JP2009284414A - Imaging unit and imaging apparatus - Google Patents

Imaging unit and imaging apparatus Download PDF

Info

Publication number
JP2009284414A
JP2009284414A JP2008136732A JP2008136732A JP2009284414A JP 2009284414 A JP2009284414 A JP 2009284414A JP 2008136732 A JP2008136732 A JP 2008136732A JP 2008136732 A JP2008136732 A JP 2008136732A JP 2009284414 A JP2009284414 A JP 2009284414A
Authority
JP
Japan
Prior art keywords
support plate
heat
conductive member
heat conductive
imaging unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008136732A
Other languages
Japanese (ja)
Inventor
Yuji Kobayashi
有二 小林
Yoshiaki Sueoka
良章 末岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Olympus Imaging Corp
Original Assignee
Olympus Corp
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Imaging Corp filed Critical Olympus Corp
Priority to JP2008136732A priority Critical patent/JP2009284414A/en
Publication of JP2009284414A publication Critical patent/JP2009284414A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently radiate heat at the side of an imaging element which can be displaced, in a two-dimensional direction which is orthogonal to the optical axis of a photographing lens, without making the structure complex. <P>SOLUTION: An imaging unit is provided with: a support plate 31 which packages a heating imaging element 24 thereon and is movable; a fixed member 53 disposed fixedly; and a heat conductive member 70, which is disposed in between a rear face of the support plate 31 and a heat radiating plane 58a faces the rear face of the support plate 31, has flexibility so as to be displaced tracking the two-dimensional displacing movement of the support plate 31 and is brought into contact with the rear face of the support plate and the heat radiating plane 58a, at all times, whereby heat conduction, from a side of the support plate 31 to a side of the heat radiating plane 58a, is performed efficiently by the heat conductive member 70 which does not cause troubles in displacing of movement. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、撮影レンズの光軸に直交する2次元方向に変位可能な撮像素子を備える撮像ユニットおよび撮像装置に関するものである。   The present invention relates to an imaging unit and an imaging apparatus including an imaging element that can be displaced in a two-dimensional direction orthogonal to the optical axis of a photographing lens.

CCD等の撮像素子を備える電子カメラは、撮影レンズの透過光束を撮像素子で受光し、その光電変換出力に基づいて画像データを得る。ここで、撮像素子は、自身が発熱するとともに、熱により暗電流が発生しノイズの原因となって画質が低下することから、放熱対策が必要とされている。そこで、従来から、各種の放熱対策が講じられている。   An electronic camera including an image sensor such as a CCD receives a transmitted light beam of a photographing lens by an image sensor and obtains image data based on the photoelectric conversion output. Here, since the image pickup device itself generates heat, a dark current is generated by the heat, and noise is caused to deteriorate the image quality. Therefore, various heat dissipation measures have been taken conventionally.

一方、最近の電子カメラでは、撮像素子を光軸に直交する2次元方向に移動させる像ブレ補正用駆動機構を備え、像ブレが検出された場合に像ブレを補正するように像ブレ補正用駆動機構によって撮像素子を変位移動させるようにした手ブレ補正機能を持たせたものもある。この場合、撮像素子の放熱のための放熱部材を直接可動部に取付けることはできず、放熱対策上、工夫が必要となる。   On the other hand, recent electronic cameras have an image blur correction drive mechanism that moves the image sensor in a two-dimensional direction orthogonal to the optical axis, and corrects image blur when image blur is detected. Some have a camera shake correction function in which the image pickup device is displaced by a drive mechanism. In this case, the heat radiating member for radiating heat of the image pickup device cannot be directly attached to the movable part, and some device is required for heat radiation countermeasures.

そこで、例えば、特許文献1においては、可動放熱部材と固定放熱部材との面を極力接近させて対向配置することで可動放熱部材から固定放熱部材に熱伝達させるようにしている。また、特許文献2においては、可動側と固定側との対向する放熱プレート間に磁性流体を介在させることで、可動側から固定側へ熱伝達させるようにしている。   Therefore, for example, in Patent Document 1, heat is transferred from the movable heat radiating member to the fixed heat radiating member by placing the surfaces of the movable heat radiating member and the fixed heat radiating member as close as possible to face each other. Moreover, in patent document 2, heat is transferred from the movable side to the fixed side by interposing a magnetic fluid between the heat radiation plates facing the movable side and the fixed side.

特開2006−174226号公報JP 2006-174226 A 特開2006−31027号公報JP 2006-31027 A

しかしながら、特許文献1による方式は、可動部材側で発生した熱を、対流によりカメラ筐体内部の空気中に放熱させ、筐体内部の部品へ伝熱させカメラ筐体外へ放熱させるものである。このように冷却すべき部分と放熱部材との間の熱伝達経路に熱抵抗の大きな空気層が介在するため、熱伝達効率が悪く、放熱効率のよくないものである。   However, the method according to Patent Document 1 dissipates heat generated on the movable member side into the air inside the camera casing by convection, transfers the heat to components inside the casing, and dissipates the heat outside the camera casing. Since an air layer having a large thermal resistance is interposed in the heat transfer path between the portion to be cooled and the heat radiating member, the heat transfer efficiency is poor and the heat dissipation efficiency is not good.

また、特許文献2による方式は、熱伝達部材として機能する磁性流体に関して、流れ出し防止が必要となり、構造が複雑化してしまう。   Further, the method according to Patent Document 2 requires prevention of flow out of a magnetic fluid that functions as a heat transfer member, and the structure becomes complicated.

本発明は、上記に鑑みてなされたものであって、撮影レンズの光軸に直交する2次元方向に変位可能な撮像素子側の熱を、構造を複雑化させることなく、効率よく放熱させ得る撮像ユニットおよび電子カメラを提供することを目的とする。   The present invention has been made in view of the above, and can efficiently dissipate heat on the imaging element side that can be displaced in a two-dimensional direction orthogonal to the optical axis of the photographing lens without complicating the structure. An object is to provide an imaging unit and an electronic camera.

上述した課題を解決し、目的を達成するために、本発明にかかる撮像素子は、撮影レンズの光軸上に該光軸と直交するように配置されて前記撮影レンズによる被写体像が結像される撮像素子と、該撮像素子が表面に搭載された放熱性を有する支持板と、該支持板の裏面に対向する位置に放熱面を一体に有して固定配置される固定部材と、前記撮像素子が搭載された前記支持板を前記固定部材に対して前記光軸に直交する2次元方向に変位移動させる駆動機構と、前記支持板の2次元方向の変位移動に追従して変位する可撓性を有して前記支持板の裏面と前記放熱面との間に配置されて常に該支持板の裏面と該放熱面とに接触する熱伝導性部材と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the image sensor according to the present invention is disposed on the optical axis of the photographing lens so as to be orthogonal to the optical axis, and a subject image is formed by the photographing lens. An imaging element, a heat-radiating support plate on which the imaging element is mounted on the surface, a fixing member that is fixedly disposed integrally with a heat dissipation surface at a position facing the back surface of the support plate, and the imaging A driving mechanism for displacing and moving the support plate on which the element is mounted in a two-dimensional direction perpendicular to the optical axis with respect to the fixed member; and a flexible mechanism for displacing the support plate following the displacement movement of the support plate in the two-dimensional direction. And a heat conductive member that is disposed between the back surface of the support plate and the heat dissipation surface and always contacts the back surface of the support plate and the heat dissipation surface.

また、本発明にかかる撮像ユニットは、上記発明において、前記熱伝導性部材は、柱形状に形成された熱伝導性柔軟素材からなり、柱形状の両端が接触する向きに設定されて前記支持板の裏面と前記放熱面との間に分散配置されていることを特徴とする。   In the imaging unit according to the present invention, in the above invention, the heat conductive member is made of a heat conductive flexible material formed in a column shape, and the support plate is set so that both ends of the column shape are in contact with each other. It is characterized by being distributed between the back surface of the glass and the heat radiating surface.

また、本発明にかかる撮像ユニットは、上記発明において、前記熱伝導性部材は、帯状リングの形状に形成されて可撓性を有する熱伝導性シートからなり、前記帯状リングの直径端が接触する向きに設定されて前記支持板の裏面と前記放熱面との間に分散配置されていることを特徴とする。   In the imaging unit according to the present invention as set forth in the invention described above, the thermal conductive member is formed of a flexible thermal conductive sheet formed in the shape of a strip ring, and the diameter end of the strip ring contacts. It is set in a direction and is arranged in a distributed manner between the back surface of the support plate and the heat radiating surface.

また、本発明にかかる撮像ユニットは、上記発明において、前記熱伝導性部材は、コイル状に形成されて可撓性を有する熱伝導性素材からなり、コイル状の両端が接触する向きに設定されて前記支持板の裏面と前記放熱面との間に分散配置されていることを特徴とする。   In the imaging unit according to the present invention, in the above invention, the heat conductive member is formed of a heat conductive material that is formed in a coil shape and has flexibility, and is set in a direction in which both ends of the coil shape are in contact with each other. In this manner, the support plate is distributed between the back surface of the support plate and the heat dissipation surface.

また、本発明にかかる撮像装置は、上記発明に記載の撮像ユニットと、前記撮影レンズを搭載し前記固定部材を固定配置させて前記撮像ユニットを内蔵するカメラ本体と、を備えることを特徴とする。   According to another aspect of the present invention, there is provided an imaging apparatus comprising: the imaging unit according to the invention described above; and a camera body in which the imaging lens is mounted and the fixing member is fixedly arranged to incorporate the imaging unit. .

本発明にかかる撮像ユニットおよび撮像装置は、発熱する撮像素子を搭載し可動する支持板と固定配置される固定部材と一体で支持板の裏面に対向する放熱面との間に配置されて、支持板の2次元方向の変位移動に追従して変位する可撓性を有し常に支持板の裏面と放熱面とに接触する熱伝導性部材を備えるので、支持板側から放熱面側への熱伝達を熱伝導性部材によって効率よく行わせることができ、このためにも、熱伝導性部材が支持板側の変位移動に支障を来たすことなく、かつ、構造を複雑化させることなく実現することができるという効果を奏する。   An image pickup unit and an image pickup apparatus according to the present invention are disposed between a support plate on which a heat generating image pickup element is mounted and a movable support plate and a heat dissipating surface that is integrally fixed to a fixing member and faces the back surface of the support plate. Since it is provided with a heat conductive member that is flexible to follow the displacement movement in the two-dimensional direction of the plate and always contacts the back surface of the support plate and the heat dissipation surface, heat from the support plate side to the heat dissipation surface side is provided. Transmission can be efficiently performed by the heat conductive member, and for this reason, the heat conductive member must be realized without hindering displacement movement on the support plate side and without complicating the structure. There is an effect that can be.

以下、本発明にかかる撮像ユニットおよび撮像装置を実施するための最良の形態を、図面を参照して説明する。本実施の形態の撮像ユニットを備える撮像装置は、一例としてレンズ交換可能な一眼レフレックス式デジタルカメラへの適用例として説明する。   The best mode for carrying out an imaging unit and an imaging apparatus according to the present invention will be described below with reference to the drawings. An image pickup apparatus including the image pickup unit according to the present embodiment will be described as an example of application to a single-lens reflex digital camera capable of exchanging lenses.

(実施の形態1)
図1は、本実施の形態1の一眼レフレックス式デジタルカメラのカメラ本体の内部構造の概略を示す中央縦断正面図であり、図2は、内部構造の概略を示すレンズ光軸上での縦断側面図であり、図3は、内部構造の概略を示すレンズ光軸上での水平断面図である。
(Embodiment 1)
FIG. 1 is a central longitudinal front view showing an outline of the internal structure of the camera body of the single-lens reflex digital camera of Embodiment 1, and FIG. 2 is a longitudinal view on the lens optical axis showing the outline of the internal structure. FIG. 3 is a side view, and FIG. 3 is a horizontal sectional view on the optical axis of the lens showing the outline of the internal structure.

本実施の形態1の一眼レフレックス式デジタルカメラは、カメラ本体10と、このカメラ本体10の前面側に交換可能に装填されることにより搭載される撮影レンズ11とにより構成される。カメラの外観形状を構成する樹脂製のカメラ本体10は、撮影レンズ11の光軸O上となる前面側位置に撮影レンズ11を含むレンズユニット12を交換自在に装填するためのリング状のマウント部13を備える。また、カメラ本体10は、前面側から見て左側に撮影時等において操作者の右手により保持されるグリップ部14を有する。このグリップ部14の頂部には、レリーズボタン等の各種スイッチ、ボタン類を備える。   The single-lens reflex digital camera according to the first embodiment includes a camera body 10 and a photographing lens 11 that is mounted on the front side of the camera body 10 in a replaceable manner. A resin-made camera body 10 that constitutes the external appearance of the camera has a ring-shaped mount portion for removably mounting a lens unit 12 including the photographic lens 11 on the front surface side position on the optical axis O of the photographic lens 11. 13 is provided. Further, the camera body 10 has a grip portion 14 that is held by the right hand of the operator at the time of shooting or the like on the left side when viewed from the front side. Various switches such as a release button and buttons are provided on the top of the grip portion 14.

カメラ本体10は、図2や図3に示すように、背面側において光軸O上の位置にアクリル製のパネル表示窓16を有する液晶パネル17を備える。この液晶パネル17は、撮影された画像の他、各種設定・調整事項等の各種情報を表示するTFT(Thin Film Transistor)タイプの矩形状表示パネルである。また、カメラ本体10内には、撮影時に操作者が覗くファインダ窓18が設けられ、頂部には、外付けのフラッシュを取り付けるホットシュー19を備える。   As shown in FIGS. 2 and 3, the camera body 10 includes a liquid crystal panel 17 having an acrylic panel display window 16 at a position on the optical axis O on the back side. The liquid crystal panel 17 is a TFT (Thin Film Transistor) type rectangular display panel that displays various information such as various settings and adjustment items in addition to the photographed image. The camera body 10 is provided with a finder window 18 through which an operator peeks at the time of shooting, and a hot shoe 19 to which an external flash is attached at the top.

また、カメラ本体10は、図2に示すように、前面側において光軸O上に配設させたクイックリターンミラー20等のミラー部材を内蔵し、その下方にデフォーカス量を検出するAFセンサユニット21等を収納したミラーボックス22を備える。また、カメラ本体10内には、クイックリターンミラー20よりも奥側に向けて、フォーカルプレーンシャッタ23と、撮像素子24等を含む撮像ユニット25とが、光軸O上で光軸Oに直交させて順に配置されている。また、カメラ本体10内において、クイックリターンミラー20の光軸O上の背後にはサブミラー20aが配設され、サブミラー20aからの反射光をAFセンサユニット21に導くように光路設定されている。一方、クイックリターンミラー20の反射側光軸上には、ダハミラー26、接眼レンズ27等が配置されている。   As shown in FIG. 2, the camera body 10 incorporates a mirror member such as a quick return mirror 20 disposed on the optical axis O on the front side, and an AF sensor unit for detecting the defocus amount below the mirror member. A mirror box 22 containing 21 etc. is provided. Further, in the camera body 10, a focal plane shutter 23 and an imaging unit 25 including an imaging element 24 and the like are perpendicular to the optical axis O on the optical axis O toward the back side from the quick return mirror 20. Are arranged in order. In the camera body 10, a sub mirror 20 a is disposed behind the quick return mirror 20 on the optical axis O, and an optical path is set so as to guide the reflected light from the sub mirror 20 a to the AF sensor unit 21. On the other hand, on the reflection side optical axis of the quick return mirror 20, a roof mirror 26, an eyepiece lens 27, and the like are arranged.

さらに、カメラ本体10のグリップ部14の内部には、電池40を収納する電池収納室41が設けられている。電池40は、底面の開閉蓋42を開閉することにより電池収納室41内への挿脱が可能とされている。また、グリップ14の内部において、背面側には、カメラ全体の制御や画像処理、圧縮処理、データ記憶処理等を行うための回路やSDRAM等のメモリ、電源回路等が搭載された回路基板43,44が配設されている。回路基板43と撮像素子24を搭載した支持板31との間、および回路基板43,44間は、フレキシブル基板45,46によって電気的に接続されている。また、グリップ部14において、電池収納室41と回路基板44との間には、メモリカード47を装填するためのメモリスロット48が形成され、通常は、開閉自在なカバー49で閉塞されている。また、グリップ部14内において、電池収納室31より前面側にはストロボ用のアルミニウム電解コンデンサ50が内蔵されている。   Furthermore, a battery storage chamber 41 for storing the battery 40 is provided inside the grip portion 14 of the camera body 10. The battery 40 can be inserted into and removed from the battery storage chamber 41 by opening and closing an open / close lid 42 on the bottom surface. Inside the grip 14, on the back side, a circuit board 43 on which a circuit for performing control of the entire camera, image processing, compression processing, data storage processing, etc., a memory such as an SDRAM, a power supply circuit, etc. are mounted. 44 is arranged. The circuit board 43 and the support plate 31 on which the image sensor 24 is mounted, and the circuit boards 43 and 44 are electrically connected by flexible boards 45 and 46. In the grip portion 14, a memory slot 48 for loading a memory card 47 is formed between the battery storage chamber 41 and the circuit board 44, and is normally closed with a cover 49 that can be opened and closed. In the grip portion 14, a strobe aluminum electrolytic capacitor 50 is built in front of the battery storage chamber 31.

ここで、撮像ユニット25は、光学LPF(ローパスフィルタ)30と撮像素子24と支持板31とを備える。撮像素子24は、撮影レンズ11により撮像面に結像された被写体像を光電変換するもので、所定比率の横長矩形形状をなし、本実施の形態1では、例えばCCDイメージセンサが用いられている。なお、撮像素子24としては、CCDイメージセンサに限らず、CMOSイメージセンサ等であってもよい。また、支持板31は、撮像素子24を表面に搭載して固定、位置決めするためのものである。この支持板31は、放熱性のよい金属等の放熱材、本実施の形態1ではアルミニウム板からなり、撮像素子24よりも大きな横長の略長方形形状に形成されている。   Here, the imaging unit 25 includes an optical LPF (low-pass filter) 30, an imaging element 24, and a support plate 31. The imaging element 24 photoelectrically converts a subject image formed on the imaging surface by the photographing lens 11 and has a horizontally long rectangular shape with a predetermined ratio. In the first embodiment, for example, a CCD image sensor is used. . The image sensor 24 is not limited to a CCD image sensor, and may be a CMOS image sensor or the like. The support plate 31 is for mounting and fixing and positioning the image sensor 24 on the surface. The support plate 31 is made of a heat radiating material such as a metal having good heat radiating property, and is made of an aluminum plate in the first embodiment, and is formed in a horizontally elongated substantially rectangular shape larger than the image sensor 24.

撮像ユニット25は、さらに、第1の保持部材51と、第2の保持部材52と、固定部材53と、駆動機構60とを備える。第1の保持部材51は、矩形枠形状に形成されて撮像素子24が搭載された支持板31や光学LPF30を保持するためのものである。第2の保持部材52は、第1の保持部材51よりも一回り大きな矩形枠形状に形成されて、第1の保持部材51をY軸方向(上下方向)に移動可能に保持するためのものである。ここで、第1の保持部材51と第2の保持部材52との間で、X軸方向(左右方向)の一側においてはY軸方向にのみ移動可能に離間配置させた2個の鋼球54a、他側においては1個の鋼球54bが介在されることで、第1の保持部材51が第2の保持部材52に対して円滑にY軸方向に移動可能とされている。なお、鋼球54b付近において、第1の保持部材51と第2の保持部材52との間にはバネ55が介在されている。   The imaging unit 25 further includes a first holding member 51, a second holding member 52, a fixing member 53, and a drive mechanism 60. The first holding member 51 is formed in a rectangular frame shape and holds the support plate 31 and the optical LPF 30 on which the image sensor 24 is mounted. The second holding member 52 is formed in a rectangular frame shape that is slightly larger than the first holding member 51, and holds the first holding member 51 so as to be movable in the Y-axis direction (vertical direction). It is. Here, between the first holding member 51 and the second holding member 52, two steel balls that are spaced apart so as to be movable only in the Y-axis direction on one side in the X-axis direction (left-right direction). The first holding member 51 can be smoothly moved in the Y-axis direction with respect to the second holding member 52 by interposing one steel ball 54b on the other side. A spring 55 is interposed between the first holding member 51 and the second holding member 52 in the vicinity of the steel ball 54b.

また、固定部材53は、第2の保持部材52よりも一回り大きな矩形枠形状に形成されて、第2の保持部材52をX軸方向に移動可能に保持するためのものである。ここで、第2の保持部材52と固定部材53との間で、Y軸方向の一側においてはX軸方向にのみ移動可能に離間配置させた2個の鋼球56a、他側においては1個の鋼球56bが介在されることで、第2の保持部材52が固定部材53に対して円滑にX軸方向に移動可能とされている。なお、鋼球56b付近において、第2の保持部材52と固定部材53との間にはバネ57が介在されている。また、固定部材53は、撮像素子24が光軸O上に位置するようにして例えば4箇所でミラーボックス22等の固定部に位置調整されて組み付けられる。ここで、固定部材53は、支持板31の裏面に近接対向する位置に支持板31よりも大きな放熱面58aを有する第1の固定放熱板58がねじ止めにより一体化されている。また、固定部材53や第1の固定放熱板58は、放熱性のよい金属等の材質又は熱伝導率の高い素材として炭素繊維などのフィラーが充填されたPC樹脂(ポリカーボネート樹脂)やPPS樹脂(ポリフェニレンサルファイド樹脂)により形成されている。   The fixing member 53 is formed in a rectangular frame shape that is slightly larger than the second holding member 52, and is for holding the second holding member 52 so as to be movable in the X-axis direction. Here, between the second holding member 52 and the fixing member 53, two steel balls 56a that are arranged to be movable only in the X-axis direction on one side in the Y-axis direction, and 1 on the other side. By interposing the individual steel balls 56 b, the second holding member 52 can move smoothly in the X-axis direction with respect to the fixing member 53. A spring 57 is interposed between the second holding member 52 and the fixing member 53 in the vicinity of the steel ball 56b. In addition, the fixing member 53 is assembled to the fixing unit such as the mirror box 22 at four positions so that the imaging element 24 is positioned on the optical axis O, for example. Here, in the fixing member 53, a first fixed heat radiating plate 58 having a heat radiating surface 58a larger than the support plate 31 is integrated by screwing at a position close to and opposed to the back surface of the support plate 31. Further, the fixing member 53 and the first fixed heat dissipation plate 58 are made of a PC resin (polycarbonate resin) or a PPS resin (filler such as carbon fiber as a material having a high heat dissipation property or a material having high heat conductivity). Polyphenylene sulfide resin).

また、駆動機構60は、第1の駆動機構61と第2の駆動機構62とからなる。第1の駆動機構61は、鋼球54部分に対応させて第1の保持部材51と第2の保持部材52との間に設けられて第1の保持部材51を第2の保持部材52に対してY軸方向に変位移動させるためのものである。この第1の駆動機構61は、例えば第1の保持部材51に押圧接触させて第2の保持部材52側に設けられて図示しない駆動電極に対する電圧印加により楕円振動を発生することにより、第1の保持部材51を第2の保持部材52に対してY軸方向に移動させる圧電素子61aを用いた圧電素子駆動モータ方式として構成されている(図3参照)。第2の駆動機構62は、鋼球56部分に対応させて第2の保持部材52と固定部材53との間に設けられて第2の保持部材52を固定部材53に対してX軸方向に変位移動させるためのものである。この第2の駆動機構62も、例えば第2の保持部材52に押圧接触させて固定部材53側に設けられて図示しない駆動電極に対する電圧印加により楕円振動を発生することにより、第2の保持部材52を固定部材53に対してX軸方向に移動させる圧電素子62aを用いた圧電素子駆動モータ方式として構成されている(図2参照)。   The drive mechanism 60 includes a first drive mechanism 61 and a second drive mechanism 62. The first drive mechanism 61 is provided between the first holding member 51 and the second holding member 52 so as to correspond to the steel ball 54 portion, and the first holding member 51 is used as the second holding member 52. On the other hand, it is for moving the displacement in the Y-axis direction. For example, the first drive mechanism 61 is provided in the second holding member 52 side by being brought into press contact with the first holding member 51 and generates an elliptical vibration by applying a voltage to a driving electrode (not shown). This holding member 51 is configured as a piezoelectric element drive motor system using a piezoelectric element 61a that moves the second holding member 52 in the Y-axis direction (see FIG. 3). The second drive mechanism 62 is provided between the second holding member 52 and the fixing member 53 so as to correspond to the steel ball 56, and the second holding member 52 is moved in the X-axis direction with respect to the fixing member 53. It is for moving the displacement. The second drive mechanism 62 is also provided in the fixed member 53 side by being brought into press contact with the second holding member 52, for example, and generates an elliptical vibration by applying a voltage to a drive electrode (not shown). This is configured as a piezoelectric element drive motor system using a piezoelectric element 62a that moves 52 in the X-axis direction with respect to the fixed member 53 (see FIG. 2).

なお、駆動機構60は、圧電素子駆動モータ方式に限らず、電磁駆動方式や、屈曲振動モータを駆動源として駆動する方式であってもよい。   The drive mechanism 60 is not limited to the piezoelectric element drive motor system, and may be an electromagnetic drive system or a system that drives using a flexural vibration motor as a drive source.

このような駆動機構60を備えることで、撮像素子24が搭載された支持板31は、固定部材53に対して光軸Oに直交するXY平面内で上下左右なる2次元方向に変位移動可能となる。よって、撮影に際して、当該一眼レフレックス式デジタルカメラに手ブレが発生した場合、駆動機構60を駆動させて支持板31をXY平面内で2次元方向に変位移動させることで、撮像素子24の受光面における画像のブレを補正することができる。   By providing such a drive mechanism 60, the support plate 31 on which the image sensor 24 is mounted can be displaced in a two-dimensional direction that is up, down, left, and right within the XY plane perpendicular to the optical axis O with respect to the fixing member 53. Become. Therefore, when camera shake occurs in the single-lens reflex digital camera at the time of shooting, the drive mechanism 60 is driven to displace and move the support plate 31 in the two-dimensional direction in the XY plane. It is possible to correct image blur on the surface.

ここで、本実施の形態の撮像ユニット25は、対向配置された支持板31の裏面と第1の固定放熱板58の放熱面58aとの間に配置された熱伝導性部材70を備える。この熱伝導性部材70は、支持板31の2次元方向の変位移動に追従して変位する可撓性を有するように円柱形状に形成されたλゲル(登録商標)等の熱伝導性柔軟素材からなり、複数個が支持板31の裏面と第1の固定放熱板58との間に上下左右均等となるように分散配置されている。熱伝導性部材70は、常に支持板31の裏面と第1の固定放熱板58の放熱面58aとに接触するよう柱形状の両端が接触する向きに設定されている。本実施の形態1では、図4に示すように、複数個の熱伝導性部材70の一端が取り付けられた放熱シート71を備え、複数個の熱伝導性部材70の他端が支持板31の裏面に接触するようにしてこの放熱シート71を放熱面58a上に取り付けることで、熱伝導性部材70が装填される。   Here, the imaging unit 25 according to the present embodiment includes a heat conductive member 70 disposed between the back surface of the support plate 31 and the heat radiation surface 58a of the first fixed heat radiation plate 58 that are disposed to face each other. This heat conductive member 70 is a heat conductive flexible material such as λ gel (registered trademark) formed in a columnar shape so as to have the flexibility to follow the displacement movement of the support plate 31 in the two-dimensional direction. And a plurality of them are distributed between the back surface of the support plate 31 and the first fixed heat radiating plate 58 so as to be evenly distributed in the vertical and horizontal directions. The heat conductive member 70 is set in a direction in which both ends of the column shape are in contact with each other so as to always contact the back surface of the support plate 31 and the heat radiation surface 58a of the first fixed heat radiation plate 58. In the first embodiment, as shown in FIG. 4, a heat radiating sheet 71 to which one end of a plurality of heat conductive members 70 is attached is provided, and the other end of the plurality of heat conductive members 70 is the support plate 31. The heat conductive member 70 is loaded by attaching the heat radiation sheet 71 on the heat radiation surface 58a so as to be in contact with the back surface.

また、本実施の形態1にあっては、液晶パネル17の前面側で第1の固定放熱板58の裏面に対向する位置に第2の固定放熱板72を備え、この第2の固定放熱板72と第1の固定放熱板58との間にはλゲル(登録商標)等の熱伝導性素材からなるシート状の放熱部材73が介在されている。   In the first embodiment, the second fixed heat radiating plate 72 is provided on the front surface side of the liquid crystal panel 17 at a position facing the back surface of the first fixed heat radiating plate 58. A sheet-like heat radiating member 73 made of a heat conductive material such as λ gel (registered trademark) is interposed between 72 and the first fixed heat radiating plate 58.

このような構成において、撮像素子24はカメラ本体10内における主な発熱源となり、撮像素子24の駆動に伴い熱が発生する。撮像素子24により発生した熱は、放熱性を有する支持板31に伝達された後、熱伝導性の高い熱伝導性部材70を介して第1の固定放熱板58の放熱面58a側に伝達される。この際、空気層を伝達するよりも熱伝導性部材70によって熱伝達させることで、放熱面58a側に効率よく伝達させることができる。放熱面58aに伝達された熱は、放熱部材73を介して第2の固定放熱板72側に伝達され、液晶パネル17等の外装を介して外部に放熱される。   In such a configuration, the image sensor 24 becomes a main heat source in the camera body 10, and heat is generated as the image sensor 24 is driven. The heat generated by the image sensor 24 is transmitted to the heat radiating support plate 31 and then transmitted to the heat radiating surface 58a side of the first fixed heat radiating plate 58 via the heat conductive member 70 having high heat conductivity. The At this time, heat can be efficiently transmitted to the heat radiating surface 58a side by transmitting heat with the heat conductive member 70 rather than transmitting the air layer. The heat transmitted to the heat radiating surface 58a is transmitted to the second fixed heat radiating plate 72 side through the heat radiating member 73, and is radiated to the outside through the exterior such as the liquid crystal panel 17.

ところで、撮像素子24が搭載された支持板31は、駆動機構60による手ブレ補正時には、Y方向やX方向に変位移動される。ここで、本実施の形態の熱伝導性部材70は、円柱形状に形成された熱伝導性柔軟素材からなり、支持板31の変位移動に追従して変位する可撓性を有するので、常に両端が支持板31の裏面と放熱面58aとに接触する状態を維持して熱伝達効果を発揮させることができる。例えば、図5(a)は、第2の駆動機構62によって支持板31(撮像素子24)をX方向にΔXだけ変位移動させた場合を示す。この場合、熱伝導性部材70は、柔軟素材を円柱形状に形成してなり変形しやすいので支持板31の変位移動に追従してX方向に斜め状態となり、支持板31の裏面と放熱面58aとに対する接触状態を維持する。また、図5(b)は、第1の駆動機構61によって支持板31(撮像素子24)をY方向にΔYだけ変位移動させた場合を示す。この場合、熱伝導性部材70は、柔軟素材を円柱形状に形成してなり変形しやすいので支持板31の変位移動に追従してY方向に斜め状態となり、支持板31の裏面と放熱面58aとに対する接触状態を維持する。このような支持板31の変位移動に対する熱伝導性部材70の追従変形は軽負荷であり、支持板31の変位移動に対して支障を来たすこともなく、簡単な構造で実現することができる。   By the way, the support plate 31 on which the image pickup device 24 is mounted is displaced in the Y direction or the X direction during camera shake correction by the drive mechanism 60. Here, the heat conductive member 70 of the present embodiment is made of a heat conductive soft material formed in a cylindrical shape, and has the flexibility to follow the displacement movement of the support plate 31, so it always has both ends. Can maintain a state in contact with the back surface of the support plate 31 and the heat radiating surface 58a to exhibit a heat transfer effect. For example, FIG. 5A shows a case where the support plate 31 (imaging element 24) is displaced by ΔX in the X direction by the second drive mechanism 62. FIG. In this case, since the heat conductive member 70 is formed of a flexible material in a columnar shape and easily deforms, the heat conductive member 70 is inclined in the X direction following the displacement movement of the support plate 31, and the back surface of the support plate 31 and the heat radiation surface 58a. Maintain contact with each other. FIG. 5B shows a case where the first driving mechanism 61 moves the support plate 31 (imaging element 24) by ΔY in the Y direction. In this case, since the heat conductive member 70 is formed of a flexible material in a columnar shape and easily deforms, the heat conductive member 70 is inclined in the Y direction following the displacement movement of the support plate 31, and the back surface of the support plate 31 and the heat radiation surface 58a. Maintain contact with each other. Such follow-up deformation of the heat conductive member 70 with respect to the displacement movement of the support plate 31 is a light load and can be realized with a simple structure without causing any trouble with respect to the displacement movement of the support plate 31.

ここで、熱伝導性部材70や放熱部材73を備える場合と備えない場合との放熱効果の違いについて、図6を参照して説明する。図6(a)は、本実施の形態1の場合をモデル化して示す熱回路構成図であり、図6(b)は、熱伝導性部材70、放熱部材73および第1の固定放熱板58を備えない従来の場合をモデル化して示す熱回路構成図である。なお、図6中、モータなどの細かい部分は、一つの熱抵抗としてまとめて示している。また、カメラ全体をモデル化すると膨大な量になるので、図6では、撮像ユニット25からパネル表示窓17までの光軸O上部分のみの熱回路として示している。また、図6中、丸付き数字で示す各構成要素は、1が光学LPF30、2が撮像素子24、3が支持板31、4が第1の駆動機構61、5が第2の保持部材52、6が第2の駆動機構62、7が固定部材53、8が第2の固定放熱板72、9が液晶パネル17、10がアクリル製のパネル表示窓16内側、11がアクリル製のパネル表示窓16外側、12が第1の固定放熱板58、13が第2の固定放熱板72外側である。   Here, the difference in the heat radiation effect between the case where the heat conductive member 70 and the heat radiating member 73 are provided and the case where the heat conductive member 73 is not provided will be described with reference to FIG. 6A is a thermal circuit configuration diagram showing the case of the first embodiment as a model, and FIG. 6B is a thermal conductive member 70, a heat radiating member 73, and a first fixed heat radiating plate 58. It is a thermal circuit block diagram which models and shows the conventional case which is not provided with. In FIG. 6, fine parts such as a motor are collectively shown as one thermal resistance. Further, when the entire camera is modeled, an enormous amount is required. Therefore, in FIG. 6, only the portion on the optical axis O from the imaging unit 25 to the panel display window 17 is shown. In addition, in FIG. 6, each component indicated by a circled numeral is 1 for the optical LPF 30, 2 for the image sensor 24, 3 for the support plate 31, 4 for the first drive mechanism 61, and 5 for the second holding member 52. , 6 is the second drive mechanism 62, 7 is the fixing member 53, 8 is the second fixed heat radiation plate 72, 9 is the liquid crystal panel 17, 10 is inside the acrylic panel display window 16, and 11 is the acrylic panel display. The outside of the window 16, 12 is the first fixed heat sink 58, 13 is the second fixed heat sink 72 outside.

まず、熱伝導性部材70や放熱部材73や第1の固定放熱板58を備えない従来の場合には、図6(b)に示すように、発熱源となる撮像素子24の熱は、空気層、光学LPF30、空気層を介して放熱される部分の他、大半は、アルミニウム製の支持板31に熱伝達された後、支持板31と第2の固定放熱板72との間の空気層を介して液晶パネル17側に熱伝達され、さらに、空気層やアクリル製のパネル表示窓16を介して外部へ放熱される。すなわち、熱抵抗の大きな空気層に依存する部分が多く、放熱効率の悪いものとなっている。   First, in the conventional case not including the heat conductive member 70, the heat radiating member 73, and the first fixed heat radiating plate 58, as shown in FIG. In addition to the layer, the optical LPF 30 and the portion that radiates heat through the air layer, most of the air is transferred to the aluminum support plate 31 and then the air layer between the support plate 31 and the second fixed heat dissipation plate 72. The heat is transferred to the liquid crystal panel 17 side through the air and further radiated to the outside through the air layer and the panel display window 16 made of acrylic. That is, there are many parts depending on the air layer having a large thermal resistance, and the heat dissipation efficiency is poor.

一方、本実施の形態1の場合には、図6(b)に示すように、発熱源となる撮像素子24の熱は、空気層、光学LPF30、空気層を介して放熱される部分の他、アルミニウム製の支持板31に熱伝達された後、まず、熱伝導性部材70を介して効率よく第1の固定放熱板58の放熱面58aに熱伝達され、さらに、第1の固定放熱板58や固定部材53に伝達された熱は放熱部材73を介して効率よく第2の固定放熱板72に熱伝達される。第2の固定放熱板72に伝達された熱は、そのまま外部に放熱されたり、液晶パネル17側に熱伝達され、さらに、空気層やアクリル製のパネル表示窓16を介して外部へ放熱される。このようにして、本実施の形態1によれば、従来例に比して、撮像素子24に発生した熱を効率よく固定放熱側に熱伝達させて放熱させることができる。   On the other hand, in the case of the first embodiment, as shown in FIG. 6 (b), the heat of the image sensor 24 serving as a heat generation source is the air layer, the optical LPF 30, and the part that is radiated through the air layer. After the heat is transferred to the aluminum support plate 31, first, the heat is efficiently transferred to the heat radiating surface 58 a of the first fixed heat radiating plate 58 via the heat conductive member 70, and further, the first fixed heat radiating plate. The heat transferred to 58 and the fixed member 53 is efficiently transferred to the second fixed heat radiating plate 72 via the heat radiating member 73. The heat transmitted to the second fixed heat radiating plate 72 is radiated to the outside as it is, or is transmitted to the liquid crystal panel 17 side, and further radiated to the outside through the air layer or the acrylic panel display window 16. . As described above, according to the first embodiment, the heat generated in the image sensor 24 can be efficiently transferred to the fixed heat radiating side and radiated as compared with the conventional example.

(実施の形態2)
図7は、本発明の実施の形態2にかかる撮像ユニット部分を抽出して示す図であり、図7(a)は、撮像ユニットの光軸部分での水平断面図であり、図7(b)は、撮像ユニットの光軸部分での縦断側面図であり、図8は、熱伝導性部材を示す斜視図であり、図9は、実施の形態2にかかる可動時の撮像ユニット部分を抽出して示す図であり、図9(a)は、撮像ユニットの光軸部分での水平断面図であり、図9(b)は、撮像ユニットの光軸部分での縦断側面図である。なお、カメラ全体構成は実施の形態1の場合と同様であり、また、実施の形態1で示した部分と同一部分は同一符号を用いて示し、説明も省略する。
(Embodiment 2)
FIG. 7 is a diagram illustrating an image pickup unit portion according to the second embodiment of the present invention. FIG. 7A is a horizontal sectional view of the optical axis portion of the image pickup unit, and FIG. ) Is a vertical side view of the optical axis portion of the image pickup unit, FIG. 8 is a perspective view showing a heat conductive member, and FIG. 9 shows the image pickup unit portion when movable according to the second embodiment. FIG. 9A is a horizontal sectional view of the optical axis portion of the imaging unit, and FIG. 9B is a vertical side view of the optical axis portion of the imaging unit. The overall configuration of the camera is the same as that of the first embodiment, and the same parts as those shown in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施の形態2にかかる撮像ユニット25Aは、支持板31の裏面と第1の固定放熱板58の放熱面58aとの間に、熱伝導性部材70に代えて、熱伝導性部材80を配置させたものである。ここで、熱伝導性部材80は、例えばグラファイトシートとPETフィルムとからなる幅狭の帯リングの形状の熱伝導性シートを図8に示すように帯状リングの形状に形成することで可撓性を持たせたものである。そして、複数個の熱伝導性部材80が支持板31の裏面と第1の固定放熱板58との間に上下左右均等となるように分散配置されている。この際、熱伝導性部材80は、変形容易で常に支持板31の裏面と第1の固定放熱板58の放熱面58aとに接触するように帯状リングの直径端が接触する向きに設定されている。これにより、熱伝導性部材80は、例えばX方向に見れば図7(b)に示すようにリングの形状をなし、Y方向に見れば図7(a)に示すように帯状リングをなすように設定されている。   In the imaging unit 25A according to the second embodiment, a heat conductive member 80 is disposed between the back surface of the support plate 31 and the heat radiation surface 58a of the first fixed heat radiation plate 58 instead of the heat conductive member 70. It has been made. Here, the heat conductive member 80 is made flexible by forming a heat conductive sheet in the form of a narrow band ring made of, for example, a graphite sheet and a PET film into the shape of a band ring as shown in FIG. It is something that has A plurality of thermally conductive members 80 are distributed and arranged between the back surface of the support plate 31 and the first fixed heat radiating plate 58 so as to be even in the vertical and horizontal directions. At this time, the heat conductive member 80 is easily deformed and is set in a direction in which the diameter end of the belt-shaped ring is in contact with the back surface of the support plate 31 and the heat radiation surface 58a of the first fixed heat radiation plate 58 at all times. Yes. Accordingly, the heat conductive member 80 has a ring shape as shown in FIG. 7B when viewed in the X direction, for example, and forms a belt-like ring as shown in FIG. 7A when viewed in the Y direction. Is set to

このような構成において、撮像素子24はカメラ本体10内における主な発熱源となり、撮像素子24の駆動に伴い熱が発生する。撮像素子24により発生した熱は、放熱性を有する支持板31に伝達された後、熱伝導性の高い熱伝導性部材80を介して第1の固定放熱板58の放熱面58a側に伝達される。この際、空気層を伝達するよりも熱伝導性シートからなる熱伝導性部材80によって熱伝達させることで、放熱面58a側に効率よく伝達させることができる。放熱面58aに伝達された熱は、放熱部材73を介して第2の固定放熱板72側に伝達され、液晶パネル17等の外装を介して外部に放熱される。   In such a configuration, the image sensor 24 becomes a main heat source in the camera body 10, and heat is generated as the image sensor 24 is driven. The heat generated by the image sensor 24 is transmitted to the heat radiating support plate 31, and then transmitted to the heat radiating surface 58a side of the first fixed heat radiating plate 58 via the heat conductive member 80 having high heat conductivity. The At this time, heat can be efficiently transmitted to the heat radiating surface 58a side by transmitting heat with the heat conductive member 80 made of a heat conductive sheet rather than transmitting the air layer. The heat transmitted to the heat radiating surface 58a is transmitted to the second fixed heat radiating plate 72 side through the heat radiating member 73, and is radiated to the outside through the exterior such as the liquid crystal panel 17.

ところで、撮像素子24が搭載された支持板31は、駆動機構60による手ブレ補正時には、Y方向やX方向に変位移動される。ここで、本実施の形態の熱伝導性部材80は、帯状リングの形状に形成されて可撓性を有する熱伝導性シートからなり、支持板31の変位移動に追従して変位する可撓性を有するので、常に両端が支持板31の裏面と放熱面58aとに接触する状態を維持して熱伝達効果を発揮させることができる。例えば、図9(a)は、第2の駆動機構62によって支持板31(撮像素子24)をX方向にΔXだけ変位移動させた場合を示す。この場合、熱伝導性部材80は、帯状リングの形状に形成されて変形しやすいので支持板31の変位移動に追従してX方向に斜め状態となり、支持板31の裏面と放熱面58aとに対する接触状態を維持する。また、図9(b)は、第1の駆動機構61によって支持板31(撮像素子24)をY方向にΔYだけ変位移動させた場合を示す。この場合、熱伝導性部材80は、リング状に形成されて変形しやすいので支持板31の変位移動に追従してリングの形状が潰れつつY方向に斜め状態となり、支持板31の裏面と放熱面58aとに対する接触状態を維持する。このような支持板31の変位移動に対する熱伝導性部材80の追従変形は軽負荷であり、支持板31の変位移動に対して支障を来たすこともなく、簡単な構造で実現することができる。   By the way, the support plate 31 on which the image pickup device 24 is mounted is displaced in the Y direction or the X direction during camera shake correction by the drive mechanism 60. Here, the heat conductive member 80 of the present embodiment is a flexible heat conductive sheet formed in the shape of a belt-like ring, and is flexible following the displacement movement of the support plate 31. Therefore, the heat transfer effect can be exhibited while maintaining the state where both ends are always in contact with the back surface of the support plate 31 and the heat radiating surface 58a. For example, FIG. 9A shows a case where the support plate 31 (imaging element 24) is displaced by ΔX in the X direction by the second drive mechanism 62. FIG. In this case, since the heat conductive member 80 is formed in the shape of a belt-like ring and easily deforms, it follows the displacement movement of the support plate 31 and becomes inclined in the X direction, and is against the back surface of the support plate 31 and the heat radiating surface 58a. Maintain contact. FIG. 9B shows a case where the first driving mechanism 61 moves the support plate 31 (imaging element 24) by ΔY in the Y direction. In this case, since the heat conductive member 80 is formed in a ring shape and is easily deformed, the shape of the ring follows the displacement movement of the support plate 31 and becomes an oblique state in the Y direction, and the back surface of the support plate 31 and the heat radiation. The contact state with the surface 58a is maintained. Such a follow-up deformation of the heat conductive member 80 with respect to the displacement movement of the support plate 31 is a light load, and can be realized with a simple structure without causing any trouble with respect to the displacement movement of the support plate 31.

(実施の形態3)
図10は、本発明の実施の形態3にかかる撮像ユニット部分を抽出して示す図であり、図10(a)は、撮像ユニットの光軸部分での水平断面図であり、図10(b)は、撮像ユニットの光軸部分での縦断側面図であり、図11は、熱伝導性部材の取り付け状態を示す断面図であり、図11は、実施の形態3にかかる可動時の撮像ユニット部分を抽出して示す図であり、図11(a)は、撮像ユニットの光軸部分での水平断面図であり、図11(b)は、撮像ユニットの光軸部分での縦断側面図である。なお、カメラ全体構成は実施の形態1の場合と同様であり、また、実施の形態1で示した部分と同一部分は同一符号を用いて示し、説明も省略する。
(Embodiment 3)
FIG. 10 is a diagram illustrating an image pickup unit portion according to the third embodiment of the present invention, and FIG. 10A is a horizontal cross-sectional view of the optical axis portion of the image pickup unit, and FIG. ) Is a vertical side view of the optical axis portion of the imaging unit, FIG. 11 is a cross-sectional view showing a mounting state of the heat conductive member, and FIG. 11 is a movable imaging unit according to the third embodiment. FIG. 11A is a horizontal sectional view of the optical axis portion of the imaging unit, and FIG. 11B is a longitudinal side view of the optical axis portion of the imaging unit. is there. The overall configuration of the camera is the same as that of the first embodiment, and the same parts as those shown in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施の形態3にかかる撮像ユニット25Bは、支持板31の裏面と第1の固定放熱板58の放熱面58aとの間に、熱伝導性部材70に代えて、熱伝導性部材90を配置させたものである。ここで、熱伝導性部材90は、例えば銅線等の熱伝導性素材をコイルばね状に形成することで可撓性を持たせたものである。そして、複数個の熱伝導性部材90が支持板31の裏面と第1の固定放熱板58との間に上下左右均等となるように分散配置されている。この際、熱伝導性部材90は、変形容易で常に支持板31の裏面と第1の固定放熱板58の放熱面58aとに接触するようにコイル状の両端が接触する向きに設定されている。また、コイル状の熱伝導性部材90の位置ズレを防止するため、例えば図11に示すように、支持板31および第1の固定放熱板58には、熱伝導性部材90の端部が差し込み係止される係止孔31a,58bが形成されている。   In the imaging unit 25B according to the third embodiment, a thermally conductive member 90 is disposed between the back surface of the support plate 31 and the heat radiation surface 58a of the first fixed heat radiation plate 58 instead of the heat conductive member 70. It has been made. Here, the heat conductive member 90 is made flexible by forming a heat conductive material such as a copper wire in a coil spring shape. A plurality of heat conductive members 90 are distributed and arranged between the back surface of the support plate 31 and the first fixed heat radiating plate 58 so as to be even in the vertical and horizontal directions. At this time, the heat conductive member 90 is set in a direction in which both ends of the coil form are in contact with each other so that the heat conductive member 90 is easily deformed and always contacts the back surface of the support plate 31 and the heat radiation surface 58a of the first fixed heat radiation plate 58. . Further, in order to prevent displacement of the coil-shaped heat conductive member 90, for example, as shown in FIG. 11, the end of the heat conductive member 90 is inserted into the support plate 31 and the first fixed heat sink 58. Locking holes 31a and 58b to be locked are formed.

このような構成において、撮像素子24はカメラ本体10内における主な発熱源となり、撮像素子24の駆動に伴い熱が発生する。撮像素子24により発生した熱は、放熱性を有する支持板31に伝達された後、熱伝導性の高い熱伝導性部材90を介して第1の固定放熱板58の放熱面58a側に伝達される。この際、空気層を伝達するよりも熱伝導性部材90によって熱伝達させることで、放熱面58a側に効率よく伝達させることができる。放熱面58aに伝達された熱は、放熱部材73を介して第2の固定放熱板72側に伝達され、液晶パネル17等の外装を介して外部に放熱される。   In such a configuration, the image sensor 24 becomes a main heat source in the camera body 10, and heat is generated as the image sensor 24 is driven. The heat generated by the image sensor 24 is transmitted to the heat radiating support plate 31, and then transmitted to the heat radiating surface 58a side of the first fixed heat radiating plate 58 via the heat conductive member 90 having high heat conductivity. The At this time, heat can be efficiently transmitted to the heat radiating surface 58a side by transmitting heat by the heat conductive member 90 rather than transmitting the air layer. The heat transmitted to the heat radiating surface 58a is transmitted to the second fixed heat radiating plate 72 side through the heat radiating member 73, and is radiated to the outside through the exterior such as the liquid crystal panel 17.

ところで、撮像素子24が搭載された支持板31は、駆動機構60による手ブレ補正時には、Y方向やX方向に変位移動される。ここで、本実施の形態の熱伝導性部材90は、コイル状に形成されて可撓性を有する銅線等の熱伝導性素材からなり、支持板31の変位移動に追従して変位する可撓性を有するので、常に両端が支持板31の裏面と放熱面58aとに接触する状態を維持して熱伝達効果を発揮させることができる。例えば、図12(a)は、第2の駆動機構62によって支持板31(撮像素子24)をX方向にΔXだけ変位移動させた場合を示す。この場合、熱伝導性部材90は、コイル状に形成されて変形しやすいので支持板31の変位移動に追従してX方向に斜め状態となり、支持板31の裏面と放熱面58aとに対する接触状態を維持する。また、図12(b)は、第1の駆動機構61によって支持板31(撮像素子24)をY方向にΔYだけ変位移動させた場合を示す。この場合、熱伝導性部材90は、コイル状に形成されて変形しやすいので支持板31の変位移動に追従してY方向に斜め状態となり、支持板31の裏面と放熱面58aとに対する接触状態を維持する。このような支持板31の変位移動に対する熱伝導性部材90の追従変形は軽負荷であり、支持板31の変位移動に対して支障を来たすこともなく、簡単な構造で実現することができる。   By the way, the support plate 31 on which the image pickup device 24 is mounted is displaced in the Y direction or the X direction during camera shake correction by the drive mechanism 60. Here, the heat conductive member 90 of the present embodiment is made of a heat conductive material such as a copper wire formed in a coil shape, and can be displaced following the displacement movement of the support plate 31. Since it has flexibility, it can always maintain the state which both ends contact the back surface of the support plate 31, and the thermal radiation surface 58a, and can exhibit a heat transfer effect. For example, FIG. 12A shows a case where the support plate 31 (image sensor 24) is displaced by ΔX in the X direction by the second drive mechanism 62. FIG. In this case, since the heat conductive member 90 is formed in a coil shape and is easily deformed, the heat conductive member 90 is inclined in the X direction following the displacement movement of the support plate 31, and is in contact with the back surface of the support plate 31 and the heat radiation surface 58a. To maintain. FIG. 12B shows a case where the first driving mechanism 61 moves the support plate 31 (imaging device 24) by ΔY in the Y direction. In this case, since the heat conductive member 90 is formed in a coil shape and is easily deformed, the heat conductive member 90 is inclined in the Y direction following the displacement movement of the support plate 31, and is in contact with the back surface of the support plate 31 and the heat radiation surface 58a. To maintain. Such follow-up deformation of the heat conductive member 90 with respect to the displacement movement of the support plate 31 is a light load, and can be realized with a simple structure without causing any trouble with respect to the displacement movement of the support plate 31.

ここで、各実施の形態に基づく具体的構成例による放熱効果についての実施例を説明する。表1は、各実施の形態に基づく具体的構成例による放熱効果を従来例と対比して示すものである。   Here, the Example about the thermal radiation effect by the specific structural example based on each embodiment is demonstrated. Table 1 shows the heat radiation effect of the specific configuration example based on each embodiment in comparison with the conventional example.

Figure 2009284414
Figure 2009284414

表1において、(1)は、従来例構成による場合を示す。(2)は、実施の形態1の熱伝導性部材70を支持板31の裏面全体に敷き詰めた場合を示す。(3)は、実施の形態1の熱伝導性部材70を支持板31の裏面面積に対して75%占めるように分散配置させた場合を示し、(4)は、(3)と同様であるが50%占めるように分散配置させた場合を示し、(5)は、(3)と同様であるが25%占めるように分散配置させた場合を示す。また、(6)は、厚さ0.1mm、幅2mmのグラファイトをリング状にした実施の形態2の熱伝導性部材80を10個分散配置させた場合を示す。さらに、(7)は、線径0.25mm、長さ5mmの銅線をコイル状にした実施の形態3の熱伝導性部材90を10個分散配置させた場合を示す。   In Table 1, (1) shows the case of the conventional configuration. (2) shows the case where the heat conductive member 70 of Embodiment 1 is spread over the entire back surface of the support plate 31. (3) shows a case where the heat conductive member 70 of the first embodiment is dispersedly arranged so as to occupy 75% of the back surface area of the support plate 31, and (4) is the same as (3). Shows a case where 50% is distributed and arranged so as to occupy 50%, and (5) is the same as (3) but shows a case where 25% is distributed and arranged. Further, (6) shows a case where ten heat conductive members 80 of the second embodiment in which graphite having a thickness of 0.1 mm and a width of 2 mm is formed in a ring shape are dispersedly arranged. Furthermore, (7) shows a case where ten thermally conductive members 90 of Embodiment 3 in which a copper wire having a wire diameter of 0.25 mm and a length of 5 mm is coiled are arranged in a distributed manner.

放熱効果を確認するための実験としては、撮像装置に任意の発熱量を与え、放熱先である外気温度が40℃の場合の各部(撮像装置自体、第1の保持部材58、第1の駆動機構61、第2の保持部材52、第2の駆動機構62、固定部材53)の温度を測定したものである。ここで、放熱による目標温度としては、70℃以下となればよいものとする。   As an experiment for confirming the heat radiation effect, an arbitrary heat generation amount is given to the image pickup device, and each part (the image pickup device itself, the first holding member 58, the first drive) when the outside air temperature as the heat release destination is 40 ° C. The temperature of the mechanism 61, the second holding member 52, the second drive mechanism 62, and the fixing member 53) is measured. Here, the target temperature by heat radiation should just be 70 degrees C or less.

表1に示す放熱効果の結果によれば、まず、空気層に依存する従来例の場合には放熱効果が低く、目標温度以下に低減していないことが判る。また、(2)〜(5)の場合、各部の温度を目標温度以下に低減させ得る放熱効果が得られ、熱伝導性部材70の比率が高い程、放熱効果が高いことが判る。反面、熱伝導性部材70の比率が高くなり、特に、熱伝導性部材70を支持板31の裏面全体に敷き詰めた場合には、熱伝導性部材70が変形しにくくなり、支持板31の変位移動時の負荷が大きくなるので、負荷とのバランスが採れる比率で熱伝導性部材70を分散配置させることが好ましい。また、(6)や(7)のの場合も、各部の温度を目標温度以下に低減させ得る放熱効果が得られることが判る。   According to the results of the heat dissipation effect shown in Table 1, it can be seen that, in the case of the conventional example that depends on the air layer, the heat dissipation effect is low and not reduced below the target temperature. Moreover, in the case of (2)-(5), the thermal radiation effect which can reduce the temperature of each part to below target temperature is acquired, and it turns out that the thermal radiation effect is so high that the ratio of the heat conductive member 70 is high. On the other hand, the ratio of the heat conductive member 70 is increased. In particular, when the heat conductive member 70 is spread over the entire back surface of the support plate 31, the heat conductive member 70 becomes difficult to deform, and the displacement of the support plate 31 is increased. Since the load at the time of movement becomes large, it is preferable to disperse and arrange the heat conductive members 70 at a ratio that can balance the load. Also, in the cases of (6) and (7), it can be seen that a heat dissipation effect that can reduce the temperature of each part below the target temperature is obtained.

本発明は、上述した各実施の形態に限らず、本発明の趣旨を逸脱しない範囲であれば、種々の変形が可能である。例えば、各実施の形態1〜3に示した熱伝導性部材70,80,90を適宜組合せて配置させてもよい。例えば、円柱状の熱伝導性部材70を分散配置させるとともに、熱伝導性部材70間の適宜箇所にコイル状の熱伝導性部材90を分散配置させるようにしてもよい。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, the heat conductive members 70, 80, 90 shown in the first to third embodiments may be appropriately combined and arranged. For example, the cylindrical thermal conductive members 70 may be dispersedly arranged, and the coiled thermal conductive members 90 may be dispersedly arranged at appropriate positions between the thermal conductive members 70.

また、支持板31の裏面と放熱面58aとの間に配置させる熱伝導性部材は、熱伝導性部材70,80,90のような例に限らず、例えば、銅線等の熱伝導性の良好な熱伝導性素材をほうき状ないしは筆状に束ねることで可撓性を持たせた熱伝導性部材とし、一端を放熱面58a側に固定し、他端側が支持面31の裏面に常に追従接触するように配置させてもよい。或いは、シリコンシート中に複数の穴を巣穴状に形成することで可撓性を持たせた発泡材を熱伝導性部材として用いるようにしてもよい。   Moreover, the heat conductive member arrange | positioned between the back surface of the support plate 31 and the thermal radiation surface 58a is not restricted to an example like the heat conductive members 70, 80, 90, For example, heat conductive members, such as a copper wire, are used. A heat conductive member is made flexible by bundling a good heat conductive material in a broom or brush shape, one end is fixed to the heat radiating surface 58a side, and the other end always follows the back surface of the support surface 31. You may arrange | position so that it may contact. Or you may make it use as a heat conductive member the foaming material which gave flexibility by forming a some hole in a silicon | silicone sheet | seat in the shape of a burrow.

また、本実施の形態では、固定部材53と支持板31との間に第1の保持部材51、第2の保持部材52を介在させた2段構造とし、支持板31を搭載した第1の保持部材51を第1の駆動機構61によって第2の保持部材52に対してY方向に変位可能とし、第2の保持部材52を第2の駆動機構62によって固定部材53に対してX方向に変位可能とすることで、光軸に直交する2次元方向に変位移動させるようにした。しかし、このような2段構造に限らず、固定部材に対して支持板(第1の保持部材)を直接的にXY方向に変位可能とした1段の平面的な構造とし、第1、第2の駆動機構によって固定部材に対して直接的にY方向、X方向に変位移動させる駆動機構であってもよい。   In the present embodiment, the first holding member 51 and the second holding member 52 are interposed between the fixing member 53 and the supporting plate 31, and the first holding member 31 is mounted. The holding member 51 can be displaced in the Y direction with respect to the second holding member 52 by the first drive mechanism 61, and the second holding member 52 can be displaced in the X direction with respect to the fixed member 53 by the second drive mechanism 62. By making it displaceable, it was displaced in a two-dimensional direction orthogonal to the optical axis. However, the present invention is not limited to such a two-stage structure, but has a one-stage planar structure in which the support plate (first holding member) can be directly displaced in the XY direction with respect to the fixing member. It may be a drive mechanism that is displaced in the Y direction and the X direction directly with respect to the fixed member by the two drive mechanisms.

また、撮像装置としてはレンズ交換可能な一眼レフレックス式デジタルカメラに限らず、例えばコンパクト型のデジタルカメラや、撮影機能を有する携帯電話、携帯情報端末、ノート型パーソナルコンピュタ、電子医療機器などであっても同様に適用することができる。   The imaging device is not limited to a single-lens reflex digital camera with interchangeable lenses, but may be a compact digital camera, a mobile phone having a photographing function, a personal digital assistant, a notebook personal computer, an electronic medical device, or the like. However, the same can be applied.

さらには、この種のカメラにあっては、CCDデバイスの備える画素数より高い画素数で撮影する画素ずらし法という手法がある。例えば、普通に撮影した画像と,撮像素子を載せた可動部が1/2画素ずつ斜めに変位させて撮影した2枚の画像を連続撮影し、シャッタースピードが半分とする技術である。よって、撮像素子24を手ブレ防止のために光軸Oに直交する2次元方向に変位移動させる場合に限らず、このように、画素ずらしのために撮像素子を光軸に直交する2次元方向に変位移動させる場合にも、本発明は適用可能である。   Furthermore, in this type of camera, there is a technique called a pixel shift method in which photographing is performed with a higher number of pixels than that of the CCD device. For example, this is a technique in which a normally taken image and two images taken by moving a movable part on which an image sensor is mounted obliquely by 1/2 pixel are continuously taken and the shutter speed is reduced to half. Therefore, the image pickup device 24 is not limited to the displacement movement in the two-dimensional direction orthogonal to the optical axis O in order to prevent camera shake, and thus the image pickup device is orthogonal to the optical axis in order to shift pixels. The present invention can also be applied to the case of displacement.

本発明の実施の形態1の一眼レフレックス式デジタルカメラのカメラ本体の内部構造の概略を示す中央縦断正面図である。1 is a central longitudinal front view showing an outline of an internal structure of a camera body of a single-lens reflex digital camera according to Embodiment 1 of the present invention. 内部構造の概略を示すレンズ光軸上での縦断側面図である。It is a vertical side view on the lens optical axis which shows the outline of an internal structure. 内部構造の概略を示すレンズ光軸上での水平断面図である。It is a horizontal sectional view on the lens optical axis showing the outline of the internal structure. 熱伝導性部材を示す斜視図である。It is a perspective view which shows a heat conductive member. 実施の形態1にかかる可動時の撮像ユニット部分を抽出して示し、(a)は、撮像ユニットの光軸部分での水平断面図であり、(b)は、撮像ユニットの光軸部分での縦断側面図である。FIG. 3A shows an extracted imaging unit portion when moving according to the first embodiment, and (a) is a horizontal sectional view of the optical axis portion of the imaging unit, and (b) is an optical axis portion of the imaging unit. It is a vertical side view. 従来例と対比して示すモデル化した熱回路構成図である。It is the modeled thermal circuit block diagram shown contrasting with a prior art example. 本発明の実施の形態2にかかる撮像ユニット部分を抽出して示し、(a)は、撮像ユニットの光軸部分での水平断面図であり、(b)は、撮像ユニットの光軸部分での縦断側面図である。FIG. 3 shows an image pickup unit portion according to a second embodiment of the present invention, in which (a) is a horizontal sectional view of the optical axis portion of the image pickup unit, and (b) is an optical axis portion of the image pickup unit. It is a vertical side view. 熱伝導性部材を示す斜視図である。It is a perspective view which shows a heat conductive member. 実施の形態2にかかる可動時の撮像ユニット部分を抽出して示し、(a)は、撮像ユニットの光軸部分での水平断面図であり、(b)は、撮像ユニットの光軸部分での縦断側面図である。FIG. 4B shows an extracted imaging unit portion when moving according to the second embodiment, where (a) is a horizontal sectional view of the optical axis portion of the imaging unit, and (b) is an optical axis portion of the imaging unit. It is a vertical side view. 本発明の実施の形態3にかかる撮像ユニット部分を抽出して示し、(a)は、撮像ユニットの光軸部分での水平断面図であり、(b)は、撮像ユニットの光軸部分での縦断側面図である。FIG. 3A shows an image pickup unit portion according to a third embodiment of the present invention, and FIG. 4A is a horizontal cross-sectional view at the optical axis portion of the image pickup unit, and FIG. It is a vertical side view. 熱伝導性部材の取り付け状態を示す断面図である。It is sectional drawing which shows the attachment state of a heat conductive member. 実施の形態3にかかる可動時の撮像ユニット部分を抽出して示し、(a)は、撮像ユニットの光軸部分での水平断面図であり、(b)は、撮像ユニットの光軸部分での縦断側面図である。FIG. 4B shows an extracted imaging unit portion when moving according to the third embodiment, (a) is a horizontal sectional view of the optical axis portion of the imaging unit, and (b) is an optical axis portion of the imaging unit. It is a vertical side view.

符号の説明Explanation of symbols

10 カメラ本体
11 撮影レンズ
24 撮像素子
31 支持板
53 固定部材
58a 放熱面
60 駆動機構
70,80,90 熱伝導性部材
DESCRIPTION OF SYMBOLS 10 Camera body 11 Shooting lens 24 Image pick-up element 31 Support plate 53 Fixing member 58a Heat radiation surface 60 Drive mechanism 70, 80, 90 Thermally conductive member

Claims (5)

撮影レンズの光軸上に該光軸と直交するように配置されて前記撮影レンズによる被写体像が結像される撮像素子と、
該撮像素子が表面に搭載された放熱性を有する支持板と、
該支持板の裏面に対向する位置に放熱面を一体に有して固定配置される固定部材と、
前記撮像素子が搭載された前記支持板を前記固定部材に対して前記光軸に直交する2次元方向に変位移動させる駆動機構と、
前記支持板の2次元方向の変位移動に追従して変位する可撓性を有して前記支持板の裏面と前記放熱面との間に配置されて常に該支持板の裏面と該放熱面とに接触する熱伝導性部材と、
を備えることを特徴とする撮像ユニット。
An image sensor that is arranged on the optical axis of the photographic lens so as to be orthogonal to the optical axis and forms a subject image by the photographic lens;
A heat-radiating support plate on which the imaging element is mounted;
A fixing member that is fixedly arranged with a heat radiation surface integrally at a position facing the back surface of the support plate;
A drive mechanism for displacing and moving the support plate on which the imaging element is mounted in a two-dimensional direction perpendicular to the optical axis with respect to the fixed member;
The support plate has flexibility to follow the displacement movement of the support plate in a two-dimensional direction and is arranged between the back surface of the support plate and the heat radiating surface and is always disposed between the back surface of the support plate and the heat radiating surface. A thermally conductive member in contact with,
An imaging unit comprising:
前記熱伝導性部材は、柱形状に形成された熱伝導性柔軟素材からなり、柱形状の両端が接触する向きに設定されて前記支持板の裏面と前記放熱面との間に分散配置されていることを特徴とする請求項1に記載の撮像ユニット。   The thermally conductive member is made of a thermally conductive flexible material formed in a columnar shape, and is arranged in a direction in which both ends of the columnar shape are in contact with each other and distributed between the back surface of the support plate and the heat dissipation surface. The imaging unit according to claim 1, wherein: 前記熱伝導性部材は、帯状リングの形状に形成されて可撓性を有する熱伝導性シートからなり、前記帯状リングの直径端が接触する向きに設定されて前記支持板の裏面と前記放熱面との間に分散配置されていることを特徴とする請求項1に記載の撮像ユニット。   The heat conductive member is formed of a flexible heat conductive sheet formed in the shape of a belt-shaped ring, and is set in a direction in which the diameter ends of the belt-shaped ring are in contact with each other so that the back surface of the support plate and the heat dissipation surface The imaging unit according to claim 1, wherein the imaging units are arranged in a distributed manner. 前記熱伝導性部材は、コイル状に形成されて可撓性を有する熱伝導性素材からなり、コイル状の両端が接触する向きに設定されて前記支持板の裏面と前記放熱面との間に分散配置されていることを特徴とする請求項1に記載の撮像ユニット。   The heat conductive member is formed in a coil shape and is made of a heat conductive material having flexibility, and is set in a direction in which both ends of the coil shape are in contact with each other between the back surface of the support plate and the heat dissipation surface. The imaging unit according to claim 1, wherein the imaging units are distributedly arranged. 請求項1〜4のいずれか一つに記載の撮像ユニットと、
前記撮影レンズを搭載し前記固定部材を固定配置させて前記撮像ユニットを内蔵するカメラ本体と、
を備えることを特徴とする撮像装置。
The imaging unit according to any one of claims 1 to 4,
A camera body in which the photographing lens is mounted and the fixing member is fixedly arranged to incorporate the imaging unit;
An imaging apparatus comprising:
JP2008136732A 2008-05-26 2008-05-26 Imaging unit and imaging apparatus Withdrawn JP2009284414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008136732A JP2009284414A (en) 2008-05-26 2008-05-26 Imaging unit and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008136732A JP2009284414A (en) 2008-05-26 2008-05-26 Imaging unit and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2009284414A true JP2009284414A (en) 2009-12-03

Family

ID=41454357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008136732A Withdrawn JP2009284414A (en) 2008-05-26 2008-05-26 Imaging unit and imaging apparatus

Country Status (1)

Country Link
JP (1) JP2009284414A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128138A (en) * 2010-12-15 2012-07-05 Canon Inc Image pickup apparatus and control method of image pickup apparatus
CN102854714A (en) * 2012-08-16 2013-01-02 浙江宇视科技有限公司 Heat dissipation device of zoom camera
CN114531525A (en) * 2020-11-03 2022-05-24 宁波舜宇光电信息有限公司 Camera module main structure, camera module and terminal equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128138A (en) * 2010-12-15 2012-07-05 Canon Inc Image pickup apparatus and control method of image pickup apparatus
CN102854714A (en) * 2012-08-16 2013-01-02 浙江宇视科技有限公司 Heat dissipation device of zoom camera
CN114531525A (en) * 2020-11-03 2022-05-24 宁波舜宇光电信息有限公司 Camera module main structure, camera module and terminal equipment
CN114531525B (en) * 2020-11-03 2024-03-05 宁波舜宇光电信息有限公司 Camera module main body structure, camera module and terminal equipment

Similar Documents

Publication Publication Date Title
JP4083521B2 (en) Imaging device
JP4770854B2 (en) Digital camera
WO2022252699A1 (en) Photographing module and assembling method therefor, and electronic device
US10250785B2 (en) Electronic apparatus capable of efficient and uniform heat dissipation
JP2010268133A (en) Imaging unit and electronic camera including the same
JP5315439B2 (en) Imaging unit and imaging apparatus
JP5168047B2 (en) camera
JP2009100374A (en) Image sensor cooling unit, photographing lens unit, and electronic apparatus
JP5009250B2 (en) Imaging unit and imaging apparatus
JP2009284414A (en) Imaging unit and imaging apparatus
JP2015088888A (en) Heat radiation structure for imaging device
JP5952111B2 (en) Imaging device
JP2010193308A (en) Image capturing unit
JP2013197974A (en) Imaging apparatus
JP2008278382A (en) Imaging element module, photographing lens unit using imaging element module, and electronic equipment
JP2009141609A (en) Electronic camera and lens unit
JP2010041127A (en) Image capturing apparatus
JP2014158121A (en) Cooling method of imaging apparatus
JP5082546B2 (en) Projector device
JP2008245107A (en) Imaging element module and electronic device
JP5820607B2 (en) Imaging apparatus and imaging system
JP7542032B2 (en) Imaging device
JP2008277664A (en) Image sensor module and electronic apparatus
WO2024157739A1 (en) Imaging device and image blur correction mechanism having heat-dissipating structure
JP2015219288A (en) Focus adjustment device, camera and optical device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802