最大電力点からずれた動作点での運転が多くなり、風力エネルギを電気エネルギに変換する効率が低いという問題があった。
また、太陽光発電システムでは、エネルギー変換効率を高めるため最大電力点追随機能を付加することが一般的であるが、小型風力発電の充電装置に最大電力点追随機能を付加した技術の開示例は極めて少なく、完成された技術に至っていなかった。
In a small wind power generation system, since the output of the wind power generator is constantly fluctuating and unstable, the wind power is temporarily charged into a battery, and stable power is supplied from the battery to the load. And as the charging method was disclosed by patent document 1, the method of connecting a wind power generator output to a battery directly after rectification was common.
In this charging method, the output voltage is fixed by the battery (the operating point at a certain wind speed = the number of revolutions is only one point at which the output voltage becomes equal to the battery voltage), and thus deviates from the maximum power point of the wind power generator. There was a problem that the operation at the operating point increased and the efficiency of converting wind energy into electric energy was low.
In addition, in a photovoltaic power generation system, it is common to add a maximum power point tracking function in order to increase energy conversion efficiency. However, a disclosure example of a technology that adds a maximum power point tracking function to a charging device for small wind power generation is as follows. There were very few, and it did not reach the completed technology.

例えば、太陽光発電システムの最大電力点追随制御で一般に採用されている山登り法を風力発電に適用すると、次のような制御になる。図4(a)、(b)の風力発電機の出力特性図において、最大電力点より高回転側では電圧減のとき電力増、電圧増のとき電力減となり、電圧と電力の増減傾向は逆になる。最大電力点より低回転側では電圧増のとき電力増、電圧減のとき電力減となり、電圧と電力の増減傾向は同じになる。なお、一定風速下では電圧と電流の増減傾向は常に逆相になる。このため、電圧と電力の増減傾向を一定の周期で調べることにより、現在の動作点が最大電力点より高回転側にあるか低回転側にあるかを判別でき、動作点が高回転側なら次の周期の間は電流を増加して、また、動作点が低回転側なら次の周期の間は電流を減少して、動作点を常に最大電力点に近づけるようにする。   For example, when the hill-climbing method generally employed in the maximum power point tracking control of the solar power generation system is applied to wind power generation, the following control is performed. In the output characteristic diagrams of the wind power generators in FIGS. 4 (a) and 4 (b), on the higher rotation side than the maximum power point, the power increases when the voltage decreases, and the power decreases when the voltage increases. become. On the low rotation side from the maximum power point, when the voltage increases, the power increases, and when the voltage decreases, the power decreases. Note that the increasing and decreasing trends of voltage and current are always in reverse phase under a constant wind speed. For this reason, it is possible to determine whether the current operating point is on the high rotation side or the low rotation side with respect to the maximum power point by examining the increase / decrease tendency of the voltage and power at regular intervals. The current is increased during the next period, and if the operating point is on the low rotation side, the current is decreased during the next period so that the operating point is always close to the maximum power point.

図5(a)、(b)に示す小型風力発電充電装置44では、降圧チョッパ回路51(又は昇圧チョッパ)のリアクトル電流値をリアクトル電流制御手段53で制御(=調整)することにより、最大電力点追随機能を付加することができるが、上記の山登り法を適用する場合、電圧と電力の増減判断を確実に行うため、判別周期を比較的長くしなければならなかった(例えば50ms程度)。また、電流変化速度を早くし過ぎると動作が不安定になるため、電流がゆっくり変化するよう制御しなければならなかった。   In the small wind power generator charging device 44 shown in FIGS. 5A and 5B, the reactor current value of the step-down chopper circuit 51 (or step-up chopper) is controlled (= adjusted) by the reactor current control means 53, so that the maximum power Although a point following function can be added, when the above-described hill-climbing method is applied, the determination cycle has to be made relatively long (for example, about 50 ms) in order to surely determine whether the voltage and power increase or decrease. Further, since the operation becomes unstable if the current change rate is made too fast, it has been necessary to control the current to change slowly.

特開2000−116007号公報JP 2000-116007 A

この降圧チョッパ方式の場合、二次電力が最大となるように二次電流I2(リアクトル電流)を制御して最大電力点追随制御を行う(二次電圧V2=バッテリ電圧=一定のため二次電力P2を制御していると言うこともできる)。この制御過程において、二次電流I2を増加して高回転側から最大電力点に向かって動作点を移動していき最大電力点に至った後、次の判断タイミングまでの期間、電流指令値がなお大きくなった場合、現在の風況における最大一次電力(例えば、最大電力点がV1=48V、I1=1A、P1=48W)に対し制御装置が要求する二次電力の方がわずかに大きくなったことになる(例えば、バッテリ電圧24V、指令電流I2=2.01A、要求二次電力P2=48.24W)。この時、リアクトル電流制御手段53はスイッチング素子Qの駆動信号のデューティをわずかに大きくして、二次電流指令値mに等しい二次電流I2を流す。このため、一次電流I1が増加し、一次電圧V1及び一次電力P1が低下して、動作点が低回転側に少し移動する。一次電力P1が低下するが、二次電流指令値mは同一周期の間は微増し続けるので、デューティが更に大きくなるというサイクルが繰り返されて、動作点が低回転側に一気に移動する現象が発生する場合があった。   In the case of this step-down chopper method, the secondary current I2 (reactor current) is controlled so as to maximize the secondary power and the maximum power point tracking control is performed (secondary power because secondary voltage V2 = battery voltage = constant). It can also be said that P2 is controlled). In this control process, the secondary current I2 is increased, the operating point is moved from the high rotation side toward the maximum power point, and after reaching the maximum power point, the current command value is set for the period until the next determination timing. If it becomes larger, the secondary power required by the control device becomes slightly larger than the maximum primary power in the current wind conditions (for example, the maximum power point is V1 = 48V, I1 = 1A, P1 = 48W). (For example, battery voltage 24V, command current I2 = 2.01 A, required secondary power P2 = 48.24 W). At this time, the reactor current control means 53 slightly increases the duty of the drive signal of the switching element Q, and flows the secondary current I2 equal to the secondary current command value m. For this reason, the primary current I1 increases, the primary voltage V1 and the primary power P1 decrease, and the operating point moves slightly to the low rotation side. Although the primary power P1 decreases, the secondary current command value m continues to increase slightly during the same period, so that a cycle in which the duty is further increased is repeated, causing a phenomenon in which the operating point moves to the low speed side at once. There was a case.

このサイクル中に(電力増、電圧減なので山登り法による)二次電流指令値mが減少に転じても、その変化量が小さいためとめることができなかった。最後に、一次側電圧V1がバッテリ電圧程度まで低下すると、一次側電圧V1はバッテリ電圧でクランプされて一定電圧になって制御不能となり、風力変化等で制御が回復するまでの間この状態が継続した。この状態でもバッテリへの充電は継続されるが、その電力が最大電力に対し相当低くなる風速の場合には、その間エネルギ変換効率が低下するという問題があった。   Even if the secondary current command value m started to decrease during this cycle (by the hill-climbing method because of power increase and voltage decrease), it could not be stopped because the amount of change was small. Finally, when the primary-side voltage V1 drops to about the battery voltage, the primary-side voltage V1 is clamped by the battery voltage and becomes a constant voltage and becomes uncontrollable, and this state continues until the control is restored due to changes in wind power, etc. did. Even in this state, charging of the battery is continued. However, in the case of a wind speed at which the power is considerably lower than the maximum power, there is a problem that the energy conversion efficiency decreases during that time.

また、風力が急に強くなったとき、電流の変化がゆっくりであるため、発電機のパワーアップに応じて電圧が急上昇し(電流及び電力は小さく変化)、動作点が最大電力点から大きくずれた高回転側になる現象が発生し、このことによってもエネルギ変換効率が低下するという問題があった。なお、風力が急に弱くなる場合は、電圧低下により電力も低下し、山登り法による電流指令が減となるので、良好な最大電力点追随制御が実現できた。   In addition, when the wind power suddenly increases, the current changes slowly, so that the voltage suddenly rises as the generator powers up (current and power change slightly), and the operating point deviates significantly from the maximum power point. In addition, there is a problem that the energy conversion efficiency is lowered due to the phenomenon that the high rotation side occurs. When the wind power suddenly weakened, the power decreased due to the voltage drop, and the current command by the hill-climbing method was reduced, so that it was possible to realize good maximum power point tracking control.

一方、昇圧チョッパ方式の場合は、一次電力(発電機出力電力)P1が最大となるよう一次電流(リアクトル電流)I1を直接制御するため、降圧チョッパ方式のような一次電流I1急増、一次電圧V1急減は発生しない。しかし、風力が急に強くなったとき、降圧チョッパ方式と同様、電圧が急上昇する現象が発生した(この間電流及び電圧の変化は小)。そして、入力電圧V1がバッテリ電圧以上になると、入力電圧V1=バッテリ電圧(一定)となって制御不能となり、風力変化等で制御が回復するまでの間この状態が継続した。この状態でもバッテリへの充電は継続されるが、その電力が最大電力に対し相当低くなる風速の場合には、エネルギ変換効率(充電効率)が低下するという問題があった。   On the other hand, in the case of the step-up chopper method, the primary current (reactor current) I1 is directly controlled so that the primary power (generator output power) P1 is maximized, so that the primary current I1 increases rapidly and the primary voltage V1 as in the step-down chopper method. There is no sudden decline. However, when the wind power suddenly increased, a phenomenon in which the voltage suddenly increased occurred as in the step-down chopper method (current and voltage changes were small during this time). When the input voltage V1 becomes equal to or higher than the battery voltage, the input voltage V1 = battery voltage (constant) and the control becomes impossible, and this state continues until the control recovers due to a change in wind force or the like. Even in this state, charging of the battery is continued, but there is a problem in that the energy conversion efficiency (charging efficiency) is reduced in the case of a wind speed whose power is considerably lower than the maximum power.

そこで、本発明では上記課題を鑑み、風力から電力へのエネルギ変換効率を向上できる小型風力発電充電装置の提供を課題とする。   In view of the above problems, an object of the present invention is to provide a small wind power charging device that can improve the energy conversion efficiency from wind power to electric power.

上記課題を解決するため、請求項1の発明に係る小型風力発電充電装置は、所定のPWM駆動信号によりスイッチング動作するスイッチング素子によって、小型風力発電機から供給されたリアクトルのリアクトル電流を増減させるチョッパ回路と、前記チョッパ回路を介して前記小型風力発電機の出力電力を充電する蓄電手段と、前記PWM駆動信号を生成して前記リアクトル電流を増減制御するリアクトル電流制御手段と、を備える小型風力発電充電装置であって、前記リアクトル電流制御手段が、各風速下における前記小型風力発電機の出力電力、及びロータの回転数の関係を予め測定して得た出力特性から、山登り法に基づき所定の周期毎に前記出力電力を最大電力点に近づけるための最大電力点追随制御信号を生成する最大電力点追随制御信号生成手段と、検出した前記小型風力発電機の出力電圧に比例する比例成分信号を前記最大電力点追随制御信号に加算して、前記リアクトル電流の電流指令値を生成するリアクトル電流指令値生成手段と、生成した前記リアクトル電流指令値と検出した前記リアクトル電流に基づき前記PWM駆動信号を生成する駆動信号生成手段と、を備えて構成される。   In order to solve the above-mentioned problem, a small wind power charging apparatus according to the invention of claim 1 is a chopper that increases or decreases the reactor current of a reactor supplied from a small wind power generator by a switching element that performs a switching operation by a predetermined PWM drive signal. A small wind power generator comprising: a circuit; power storage means for charging the output power of the small wind power generator via the chopper circuit; and a reactor current control means for generating the PWM drive signal to control the reactor current to be increased or decreased A charging device, wherein the reactor current control means determines a predetermined amount based on a hill-climbing method from output characteristics obtained by measuring in advance the relationship between the output power of the small wind power generator and the rotational speed of the rotor under each wind speed. Maximum power point tracking for generating a maximum power point tracking control signal for bringing the output power close to the maximum power point for each period. Reactor current command value generation for generating a current command value of the reactor current by adding a control signal generating means and a proportional component signal proportional to the detected output voltage of the small wind power generator to the maximum power point tracking control signal And a drive signal generating means for generating the PWM drive signal based on the generated reactor current command value and the detected reactor current.

請求項2の発明に係る小型風力発電充電装置は、前記最大電力点追随制御信号生成手段が、検出した前記小型風力発電機の出力電圧およびリアクトル電流に対して、両方の値の増減傾向を前記周期毎に判断する増減傾向判断手段と、前記増減傾向判断手段によって両方の値が共に同じ増減傾向であると判断された場合、負の基準値を出力する一方、異なる増減傾向であると判断された場合、正の基準値を出力するように切り替える基準値出力切替手段と、前記基準値出力切替手段から出力された負または正の基準値を前記周期で積分して前記最大電力点追随制御信号として出力する基準値積分手段と、から構成される。   In the small wind power generator charging device according to the invention of claim 2, the maximum power point tracking control signal generating means shows the increasing / decreasing tendency of both values with respect to the detected output voltage and reactor current of the small wind generator. When both the values are determined to be the same increase / decrease by the increase / decrease trend determination means that is determined for each cycle, the negative reference value is output, but it is determined that the values are different. The reference value output switching means for switching so as to output a positive reference value, and the maximum power point tracking control signal by integrating the negative or positive reference value output from the reference value output switching means in the cycle. And a reference value integrating means for outputting as follows.

請求項3の発明に係る小型風力発電充電装置は、前記チョッパ回路が、降圧または昇圧チョッパ回路のうち少なくとも昇圧チョッパ回路を有し、前記最大電力点追随制御信号生成手段が、前記増減傾向判断手段によって少なくとも前記出力電圧が増加傾向であると判断された場合、前記出力電圧が予め設定した第1の設定電圧まで上昇した時、前記小型風力発電機の出力電力が予め設定した第1の設定電力以下であれば、前記基準値出力切替手段から出力された前記正の基準値を所定倍して前記基準値積分手段に出力する一方、前記出力電圧が前記第1の設定電圧から予め設定した第2の設定電圧まで低下した時、前記基準値出力切替手段から出力された前記負または正の基準値を所定倍せずに前記基準値積分手段に出力するように切り替える基準値所定倍切替手段を備えて構成される。   According to a third aspect of the invention, the small-sized wind power charging apparatus includes a step-up or step-up chopper circuit, and the maximum power point tracking control signal generation unit includes the increase / decrease tendency determination unit. When at least the output voltage is determined to increase, when the output voltage rises to a preset first set voltage, the output power of the small wind power generator is set to a preset first set power. If below, the positive reference value output from the reference value output switching means is multiplied by a predetermined value and output to the reference value integrating means, while the output voltage is set in advance from the first set voltage. When the voltage drops to a set voltage of 2, the negative or positive reference value output from the reference value output switching means is switched to be output to the reference value integrating means without being multiplied by a predetermined value. Configured with a reference value predetermined multiple switching means.

請求項4の発明に係る小型風力発電充電装置は、前記駆動信号生成手段が、前記出力電圧が前記第1の設定電圧まで上昇した時、前記小型風力発電機の出力電力が前記第1の設定電力以上であれば、第2の設定電力以下になるまで前記スイッチング素子をオフするように構成される。   According to a fourth aspect of the present invention, there is provided a small wind power charging apparatus in which when the drive signal generating means increases the output voltage to the first set voltage, the output power of the small wind power generator is the first set. If the power is equal to or higher than the power, the switching element is turned off until the power becomes equal to or lower than the second set power.

請求項5の発明に係る小型風力発電充電装置は、前記蓄電手段の定格充電電圧が、前記小型風力発電機の定格出力電圧よりも大きくなるように構成される。   The small wind power charging device according to the invention of claim 5 is configured such that a rated charging voltage of the power storage means is larger than a rated output voltage of the small wind power generator.

請求項1、2の発明によれば、風力発電機の出力電圧である一次電圧成分を制御量に加えたので、チョッパ回路における、風速増加時の電圧の急上昇を制御でき、風速急上昇、急降下時の制御応答性を高めることができる。また、降圧チョッパ方式における風速一定時の電圧の急低下を防止できる。結果、制御安定性の高い小型風力発電充電装置を提供でき、小型風力発電システムに用いれば、風力から電力へのエネルギ変換効率を向上できる。   According to the first and second aspects of the invention, since the primary voltage component, which is the output voltage of the wind power generator, is added to the control amount, it is possible to control the sudden rise in voltage when the wind speed increases in the chopper circuit, and when the wind speed suddenly rises and falls rapidly The control responsiveness can be improved. Further, it is possible to prevent a sudden drop in voltage when the wind speed is constant in the step-down chopper method. As a result, a small wind power charging device with high control stability can be provided, and if used in a small wind power generation system, the energy conversion efficiency from wind power to electric power can be improved.

請求項3、4の発明によれば、前記基準値出力切替手段から出力された前記負または正の基準値を所定倍するかまたはせずに前記基準値積分手段に出力するように切り替える基準値所定倍切替手段を備えたので、所定電力範囲外での電圧クランプ現象の発生を防止できる。特に、請求項4の発明によれば、スイッチング素子のオンオフ動作に伴う損失を無くすことができる。   According to the third and fourth aspects of the present invention, the reference value that is switched so that the negative or positive reference value output from the reference value output switching means is output to the reference value integrating means without being multiplied by a predetermined value. Since the predetermined multiple switching means is provided, it is possible to prevent the occurrence of a voltage clamping phenomenon outside the predetermined power range. In particular, according to the fourth aspect of the present invention, it is possible to eliminate the loss associated with the on / off operation of the switching element.

請求項5の発明によれば、電力動作点を強風時の最大電力点に近づけることができ、蓄電手段の充電効率を向上できる。   According to the fifth aspect of the present invention, the power operating point can be brought close to the maximum power point during strong wind, and the charging efficiency of the power storage means can be improved.

以下、本発明を具体化した実施の形態を、図面に基づいて詳細に説明する。
図1(a)、(b)は、本発明に係る小型風力発電充電装置の一実施形態を示す風力発電システム1aの回路構成図である。本システム1aは、各風速下における風力を受けて回転するロータによって三相交流電力を発電し、平滑回路を介して、24Vバッテリ直結可能に構成された定格出力電圧24Vの小型風力発電機(以下、風力発電機とする)2と、風力発電機2の発電電力を充電する小型風力発電充電装置(以下、充電装置とする)4aと、負荷8とから構成されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described in detail with reference to the drawings.
FIGS. 1A and 1B are circuit configuration diagrams of a wind power generation system 1a showing an embodiment of a small wind power charging apparatus according to the present invention. The system 1a generates a three-phase AC power by a rotor that rotates by receiving wind power at each wind speed, and is a small wind power generator (hereinafter referred to as a 24V rated output voltage) configured to be directly connected to a 24V battery via a smoothing circuit. 2), a small wind power charging device (hereinafter referred to as a charging device) 4a for charging the power generated by the wind power generator 2, and a load 8.

充電装置4aは、所定のPWM駆動信号によりスイッチング動作するスイッチング素子Qによって、風力発電機2から供給されたリアクトルLのリアクトル電流(二次電流)I2を増減させるチョッパ回路11aと、チョッパ回路11aに入力されるPWM駆動信号Gを生成してリアクトル電流I2を増減制御するリアクトル電流制御手段13aと、チョッパ回路11aを介して風力発電機2の出力電力を充電する蓄電手段である定格充電電圧24Vのバッテリ21aと、を備えて構成されている。   The charging device 4a includes a chopper circuit 11a that increases / decreases a reactor current (secondary current) I2 of the reactor L supplied from the wind power generator 2 by a switching element Q that performs a switching operation according to a predetermined PWM drive signal, and a chopper circuit 11a. Reactor current control means 13a for generating an input PWM drive signal G to increase / decrease the reactor current I2 and a rated charge voltage 24V, which is a power storage means for charging the output power of the wind power generator 2 via the chopper circuit 11a. And a battery 21a.

チョッパ回路11aは、風力発電機2の正極出力段にスイッチング素子QとしてのMOSFETとリアクトルLとを直列に接続し、スイッチング素子Qの出力側をダイオードDで接地して構成される降圧チョッパ回路が用いられている。
ここで、61は風力発電機2の出力電圧(一次電圧)V1を検出する電圧センサ、62はリアクトルLのリアクトル電流(二次電流)I2を検出する電流センサである。
The chopper circuit 11a is a step-down chopper circuit configured by connecting a MOSFET as a switching element Q and a reactor L in series to the positive output stage of the wind power generator 2 and grounding the output side of the switching element Q with a diode D. It is used.
Here, 61 is a voltage sensor for detecting the output voltage (primary voltage) V1 of the wind power generator 2, and 62 is a current sensor for detecting the reactor current (secondary current) I2 of the reactor L.

図1(b)に示すように、リアクトル電流制御手段13aは、各風速下における風力発電機2の出力電力、出力電圧、出力電流及びロータ(風車)の回転数の関係を予め測定して得た出力特性(図4(a)、(b)参照)から、山登り法に基づき所定の周期毎に風力発電機2の出力電力を最大電力点に近づけるための最大電力点追随制御信号mを生成する最大電力点追随制御信号生成手段15aと、検出した風力発電機2の出力電圧に比例する比例成分信号vを最大電力点追随制御信号mに加算して、リアクトル電流のリアクトル電流指令値iを生成するリアクトル電流指令値生成手段17と、生成したリアクトル電流指令値iと検出したリアクトル電流I2に基づきチョッパ回路のPWM駆動信号Gを生成する駆動信号生成手段19と、を備えて構成されている。   As shown in FIG. 1 (b), the reactor current control means 13a is obtained by measuring in advance the relationship between the output power, output voltage, output current of the wind power generator 2 and the rotation speed of the rotor (wind turbine) at each wind speed. Based on the output characteristics (see FIGS. 4A and 4B), a maximum power point following control signal m for generating the output power of the wind power generator 2 close to the maximum power point is generated at predetermined intervals based on the hill-climbing method. And the proportional component signal v proportional to the detected output voltage of the wind power generator 2 is added to the maximum power point tracking control signal m, and the reactor current command value i of the reactor current is obtained. Reactor current command value generation means 17 to be generated, and drive signal generation means 19 to generate a PWM drive signal G of the chopper circuit based on the generated reactor current command value i and the detected reactor current I2. Ete is configured.

最大電力点追随制御信号生成手段15aは、電圧センサ61および電流センサ62で検出した風力発電機2の出力電圧V1およびリアクトル電流I2に対して、両方の値の増減傾向を所定の周期毎に判断する増減傾向判断手段23と、増減傾向判断手段23によって両方の値が共に同じ増減傾向であると判断された場合、負の基準値(=−b)を出力する一方、異なる増減傾向であると判断された場合、正の基準値(=+a)を出力するように切り替える基準値出力切替手段24と、基準値出力切替手段24から出力された負または正の基準値を積分して最大電力点追随制御信号mとして出力する基準値積分手段26とから構成されている。   The maximum power point tracking control signal generation means 15a determines the tendency of increase / decrease of both values for each predetermined period with respect to the output voltage V1 and the reactor current I2 of the wind power generator 2 detected by the voltage sensor 61 and the current sensor 62. When both the increase / decrease tendency determination means 23 and the increase / decrease tendency determination means 23 determine that both values have the same increase / decrease trend, a negative reference value (= −b) is output, while the increase / decrease trend is different. If determined, the reference value output switching means 24 for switching to output a positive reference value (= + a) and the negative or positive reference value output from the reference value output switching means 24 are integrated to obtain the maximum power point. Reference value integration means 26 that outputs as a follow-up control signal m is comprised.

リアクトル電流指令値生成手段17は、電圧センサ61で検出した風力発電機2の出力電圧V1に比例する比例成分信号vを生成するとともに、その生成された比例成分信号vと前段から出力された最大電力点追随制御信号mとを加算演算して、演算結果をリアクトル電流I2のリアクトル電流指令値iとして出力する加算手段28を備えて構成されている。   The reactor current command value generating means 17 generates a proportional component signal v proportional to the output voltage V1 of the wind power generator 2 detected by the voltage sensor 61, and the generated proportional component signal v and the maximum output from the preceding stage. The power point tracking control signal m is added and calculated, and adding means 28 is provided for outputting the calculation result as a reactor current command value i of the reactor current I2.

駆動信号生成手段19は、加算手段28から出力されたリアクトル電流指令値iとリアクトル電流I2との差分演算を行う加減算手段31と、加減算手段31の演算結果に対して比例及び積分制御についての演算を行う比例積分手段32と、比例積分手段32の演算結果と予め設定した周波数を有する三角波とを比較してスイッチング素子Qに入力される所定の周波数及びパルス幅のPWM駆動信号Gとして出力するコンパレータ33とから構成されている。   The drive signal generating means 19 includes an addition / subtraction means 31 for calculating a difference between the reactor current command value i output from the addition means 28 and the reactor current I2, and a calculation for proportional and integral control with respect to the calculation result of the addition / subtraction means 31. And a comparator that compares the operation result of the proportional integration means 32 with a triangular wave having a preset frequency and outputs it as a PWM drive signal G having a predetermined frequency and pulse width that is input to the switching element Q. 33.

次に、上記構成のシステム1aにおいて、24Vバッテリ直結用の風力発電機2の出力電力を定格充電電圧24Vのバッテリ21aに充電する際の充電装置4aによる充電動作を説明する。   Next, the charging operation by the charging device 4a when charging the output power of the wind power generator 2 directly connected to the 24V battery to the battery 21a having the rated charging voltage 24V in the system 1a having the above configuration will be described.

最大電力点追随制御信号生成手段15aにおいて、増減傾向判断手段23では、センサ61,62で検知した二次電流I2(二次電力P2の代用)と一次電圧V1について、両方の値の増減傾向を50msの一定周期で調べている。また基準値出力切替手段24では、増減傾向判断手段23によって両方の値の増減傾向が同じであると判断された場合、負の基準値を出力する一方、増減傾向が逆である(異なる)と判断された場合、正の基準値を出力するように切り替える。そして基準値積分手段26では、基準値出力切替手段24の出力を次の50ms間入力して山登り法に基づく最大電力点追随制御信号mを得ている。この時、mは時間軸に対して直線的に変化する信号波形となる。   In the maximum power point tracking control signal generation means 15a, the increase / decrease tendency determination means 23 shows the increase / decrease tendency of both values for the secondary current I2 (substitute for the secondary power P2) detected by the sensors 61 and 62 and the primary voltage V1. Examined at a fixed period of 50 ms. The reference value output switching means 24 outputs a negative reference value when the increase / decrease tendency determination means 23 determines that the increase / decrease tendency of both values is the same, while the increase / decrease trend is opposite (different). If it is determined, it is switched to output a positive reference value. The reference value integration means 26 obtains the maximum power point tracking control signal m based on the hill-climbing method by inputting the output of the reference value output switching means 24 for the next 50 ms. At this time, m is a signal waveform that changes linearly with respect to the time axis.

リアクトル電流指令値生成手段17の加算手段28では、こうして得られたmに一次電圧V1に比例する比例成分信号vを加算して、リアクトル電流の電流指令値であるリアクトル電流指令値(二次電流指令値)iを得ている。   The adding means 28 of the reactor current command value generating means 17 adds the proportional component signal v proportional to the primary voltage V1 to the m obtained in this way, and the reactor current command value (secondary current) which is the current command value of the reactor current. Command value) i is obtained.

ここで、図2は、風力一定状態で制御実行中のm,v,iの関係を示す関係図である。vはmより時間遅れがあるため、iは直線的には変化しない。mとvは逆相となるが、mの変化幅がvよりも大きくなるようvの割合を設定して、mとiが同相となるようにしている。また、風速変化等によって一次電圧V1が変化したとした場合、vの加算効果により電圧変化を打ち消すようiが変化して制御電流が増減するが、初めの(原因の)一次電圧V1変化量よりも、それを打ち消すための(結果の)電圧変化量の方が大きくなるよう、vの割合を設定している。   Here, FIG. 2 is a relationship diagram showing the relationship between m, v, and i during control execution in a constant wind force state. Since v has a time delay from m, i does not change linearly. Although m and v are in opposite phases, the ratio of v is set so that the change width of m is larger than v so that m and i are in phase. Further, if the primary voltage V1 is changed due to a change in wind speed or the like, i changes so as to cancel the voltage change due to the addition effect of v, and the control current increases or decreases, but from the first (cause) change amount of the primary voltage V1. However, the ratio of v is set so that the voltage change amount (result) for canceling it becomes larger.

次に、駆動信号生成手段19において、加減算手段31でiと二次電流I2を比較して差分演算し、その差を無くすための制御量を比例積分手段32で演算し、その出力と周波数15.6kHzの三角波をコンパレータ33で比較し、スイッチング素子Qのゲートを駆動してリアクトル電流I2を適正値にするためのPWM駆動信号Gを得ている。   Next, in the drive signal generation means 19, the addition / subtraction means 31 compares i with the secondary current I2 and calculates the difference, and the proportional integration means 32 calculates the control amount for eliminating the difference, and the output and frequency 15 .6 kHz triangular wave is compared by the comparator 33, and the PWM drive signal G for driving the gate of the switching element Q to set the reactor current I2 to an appropriate value is obtained.

以上のように充電装置4aを構成したことにより、降圧チョッパ方式のチョッパ回路11aにおいて、一次側電力よりも大きな電力となる二次電流I2が流れ、一次電圧V1が一瞬少しだけ低下した場合でも、次の制御サイクル(制御周期は50μs〜100μs)においてこれが反映され、リアクトル電流指令値iは電圧変化を打ち消すに十分な値に減少し、駆動信号生成手段19が即座に応答して二次電流I2が減少しだすため、電圧の急激な変化が抑制されるので、動作点が低回転側に急激に移動する現象を回避することができる。   By configuring the charging device 4a as described above, in the step-down chopper type chopper circuit 11a, even when the secondary current I2 that is larger than the primary power flows and the primary voltage V1 is slightly decreased, This is reflected in the next control cycle (the control period is 50 μs to 100 μs), the reactor current command value i decreases to a value sufficient to cancel the voltage change, and the drive signal generating means 19 responds immediately and the secondary current I2 Since the voltage starts to decrease, the rapid change of the voltage is suppressed, so that the phenomenon that the operating point rapidly moves to the low rotation side can be avoided.

また、チョッパ回路11aにおいて、風力が急に強くなったとき、一次電圧V1の急変がvの追加効果により抑制されるため、まずリアクトル電流I2を増加して電力が増加する動作が始まり(この間、一次電圧V1は継続低下)、やがて、電圧低下のため電力増加が制限され、ついに電力が減少し始めると、次回の判断周期にこれが検出されてmは減少に転じ、リアクトル電流I2が減少して電力が増加する状態に転じる(この間、一次電圧V1は継続上昇)。やがて、電流減少のため電力増加が制限され、ついに電力が減少し始めると、次回の判断周期にこれが検出されてmは増加に転じ、再びリアクトル電流I2を増加して電力が増加する状態に転じる。この結果、電圧の急上昇を回避しつつ、それぞれの時点での風力発電機2の最大電力点をほぼ追随する動作が実現できる。   Further, in the chopper circuit 11a, when the wind force suddenly becomes strong, the sudden change of the primary voltage V1 is suppressed by the additional effect of v. Therefore, first, the operation of increasing the reactor current I2 and increasing the power starts ( When the primary voltage V1 continues to decrease), the increase in power is limited due to the voltage decrease. When the power finally starts decreasing, this is detected in the next judgment cycle, and m begins to decrease, and the reactor current I2 decreases. The electric power increases (the primary voltage V1 continues to increase during this time). Eventually, the increase in power is limited due to the decrease in current, and when the power finally starts decreasing, this is detected in the next judgment cycle, m starts increasing, and the reactor current I2 is increased again to increase the power. . As a result, it is possible to realize an operation of substantially following the maximum power point of the wind power generator 2 at each time point while avoiding a sudden increase in voltage.

なお、風力が強まった場合、電圧と電流が同時に上昇して電力を増加するのが理想的であるが、上記構成の最大電力点追随制御においては、電圧減で電力増の時に電流増加運転、電圧増で電力増の時に電流減少運転となるので実現できない。ただし、風力変化が激しくて、風力発電機2が急速に高出力状態に移行する場合には、電圧と電流が同時に上昇する動作になるため、理想に近い最大電力点追随運転となる。   Note that when wind power is strengthened, it is ideal that the voltage and current increase at the same time to increase the power, but in the maximum power point tracking control of the above configuration, the current increase operation when the power increases due to the voltage decrease, This is not possible because the current decreases when the voltage increases and the power increases. However, when the wind power changes drastically and the wind power generator 2 rapidly shifts to a high output state, the voltage and current increase at the same time, so the maximum power point tracking operation is close to ideal.

次に本発明の他の実施の形態を説明する。図3は、本発明に係る小型風力発電充電装置の他の実施形態を示す風力発電システムの回路構成図である。本システム1bは、図1のシステム1aと同様に、24Vバッテリ直結用の風力発電機2と、その発電電力を充電する充電装置4bと、負荷8とから構成されている。   Next, another embodiment of the present invention will be described. FIG. 3 is a circuit configuration diagram of a wind power generation system showing another embodiment of the small wind power charging device according to the present invention. Similar to the system 1a of FIG. 1, the system 1b includes a wind power generator 2 for direct connection to a 24V battery, a charging device 4b for charging the generated power, and a load 8.

充電装置4bは、図1の充電装置4aと構成を比較した場合、主に以下の点が異なる。
(1)チョッパ回路11bとして、風力発電機2の正極出力段にリアクトルLとダイオードDとを直列に接続し、リアクトルLの出力側をスイッチング素子QとしてのMOSFETで接地して構成される昇圧チョッパ回路が使用される点。
ここで、チョッパ回路11bは、所定のPWM駆動信号によりスイッチング動作するスイッチング素子Qによって、風力発電機2から供給されたリアクトルLのリアクトル電流I1を増減させるように構成されている。
(2)リアクトル電流制御手段13bとして、最大電力点追随制御信号生成手段15bが、増減傾向判断手段23によって少なくとも出力電圧V1が増加傾向であると判断された場合、出力電圧V1が予め設定した第1の設定電圧まで上昇した時、風力発電機2の出力電力P1が予め設定した第1の設定電力以下であれば、基準値出力切替手段24から出力された正の基準値を所定倍して基準値積分手段26に出力する一方、出力電圧V1が第1の設定電圧から予め設定した第2の設定電圧まで低下した時、基準値出力切替手段24から出力された負または正の基準値を所定倍せずに基準値積分手段26に出力するように切り替える基準値所定倍切替手段25を備える点。
(3)蓄電手段が、風力発電機2の定格出力電圧に対してほぼ2倍の定格充電電圧48Vを備えるバッテリ21bである点。
(4)出力電力P1は、出力電圧V1とリアクトル電流I1とを乗算する乗算手段35と、乗算結果の信号に含まれる所定周波数成分を濾波手段であるローパスフィルタ36とからなる出力電力演算手段37によって演算される点。
When the configuration of the charging device 4b is compared with that of the charging device 4a of FIG. 1, the following points are mainly different.
(1) As a chopper circuit 11b, a step-up chopper configured by connecting a reactor L and a diode D in series to the positive output stage of the wind power generator 2 and grounding the output side of the reactor L with a MOSFET as a switching element Q The point where the circuit is used.
Here, the chopper circuit 11b is configured to increase or decrease the reactor current I1 of the reactor L supplied from the wind power generator 2 by the switching element Q that performs a switching operation by a predetermined PWM drive signal.
(2) As the reactor current control means 13b, when the maximum power point tracking control signal generation means 15b determines that the output voltage V1 is increasing at least by the increase / decrease tendency determination means 23, the output voltage V1 is preset. If the output power P1 of the wind power generator 2 is equal to or lower than the preset first set power when the voltage rises to 1, the positive reference value output from the reference value output switching means 24 is multiplied by a predetermined value. While outputting to the reference value integrating means 26, when the output voltage V1 drops from the first set voltage to the preset second set voltage, the negative or positive reference value output from the reference value output switching means 24 is used. A reference value predetermined multiple switching unit 25 that switches to output to the reference value integrating unit 26 without performing a predetermined multiplication.
(3) The power storage means is a battery 21b having a rated charging voltage 48V that is approximately twice the rated output voltage of the wind power generator 2.
(4) The output power P1 is an output power calculation means 37 comprising a multiplication means 35 for multiplying the output voltage V1 and the reactor current I1, and a low-pass filter 36 which is a filtering means for filtering a predetermined frequency component contained in the multiplication result signal. The point computed by.

充電装置4bの他の構成は、充電装置4aと同様であり、説明を省略する。ここで、63はリアクトルLのリアクトル電流(一次電流)I1を検出する電流センサである。   The other structure of the charging device 4b is the same as that of the charging device 4a, and description thereof is omitted. Here, 63 is a current sensor for detecting the reactor current (primary current) I1 of the reactor L.

以上のように充電装置4bを構成したことにより、昇圧チョッパ方式のチョッパ回路11bにおいても、風力が急に強くなったとき、降圧チョッパ方式と同様の応答となるため、出力電圧V1の急上昇を回避しつつ、それぞれの時点での風力発電機2の最大電力点をほぼ追随する動作が実現できる。   By configuring the charging device 4b as described above, even in the step-up chopper type chopper circuit 11b, when the wind power suddenly becomes strong, the response is the same as that in the step-down chopper type, and therefore, a sudden increase in the output voltage V1 is avoided. However, it is possible to realize an operation that substantially follows the maximum power point of the wind power generator 2 at each time point.

ただし、図1の充電装置4aでは、風力が急に強くなって、二次電流I2増(一次電圧V1低下)と二次電流I2減(一次電圧V1上昇)を繰り返して出力電力を増加する過程で、二次電流I2減(一次電圧V1上昇)モードのときに一次電圧V1がバッテリ21aの定格充電電圧(=24V)以上に上昇してしまい、一次電圧V1がバッテリ21aの定格充電電圧でクランプされる現象が発生する場合があり、一次電圧V1に比例する成分vを加算する改良のみでは、従来技術の問題点を完全に解消することはできなかった。   However, in the charging device 4a of FIG. 1, the wind power suddenly increases and the output power is increased by repeatedly increasing the secondary current I2 (decreasing the primary voltage V1) and decreasing the secondary current I2 (rising the primary voltage V1). Thus, in the secondary current I2 reduction (primary voltage V1 rise) mode, the primary voltage V1 rises above the rated charging voltage (= 24V) of the battery 21a, and the primary voltage V1 is clamped at the rated charging voltage of the battery 21a. The problem of the prior art cannot be completely solved by only adding the component v proportional to the primary voltage V1.

このため、昇圧チョッパ方式のチョッパ回路11bには、基準値所定倍切替手段25を電圧クランプ防止手段として付加し、風力があまり強くなくて発電電力が低い場合には、電圧クランプ現象の発生を回避するようにしている。   For this reason, the reference value predetermined multiple switching means 25 is added as a voltage clamp prevention means to the step-up chopper type chopper circuit 11b to avoid the occurrence of the voltage clamp phenomenon when the wind power is not so strong and the generated power is low. Like to do.

基準値所定倍切替手段25による電圧クランプ回避動作は、以下のように行われる。一次電圧V1が第1の設定電圧(例えば48V)まで上昇したとき、一次電力P1が第1の設定電力(例えば40W)以下であれば、最大電力点追随制御を中止して、基準値積分手段26に正の基準値の数倍の正の基準値(=+A)を入力して、電力点追随制御信号mを急増することにより、一次電流I1を急増して、一次電圧V1を急速低下させ、一次電圧V1が第2の設定電圧(例えば40V)まで低下したとき、通常の最大電力点追随制御に復帰するようにした。   The voltage clamp avoiding operation by the reference value predetermined multiple switching means 25 is performed as follows. When the primary voltage V1 rises to the first set voltage (for example, 48V), if the primary power P1 is equal to or less than the first set power (for example, 40W), the maximum power point tracking control is stopped and the reference value integrating means 26, by inputting a positive reference value (= + A) several times the positive reference value and increasing the power point tracking control signal m rapidly, the primary current I1 is rapidly increased and the primary voltage V1 is rapidly decreased. When the primary voltage V1 drops to the second set voltage (for example, 40V), the normal maximum power point tracking control is restored.

なお、一次電圧V1が第1の設定電圧(=48V)まで上昇したときの一次電力P1が第1の設定電力(=40W)以上であれば、スイッチング素子Qをオフするように、駆動信号生成手段19から出力されるPWM駆動信号を調整(または出力停止)し、風力発電機2をバッテリ21bで直接充電する動作に切り替え、一次電力P1が第2の設定電力(例えば35W)以下になるまで、この状態を維持し、一次電力P1が第2の設定電力(=35W)まで低下したとき、通常の最大電力点追随制御に復帰するようにしている。   If the primary power P1 when the primary voltage V1 rises to the first set voltage (= 48V) is equal to or higher than the first set power (= 40W), the drive signal is generated so that the switching element Q is turned off. The PWM drive signal output from the means 19 is adjusted (or the output is stopped), and the operation is switched to the operation of directly charging the wind power generator 2 with the battery 21b until the primary power P1 becomes equal to or lower than the second set power (for example, 35 W). This state is maintained, and when the primary power P1 decreases to the second set power (= 35 W), the normal maximum power point tracking control is restored.

この動作は、強風時には従来技術のバッテリ直接充電を行うものであるが、定格充電電圧が風力発電機2の定格出力電圧よりも大きい、その2倍の定格充電電圧のバッテリ21bに充電するため、動作点が強風時の最大電力点に近いところになり、スイッチング素子Qの損失がゼロに成る点と合わせ効率のよいエネルギー変換が実現できる。   This operation is to directly charge the battery according to the prior art when the wind is strong. However, since the rated charging voltage is larger than the rated output voltage of the wind power generator 2, the battery 21b having a rated charging voltage twice that of the wind generator 2 is charged. Combined with the point where the operating point is close to the maximum power point during strong wind and the loss of the switching element Q becomes zero, energy conversion with high efficiency can be realized.

この場合の構成によれば、基準値出力切替手段24から出力された負または正の基準値を所定倍するかまたはせずに基準値積分手段26に出力するように切り替える基準値所定倍切替手段25を備えたので、所定電力範囲外での電圧クランプ現象の発生を防止できる。特に、出力電圧V1がバッテリ21bと同じ48Vまで上昇した時、風力発電機2の出力電力P1が40W以上であれば、35W以下になるまでスイッチング素子Qをオフするので、スイッチング素子Qのオンオフ動作に伴う損失を無くすことができる。   According to the configuration in this case, the reference value predetermined multiple switching means for switching so that the negative or positive reference value output from the reference value output switching means 24 is output to the reference value integrating means 26 without being multiplied by a predetermined value. 25, the occurrence of the voltage clamping phenomenon outside the predetermined power range can be prevented. In particular, when the output voltage V1 rises to 48V, which is the same as the battery 21b, if the output power P1 of the wind power generator 2 is 40 W or more, the switching element Q is turned off until it becomes 35 W or less. Loss associated with can be eliminated.

さらに、風力発電機2の定格出力電圧24Vよりも大きく、そのほぼ2倍の定格充電電圧48Vを備えるバッテリ21bを備えたので、電力動作点を強風時の最大電力点に近づけることができ、バッテリ21bの充電効率を向上できる。   Further, since the battery 21b having a rated charging voltage 48V that is larger than the rated output voltage 24V of the wind power generator 2 and almost twice that of the wind power generator 2 is provided, the power operating point can be brought close to the maximum power point in a strong wind. The charging efficiency of 21b can be improved.

尚、本発明は上記実施形態に限定されるものではなく、下記のように、本発明の趣旨を逸脱しない範囲で各部の形状並びに構成を適宜に変更して実施することも可能である。
(1)風力発電機は、定格出力電圧が24V以外の他の電圧のものでもよい。
(2)バッテリの定格充電電圧は、風力発電機の定格出力電圧よりも大きくする場合、2倍に限らず、他の倍数で示される値としてもよい。
(3)リアクトル電流制御手段は、ソフトウェアによって構成するに限らず、全部または一部をハードウェアによって構成しても良い。
(4)フィルタは、ローパスに限らず、ハイパスやバンドパスで構成しても良い。
(5)チョッパ回路は、降圧または昇圧チョッパ回路のうち少なくとも一方を備えれば良く、両回路を設けて構成することもできる。
In addition, this invention is not limited to the said embodiment, As shown below, it is also possible to change suitably the shape and structure of each part in the range which does not deviate from the meaning of this invention.
(1) The wind power generator may have a rated output voltage other than 24V.
(2) When the rated charging voltage of the battery is made larger than the rated output voltage of the wind power generator, it is not limited to twice, and may be a value indicated by other multiples.
(3) The reactor current control means is not limited to software, and may be configured entirely or partially by hardware.
(4) The filter is not limited to a low pass, and may be a high pass or a band pass.
(5) The chopper circuit only needs to include at least one of the step-down or step-up chopper circuit, and can be configured by providing both circuits.

本発明に係る小型風力発電充電装置の一実施形態を示し、(a)は風力発電システムの回路構成図、(b)はリアクトル電流制御手段の回路構成図である。One Embodiment of the small wind power generator charging device which concerns on this invention is shown, (a) is a circuit block diagram of a wind power generation system, (b) is a circuit block diagram of a reactor current control means. 風力一定状態で制御実行中のm,v,iの関係を示す関係図である。。It is a relationship figure which shows the relationship of m, v, i during control execution in a wind force constant state. . 本発明に係る小型風力発電充電装置の他の実施形態を示し、(a)は風力発電システムの回路構成図、(b)はリアクトル電流制御手段の回路構成図、(c)は出力電力演算手段の回路構成図である。2 shows another embodiment of a small wind power charging device according to the present invention, where (a) is a circuit configuration diagram of a wind power generation system, (b) is a circuit configuration diagram of a reactor current control means, and (c) is an output power calculation means. FIG. 各風速下における風力発電機の出力特性を示す、(a)は出力電圧−風車回転数特性図、(b)は出力電圧・電流−風車回転数特性図である。The output characteristics of the wind power generator under each wind speed are shown. (A) is an output voltage-windmill rotational speed characteristic chart, and (b) is an output voltage / current-windmill rotational speed characteristic chart. 従来の小型風力発電充電装置の一実施形態を示し、(a)は風力発電システムの回路構成図、(b)はリアクトル電流制御手段の回路構成図である。One Embodiment of the conventional small wind power generator charging device is shown, (a) is a circuit block diagram of a wind power generation system, (b) is a circuit block diagram of a reactor current control means.

符号の説明Explanation of symbols

1a,1b・・風力発電システム、2・・風力発電機、4a,4b・・充電装置、8・・負荷、11a,11b・・チョッパ回路、13a,13b・・リアクトル電流制御手段、15a,15b・・最大電力点追随制御信号生成手段、17・・リアクトル電流指令値生成手段、19・・駆動信号生成手段、21a,21b・・バッテリ、23・・増減傾向判断手段、24・・基準値出力切替手段、25・・基準値所定倍切替手段、26・・基準値積分手段、28・・加算手段、31・・加減算手段、32・・比例積分手段、33・・コンパレータ、35・・乗算手段、36・・濾波手段、37・・出力電力演算手段、61・・電圧センサ、62,63・・電流センサ、D・・ダイオード、L・・リアクトル、Q・・スイッチング素子。   1a, 1b ... wind power generation system, 2. wind power generator, 4a, 4b ... charging device, 8 ... load, 11a, 11b ... chopper circuit, 13a, 13b ... reactor current control means, 15a, 15b ..Maximum power point tracking control signal generation means, 17 ... Reactor current command value generation means, 19 ... Drive signal generation means, 21a, 21b ... Battery, 23 ... Increase / decrease tendency judgment means, 24 ... Reference value output Switching means 25... Reference value predetermined multiplication switching means 26.. Reference value integration means 28.. Addition means 31.. Addition and subtraction means 32.. Proportional integration means 33 33 Comparator 35. 36 .... Filtering means 37 ... Output power calculation means 61 ... Voltage sensor 62,63 ... Current sensor D ... Diode L ... Reactor Q ... Switching element.

Claims (5)

所定のPWM駆動信号によりスイッチング動作するスイッチング素子によって、小型風力発電機から供給されたリアクトルのリアクトル電流を増減させるチョッパ回路と、前記チョッパ回路を介して前記小型風力発電機の出力電力を充電する蓄電手段と、前記PWM駆動信号を生成して前記リアクトル電流を増減制御するリアクトル電流制御手段と、を備える小型風力発電充電装置であって、
前記リアクトル電流制御手段は、
各風速下における前記小型風力発電機の出力電力、及びロータの回転数の関係を予め測定して得た出力特性から、山登り法に基づき所定の周期毎に前記出力電力を最大電力点に近づけるための最大電力点追随制御信号を生成する最大電力点追随制御信号生成手段と、
検出した前記小型風力発電機の出力電圧に比例する比例成分信号を前記最大電力点追随制御信号に加算して、前記リアクトル電流の電流指令値を生成するリアクトル電流指令値生成手段と、
生成した前記リアクトル電流指令値と検出した前記リアクトル電流に基づき前記PWM駆動信号を生成する駆動信号生成手段と、を備える、
ことを特徴とする小型風力発電充電装置。
A chopper circuit that increases or decreases the reactor current of the reactor supplied from the small wind power generator by a switching element that performs a switching operation according to a predetermined PWM drive signal, and an electric storage that charges the output power of the small wind power generator via the chopper circuit A small wind power charging apparatus comprising: and a reactor current control unit that generates and generates the PWM drive signal to control the reactor current to increase or decrease,
The reactor current control means is
Based on the output characteristics obtained by measuring the output power of the small wind power generator and the rotational speed of the rotor under each wind speed in advance, the output power is brought close to the maximum power point at predetermined intervals based on the hill-climbing method. Maximum power point tracking control signal generating means for generating a maximum power point tracking control signal of
A reactor current command value generating means for generating a current command value of the reactor current by adding a proportional component signal proportional to the detected output voltage of the small wind power generator to the maximum power point tracking control signal;
Drive signal generation means for generating the PWM drive signal based on the generated reactor current command value and the detected reactor current;
A small wind power charging device characterized by that.
前記最大電力点追随制御信号生成手段は、
検出した前記小型風力発電機の出力電圧およびリアクトル電流に対して、両方の値の増減傾向を前記周期毎に判断する増減傾向判断手段と、
前記増減傾向判断手段によって両方の値が共に同じ増減傾向であると判断された場合、負の基準値を出力する一方、異なる増減傾向であると判断された場合、正の基準値を出力するように切り替える基準値出力切替手段と、
前記基準値出力切替手段から出力された負または正の基準値を前記周期で積分して前記最大電力点追随制御信号として出力する基準値積分手段と、からなる、
請求項1に記載の小型風力発電充電装置。
The maximum power point tracking control signal generating means is
With respect to the detected output voltage and reactor current of the small wind power generator, an increase / decrease tendency determination means for determining an increase / decrease tendency of both values for each cycle,
When both of the values are determined to be the same increase / decrease trend by the increase / decrease trend determining means, a negative reference value is output, whereas when it is determined that the values are different increase / decrease trends, a positive reference value is output. Reference value output switching means for switching to,
A reference value integration means for integrating the negative or positive reference value output from the reference value output switching means in the cycle and outputting it as the maximum power point tracking control signal.
The small wind power charging device according to claim 1.
前記チョッパ回路は、降圧または昇圧チョッパ回路のうち少なくとも昇圧チョッパ回路を有し、
前記最大電力点追随制御信号生成手段は、
前記増減傾向判断手段によって少なくとも前記出力電圧が増加傾向であると判断された場合、前記出力電圧が予め設定した第1の設定電圧まで上昇した時、前記小型風力発電機の出力電力が予め設定した第1の設定電力以下であれば、前記基準値出力切替手段から出力された前記正の基準値を所定倍して前記基準値積分手段に出力する一方、
前記出力電圧が前記第1の設定電圧から予め設定した第2の設定電圧まで低下した時、前記基準値出力切替手段から出力された前記負または正の基準値を所定倍せずに前記基準値積分手段に出力するように切り替える基準値所定倍切替手段を備える、
請求項2に記載の小型風力発電充電装置。
The chopper circuit has at least a step-up chopper circuit among step-down or step-up chopper circuits,
The maximum power point tracking control signal generating means is
When the increase / decrease tendency determination means determines that at least the output voltage is increasing, when the output voltage rises to a preset first set voltage, the output power of the small wind power generator is preset. If it is less than or equal to the first set power, the positive reference value output from the reference value output switching means is multiplied by a predetermined value and output to the reference value integrating means,
When the output voltage drops from the first set voltage to a preset second set voltage, the reference value without multiplying the negative or positive reference value output from the reference value output switching means by a predetermined value. A reference value predetermined multiple switching means for switching to output to the integrating means,
The small wind power charging device according to claim 2.
前記駆動信号生成手段は、
前記出力電圧が前記第1の設定電圧まで上昇した時、前記小型風力発電機の出力電力が前記第1の設定電力以上であれば、第2の設定電力以下になるまで前記スイッチング素子をオフする、
請求項3に記載の小型風力発電充電装置。
The drive signal generation means includes
When the output voltage rises to the first set voltage, if the output power of the small wind power generator is equal to or higher than the first set power, the switching element is turned off until it becomes equal to or lower than the second set power. ,
The small wind power charging device according to claim 3.
前記蓄電手段は、
その定格充電電圧が、前記小型風力発電機の定格出力電圧よりも大きい、
請求項1乃至4のいずれかに記載の小型風力発電充電装置。
The power storage means is
The rated charging voltage is larger than the rated output voltage of the small wind power generator,
The small wind power charging device according to any one of claims 1 to 4.
JP2008131125A 2008-05-19 2008-05-19 Compact wind power generation charging device Pending JP2009284570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131125A JP2009284570A (en) 2008-05-19 2008-05-19 Compact wind power generation charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131125A JP2009284570A (en) 2008-05-19 2008-05-19 Compact wind power generation charging device

Publications (1)

Publication Number Publication Date
JP2009284570A true JP2009284570A (en) 2009-12-03

Family

ID=41454430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131125A Pending JP2009284570A (en) 2008-05-19 2008-05-19 Compact wind power generation charging device

Country Status (1)

Country Link
JP (1) JP2009284570A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108333A1 (en) * 2011-02-08 2012-08-16 日本電産株式会社 Wind power generating device
JP2015089235A (en) * 2013-10-30 2015-05-07 株式会社Ihi Power conversion device
JP2016019351A (en) * 2014-07-08 2016-02-01 石川県 Power generation control device, power generation control method, and program
JP6343702B1 (en) * 2017-06-01 2018-06-13 三菱電機エンジニアリング株式会社 Wind power generator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108333A1 (en) * 2011-02-08 2012-08-16 日本電産株式会社 Wind power generating device
CN103370870A (en) * 2011-02-08 2013-10-23 日本电产株式会社 Wind power generating device
CN103370870B (en) * 2011-02-08 2016-03-23 日本电产株式会社 Wind power generation plant
JP2015089235A (en) * 2013-10-30 2015-05-07 株式会社Ihi Power conversion device
JP2016019351A (en) * 2014-07-08 2016-02-01 石川県 Power generation control device, power generation control method, and program
JP6343702B1 (en) * 2017-06-01 2018-06-13 三菱電機エンジニアリング株式会社 Wind power generator
JP2018207628A (en) * 2017-06-01 2018-12-27 三菱電機エンジニアリング株式会社 Wind power generator

Similar Documents

Publication Publication Date Title
JP5267589B2 (en) Power converter
JP5939096B2 (en) Power converter
JP2005235082A (en) Method for tracking and controlling maximum power, and power converting device
TWI446138B (en) Wind power excitation synchronous generator system and control method thereof
JP5636412B2 (en) Wind power generation system and excitation synchronous generator control method thereof
JP5454011B2 (en) Uninterruptible power supply system
WO2012114467A1 (en) Power conversion device
JP5716631B2 (en) Power converter
JP2009284570A (en) Compact wind power generation charging device
JP4755504B2 (en) Power converter
JPWO2003065560A1 (en) Power supply device and method for creating switching signal for on / off control of switching element of converter section constituting power supply device
JPH11262186A (en) Controller of power storage system
JP5742591B2 (en) Solar power generation equipment
JP5331399B2 (en) Power supply
JP2003333752A (en) Wind turbine power generator having secondary battery
JP2006238616A (en) Power converter
JP5601912B2 (en) Control device for power converter, and grid-connected inverter system using this control device
JP2008015899A (en) System interconnection power conditioner
JP6380985B2 (en) DC power transmission system
JP4398440B2 (en) Wind power generator
JP2003120504A (en) Wind power generation device
JP2011193704A (en) Dc-ac power converter
JP2009232516A (en) Charging device for small wind generation
JP2006166585A (en) Power conversion device
JP2013046431A (en) Chopper device