JP2009283638A - Method of manufacturing waveguide type photodetector - Google Patents

Method of manufacturing waveguide type photodetector Download PDF

Info

Publication number
JP2009283638A
JP2009283638A JP2008133620A JP2008133620A JP2009283638A JP 2009283638 A JP2009283638 A JP 2009283638A JP 2008133620 A JP2008133620 A JP 2008133620A JP 2008133620 A JP2008133620 A JP 2008133620A JP 2009283638 A JP2009283638 A JP 2009283638A
Authority
JP
Japan
Prior art keywords
waveguide
type
rib
semiconductor
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008133620A
Other languages
Japanese (ja)
Other versions
JP4878356B2 (en
Inventor
Koji Yamada
浩治 山田
Seiichi Itabashi
聖一 板橋
Toshibumi Watanabe
俊文 渡辺
Yasushi Tsuchizawa
泰 土澤
Hiroyuki Shinojima
弘幸 篠島
Hidetaka Nishi
英隆 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008133620A priority Critical patent/JP4878356B2/en
Publication of JP2009283638A publication Critical patent/JP2009283638A/en
Application granted granted Critical
Publication of JP4878356B2 publication Critical patent/JP4878356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a waveguide type photodetector, wherein a lattice defect concentrates only on the center portion of a rib-type waveguide of a semiconductor even in the case of using an exposure apparatus of which the resolution is equal to or higher than the width of the rib-type waveguide. <P>SOLUTION: In the method of manufacturing a waveguide type photodetector wherein a rib-type waveguide 1 made of a semiconductor has a lattice defect 7 in the center portion and slab portions 2 on both sides of the rib-type waveguide 1 are a p-type semiconductor and an n-type semiconductor respectively, the lattice defect 7 of the rib-type waveguide 1 is formed by: an ion implantation process of implanting ions to a prescribed region including a portion which forms the lattice defect 7 until the prescribed region is made amorphous from a single crystalline state into an amorphous region 5 after the rib-type waveguide 1 and the slab portions 2 are formed; and a heat treatment process of applying heat after the ion implantation process until the amorphous region 5 is recrystallized (RC) from both outer sides of the amorphous region 5 toward the center portion of the rib-type waveguide 1 to have a desired width. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体の光導波路と同一の基板上に形成され、これと接続される導波路型受光器の製造方法に関する。   The present invention relates to a method of manufacturing a waveguide type light receiver formed on the same substrate as a semiconductor optical waveguide and connected thereto.

半導体であるシリコンをコアに用いた電磁波導波路は、一般にシリコン酸化膜をクラッド層に用いており、その比屈折率差は約0.4と、石英系導波路に比べ数10倍大きく、屈折率差による閉じ込め効果が非常に大きくなっている。光通信用の波長1.55μm付近の電磁波に対して、単一モード条件を満たすコア寸法は500×200nm程度となり、石英系導波路の数100分の1の断面積となる。また、この高屈折率差のため数ミクロンの微小な曲げ半径が可能であり微小な光集積回路を形成することができる。また、シリコンは電子デバイスの製造にも利用され、電磁波導波路と電子デバイスを組み合わせたオプトエレクトロニクスデバイスの開発も検討されている。   An electromagnetic wave waveguide using silicon, which is a semiconductor, as a core generally uses a silicon oxide film as a cladding layer, and its relative refractive index difference is about 0.4, which is several tens of times larger than that of a silica-based waveguide. The confinement effect due to the rate difference is very large. For an electromagnetic wave having a wavelength of about 1.55 μm for optical communication, the core size satisfying the single mode condition is about 500 × 200 nm, which is a cross-sectional area of several hundredths of that of a silica-based waveguide. Further, because of this high refractive index difference, a minute bending radius of several microns is possible, and a minute optical integrated circuit can be formed. Silicon is also used in the manufacture of electronic devices, and development of optoelectronic devices combining electromagnetic wave waveguides and electronic devices is also being studied.

ところで、上記のようなシリコン電磁波導波路を光通信システムの一部として使用するためには、光検出器と結合して光を受光する必要がある。このため、図1に示すような導波路型受光器が提案されている(非特許文献1を参照。)。図1は、導波路型受光器の構造を説明する断面図である。図1の導波路型受光器は、光が伝搬するリブ型導波路1の両サイドのスラブ部2の表面を高濃度不純物p型半導体14および高濃度不純物n型半導体16とし、リブ型導波路1の側面及びリブ型導波路1近傍のスラブ部2の表面を低濃度不純物p型半導体15および低濃度不純物n型半導体17とし、リブ型導波路1に格子欠陥7を有する。通常、シリコンは通信用の波長1.55μm付近の光を吸収しないため、この波長帯域で光検出器にはならないが、リブ型導波路1に格子欠陥7を形成すると、光を吸収してキャリアを生成する。図1の導波路型受光器は、金属11、高濃度不純物p型半導体14および高濃度不純物n型半導体16を介して、低濃度不純物p型半導体15と低濃度不純物n型半導体17との間に逆バイアスを印加することで、このキャリアを外部回路に取り出すことができ、受光器として動作が可能となる。   By the way, in order to use the silicon electromagnetic wave waveguide as described above as a part of the optical communication system, it is necessary to receive light in combination with a photodetector. For this reason, a waveguide type light receiver as shown in FIG. 1 has been proposed (see Non-Patent Document 1). FIG. 1 is a cross-sectional view illustrating the structure of a waveguide type light receiver. The waveguide type light receiver shown in FIG. 1 has a surface of the slab portion 2 on both sides of the rib-type waveguide 1 through which light propagates as a high-concentration impurity p-type semiconductor 14 and a high-concentration impurity n-type semiconductor 16. The side surface of 1 and the surface of the slab portion 2 in the vicinity of the rib-type waveguide 1 are a low-concentration impurity p-type semiconductor 15 and a low-concentration impurity n-type semiconductor 17, and the rib-type waveguide 1 has a lattice defect 7. Normally, silicon does not absorb light in the vicinity of a wavelength of 1.55 μm for communication, so it does not serve as a photodetector in this wavelength band. However, if a lattice defect 7 is formed in the rib-type waveguide 1, the light is absorbed and the carrier is absorbed. Is generated. The waveguide type light receiver shown in FIG. 1 is provided between a low-concentration impurity p-type semiconductor 15 and a low-concentration impurity n-type semiconductor 17 via a metal 11, a high-concentration impurity p-type semiconductor 14, and a high-concentration impurity n-type semiconductor 16. By applying a reverse bias to the carrier, this carrier can be taken out to an external circuit and can operate as a light receiver.

格子欠陥7は、アルゴンやヘリウムなどの希ガス元素、あるいはシリコンなどをイオン注入して形成する。具体的には、リブ型導波路のうち格子欠陥を形成する部分のみ開口させたマスクをリソグラフィ工程により形成した後にイオン注入する。マスクが形成された部分にはイオン注入されずに開口部のみイオン注入され、開口部のシリコンに格子欠陥が形成される。
M.W.Geis他、“CMOS−Compatible All−Si High−Speed Waveguide Photodiodes With High Responsivity in Near−Infrared Communication Band”, IEEE Photonics Technology Letters, vol.19,No.3,pp.152−154(2007) “Source/Drain Ion Implantation into Ultra−Thin−Single−Crystalline−Silicon−Layer of Separation by Implanted Oxygen (SIMOX)Wafers”,Jpn.J.Appl.Phys.Vol.35(1996)pp. 5237−5241,Part 1, No.10. 山田浩治 他、”シリコンの非線形光学効果とその応用”,光学 第37巻1号,pp.27−34(2008)
The lattice defect 7 is formed by ion implantation of a rare gas element such as argon or helium or silicon. Specifically, a mask in which only a portion where a lattice defect is to be formed in the rib waveguide is formed by a lithography process, and then ion implantation is performed. Only the opening is not implanted into the portion where the mask is formed, and lattice defects are formed in the silicon in the opening.
M.M. W. Geis et al., “CMOS-Compatible All-Si High-Speed Waveguide Photodiodes With High Responsibility in Near-Infrared Communication Band.” 19, no. 3, pp. 152-154 (2007) “Source / Drain Ion Implantation into Ultra-Thin-Single-Crystalline-Silicon-Layer of Separated by Oxygen (SIMOX) Wafers”, Jpn. J. et al. Appl. Phys. Vol. 35 (1996) pp. 5237-5241, Part 1, no. 10. Koji Yamada et al., “Nonlinear optical effect of silicon and its application”, optics 37, 1, pp. 27-34 (2008)

ここで、マスクの開口部がスラブ部まで広がり、スラブ部まで格子欠陥が形成された場合、逆バイアス印加時に格子欠陥を通じて電流(暗電流)が流れてしまい最低受光感度が劣化することになる。このような暗電流を防止するためには格子欠陥をリブ型導波路の中央部にのみに正確に形成する必要がある。このため、マスクの開口部をリブ型導波路の幅以下にする必要があり、リソグラフィ工程の露光装置にはリブ型導波路の幅以下の解像度が求められる。しかし、上述のようにリブ型導波路の幅は500nm程度であり、格子欠陥をリブ型導波路の中央部にのみに正確に形成するためには、解像度が500nmよりも十分小さい電子ビームや深紫外光(DUV)を用いた高価で普及数の少ない露光装置が必要になるという課題があった。   Here, when the opening of the mask extends to the slab part and a lattice defect is formed to the slab part, a current (dark current) flows through the lattice defect when the reverse bias is applied, and the minimum light receiving sensitivity is deteriorated. In order to prevent such dark current, it is necessary to accurately form a lattice defect only in the central portion of the rib waveguide. For this reason, it is necessary to make the opening of the mask equal to or smaller than the width of the rib waveguide, and the exposure apparatus in the lithography process is required to have a resolution equal to or smaller than the width of the rib waveguide. However, as described above, the width of the rib-type waveguide is about 500 nm, and in order to accurately form a lattice defect only in the central portion of the rib-type waveguide, an electron beam or a depth sufficiently smaller than 500 nm is used. There was a problem that an expensive and low-exposure exposure apparatus using ultraviolet light (DUV) was required.

そこで、本発明は、上記課題を解決するためになされたもので、解像度がリブ型導波路の幅以上の露光装置を使用しても格子欠陥が導波路のリブ型導波路の中央部にのみに集中する導波路型受光器の製造方法を提供することを目的とする。   Therefore, the present invention has been made to solve the above problems, and even when an exposure apparatus having a resolution equal to or larger than the width of the rib-type waveguide is used, the lattice defect is only in the central portion of the rib-type waveguide of the waveguide. An object of the present invention is to provide a method for manufacturing a waveguide type light receiver that concentrates on the substrate.

前記目的を達成するために、本発明に係る導波路型受光器の製造方法は、リブ型導波路に形成する格子欠陥の幅よりも広い範囲にイオン注入を行うことにより半導体に非晶質の領域を形成する工程と、熱処理を行うことにより格子欠陥をリブ部中央部に集中させて形成する工程とを有する。   In order to achieve the above object, a method for manufacturing a waveguide-type light receiver according to the present invention is characterized in that a semiconductor is made amorphous by performing ion implantation in a range wider than the width of a lattice defect formed in a rib-type waveguide. A step of forming a region, and a step of concentrating and forming lattice defects at the center of the rib portion by performing heat treatment.

具体的には、本発明に係る導波路型受光器の製造方法は、半導体のリブ型導波路が中央部に格子欠陥を有し、前記リブ型導波路の両側にあるスラブ部のそれぞれがp型半導体及びn型半導体である導波路型受光器の製造方法であって、前記リブ型導波路の前記格子欠陥を、前記リブ型導波路及び前記スラブ部を形成した後に、前記格子欠陥を形成する部分を含む所定領域が単結晶から非晶質化して非晶質領域となるまで前記所定領域にイオンを注入するイオン注入工程と、イオン注入工程の後に、前記非晶質領域の両外側から前記リブ型導波路の中央部に向かって前記非晶質領域を再結晶化させ、前記非晶質領域が所望の幅になるまで熱を加える熱処理工程と、で形成することを特徴とする。   Specifically, in the method for manufacturing a waveguide type photoreceiver according to the present invention, a semiconductor rib-type waveguide has a lattice defect at the center, and each of the slab portions on both sides of the rib-type waveguide is p. A method of manufacturing a waveguide type photoreceiver that is an n-type semiconductor and an n-type semiconductor, wherein the lattice defect of the rib-type waveguide is formed, and after the rib-type waveguide and the slab portion are formed, the lattice defect is formed An ion implantation step of implanting ions into the predetermined region until the predetermined region including the portion to be amorphized from the single crystal becomes an amorphous region, and after the ion implantation step, from both outer sides of the amorphous region The amorphous region is recrystallized toward the central portion of the rib-type waveguide, and is formed by a heat treatment process in which heat is applied until the amorphous region has a desired width.

イオン注入工程で半導体にはイオン注入された非晶質領域と非晶質領域の外周にイオン注入されず単結晶のまま残った単結晶領域とが形成される。熱処理工程で、熱処理を行うと、非晶質領域は単結晶領域を種結晶として固相エピタキシャル回復により外側から中央部へと再結晶化が進行する。このため、非晶質領域がリブ型導波路に形成する格子欠陥の幅より広くても、熱処理の温度や時間を調整することで所望の格子欠陥の幅とすることができる。   In the ion implantation process, the semiconductor is formed with an amorphous region which is ion-implanted and a single-crystal region which is left without being implanted into the periphery of the amorphous region. When heat treatment is performed in the heat treatment step, the amorphous region is recrystallized from the outside to the center by solid phase epitaxial recovery using the single crystal region as a seed crystal. Therefore, even if the amorphous region is wider than the width of the lattice defect formed in the rib-type waveguide, the desired lattice defect width can be obtained by adjusting the temperature and time of the heat treatment.

従って、本発明は、解像度がリブ型導波路の幅以上の露光装置を使用しても格子欠陥が導波路のリブ型導波路の中央部にのみに集中する導波路型受光器の製造方法を提供することができる。   Therefore, the present invention provides a method for manufacturing a waveguide type light receiving device in which lattice defects are concentrated only in the central portion of the rib type waveguide of the waveguide even when an exposure apparatus having a resolution equal to or larger than the width of the rib type waveguide is used. Can be provided.

導波路型受光器の前記リブ型導波路及び前記スラブ部の半導体は、シリコンとすることができる。光通信用の波長1.55μm付近の光を受光できる導波路型受光器を製造することができる。   The rib-type waveguide of the waveguide-type photodetector and the semiconductor of the slab portion can be silicon. A waveguide type light receiver capable of receiving light having a wavelength of about 1.55 μm for optical communication can be manufactured.

本発明に係る導波路型受光器の製造方法の前記イオン注入工程で注入するイオンは、希ガス、シリコン又はゲルマニウムのイオンであることが好ましい。シリコン中でもn型或いはp型不純物とならないため、導波路型受光器の特性を維持できる。   The ions to be implanted in the ion implantation step of the method for manufacturing a waveguide type light receiver according to the present invention are preferably noble gas, silicon or germanium ions. Since it does not become an n-type or p-type impurity even in silicon, the characteristics of the waveguide type light receiver can be maintained.

本発明に係る導波路型受光器の製造方法の前記熱処理工程では、600℃以上1000℃以下の熱を加えることが好ましい。まず固相エピタキシャル成長では、結晶シリコン中で格子欠陥や原子が移動可能となる600℃以上に加熱する必要がある。一方、900℃において15分の短時間で転位ループが形成されていることが報告されている(例えば、非特許文献3を参照。)。このため、1000℃を超えると格子欠陥の移動が激しくなり、転位ループの形成が秒単位で進行すると推測され、その結果として非常に大きな転位ループの形成を通じて、格子欠陥が消失してしまう可能性がある。従って、600℃以上1000℃以下の熱処理とすることで、所望の特性の転位ループを制御性良く形成することができる。   In the heat treatment step of the waveguide type light receiving device manufacturing method according to the present invention, it is preferable to apply heat of 600 ° C. to 1000 ° C. First, in solid phase epitaxial growth, it is necessary to heat to 600 ° C. or higher at which lattice defects and atoms can move in crystalline silicon. On the other hand, it has been reported that a dislocation loop is formed in 900 minutes at a short time of 15 minutes (see, for example, Non-Patent Document 3). For this reason, when the temperature exceeds 1000 ° C., the movement of lattice defects becomes severe, and it is estimated that the formation of dislocation loops proceeds in seconds. As a result, the lattice defects may disappear through the formation of very large dislocation loops. There is. Therefore, dislocation loops with desired characteristics can be formed with good controllability by heat treatment at 600 ° C. or higher and 1000 ° C. or lower.

本発明は、解像度がリブ型導波路の幅以上の露光装置を使用しても格子欠陥が導波路のリブ型導波路の中央部にのみに集中する導波路型受光器の製造方法を提供することができる。   The present invention provides a method of manufacturing a waveguide type light receiver in which lattice defects are concentrated only in the central portion of the rib type waveguide of the waveguide even if an exposure apparatus having a resolution equal to or greater than the width of the rib type waveguide is used. be able to.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment. In the present specification and drawings, the same reference numerals denote the same components.

図2から図5は、本実施形態の導波路型受光器の製造方法を説明する導波路型受光器の断面図である。   2 to 5 are cross-sectional views of the waveguide type light receiver for explaining the method for manufacturing the waveguide type light receiver of the present embodiment.

本実施形態の導波路型受光器の製造方法は、半導体のリブ型導波路1が中央部に格子欠陥7を有し、リブ型導波路1の両側にあるスラブ部2のそれぞれがp型半導体及びn型半導体である導波路型受光器の製造方法であって、リブ型導波路1の格子欠陥7を、リブ型導波路1及びスラブ部2を形成した後に、格子欠陥7を形成する部分を含む所定領域が単結晶から非晶質化して非晶質領域5となるまで所定領域にイオンを注入するイオン注入工程と、イオン注入工程の後に、非晶質領域5の両外側からリブ型導波路1の中央部に向かって非晶質領域5を再結晶化させ、非晶質領域5が所望の幅になるまで熱を加える熱処理工程と、で形成する。   In the method of manufacturing the waveguide type photoreceiver of the present embodiment, the semiconductor rib-type waveguide 1 has a lattice defect 7 in the center, and each of the slab portions 2 on both sides of the rib-type waveguide 1 is a p-type semiconductor. And a method of manufacturing a waveguide type optical receiver that is an n-type semiconductor, wherein the lattice defect 7 of the rib-type waveguide 1 is formed after the rib-type waveguide 1 and the slab portion 2 are formed. An ion implantation step in which ions are implanted into the predetermined region until the predetermined region containing amorphized from the single crystal becomes the amorphous region 5, and after the ion implantation step, a rib type is formed from both sides of the amorphous region 5 The amorphous region 5 is recrystallized toward the central portion of the waveguide 1 and is formed by a heat treatment process in which heat is applied until the amorphous region 5 has a desired width.

以下において、リブ型導波路1及びスラブ部2の半導体がシリコンであるとして説明するが、半導体はシリコンに限らずゲルマニウムや化合物半導体でも同様である。また、リブ型導波路の幅を500nmとして説明するが、この幅は500nmに限らず広くても狭くてもよい。   In the following description, it is assumed that the semiconductor of the rib-type waveguide 1 and the slab portion 2 is silicon. However, the semiconductor is not limited to silicon, and the same applies to germanium and compound semiconductors. Although the description will be given assuming that the width of the rib-type waveguide is 500 nm, this width is not limited to 500 nm and may be wide or narrow.

基板3は、例えば、シリコンウエハ上に形成された二酸化シリコン(SiO)層である。イオン注入工程までに基板3の上に単結晶シリコンでリブ型導波路1及びスラブ部2を形成しておく。図2は、イオン注入工程を説明する図である。まず、図2のように露光装置を用いリブ型導波路1よりも広い範囲にイオン注入制限用のマスク4を形成する。例えば、露光装置は、水銀ランプのg線紫外線を用いたような解像度が500nmよりも大きい普及した露光装置を用いることができる。図2においてマスク4の開口部はリブ型導波路1の幅より広く描かれているが、露光機の解像度に応じて図5の格子欠陥7の幅より広ければよい。 The substrate 3 is, for example, a silicon dioxide (SiO 2 ) layer formed on a silicon wafer. The rib-type waveguide 1 and the slab portion 2 are formed of single crystal silicon on the substrate 3 until the ion implantation step. FIG. 2 is a diagram illustrating an ion implantation process. First, as shown in FIG. 2, an ion implantation limiting mask 4 is formed in a wider area than the rib-type waveguide 1 using an exposure apparatus. For example, as the exposure apparatus, a widespread exposure apparatus having a resolution larger than 500 nm, such as that using g-ray ultraviolet rays of a mercury lamp, can be used. In FIG. 2, the opening of the mask 4 is drawn wider than the width of the rib-type waveguide 1, but may be wider than the width of the lattice defect 7 of FIG. 5 depending on the resolution of the exposure machine.

次いで、図2のようにリブ型導波路1及びスラブ部2の側からイオン注入I/Iを行う。イオン注入I/Iに用いられる元素は、アルゴン、クリプトン等の希ガス原子やシリコン、ゲルマニウム等のシリコン中でもn型不純物或いはp型不純物とならない元素のイオンを選択する必要がある。シリコン以外の半導体の場合、その半導体中でn型不純物或いはp型不純物とならない元素のイオンを選択する。   Next, as shown in FIG. 2, ion implantation I / I is performed from the rib-type waveguide 1 and slab part 2 side. As an element used for the ion implantation I / I, it is necessary to select ions of an element that does not become an n-type impurity or a p-type impurity even in a rare gas atom such as argon or krypton, or silicon such as silicon or germanium. In the case of a semiconductor other than silicon, ions of elements that do not become n-type impurities or p-type impurities in the semiconductor are selected.

図2のイオン注入工程で注入されたイオンによりマスク4の開口部であった範囲に格子間原子や空孔などの格子欠陥が生成される。イオン注入I/Iはシリコンが非晶質であるとみなせる格子欠陥密度が2×1022cm−3以上(例えば、非特許文献2を参照。)となるまで行う。イオン注入制限用のマスク4はイオン注入I/Iが完了した後に除去してもよい。図3は、イオン注入工程後の状態を説明する図である。図3のように、イオン注入工程後に非晶質領域5が形成される。非晶質領域5の外側は単結晶領域6である。 Lattice defects such as interstitial atoms and vacancies are generated in the range that was the opening of the mask 4 by the ions implanted in the ion implantation step of FIG. The ion implantation I / I is performed until the lattice defect density at which silicon can be regarded as amorphous becomes 2 × 10 22 cm −3 or more (for example, see Non-Patent Document 2). The mask 4 for limiting ion implantation may be removed after the ion implantation I / I is completed. FIG. 3 is a diagram for explaining the state after the ion implantation step. As shown in FIG. 3, the amorphous region 5 is formed after the ion implantation process. The outside of the amorphous region 5 is a single crystal region 6.

図4は、熱処理工程を説明する図である。非晶質領域5と単結晶領域6とが接触した状態で熱処理を行うと、単結晶領域6を種結晶として固相エピタキシャル回復により外側から中央部へと再結晶化RCが進行する。   FIG. 4 is a diagram for explaining the heat treatment process. When heat treatment is performed in a state where the amorphous region 5 and the single crystal region 6 are in contact with each other, recrystallization RC proceeds from the outside to the center by solid phase epitaxial recovery using the single crystal region 6 as a seed crystal.

図5は、熱処理工程後の状態を説明する図である。熱処理工程で非晶質領域5の両端から中央部へと進んだ再結晶化面は中央部で出会い、そこでは結晶面が一致せず図5のように転位等の格子欠陥7が形成される。熱処理工程の時間や温度を調整することで所望の幅の格子欠陥7を形成することができる。例えば、熱処理の温度は600℃以上1000℃以下とすることで、格子欠陥7の幅を精度良く制御できる。シリコン以外の半導体の場合、格子欠陥7の幅を精度良く制御できる温度とする。   FIG. 5 is a diagram for explaining the state after the heat treatment step. In the heat treatment step, the recrystallized plane that has advanced from both ends of the amorphous region 5 to the central portion meets at the central portion, where the crystal planes do not match and lattice defects 7 such as dislocations are formed as shown in FIG. . The lattice defect 7 having a desired width can be formed by adjusting the time and temperature of the heat treatment step. For example, the width of the lattice defect 7 can be accurately controlled by setting the temperature of the heat treatment to 600 ° C. or more and 1000 ° C. or less. In the case of a semiconductor other than silicon, the temperature is set so that the width of the lattice defect 7 can be accurately controlled.

熱処理工程の後に、スラブ部2の表面及びリブ型導波路1の側面をp型又はn型となるようにイオン注入をし、次いでAlやTiなどの金属を所定の位置に形成して図1のような導波路型受光器の構造とする。   After the heat treatment step, ion implantation is performed so that the surface of the slab portion 2 and the side surface of the rib-type waveguide 1 are p-type or n-type, and then a metal such as Al or Ti is formed at a predetermined position. A waveguide type light receiver structure as shown in FIG.

図2から図5で説明した製造方法を利用すれば、解像度が大きい、すなわち既に普及した露光装置を用いてイオン注入マスクを形成しても、狭いリブ型導波路の中央に格子欠陥を集中して形成することができる。このため、電磁波導波路と電子デバイスを組み合わせたオプトエレクトロニクスデバイスを安価かつ大量に製作することができる。   If the manufacturing method described with reference to FIGS. 2 to 5 is used, even if an ion implantation mask is formed using an exposure apparatus having a high resolution, that is, an already widespread exposure apparatus, lattice defects are concentrated at the center of a narrow rib-type waveguide. Can be formed. For this reason, an optoelectronic device combining an electromagnetic wave waveguide and an electronic device can be manufactured at low cost and in large quantities.

本発明に係る製造方法は導波路型受光器に限らず、電磁波導波路と電子デバイスを組み合わせたオプトエレクトロニクスデバイス等に適用することができる。   The manufacturing method according to the present invention is not limited to the waveguide type light receiver, but can be applied to an optoelectronic device in which an electromagnetic wave waveguide and an electronic device are combined.

導波路型受光器の構造を説明する図である。It is a figure explaining the structure of a waveguide type light receiver. 本発明に係る導波路型受光器の製造方法を説明する導波路型受光器の断面図である。It is sectional drawing of the waveguide type light receiver explaining the manufacturing method of the waveguide type light receiver which concerns on this invention. 本発明に係る導波路型受光器の製造方法を説明する導波路型受光器の断面図である。It is sectional drawing of the waveguide type light receiver explaining the manufacturing method of the waveguide type light receiver which concerns on this invention. 本発明に係る導波路型受光器の製造方法を説明する導波路型受光器の断面図である。It is sectional drawing of the waveguide type light receiver explaining the manufacturing method of the waveguide type light receiver which concerns on this invention. 本発明に係る導波路型受光器の製造方法を説明する導波路型受光器の断面図である。It is sectional drawing of the waveguide type light receiver explaining the manufacturing method of the waveguide type light receiver which concerns on this invention.

符号の説明Explanation of symbols

1:リブ型導波路
2:スラブ部
3:基板
4:マスク
5:非晶質領域
6:単結晶領域
7:格子欠陥
11:金属
14:高濃度不純物p型半導体
15:低濃度不純物p型半導体
16:高濃度不純物n型半導体
17:低濃度不純物n型半導体
I/I:イオン注入
RC:再結晶化
1: rib-type waveguide 2: slab portion 3: substrate 4: mask 5: amorphous region 6: single crystal region 7: lattice defect 11: metal 14: high-concentration impurity p-type semiconductor 15: low-concentration impurity p-type semiconductor 16: High-concentration impurity n-type semiconductor 17: Low-concentration impurity n-type semiconductor I / I: Ion implantation RC: Recrystallization

Claims (4)

半導体のリブ型導波路が中央部に格子欠陥を有し、前記リブ型導波路の両側にあるスラブ部のそれぞれがp型半導体及びn型半導体である導波路型受光器の製造方法であって、
前記リブ型導波路の前記格子欠陥を、
前記リブ型導波路及び前記スラブ部を形成した後に、前記格子欠陥を形成する部分を含む所定領域が単結晶から非晶質化して非晶質領域となるまで前記所定領域にイオンを注入するイオン注入工程と、
イオン注入工程の後に、前記非晶質領域の両外側から前記リブ型導波路の中央部に向かって前記非晶質領域を再結晶化させ、前記非晶質領域が所望の幅になるまで熱を加える熱処理工程と、
で形成することを特徴とする導波路型受光器の製造方法。
A semiconductor rib-type waveguide has a lattice defect at the center, and a slab portion on each side of the rib-type waveguide is a p-type semiconductor and an n-type semiconductor, respectively. ,
The lattice defects of the rib-type waveguide are
After forming the rib waveguide and the slab portion, ions are implanted into the predetermined region until the predetermined region including the portion where the lattice defect is formed becomes amorphous from a single crystal to become an amorphous region. An injection process;
After the ion implantation step, the amorphous region is recrystallized from both outer sides of the amorphous region toward the center of the rib-type waveguide, and heat is applied until the amorphous region has a desired width. A heat treatment step of adding
A method for manufacturing a waveguide-type light receiver, characterized by comprising:
前記リブ型導波路及び前記スラブ部の半導体は、シリコンであることを特徴とする請求項1に記載の導波路型受光器の製造方法。   2. The method of manufacturing a waveguide receiver according to claim 1, wherein the semiconductor of the rib waveguide and the slab portion is silicon. 前記イオン注入工程で注入するイオンは、希ガス、シリコン又はゲルマニウムのイオンであることを特徴とする請求項2に記載の導波路型受光器の製造方法。   3. The method of manufacturing a waveguide type light receiving device according to claim 2, wherein ions implanted in the ion implantation step are ions of a rare gas, silicon, or germanium. 前記熱処理工程では、600℃以上1000℃以下の熱を加えることを特徴とする請求項2又は3に記載の導波路型受光器の製造方法。   4. The method of manufacturing a waveguide receiver according to claim 2, wherein in the heat treatment step, heat of 600 ° C. or more and 1000 ° C. or less is applied. 5.
JP2008133620A 2008-05-21 2008-05-21 Manufacturing method of waveguide type photoreceiver Active JP4878356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133620A JP4878356B2 (en) 2008-05-21 2008-05-21 Manufacturing method of waveguide type photoreceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133620A JP4878356B2 (en) 2008-05-21 2008-05-21 Manufacturing method of waveguide type photoreceiver

Publications (2)

Publication Number Publication Date
JP2009283638A true JP2009283638A (en) 2009-12-03
JP4878356B2 JP4878356B2 (en) 2012-02-15

Family

ID=41453800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133620A Active JP4878356B2 (en) 2008-05-21 2008-05-21 Manufacturing method of waveguide type photoreceiver

Country Status (1)

Country Link
JP (1) JP4878356B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649615A (en) * 1987-07-01 1989-01-12 Fujitsu Ltd Manufacture of semiconductor device
JPH0590272A (en) * 1991-09-27 1993-04-09 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH05102033A (en) * 1991-10-04 1993-04-23 Fujitsu Ltd Manufacture of semiconductor device
JPH10214844A (en) * 1997-01-31 1998-08-11 Sharp Corp Manufacturing method of semiconductor substrate
WO2003060599A2 (en) * 2001-12-27 2003-07-24 Bookham Technology Plc An in-line waveguide photo detector
JP2005274208A (en) * 2004-03-23 2005-10-06 Nippon Telegr & Teleph Corp <Ntt> Waveguide type light source
JP2008209450A (en) * 2007-02-23 2008-09-11 Nippon Telegr & Teleph Corp <Ntt> Silicon optical waveguide and manufacturing method thereof
JP2009252921A (en) * 2008-04-04 2009-10-29 Toshiba Corp Semiconductor device and light source apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649615A (en) * 1987-07-01 1989-01-12 Fujitsu Ltd Manufacture of semiconductor device
JPH0590272A (en) * 1991-09-27 1993-04-09 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH05102033A (en) * 1991-10-04 1993-04-23 Fujitsu Ltd Manufacture of semiconductor device
JPH10214844A (en) * 1997-01-31 1998-08-11 Sharp Corp Manufacturing method of semiconductor substrate
WO2003060599A2 (en) * 2001-12-27 2003-07-24 Bookham Technology Plc An in-line waveguide photo detector
JP2005274208A (en) * 2004-03-23 2005-10-06 Nippon Telegr & Teleph Corp <Ntt> Waveguide type light source
JP2008209450A (en) * 2007-02-23 2008-09-11 Nippon Telegr & Teleph Corp <Ntt> Silicon optical waveguide and manufacturing method thereof
JP2009252921A (en) * 2008-04-04 2009-10-29 Toshiba Corp Semiconductor device and light source apparatus

Also Published As

Publication number Publication date
JP4878356B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP5259842B2 (en) Optical element
TW582062B (en) Laser irradiation apparatus and method of treating semiconductor thin film
US20150155170A1 (en) Method of fabricating a semiconductor substrate on insulator
JP6378928B2 (en) Ge-based semiconductor device, manufacturing method thereof, and optical interconnect system
JP6091273B2 (en) Semiconductor device and manufacturing method thereof
JP2007503130A (en) Impurity-based waveguide detectors
JP2007516607A (en) Embedded waveguide detector
US7485554B2 (en) Method of increasing a free carrier concentration in a semiconductor substrate
TWI419203B (en) Epitaxial substrate having gettering sinks for solid-state image sensor, semiconductor device, back-illuminated type solid-state image sensor, and manufacturing method thereof
JP2023517503A (en) All-Semiconductor Josephson Junction Devices for Qubit Applications
KR20110113462A (en) Method of manufacturing semiconductor device having a soi layer in a required region of bulk silicon wafer using a leg process
JP4878356B2 (en) Manufacturing method of waveguide type photoreceiver
JP6033714B2 (en) Semiconductor optical device and manufacturing method thereof
JP5510256B2 (en) Silicon wafer manufacturing method
JP4495178B2 (en) Silicon optical waveguide and manufacturing method thereof
JP2015162571A (en) Ge-BASED SEMICONDUCTOR DEVICE, MANUFACTURING METHOD OF THE SAME AND OPTICAL INTERCONNECT SYSTEM
JP2010114183A (en) Infrared radiation detector and method of manufacturing the same
US7070702B1 (en) Pattern formation method using light-induced suppression of etching
TW201505080A (en) Irradiation control method and irradiation controller
JP5302937B2 (en) Impurity activation method, semiconductor device manufacturing method
KR20200094882A (en) Epitaxial wafer and method of fabricating the same
JP5505241B2 (en) Silicon wafer manufacturing method
WO2012117711A1 (en) Method for manufacturing infrared light emitting element
WO2016151759A1 (en) Semiconductor optical element and method for manufacturing same
JP2004085868A (en) Optical waveguide device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

R150 Certificate of patent or registration of utility model

Ref document number: 4878356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350