JP2009282211A - 反射偏光子、それを用いたバックライト及び液晶表示装置 - Google Patents

反射偏光子、それを用いたバックライト及び液晶表示装置 Download PDF

Info

Publication number
JP2009282211A
JP2009282211A JP2008133049A JP2008133049A JP2009282211A JP 2009282211 A JP2009282211 A JP 2009282211A JP 2008133049 A JP2008133049 A JP 2008133049A JP 2008133049 A JP2008133049 A JP 2008133049A JP 2009282211 A JP2009282211 A JP 2009282211A
Authority
JP
Japan
Prior art keywords
magnetic fine
reflective polarizer
fine particles
resin
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008133049A
Other languages
English (en)
Inventor
Yasuaki Okumura
泰章 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2008133049A priority Critical patent/JP2009282211A/ja
Publication of JP2009282211A publication Critical patent/JP2009282211A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】、可視光を偏光し、かつ、透過されない偏光成分を反射して、可視光の利用効率を向上できる反射偏光子を提供する。
【解決手段】反射偏光子30は、透光性を有する基材31と、基材31上に形成された偏光層32とを備える。偏光層32は、複数の磁性微粒子322と、複数の磁性微粒子322を含有する樹脂321とを含む。複数の磁性微粒子322は、各々が強磁性を有し、磁場配向により一方向に配向される。また、表面から10nm以上の深さまで金属及び不純物からなる。反射偏光子は、磁性微粒子322表層の金属中の自由電子により、磁性微粒子322の長手方向と並行な電場ベクトルを有する偏光成分を反射し、垂直な電場ベクトルを有する偏光成分を透過する。
【選択図】図3

Description

本発明は、反射偏光子、それを用いたバックライト及び液晶表示装置に関し、さらに詳しくは、可視光を偏光及び反射する反射偏光子、それを用いたバックライト及び液晶表示装置に関する。
テレビやパソコンのディスプレイとして利用される液晶表示装置は、光の利用効率の向上を求められている。
液晶表示装置の光の利用効率を向上するための部材として、反射偏光子が開示されている。代表的な反射偏光子としては、複屈折樹脂積層体からなる偏光子(以下、積層偏光子という)と、ワイヤグリッド型偏光子とがある。
積層偏光子は、特開平4−268505号公報(特許文献1)、特表平9−507308号公報(特許文献2)及び特表平10−511322号公報(特許文献3)に開示される。この偏光子は、異なる屈折率を有する複数の樹脂層の積層体からなり、バックライトの正面に敷設される。積層偏光子は、バックライトからの光のうちのP偏光成分及びS偏光成分のいずれか一方を透過し、他方をバックライトに反射する。バックライトに戻った光は、バックライト内で散乱及び反射して、偏光状態が解消される。そして、偏光状態が解消された光が再度積層偏光子に入射される。そのため、再度入射された光の一部は積層偏光子を透過する。以上の動作を繰り返すことにより、積層偏光子はバックライトから出射された光の利用効率を向上する。
一方、ワイヤグリッド型偏光子は、特開2005−195824号公報(特許文献4)、特表2003−502708号公報(特許文献5)及び特開平10−153706号公報(特許文献6)に開示されている。ワイヤグリッド型偏光子は、その表面に、複数の金属ワイヤが所定の間隔で並設された、いわゆるグリッド構造を有する。隣り合う金属ワイヤの間隔が入射光の波長よりも短い場合、ワイヤグリッド型偏光子は、入射光のうち金属ワイヤに垂直な電場ベクトルを有する偏光成分を透過し、金属ワイヤに平行な電場ベクトルを有する偏光成分を反射する。ワイヤグリッド型偏光子も、積層偏光子と同様に、バックライトの正面に敷設され、光の利用効率を向上する。
しかしながら、積層偏光子は、上述のとおり屈折率の異なる樹脂層を数十層も積層しなければならない。そのため、製造工程が複雑である。さらに、複数の樹脂層を積層するため、偏光子が厚くなる。
また、ワイヤグリッド型偏光子の製造工程も複雑である。ワイヤグリッド型偏光子は、真空蒸着法等により基板上に形成されたアルミニウム等の金属層にエッチング処理を施すことにより形成される。つまり、製品ごとにエッチング処理を行わなければならず、製造工程が複雑である。
ところで、製造工程が簡潔な偏光子として、磁性材料を一方向に配向させた偏光子が特公平8−27409号公報(特許文献7)、特開平11−14829号公報(特許文献8)及び特開平11−6916号公報(特許文献9)に開示されている。これらの特許文献は、磁場を印加して複数の磁性微粒子を一方向に配向することにより偏光子を製造する。この製造方法によれば、屈折率の異なる複数の樹脂層を積層したり、エッチング処理を行うといった必要がなく、製造工程が簡潔である。
しかしながら、特許文献7〜9に開示された偏光子は、透過した偏光成分以外の偏光成分を吸収する。そのため、光の利用効率の向上に寄与しない。
特開平4−268505号公報 特表平9−507308号公報 特表平10−511322号公報 特開2005−195824号公報 特表2003−502708号公報 特開平10−153706号公報 特公平8−27409号公報 特公平11−14829号公報 特開平11−6916号公報
本発明の目的は、可視光を偏光し、かつ、透過されない偏光成分を反射して、可視光の利用効率を向上できる反射偏光子を提供することである。
本発明の他の目的は、容易に製造可能な反射偏光子を提供することである。
課題を解決するための手段及び発明の効果
本発明による反射偏光子は、基材と、偏光層とを備える。基材は透光性を有する。偏光層は基材上に形成される。偏光層は、複数の磁性微粒子と、樹脂とを含む。複数の磁性微粒子は、強磁性を有し、磁場配向により一方向に配向される。各磁性微粒子はまた、可視光のうち自身の長手方向と平行な電場ベクトルを有する偏光成分を反射する。樹脂は、透光性を有し、一方向に配向された前記複数の磁性微粒子を含有する。磁性微粒子は、表面から10nm以上の深さまで金属及び不純物からなる。
なお、本明細書にいう一方向とは、複数の磁性微粒子全てが厳密に一方向に配向される場合のみを意味するものではなく、本発明の効果を奏する程度に、複数の磁性微粒子がほぼ1つの方向に配向される場合も含む。
本発明による反射偏光子は、磁場配向により一方向に配向された複数の磁性微粒子を含む。この磁性微粒子により、可視光のうち、磁性微粒子の長軸方向と平行な電場ベクトルを有する偏光成分を反射し、かつ、長軸方向と垂直な偏光成分を透過することができる。さらに、本発明による反射偏光子は、磁場配向により容易に製造できる。
また、磁性微粒子の表層から10nm以上は金属及び不純物で構成されるため、表層を構成する金属中の自由電子により、磁性微粒子の長手方向と並行な偏光成分がより反射される。ここでいう金属とは、自由電子を有する物質をいう。
好ましくは、磁性微粒子は、母材と、母材表面に形成され、10nm以上の厚さを有する金属層とを備える。
好ましくは、金属層は、アルミニウム、金、銀、銅、白金、ニッケル、パラジウム、鉄及びスズからなる群の1種又は2種以上を含有する。ここで、金属層は、上述の金属の他に、不純物が含まれていてもよい。
これらの金属は、いずれも可視光の反射率(可視光反射率)が高い。したがって、磁性微粒子の表面がこれらの金属層からなるとき、反射偏光子の可視光反射率を高めることができる。
好ましくは、偏光層は、磁性微粒子100重量部に対して樹脂を7〜2000重量部含む。好ましくは、磁性微粒子の長さは、0.1μmよりも大きく10μm以下であり、磁性微粒子のアスペクト比は、2以上である。
この場合、可視光の偏光度及び反射率を向上できる。
好ましくは、反射偏光子は、磁性微粒子の長手方向と並行な偏光成分を入射したとき、20%以上の可視光反射率を有する。ここで可視光反射率とは、380〜780nmの波長を有する光の反射率をいう。
この場合、バックライトから出射される光の利用効率を向上できる。
本発明によるバックライトは、面光源と、面光源上に敷設される上述の反射偏光子とを備える。本発明による液晶表示装置は、面光源と、面光源上に敷設される上述の反射偏光子と、反射偏光子上に敷設される液晶パネルとを備える。液晶パネルは、両面に吸収偏光子が敷設される。反射偏光子は、吸収偏光子の透過軸と並行な透過軸を有する。
以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
[液晶表示装置の構成]
図1及び図2を参照して、液晶表示装置1は、バックライト10と、バックライト10の正面に敷設される反射偏光子30と、反射偏光子30上に敷設される液晶パネル20とを備える。
液晶パネル20には、その両面に吸収偏光子21及び22が敷設される。吸収偏光子は、板状又はフィルム状であり、ある偏光成分を吸収することにより、特定の偏光成分を透過する。吸収偏光子は、たとえば、ヨウ素系偏光フィルムや染料系偏光フィルムである。液晶パネル20はさらに、その内部に、行列上に配列された複数の画素を備える。
バックライト10はいわゆる直下型である。バックライト10は、ハウジング12と、光源である複数の蛍光管13と、光拡散板14と、輝度向上を目的とした光学シート15とを備える。
ハウジング12は、正面に開口部120を有する筐体であり、内部に複数の蛍光管13を収納する。ハウジング12の内側表面は、反射シート121で覆われている。反射シート121は、板状又はフィルム状であり、蛍光管13から出射された光を散乱し、散乱された光を開口部120に導く。反射シート121は、たとえば東レ製ルミラー(登録商標)E60LやE60Vであり、拡散反射率が95%以上であるものが好ましい。
光拡散板14は、開口部120に嵌め込まれ、ハウジング12の背面と並行に配設される。光拡散板14が開口部120に嵌め込まれると、ハウジング12の内部は密閉される。そのため、蛍光管13から出射された光が光拡散板14以外の箇所からハウジング12外へ漏れるのを防止でき、光の利用効率が向上する。
光拡散板14は、蛍光管13からの光と反射シート121で反射された光とを、ほぼ均一に拡散して、正面に出射する。光拡散板14は、透明な基材と、基材内に分散された複数の粒子とで構成される。基材内に分散される粒子は、可視光に対する屈折率が基材と異なる。そのため、光拡散板14は入射した光を拡散し、拡散された光が光拡散板14を透過する。光拡散板14の基材は、たとえば、ガラスや、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアクリル酸エステル系樹脂、脂環式ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、ポリエーテルスルホン酸系樹脂、トリアセチルセルロース系樹脂等の樹脂からなる。
光学シート15は、液晶表示装置1の正面輝度の向上及び視野角の調整に寄与する。光学シート15は、たとえば、プリズムシートやレンチキュラレンズシート、マイクロレンズアレイシート等である。
[反射偏光子]
反射偏光子30は、バックライト10上に敷設される。図3を参照して、反射偏光子30は、基材31と、基材上に形成される偏光層32とを備える。基材31の下面311は、バックライト10と対向する。また、偏光層32の表面は、吸収偏光子22と対向する。
基材31は、フィルム状または板状であり、透光性を有する。基材31は、高分子フィルムであってもよく、ガラスであってもよい。基材31に用いられる高分子フィルムは、たとえば、トリアセチルセルロース、ポリエチレン、ポリプロピレン、ポリ(4−メチルペンテン−1)等のポリオレフィン、ポリイミド、ポリイミドアミド、ポリエーテルイミド、ポリアミド、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリケトンサルファイド、ポリエーテルスルホン、ポリスルホン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアセタール、ポリカーボネート、ポリアリレート、アクリル樹脂、ポリビニルアルコール、ポリプロピレン、セルロース系プラスチックス、エポキシ樹脂、フェノール樹脂等からなる。基材31に用いられるガラスは、たとえば、石英ガラス、パイレックス(登録商標)ガラス、合成石英等である。
偏光層32は、バックライト10から入射された可視光のうち、特定の偏光成分を透過し、他の偏光成分を反射する。偏光層32は、樹脂321と複数の磁性微粒子322とを備える。
樹脂321は、複数の磁性微粒子322を含有して固定する。樹脂321は透光性を有する。樹脂321は、たとえば、塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−ビニルアルコール共重合体、塩化ビニル−酢酸ビニル−ビニルアルコール共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、塩化ビニル−水酸基含有アルキルアクリレート共重合体、ニトロセルロース、ポリウレタン樹脂からなる群の中から選ばれる1種又は2種以上からなる。好ましくは、樹脂321は、塩化ビニル−水酸基含有アルキルアクリレート共重合体とポリウレタン樹脂とからなる。
ポリウレタン樹脂は、たとえば、ポリエステルポリウレタン、ポリエーテルポリウレタン、ポリエーテルポリエステルポリウレタン、ポリカーボネートポリウレタン、ポリエステル、ポリカーボネートポリウレタンなどである。好ましくは、ポリウレタン樹脂は、官能基として、COOH、SOM、OSOM、P=O(OM)、O−P=O(OM)、OH、NR'R''、N+R'''R''''R'''''、エポキシ基等を有する高分子からなる。ここで、Mは水素原子、アルカリ金属塩基又はアミン塩である。また、R'、R''、R'''、R''''、R'''''は水素または炭化水素基である。これらの成分で構成された樹脂321は、磁性微粒子322の分散性を向上する。
なお、樹脂321を2種以上の上述の樹脂で構成する場合、各樹脂の官能基の極性は一致するのが好ましい。より好ましくは、樹脂321は、各々がSOM基を有する複数の樹脂で構成される。
また、樹脂321は、活性エネルギ線硬化性樹脂で構成されてもよい。活性エネルギ線硬化性樹脂とは、紫外線や赤外線、可視光線、エックス線及び電子線等の活性エネルギ線で硬化する樹脂である。活性エネルギ線硬化性樹脂とは、たとえば、重合性を有するモノマーとオリゴマーとを主成分とする樹脂であり、より具体的には、アクリル系のモノマー及びオリゴマーを主成分とする樹脂である。
磁性微粒子322は図3に示すとおり、針状であり、より具体的には、細長い楕円体状である。磁性微粒子322は、強磁性を有する。そのため、複数の磁性微粒子322は、偏光層32の製造工程中、磁場配向により所定の方向に一方向に配向される。磁性微粒子322の好ましい保磁力は40〜320kA/mであり、さらに好ましくは100〜200kA/mである。また、好ましい飽和磁化量は20〜150A・m/kg(20〜150emu/g)であり、さらに好ましくは50〜100A・m/kg(50〜100emu/g)である。上記保磁力及び飽和磁化量の範囲であれば、磁性微粒子322が磁場配向により一方向に配向されやすい。ここで、これらの磁気特性(保磁力及び飽和磁化量)は、試料振動形磁束形を用いて外部磁場1.28MA/m(16kOe)で測定される。
磁性微粒子322は、たとえば、図4に示すように、強磁性を有する金属と不純物とからなる粒子である。磁性微粒子322はたとえば、鉄(Fe)、鉄基合金、ニッケル(Ni)、ニッケル基合金である。ここで、鉄基合金とは、質量%で50%以上の鉄を含有する合金であり、ニッケル基合金とは、質量%で50%以上のニッケルを含有する金属である。なお、金属磁性粒子322の表面には、焼結防止剤が被覆されていてもよい。焼結防止剤は、たとえば、アルミナ(Al)やイットリウム等で構成される。
反射偏光子30は、一方向に配向された複数の磁性微粒子322を含むことにより、380nm〜780nmの範囲の波長を有する可視光のうち、磁性微粒子322の長手方向(つまり、配向された方向)と垂直な電場ベクトルを有する偏光成分を透過し、磁性微粒子322の長手方向と平行な電場ベクトルを有する偏光成分を反射する。この原理は以下のとおりに推定される。反射偏光子30に入射した可視光の偏光成分のうち、電界の振動方向が磁性微粒子322の長手方向と平行である偏光成分は、磁性微粒子322の表層を構成する金属の自由電子を振動する。そのため、電界の振動方向が磁性微粒子322の長手方向と平行な偏光成分は、磁性微粒子322により反射される。一方、電界の振動方向が磁性微粒子と垂直な偏光成分は、磁性微粒子322表層の金属の自由電子を振動しないため、磁性微粒子322の影響を受けず透過する。なお、ここでいう「一方向に配向」とは、磁性微粒子322が厳密に一方向に配向されている必要はなく、配向に多少ばらつきがあっても、上述の効果を発揮する程度に配向されていればよい。
上述のとおり、磁性微粒子322は、表層の自由電子の振動により自身の長手方向と平行な偏光成分を反射すると推定される。したがって、磁性微粒子322は、母材が強磁性を有する素材で構成され、表層が、強磁性を有しないが可視光反射率の高い金属層で構成されもよい。
具体的には、磁性微粒子322は、図5に示すように、母材350と、母材350の表面上に形成される金属層351とを含む構成でもよい。金属層351は、可視光反射率の高い金属、具体的には、アルミニウム、金、銀、銅、白金、ニッケル、パラジウム、鉄及びスズからなる群の1種又は2種以上を含有し、残部は不純物からなる。母材350は、強磁性を有する素材であればよく、金属であっても、酸化物や化合物等の非金属であってもよい。たとえば、母材350は、鉄、ニッケル、コバルト、サマリウム、イットリウム等からなる強磁性を有する金属であってもよいし、マグネタイト(Fe)やCrOといった酸化物や、化合物であってもよい。
さらに、母材350が非磁性の素材からなり、金属層351が強磁性を有してもよい。この場合、母材350はたとえば、アルミニウム酸化物、チタン酸化物、珪素酸化物、タンタル酸化物、ジルコニウム酸化物、ニオブ酸化物及びセシウム酸化物からなる群の1種または2種以上を含有する。また、金属層351はたとえば、鉄、ニッケル、コバルト、サマリウム、イットリウムからなる群の1種または2種以上を含有し、残部は不純物からなる。母材350及び金属層351がともに強磁性を有していてもよい。
金属層351は、たとえば、無電解メッキ法により母材350の表面上に形成される。金属層351の厚さは、10nm〜200nmである。図6は、金属層に入射された光の波長と、反射率との関係を、金属層の厚さごとに示した図である。そして、図7は、代表的な可視光の例として、500nmの波長を有する光を入射したときの、金属層の厚さと反射率との関係を示す図である。
これらの図は、以下の方法により求めた。複数のガラス基板(表面の長さ50mm、幅50mm)を準備した。マグネトロンスパッタ装置(キャノンアネルバ製)を用いてアルゴンガス雰囲気下で銀のスパッタリングを行い、各ガラス基板の表面上に、種々の厚さの銀被膜を形成した。スパッタ時の真空度は0.16Pa、ターゲットと基板との距離は160mm、スパッタ速度は0.34nm/secとした。
ガラス基板に形成された銀被膜の表面に種々の波長の光を照射し、各波長での反射率を測定し、図6及び図7を作製した。反射率の測定には分光光度計を用いた。
図6中の曲線C1は銀被膜の厚さが10nmである場合の波長及び反射率の関係を示す。曲線C2は銀被膜の厚さが15nm、曲線C3は銀被膜の厚さが20nm、曲線C4は銀被膜の厚さが40nm、曲線C5は銀被膜の厚さが55nm、曲線C6は銀被膜の厚さが75nm、曲線C7は銀被膜の厚さが160nmである場合の波長及び反射率の関係をそれぞれ示す。図6及び図7を参照して、銀被膜が厚くなるに従い、反射率は高くなった。特に、380〜780nmの波長の可視光域では、銀被膜が厚くなるに従い反射率が急激に上昇し、厚さが10nm以上となったとき反射率が20%以上となった。さらに、反射率は、厚さが40nmになるまで急激に上昇し、厚さが40nmを超えると、厚さの増大に対する反射率の上昇度合いは急速に低下した。
以上の結果より、金属層351の厚さは、10nm以上とする。この場合、可視光域(波長が380nm〜780nmの領域)で、磁性微粒子322の長手方向と平行な偏光成分の反射率(可視光反射率)は20%以上となる。より好ましくは、金属層351の厚さは20nm以上であり、さらに好ましくは、40nm以上である。また、金属層351の厚さの好ましい上限は、200nmであり、より好ましくは100nmである。
要するに、図4又は図5の構成の磁性微粒子322は、表面から10nm以上の深さまで金属及び不純物で構成されているのが好ましく、より好ましくは、表面から20nm以上、さらに好ましくは表面から40nm以上の深さまで金属及び不純物で構成されるのが好ましい。
磁性微粒子322が図5に示す構成である場合、金属層351の厚みは、たとえば以下の方法で測定される。集束イオンビーム(FIB)により100個の磁性微粒子322を軸方向(軸を含む面)で切断し、透過型電子顕微鏡(TEM)でその各磁性微粒子322の断面(縦断面)を観察する。このとき、各磁性微粒子322の断面において、任意の5箇所で金属層351の厚さを測定する。測定された値(つまり、100個×5箇所=500個)の平均を、反射偏光子30内の磁性微粒子の金属層の厚さと定義する。
また、磁性微粒子322が図4に示す構成である場合、FIBにより100個の磁性微粒子を軸方向に切断し、各磁性微粒子322の断面において、任意の5箇所で、金属及び不純物からなる部分の表面からの深さを測定し、その平均を求める。
磁性微粒子322の長さL322は、好ましくは0.1μmよりも大きく10μm以下である。長さL322が0.1μm以下であれば、反射偏光子30が可視光を反射し難くなる。より具体的には、磁性微粒子322の長手方向と平行な偏光成分を入射したときの可視光反射率が20%以上となる。一方、長さL322が10μmを超えると、配向性が低下するため、偏光度が低下する。好ましい長さL322は、0.2〜10μmである。
本実施の形態における長さL322は、たとえば、以下の方法で求められる。反射偏光子30に用いられる複数の磁性微粒子322をTEMを用いて観察する。観察された複数の磁性微粒子322のうち、任意の100個の磁性微粒子322の各々の長さの値を求める。求めた100個の値の平均を、磁性微粒子322の長さL322とする。
さらに、磁性微粒子322のアスペクト比AR(Aspect Ratio)は2以上が好ましい。ここで、アスペクト比ARは、以下の式(1)で示される。
AR=磁性微粒子の長さ(長軸長)L322/磁性微粒子の幅(短軸長)W322 (1)
アスペクト比ARが2未満であれば、可視光に対する透過軸及び反射軸が反射偏光子30上に形成されない。そのため、偏光成分が反射され難くなる。好ましいアスペクト比は3以上であり、さらに好ましいアスペクト比は5以上である。ここで、アスペクト比ARで用いられる磁性微粒子の幅W322は、上述の長さL322と同様の方法で求められる。つまり、TEMを用いて100個の磁性微粒子の幅の値を測定し、その平均を磁性微粒子の幅W322とする。
なお、反射粒子が図8に示すように、横断面が円又は多角形等の棒状である場合、反射粒子の横断方向の幅W322に対する反射粒子の長さL322の比をアスペクト比ARとする。なお、横断面が多角形である場合、100個の磁性微粒子において、横断方向の幅のうち最大の幅を測定し、測定された幅の平均をW322とする。そして、求めたW322を式(1)に代入してアスペクト比ARを求める。
好ましくは、偏光層32はさらに、磁性微粒子100重量部に対して樹脂321を7〜2000重量部含有する。磁性微粒子322と樹脂321との含有量が上述の範囲であるとき、偏光層32は可視光の一方の偏光成分を透過し、他方の偏光成分を高い反射率で反射することができる。より具体的には、電場ベクトルが磁性微粒子322の長手方向と垂直な平行成分が透過される。また、電場ベクトルが磁性微粒子322の長手方向と平行な偏光成分を入射したときの可視光反射率が20%以上となる。
磁性微粒子100重量部に対する樹脂の重量部が2000よりも大きい場合、偏光層32内の磁性微粒子322の数が少なすぎる。そのため、可視光よりも波長の長い光(たとえば、赤外線)は透過及び反射するが、可視光を透過及び反射できない。一方、磁性微粒子100重量部に対する樹脂の重量部が7未満である場合、偏光層32内の磁性微粒子の数が過剰に多い。そのため、偏光層32内で隣り合う磁性微粒子同士の干渉が起こり、可視光反射率が低下する。好ましくは、偏光層32は、磁性微粒子100重量部に対して樹脂321を30〜1000重量部含有する。
反射偏光子30は、自身の透過軸が、液晶パネル20に敷設された吸収偏光子22の透過軸と平行になるように、バックライト10上に敷設される。この場合、バックライト20からの入射光(無偏光)のうち、磁性微粒子322の長手方向と垂直な電場ベクトルを有する偏光成分は反射偏光子30を透過した後、吸収偏光子22も透過する。一方、磁性微粒子322の長手方向と平行な電場ベクトルを有する偏光成分は、反射偏光子30で反射され、バックライト20内へ戻る。そして、バックライト20内の反射シート121で散乱して、蛍光灯13の光と合成され、無偏光の光として再び反射偏光子30に入射する。以上の動作を繰り返すことで、散乱された偏光成分もいずれは反射偏光子30を透過する。そのため、光の利用効率を向上できる。
なお、磁性微粒子の分散性を向上するために、偏光層32に分散剤を添加してもよい。分散剤としては、たとえば、リン酸系分散剤、カルボン酸系分散剤、アミン系分散剤、キレ―ト剤、各種シランカップリング剤などが好適なものとして用いられる。
リン酸系分散剤としては、リン酸モノメチル、リン酸ジメチル、リン酸モノエチル、リン酸ジエチルなどのアルキルリン酸エステル類、フェニルホスホン酸、モノオクチルフエニルホスホン酸などの芳香族リン酸類などが挙げられ、市販品として、東邦化学製の「GARFAC RS410」、城北化学工業製の「JP−502」、「JP−504」、「JP−508」などを用いることができる。
カルボン酸系分散剤としては、炭素数12〜18個の脂肪酸、具体的には、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸、エライジン酸、リノール酸、リノレン酸、ステアリン酸などが用いられる。また、上記脂肪酸のアルカリ金属またはアルカリ土類金属からなる金属石けん、上記脂肪酸のアミド、上記脂肪酸のエステルまたはこれにフッ素を含ませた化合物、ポリアルキレンオキサイドアルキルリン酸エステル、レシチン、トリアルキルポリオレフィンオキシ第四級アンモニウム塩(アルキルは炭素数1〜5個、オレフィンはエチレン、プロピレンなど)、硫酸塩、スルホン酸塩、りん酸塩、銅フタロシアニン、安息香酸、フタル酸、テトラカルボキシルナフタレン、ジカルボキシルナフタレン、炭素数12〜22の脂肪酸などが挙げられる。
アミン系分散剤としては炭素数8〜22の脂肪族アミン、芳香族アミン、アルカノールアミン、アルコキシアルキルアミン等がある。さらに、キレ―ト剤としては、1,10−フエナントロリン、EDTA、ジメチルグリオキシム、アセチルアセトン、グリシン、ジチアゾン、ニトリロ三酢酸などが挙げられる。これらは、単独でも使用しても、組み合わせて使用してもよい。
分散剤は、磁性微粒子100重量部に対して通常、0.5〜5重量部の範囲で添加される。
[製造方法]
本発明の実施の形態による反射偏光子30の製造方法の一例を説明する。
まず、偏光層32を構成する塗料(以下、偏光層用塗料という)を製造する。上述の樹脂321に、有機溶剤を加えて樹脂321を溶解する。有機溶剤は、たとえば、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトンなどのケトン系溶剤、テトラヒドロフラン、ジオキサンなどのエーテル系溶剤、酢酸エチル、酢酸ブチルなどの酢酸エステル系溶剤などである。これらの有機溶剤は、単独で使用してもよく、複数の溶剤を混合して使用してもよい。さらにトルエンなどと混合して使用してもよい。
樹脂321が溶解された有機溶剤に、さらに、磁性微粒子322及び分散剤を添加して所定時間攪拌する。以上の工程により偏光層用塗料が製造される。なお、分散剤は添加しなくてもよい。
製造された偏光層用塗料を、基材31を構成する基材フィルム上にグラビアコータ等を用いて均一に塗布する。続いて、塗布された偏光層用塗料が硬化する前に、基材フィルムを挟むように配置された一対の磁石により、偏光層用塗料に磁場を印加する。磁場の印加により、偏光層用塗料が硬化する前に、磁性微粒子322は一方向に配向される。そして、磁性微粒子322が一方向に配向された状態で、偏光層用塗料が硬化する。以上の工程により、反射偏光子30が製造される。
なお、樹脂321として活性エネルギ線硬化性樹脂を用いる場合は、以下の方法で反射偏光子30が製造される。活性エネルギ線硬化性樹脂に磁性微粒子322を添加し、偏光層用塗料を製造する。製造された偏光層用塗料をグラビアコータ等を用いて基材フィルム上に均一に塗布する。塗布後に磁場を印加して、磁性微粒子を一方向に配向する。その後、偏光層用塗料に活性エネルギ線を照射して塗料を硬化して、偏光層32とする。以上の工程により、反射偏光子30が製造される。
上述のとおり、反射偏光子30は、磁場を印加することにより、容易に製造でき、製造工程が簡潔である。
上述の実施の形態では、偏光層32は板状の基材31上に形成されたが、たとえば、基材31をプリズムシートやレンチキュラレンズシート等のレンズを有する光学シートとし、レンズが形成される面と反対側の面上、又はレンズが形成される面上に偏光層32が形成されてもよい。また、基材31を拡散シートや拡散板とし、拡散シートや拡散板の表面に偏光層32が形成されてもよい。さらに、基材31を液晶パネルに敷設される吸収偏光子(ヨウ素系偏光子又は染料系偏光子等)とし、吸収偏光子の表面に偏光層32が形成されてもよい。
また、上述の実施の形態では、バックライト10を直下型としたが、バックライト10はサイドライト型であってもよい。
複数の偏光子を製造し、各偏光子の偏光度及び反射率を調査した。
表1に示す磁性微粒子を用いた複数の偏光子を製造した。試験番号1〜4の偏光子には、図5に示すように、母材350と、母材350上に形成された金属層351とを備えた磁性微粒子を用いた。具体的には、酸化鉄(Fe)からなる母材と、母材表面上に形成された銀被膜とを備えた磁性微粒子を用いた。なお、いずれの磁性微粒子も、40〜320kA/mの保磁力と、20〜150A・m・kgの飽和磁化量とを有した。
Figure 2009282211
試験番号1及び4の磁性微粒子では、銀被膜の厚さは40nmであった。また、長さ及びアスペクト比は表1に示すとおりであり、本発明の好ましい範囲内であった。一方、試験番号2及び試験番号3の磁性微粒子では、銀被膜の厚さが5nmであり、本発明の範囲未満であった。試験番号3の磁性微粒子はさらに、長さが本発明の好ましい範囲未満となった。なお、銀被膜の厚さは、上述の方法により測定した。
試験番号1〜3の磁性微粒子100重量部に対する樹脂の重量部は、いずれも100であり、本発明の好ましい範囲内であった。一方、試験番号4の樹脂の重量部は100000であり、本発明の好ましい範囲を超えた。なお、樹脂は、いずれの試験番号に対しても、塩化ビニル樹脂を用いた。
各試験番号の偏光子を以下の方法で製造した。
偏光層を作成するための塗料を以下の方法で作製した。試験番号1〜3については、塩化ビニル樹脂100重量部に対して、シクロヘキサンとメチルエチルケトンとで構成されこれらの重量比が1である溶媒を920重量部、分散剤であるリン酸ジメチルを2重量部、磁性微粒子を100重量部それぞれ含有した。そして、溶媒、分散剤、磁性微粒子が含有された塩化ビニル樹脂を18時間攪拌し、偏光層用塗料とした。一方、試験番号4については、磁性微粒子100重量部に対して偏光層用塗料中の塩化ビニル樹脂を100000重量部とした。試験番号4の他の成分(溶媒及び分散剤)の重量部は、試験番号1〜3と同じとした。
続いて、基材として、厚さが0.1mmのポリエチレンテレフタラートフィルムを準備した。グラビアコータを用いて、準備されたポリエチレンテレフタラートフィルムの一方の表面上に偏光層用塗料を均一に塗布した。
一対の磁石を偏光層用塗料が塗布されたポリエチレンテレフタラートを挟んで互いに対向して配置し、これらの磁石により磁場を一定方向に印加した。これにより、偏光層用塗料が硬化する前に、磁性微粒子を一方向に配向した。磁性微粒子を配列後、偏光層用塗料を完全に硬化させて、偏光子とした。
製造された各偏光子の偏光度を以下の方法で求めた。まず、偏光子内の磁性微粒子の長手方向と垂直な電場ベクトルを有する偏光成分の光を入射したときの透過率Taと、長手方向と平行な電場ベクトルを有する偏光成分の光を入射したときの透過率Tbとを測定した。測定には、分光光度計を用いた。測定された透過率Ta及びTbを用いて、偏光度Pを以下の式(2)より求めた。
P=(Ta−Tb)/(Ta+Tb) (2)
ここで、磁性微粒子の長手方向は、以下の方法により特定した。各偏光子をTEM観察し、任意の100個の磁性微粒子を選択した。所定の基準線に対する選択された各磁性微粒子の長軸の傾きを求め、その平均値を磁性微粒子の長手方向と定義した。そして、基準線及び求めた平均値とに基づいて、磁性微粒子の長手方向と平行な電場ベクトルを有する偏光成分及び長手方向と垂直な電場ベクトルを有する偏光成分を決定した。
さらに、製造された各偏光子について、電場ベクトルが磁性微粒子の長手方向と平行な偏光成分を入射したときの可視光反射率を分光光度計を用いて測定した。
求めた偏光度及び可視光反射率を表1に示す。表1を参照して、試験番号1の偏光子では、偏光度が高く、50%を超えた。さらに、可視光反射率は20%以上となった。一方、試験番号2及び3の偏光子では、可視光反射率は10%未満であった。銀被膜が薄すぎたためと推定される。
試験番号4の偏光子では、偏光度が50%未満であり、可視光反射率も10%未満であった。偏光子内の磁性微粒子の含有量が少なすぎたためと推定される。
以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
本発明の実施の形態による液晶表示装置の斜視図である。 図1中の線分II−IIの断面図である。 図1中の反射偏光子の斜視図である。 図3に示した反射偏光子の磁性微粒子の縦断面図である。 図4と異なる他の構成の磁性微粒子の断面図である。 反射粒子における金属層の厚さに対する入射光の波長と反射率との関係を示す図である。 500nmの波長を有する入射光における金属層の厚さと反射率との関係を示す図である。 図4及び図5と異なる他の形状の磁性微粒子の斜視図である。
符号の説明
1 液晶表示装置
10 バックライト
13 蛍光灯
20 液晶パネル
21,22 吸収偏光子
30 反射偏光子
31 基材
32 偏光層
322 磁性微粒子
350 母材
351 金属層

Claims (8)

  1. 透光性を有する基材と、
    前記基材上に形成された偏光層とを備え、
    前記偏光層は、
    強磁性を有し、自身の長手方向と並行な電場ベクトルを有する偏光成分を反射する、複数の磁性微粒子と、
    一方向に配向された前記複数の磁性微粒子を含有し、透光性を有する樹脂とを備え、
    前記磁性微粒子は、表面から10nm以上の深さまで金属及び不純物からなることを特徴とする反射偏光子。
  2. 請求項1に記載の反射偏光子であって、
    前記磁性微粒子は、
    母材と、
    前記母材表面に形成され、10nm以上の厚さを有する金属層とを備えることを特徴とする反射偏光子。
  3. 請求項2に記載の反射偏光子であって、
    前記金属層は、アルミニウム、金、銀、銅、白金、ニッケル、パラジウム、鉄及びスズからなる群から選択される1種または2種以上を含有することを特徴とする反射偏光子。
  4. 請求項1〜請求項3のいずれか1項に記載の反射偏光子であって、
    前記偏光層は、前記磁性微粒子100重量部に対して前記樹脂を7〜2000重量部含有することを特徴とする反射偏光子。
  5. 請求項1に記載の反射偏光子であって、
    前記磁性微粒子の長手方向と並行な偏光成分を入射したとき、20%以上の可視光反射率を有することを特徴とする反射偏光子。
  6. 請求項1〜請求項5のいずれか1項に記載の反射偏光子であって、
    前記磁性微粒子の長さは、0.1μmよりも大きく10μm以下であり、アスペクト比は、2以上であることを特徴とする反射偏光子。
  7. 面光源と、
    前記面光源上に敷設される、請求項1〜請求項6のいずれか1項に記載の反射偏光子とを備えることを特徴とするバックライト。
  8. 面光源と、
    前記面光源上に敷設される、請求項1〜請求項7のいずれか1項に記載の反射偏光子と、
    前記反射偏光子上に敷設され、両面に吸収偏光子が敷設された液晶パネルとを備え、
    前記反射偏光子は、対向する前記吸収偏光子の透過軸と並行な透過軸を有することを特徴とする液晶表示装置。
JP2008133049A 2008-05-21 2008-05-21 反射偏光子、それを用いたバックライト及び液晶表示装置 Withdrawn JP2009282211A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133049A JP2009282211A (ja) 2008-05-21 2008-05-21 反射偏光子、それを用いたバックライト及び液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133049A JP2009282211A (ja) 2008-05-21 2008-05-21 反射偏光子、それを用いたバックライト及び液晶表示装置

Publications (1)

Publication Number Publication Date
JP2009282211A true JP2009282211A (ja) 2009-12-03

Family

ID=41452733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133049A Withdrawn JP2009282211A (ja) 2008-05-21 2008-05-21 反射偏光子、それを用いたバックライト及び液晶表示装置

Country Status (1)

Country Link
JP (1) JP2009282211A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097189A (ja) * 2011-11-01 2013-05-20 Sekisui Chem Co Ltd 輝度上昇用偏光板に用いるための偏光性材料及びそれを含む偏光膜製造用塗料並びに偏光膜
WO2015102364A1 (ko) * 2013-12-31 2015-07-09 도레이케미칼 주식회사 랜덤 분산형 반사 편광자
US9134562B2 (en) 2013-01-07 2015-09-15 Samsung Display Co., Ltd. Display device
CN105874363A (zh) * 2013-12-31 2016-08-17 3M创新有限公司 用于近眼显示器系统的带有嵌入式多层光学膜的镜片

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097189A (ja) * 2011-11-01 2013-05-20 Sekisui Chem Co Ltd 輝度上昇用偏光板に用いるための偏光性材料及びそれを含む偏光膜製造用塗料並びに偏光膜
US9134562B2 (en) 2013-01-07 2015-09-15 Samsung Display Co., Ltd. Display device
WO2015102364A1 (ko) * 2013-12-31 2015-07-09 도레이케미칼 주식회사 랜덤 분산형 반사 편광자
CN105874362A (zh) * 2013-12-31 2016-08-17 Toray化学有限公司 随机散布式反射偏光器
CN105874363A (zh) * 2013-12-31 2016-08-17 3M创新有限公司 用于近眼显示器系统的带有嵌入式多层光学膜的镜片
US9952363B2 (en) 2013-12-31 2018-04-24 Toray Korea Chemical, Inc. Random dispersion-type reflection polarizer
CN105874362B (zh) * 2013-12-31 2018-08-03 Toray化学有限公司 随机散布式反射偏光器
US10578872B2 (en) 2013-12-31 2020-03-03 3M Innovative Properties Company Lens with embedded multilayer optical film for near-eye display systems

Similar Documents

Publication Publication Date Title
US7683982B2 (en) Active reflective polarizer, liquid crystal display employing the same and method for the same
KR101727871B1 (ko) 편광판의 셋트 및 전면판 일체형 액정 표시 패널
KR101691671B1 (ko) 광학 필름
JP4931929B2 (ja) 偏光制御システム及び表示装置
JP4985550B2 (ja) 位相差フィルム及びその製造方法、光学機能フィルム、偏光フィルム、並びに表示装置
WO2017208617A1 (ja) 視野角制御フィルムおよび画像表示装置
KR20130041344A (ko) 광확산 소자 및 광확산 소자를 가진 편광판
JP2009282210A (ja) 反射偏光子及びそれを用いた液晶表示装置
CN109752784A (zh) 光学膜、偏光板以及液晶显示设备
JP2006030983A (ja) 帯電防止積層体およびそれを用いた偏光板
KR20170012322A (ko) 광학 적층체 및 화상 표시 장치
JP2009282211A (ja) 反射偏光子、それを用いたバックライト及び液晶表示装置
US20160216410A1 (en) Reflection-preventing film, polarizing plate, cover glass, and image display device, and method for producing reflection-preventing film
KR20140072865A (ko) 화상 표시 장치용 방현 시트
KR20160065888A (ko) 편광판의 셋트 및 전면판 일체형 액정 표시 패널
TW201140158A (en) Antiglare hard coat film and polarizing plate using the film
JP6586882B2 (ja) 位相差フィルム、位相差フィルムの製造方法、この位相差フィルムを用いた偏光板及び画像表示装置、この画像表示装置を使用した3d画像表示システム
TW200835945A (en) Polarization plate and liquid crystal display device
JP2003340983A (ja) 帯電防止フィルム、その製造方法、光学素子および画像表示装置
JP2018036586A (ja) 光学部材
WO2005083474A1 (ja) 光学部材およびそれを用いたバックライト
JP2009283234A (ja) バックライト、バックライトに用いられる光学シート及び液晶表示装置
JP2009069450A (ja) 反射偏光子及びそれを用いた液晶表示装置
CN1451101A (zh) 光路元件和生产该元件的方法
KR20100041525A (ko) 와이어 그리드 편광판

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802