JP2009281003A - Block body using general waste incinerated ash - Google Patents

Block body using general waste incinerated ash Download PDF

Info

Publication number
JP2009281003A
JP2009281003A JP2008132301A JP2008132301A JP2009281003A JP 2009281003 A JP2009281003 A JP 2009281003A JP 2008132301 A JP2008132301 A JP 2008132301A JP 2008132301 A JP2008132301 A JP 2008132301A JP 2009281003 A JP2009281003 A JP 2009281003A
Authority
JP
Japan
Prior art keywords
incinerated ash
block body
general waste
parts
portland cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008132301A
Other languages
Japanese (ja)
Other versions
JP5431682B2 (en
Inventor
Shozo Furusawa
昭三 古沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GLASS KOGYO KK
Original Assignee
NIPPON GLASS KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GLASS KOGYO KK filed Critical NIPPON GLASS KOGYO KK
Priority to JP2008132301A priority Critical patent/JP5431682B2/en
Publication of JP2009281003A publication Critical patent/JP2009281003A/en
Application granted granted Critical
Publication of JP5431682B2 publication Critical patent/JP5431682B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00284Materials permeable to liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a block body excellent in water permeability and capable of preventing leakage of a pollutant, by mixing incinerated ash and a specified composition together so as to promote a solidification action between the incinerated ash and the composition. <P>SOLUTION: This block body using general waste incinerated ash is characterized by containing moisture in a material (c) and solidifying it. The material (c) is obtained by mixing and stirring a compositional mixture (a) and the general waste incinerated ash (b) together at a ratio of 1:0.8-1.2. In the compositional mixture (a), 100 pts.wt. pit sand with a mean particle diameter of 10 mm or less 5-15 pts.wt. charcoal with a mean particle diameter of 5 mm or less, 60-65 pts.wt. portland cement, 4-10 pts.wt. perlite, and a slight amount of nonionic surface-active agent are mixed together. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一般ゴミ焼却灰の再利用の技術に関し、更に詳細には、重金属等の汚染物質を含むおそれのある一般ゴミ焼却灰を処理して、舗装材用等のブロック体に利用することのできる技術に関する。 The present invention relates to a technology for reusing general waste incineration ash, and more specifically, processing general waste incineration ash that may contain contaminants such as heavy metals and using it for block bodies for paving materials. It relates to technology that can be used.

都市ごみ等を焼却した際に発生する焼却灰は、従来、そのほとんどを最終処分場で埋め立て処理しているが、その理由は、焼却灰には、鉛等の重金属や、テロラクロロエチレン等の揮発性有機化合物(VOC)等のいわゆる汚染物質を環境基準を上回って含むものも多く、指定された最終処分場に埋め立てしなければならないからである。しかし、この処理を行うには最終処分場の建設や埋め立て地の確保等費用と時間の要するものであった。
又近年、最終処分場の枯渇のおそれに鑑み、焼却灰をセメント原料としてリサイクルしているが、しかし、溶融スラグはプラズマを使い、省力化のために水砕するので細かく強度の無い砂状物質になり、高温でガラス状の物質になるので強度も弱く、鋭利な破片が作業性に悪影響を及ぼすため、ほとんど再生資源としての利用価値が無いものになってしまう。
Conventionally, most of the incineration ash generated when incinerated municipal waste is landfilled at the final disposal site. The reason is that incineration ash includes heavy metals such as lead and terachlorethylene. This is because many of them contain so-called pollutants such as volatile organic compounds (VOC) exceeding the environmental standards and must be landfilled in designated final disposal sites. However, this process was costly and time consuming, such as construction of a final disposal site and securing landfill.
In recent years, incineration ash is recycled as a raw material for cement in view of the danger of depletion of the final disposal site. However, molten slag uses plasma and is granulated to save labor, so it is a fine sandy substance with no strength. Since it becomes a glassy substance at a high temperature, its strength is weak, and sharp fragments adversely affect workability, so that they are hardly useful as recycled resources.

そこで、近年、上記焼却灰を含む廃棄物のセメント原料化又は燃料化によるリサイクルが推進され、廃棄物の処理量が増加するに従い、セメントキルンに持ち込まれる塩素、硫黄、アルカリ等の揮発成分の量も増加し、塩素バイパスダストの発生量も増加している。そのため、塩素バイパスダストをすべてセメント粉砕工程で利用することができず、塩素バイパスダストについても水洗処理されていた。 Therefore, in recent years, the recycling of waste containing incineration ash as cement raw material or fuel has been promoted, and the amount of volatile components such as chlorine, sulfur, and alkali brought into the cement kiln as the amount of waste processed increases. The amount of chlorine bypass dust is also increasing. Therefore, all the chlorine bypass dust cannot be used in the cement crushing process, and the chlorine bypass dust is also washed with water.

特許文献1に記載のセメント原料化処理方法では、従来水洗処理されている塩素バイパスダスト等を脱塩処理し、塩素を含む廃棄物に水を添加して廃棄物中の塩素を溶出させてろ過し、得られた脱塩ケークをセメント原料として利用するとともに、排水を浄化処理してセレン等の重金属類を除去し、環境汚染を引き起こすことなく、塩素バイパスダストの利用を図っている。
しかし、廃棄物中の塩素を水に溶出させる工程や、重金属の沈殿工程を含むもので、工程が複雑であると共に処理に時間と費用の嵩むものであった。
特開平11−100243号公報
In the cement raw material processing method described in Patent Literature 1, chlorine bypass dust or the like that has been conventionally washed with water is desalted, and water is added to waste containing chlorine to elute the chlorine in the waste and filter it. In addition, the desalted cake obtained is used as a raw material for cement, and wastewater is purified to remove heavy metals such as selenium, thereby making use of chlorine bypass dust without causing environmental pollution.
However, it involves a process of eluting chlorine in waste into water and a precipitation process of heavy metals, which are complicated and time consuming and expensive to process.
Japanese Patent Laid-Open No. 11-100343

本発明は上記実情に鑑みてなされたもので、特定組成物と焼却灰とを混合させて、該組成物との間で固化作用を促すことで、透水性に優れると共に汚染物質の漏洩を防止することのできるブロック体を提供するものである。 The present invention has been made in view of the above circumstances, and by mixing a specific composition and incinerated ash and promoting a solidifying action with the composition, it has excellent water permeability and prevents leakage of contaminants. The block body which can do is provided.

上記目的を達成するために本発明ブロック体は、(a)平均粒子径10mm以下の山砂100重量部と、平均粒子径5mm以下の炭5〜15重量部と,ポルトランドセメント60〜65重量部、パーライト4〜10重量部および若干のノニオン系界面活性剤とを混合して成る組成混合物と、(b)一般ゴミ焼却灰とを、(c)1:0.8〜1.2の割合で混合撹拌したものに水分を含ませて固化したことを特徴とする。 In order to achieve the above object, the block of the present invention comprises (a) 100 parts by weight of sand with an average particle diameter of 10 mm or less, 5-15 parts by weight of charcoal with an average particle diameter of 5 mm or less, and 60-65 parts by weight of Portland cement. A composition mixture formed by mixing 4 to 10 parts by weight of pearlite and some nonionic surfactant, and (b) general waste incineration ash at a ratio of (c) 1: 0.8 to 1.2 The mixture is stirred and mixed with water to solidify.

本発明のブロック体は、組成混合物に汚染物質を含んだ焼却灰が混入されると、ポルトランドセメント等が水と反応を起こし、汚染物質を含んだ土壌の周囲をポルトランドセメントが囲繞した状態のままに固化されるので、汚染物質の漏洩、拡散を防止する。このとき、重金属、農薬等の薬品は土壌に溶解し易く、その重金属、農薬等を含んだ土壌がポルトランドセメントによって囲繞、固化されるので、そこからの漏洩、拡散が防止され、一方、VOCは土壌に溶解され難い性状を有するが、混合された炭の多孔質部分に吸着され、その炭をポルトランドセメントが囲繞するので同様に漏洩、拡散が抑制される。
上記焼却灰が過剰の水分を含んでいる場合には、パーライトが余分な水分を吸水し、固化反応に必要な最低限の水分量を調整することが出来る。
上記組成混合物に含まれるノニオン系界面活性剤によって、ポルトランドセメントの分散は均一且つ良好になされるので、山砂、土壌等の囲繞は効率的で可及的に薄い層で可能となり、固化反応後には、各粒子との間に間隙(空孔)を形成する。この結果、固化後の土壌をポーラスな状態とすることができ、透水性に優れたブロック体とすることができる。
又、山砂は一種の骨材として機能し、固化後の土壌に一定の強度を付与することができ、土壌の上に建築物等を建てる際の基礎としての強度を保持する。
In the block body of the present invention, when incinerated ash containing a pollutant is mixed in the composition mixture, Portland cement and the like react with water, and the Portland cement surrounds the soil containing the pollutant. As it is solidified, it prevents the leakage and diffusion of pollutants. At this time, chemicals such as heavy metals and agricultural chemicals are easily dissolved in the soil, and since the soil containing the heavy metals and agricultural chemicals is surrounded and solidified by Portland cement, leakage and diffusion from there are prevented, while VOC is Although it is difficult to dissolve in the soil, it is adsorbed by the porous portion of the mixed charcoal, and Portland cement surrounds the charcoal, so that leakage and diffusion are similarly suppressed.
When the incinerated ash contains excess moisture, the pearlite absorbs excess moisture, and the minimum amount of moisture necessary for the solidification reaction can be adjusted.
Portion cement is uniformly and satisfactorily dispersed by the nonionic surfactant contained in the above composition mixture, so that sand such as mountain sand and soil can be efficiently and as thin as possible, and after solidification reaction Forms a gap (hole) between each particle. As a result, the solidified soil can be in a porous state, and a block body excellent in water permeability can be obtained.
Mountain sand functions as a kind of aggregate, can give a certain strength to the solidified soil, and retains strength as a foundation for building a building or the like on the soil.

そこで、この発明の実施の形態を、図1〜2及び表1〜表3に基づいて説明する。
本発明は、重金属、薬品、VOC等の汚染物質を含むおそれのある一般焼却灰を対象とし、透水性、吸着性を保有するブロック体を形成するが、その選定材料としては山砂、炭、無機系顔料およびポルトランドセメントを用い、添加剤としてノニオン系界面活性剤を混合して組成混合物を成している。
以下、該選定材料の特徴について説明し、形成される無機質組成物の特徴について説明する。
Therefore, an embodiment of the present invention will be described with reference to FIGS.
The present invention is intended for general incineration ash that may contain pollutants such as heavy metals, chemicals, and VOCs, and forms a block body having water permeability and adsorptivity. An inorganic pigment and Portland cement are used, and a nonionic surfactant is mixed as an additive to form a composition mixture.
Hereinafter, characteristics of the selected material will be described, and characteristics of the formed inorganic composition will be described.

本発明で対象とする一般焼却灰は、一般廃棄物を焼却処理した後の灰をいい、SiO,CaO,Al,Fe,P,NaO,KO,MgO等を含むものである。ここには汚染物質が含まれることがあり、汚染物質とは重金属、農薬等の薬品、VOC(揮発性有機化合物)等いう。重金属とは、カドミウム、シアン、鉛、六価クロム、ヒ素、水銀、セレン、フッ素、ホウ素等をいい、農薬には、シマジン、チラウム、チオペンカルフ、有機リン、PCBが含まれ、VOCには、ジクロロメタン、四塩化炭素、ジクロロエタン、トリクロロエチレン、ベンゼン等が含まれる。 Generally ash as an object of the present invention refers to ashes after the municipal waste was incinerated, SiO 2, CaO, Al 2 O 3, Fe 2 O 3, P 2 O 5, Na 2 O, K 2 O, MgO, etc. are included. Here, a contaminant may be contained, and the contaminant is a heavy metal, a chemical such as an agricultural chemical, or a VOC (volatile organic compound). Heavy metals are cadmium, cyanide, lead, hexavalent chromium, arsenic, mercury, selenium, fluorine, boron, etc. Agricultural chemicals include simazine, thiraum, thiopencalf, organophosphorus, PCB, and VOC is dichloromethane. , Carbon tetrachloride, dichloroethane, trichloroethylene, benzene and the like.

山砂は、主として花崗岩等が風化して出来た土で、山で採取できる砂であり、火山灰等の粘土質を除いた骨材である。岩石を破砕して分粒し組骨材相当の砕石も含まれる。その粒度は、10mm以下のふるい目で主に2mm以下のものが用いられ採用した。
該山砂は、上記焼却灰と混合された際の硬化後にポーラス構造とすると共に、骨材として機能させるものである。
Mountain sand is soil made mainly from weathered granite and the like, and is sand that can be collected in the mountains, and is an aggregate excluding clay like volcanic ash. It also includes crushed stones that correspond to aggregates by crushing and sizing rocks. The particle size was 10 mm or less and mainly 2 mm or less was used.
The mountain sand has a porous structure after being cured when mixed with the incinerated ash and functions as an aggregate.

ポルトランドセメントは、水の存在下で汚染土壌及び山砂の各粒子を結合して一体的に固化し、焼却灰及び山砂の表面を実質的に囲繞して、多数の空隙を形成しているが、ポルトランドセメントは骨材間の接合力を大きく保持できる一方で、それ自体が団子状、塊状になり易く、空間を埋め易いので、使用量は可及的に少量でかつ汚染物質を封鎖できる厚みの量とする。 Portland cement binds contaminated soil and mountain sand particles in the presence of water and solidifies them together, forming a large number of voids by substantially surrounding the surface of incinerated ash and mountain sand. However, while Portland cement can maintain large joint strength between aggregates, it itself tends to form dumplings and lumps and can easily fill the space, so the amount used can be as small as possible and it can block contaminants. The amount of thickness.

組成混合物の次の組成である炭は、多孔質の性状を備え、その多孔質部分にVOC等の汚染物質を吸着することができ、且つ比表面積が大きいので、少量でも多くのVOCを吸着でき、該組成混合物の内部に多くの汚染物質を担持する働きをなす。 Charcoal, which is the next composition of the composition mixture, has porous properties, can adsorb pollutants such as VOCs in the porous portion, and has a large specific surface area, so it can adsorb a lot of VOC even with a small amount. In the composition mixture, a large amount of contaminants are carried.

界面活性剤はノニオン系が使用される。その性状は山砂及び焼却灰の濡れ性を高め、該山砂及び焼却灰の表面にポルトランドセメントを均一に分散させ、水の表面において均一に分散されると、水分と反応して適度な強度が現れるが、ポルトランドセメントが山砂及び焼却灰の表面において不均一であると、団子状や塊状となり、強度が強くなり過ぎる部分と脆い部分が発生してしまい、不適である。しかし、該ノニオン系界面活性剤によって、ポルトランドセメントの分散は均一且つ良好になされるので、山砂、土壌等の囲繞は効率的で可及的に薄い層で可能となり、固化反応後には、各粒子との間に間隙(空孔)を形成する。
該ノニオン系界面活性剤としては、ノニルフェニルエーテル系重合体で炭素数6〜7のものを利用する事が出来る。
Nonionic surfactants are used. Its properties increase the wettability of mountain sand and incinerated ash, and when Portland cement is uniformly dispersed on the surface of the mountain sand and incinerated ash, and uniformly dispersed on the surface of water, it reacts with moisture and has an appropriate strength. However, if Portland cement is uneven on the surface of mountain sand and incinerated ash, it becomes unsuitable because it becomes dumpling or lump-like, and a part that becomes too strong and a brittle part are generated. However, since the nonionic surfactant uniformly and well disperses the Portland cement, the sand such as mountain sand and soil can be efficiently and as thin as possible, and after the solidification reaction, A gap (hole) is formed between the particles.
As the nonionic surfactant, a nonylphenyl ether polymer having 6 to 7 carbon atoms can be used.

パーライトは、黒曜石を砂状に砕き、1000℃で燃成加工した独立気泡の発泡体で、無機質超軽量礫状骨材である。この多孔質性は十分に吸水させても完全には水飽和することが無く、常に空気が相当量含まれている材料である。
上記焼却灰に過剰の水分が含まれた場合、パーライトが余分な水分を吸水することが出来る。
Perlite is a closed-cell foam made by crushing obsidian into sand and combusting it at 1000 ° C., and is an inorganic ultralight gravel aggregate. This porosity is a material that does not completely saturate even when sufficiently absorbed, and always contains a considerable amount of air.
When excessive moisture is contained in the incinerated ash, pearlite can absorb excess moisture.

以上に記述した各材料の特徴を踏まえ、本発明汚染土壌の改良方法を説明する。
先ず、透水性、吸着性、化学反応性及び汚染物質溶出の防止を保有した組成混合物の配合例を示すと表1の如くとなる。
Based on the characteristic of each material described above, the improvement method of this invention contaminated soil is demonstrated.
First, Table 1 shows formulation examples of a composition mixture having water permeability, adsorptivity, chemical reactivity, and prevention of contaminant elution.

上記配合に基づいて組成混合物を得るには、山砂とポルトランドセメントを一定量計量し、撹拌機で攪拌しながら界面活性剤を滴下する。その後、炭及び無機系顔料及びパーライトを添加し山砂、ポルトランドセメント、炭、無機系顔料、パーライト、ノニオン系界面活性剤のサラサラ状態の組成混合物を形成する。 In order to obtain a composition mixture based on the above formulation, a certain amount of mountain sand and Portland cement are weighed, and a surfactant is added dropwise while stirring with a stirrer. Thereafter, charcoal, inorganic pigment, and pearlite are added to form a composition mixture in a smooth state of mountain sand, Portland cement, charcoal, inorganic pigment, pearlite, and nonionic surfactant.

より詳細には、平均粒子径10mm以下の山砂100重量部と、平均粒子径5mm以下の炭5〜15重量部と,ポルトランドセメント60〜65重量部、無機系顔料5〜6重量部、パーライト4〜10重量部および若干のノニオン系界面活性剤とを混合して成る組成混合物を形成する。
山砂100重量部に対し、ポルトランドセメント60〜65重量部としたのは、60部以下では固化後の強度が弱く、又山砂、焼却灰を十分に囲繞することができなくなり、65部以上では固化後の空隙が少なくなるからである。
平均粒子径5mm以下の炭を5〜15重量部としたのは、5部以下では吸着量が少なく、15部以上では固化後の強度が弱くなるからである。
パーライトを4〜10重量部としたのは、4部以下では吸水量が少なく、10部以上では炭と同様固化後の強度が弱くなるからである
無機系顔料を5〜6重量部としたのは、着色量としてこれで十分だからである。
More specifically, 100 parts by weight of sand with an average particle diameter of 10 mm or less, 5-15 parts by weight of charcoal with an average particle diameter of 5 mm or less, 60-65 parts by weight of Portland cement, 5-6 parts by weight of an inorganic pigment, pearlite A composition mixture is formed by mixing 4 to 10 parts by weight and some nonionic surfactant.
60 to 65 parts by weight of Portland cement with respect to 100 parts by weight of sand is less than 60 parts, the strength after solidification is weak, and the sand and incineration ash cannot be adequately surrounded. This is because voids after solidification are reduced.
The reason why 5 to 15 parts by weight of charcoal having an average particle diameter of 5 mm or less is used is that the amount of adsorption is small at 5 parts or less and the strength after solidification is weak at 15 parts or more.
The reason why the pearlite is 4 to 10 parts by weight is that the amount of water absorption is small at 4 parts or less, and the strength after solidification is weak at 10 parts or more as in the case of charcoal. This is because this is sufficient as the coloring amount.

次いで、図2に示す如く、焼却灰と、上記組成混合物とを、1:0.8〜1.2の割合で大型のミキサー等で混合撹拌する。ここで、焼却灰と組成混合物との混合比を1:0.8〜1:1.2の割合としたのは、汚染の度合いによって、汚染が重い場合には、焼却灰の割合を少なくして1:0.8程度とし、逆に汚染の度合いが軽い場合には焼却灰の割合を多くして1:1.2程度とし、且つ、この1:0.8〜1:1.2の範囲であるなら、山砂との関係で固化後にポーラスな間隙を形成できると共に強度を維持することができるからである。
上記混合の際、水を添加し、その割合は重量比約10〜30%とするのが好ましい。30%以上ではドロドロ状態で固まりが遅くなり、10%以下では、固まり難いからである。
Next, as shown in FIG. 2, the incineration ash and the composition mixture are mixed and stirred by a large mixer or the like at a ratio of 1: 0.8 to 1.2. Here, the mixing ratio of the incinerated ash and the composition mixture was set to a ratio of 1: 0.8 to 1: 1.2. The ratio of the incinerated ash was decreased when the contamination was heavy depending on the degree of contamination. If the degree of contamination is light, the ratio of incinerated ash is increased to about 1: 1.2, and this 1: 0.8 to 1: 1.2 If it is within the range, a porous gap can be formed after solidification in relation to mountain sand and strength can be maintained.
During the mixing, water is preferably added, and the ratio is preferably about 10 to 30% by weight. This is because, if it is 30% or more, the solidification is delayed in a muddy state, and if it is 10% or less, it is difficult to solidify.

次いで、上記撹拌混合したものを、型枠に投入しブロック体とするが、8〜10時間程度で固化が始まり、約2〜5日程度で固化が完了する。 Next, the mixture obtained by stirring and mixing is put into a mold and used as a block body. Solidification starts in about 8 to 10 hours, and solidification is completed in about 2 to 5 days.

該ブロック体は、主に歩道、園道等の舗装用ブロック体として使用するが、その他のブロック体としても利用することができる。 The block body is mainly used as a paving block body such as a sidewalk or a garden road, but can also be used as another block body.

次に、本発明ブロック体の作用効果について、以下に説明する。
本発明ブロック体は、一般焼却灰と上記組成混合物と混合撹拌すると、ポルトランドセメント等と水とが反応を起こし、汚染物質を含んだ焼却灰をポルトランドセメントが全周域に渡って囲繞した状態のままに固化され、汚染物質の漏洩、拡散を防止する。
このとき、重金属、農薬等の薬品は組成混合物の山砂に吸着され、その焼却灰がポルトランドセメントによって囲繞、固化され、そこからの漏洩、拡散を防止する。一方で、VOCは混合された炭の多孔質部分に吸着され、その炭をポルトランドセメントが囲繞するので同様に漏洩、拡散が抑制される。
又、焼却灰は、過剰の水分を含んでいる場合があるが、このときパーライトが作用し、該パーライトが余分な水分を吸水し、その後の固化反応に必要な最低限の水分量に調整することが出来る。
上記の通りノニオン系界面活性剤によって、ポルトランドセメントの分散が均一且つ良好になされると、山砂、土壌等の囲繞は効率的で可及的に薄い層で可能となり、固化反応後には、各粒子との間に間隙(空孔)が形成される。即ち、ノニオン系界面活性剤によって十分に分散されたポルトランドセメントは、山砂、土壌等を十分に囲繞し、固化した後にその周囲に土壌をポーラスな状態とすることができる。その結果、透水性と吸着性を維持することができ、例えば、舗装材として透水性等に優れたブロック体とすることができる。
又、山砂は一種の骨材として機能するので、固化後の土壌に一定の強度を付与することができ、ブロック体としての強度を保持する。
又、土壌に無機系顔料を配合すれば、色彩を付与することができる。
Next, the effect of the block body of the present invention will be described below.
When the block of the present invention is mixed and stirred with general incineration ash and the above composition mixture, Portland cement and the like react with water, and the incinerated ash containing pollutants is surrounded by Portland cement over the entire circumference. It is solidified as it is to prevent leakage and diffusion of pollutants.
At this time, chemicals such as heavy metals and agricultural chemicals are adsorbed on the mountain sand of the composition mixture, and the incinerated ash is surrounded and solidified by Portland cement, thereby preventing leakage and diffusion therefrom. On the other hand, VOC is adsorbed by the porous portion of the mixed charcoal, and since Portland cement surrounds the charcoal, leakage and diffusion are similarly suppressed.
Incinerated ash may contain excessive moisture, but at this time pearlite acts, the pearlite absorbs excess moisture, and is adjusted to the minimum amount of moisture necessary for the subsequent solidification reaction. I can do it.
As described above, when the Portland cement is uniformly and satisfactorily dispersed by the nonionic surfactant, the sand such as mountain sand and soil can be efficiently and as thin as possible, and after the solidification reaction, A gap (hole) is formed between the particles. That is, Portland cement sufficiently dispersed with a nonionic surfactant can sufficiently surround mountain sand, soil, and the like, and solidify the soil after it has solidified. As a result, water permeability and adsorptivity can be maintained, and for example, a block body excellent in water permeability as a paving material can be obtained.
Moreover, since the mountain sand functions as a kind of aggregate, a certain strength can be given to the solidified soil, and the strength as a block body is maintained.
Moreover, if an inorganic pigment is mix | blended with soil, a color can be provided.

この発明の実施例を、上記実施の形態に基づいて製作した。その実施状況を以下に説明する。 An example of the present invention was manufactured based on the above embodiment. The implementation status will be described below.

上記の形態に基づいて組成混合物を製造するに当たり、次の配合で実施した。
組成混合物は、山砂600kg、炭40kg、ポルトランドセメント345kg、無機系顔料6kg、パーライト20kg及びノニオン系界面活性剤(ノニルフェニルエーテル系重合体)3kgを混合した。上記配合によって製造された粒状混合物は、図2に混合状態を示し、一般ゴミ焼却灰を該組成混合物と重量比1対1で混合し、該組成混合物を型枠に充填し、舗装用ブロックとした。
In producing the composition mixture based on the above-described form, the following blending was carried out.
In the composition mixture, 600 kg of mountain sand, 40 kg of charcoal, 345 kg of Portland cement, 6 kg of inorganic pigment, 20 kg of perlite, and 3 kg of nonionic surfactant (nonylphenyl ether polymer) were mixed. The granular mixture produced by the above blending shows a mixed state in FIG. 2, in which general waste incineration ash is mixed with the composition mixture at a weight ratio of 1: 1, the composition mixture is filled in a mold, did.

試験例Test example

上記実施例に基づいて製作したこの発明の試料を、一般ゴミ焼却灰と組成混合物を重量比1対1で混合し、河川健康項目環境基準環境庁告示第59号に基づき溶出試験を行なった。測定方法およびその結果を以下に説明する。 The sample of the present invention produced based on the above-mentioned examples was mixed with general waste incineration ash and a composition mixture at a weight ratio of 1: 1, and an elution test was conducted based on the 59th notification of environmental standards of the river health item environment standard. The measurement method and the results will be described below.

埼玉県狭山市産一般ゴミ焼却灰と組成混合物を重量比1対1で混合したもの、秋田県角館市産一般ゴミ焼却灰と組成混合物を重量比1対1で混合したもの、それぞれを10cm×10cmの型枠の中に上記混合物を詰め込み、散水をして組成混合物と水を反応させ固化をさせた後に、2mm以下に破砕し純水に7日間浸した後にろ過し、環境庁告示第59号に基づく溶出試験方法にて溶出試験を行なった。実際の機関については財団法人栃木県環境技術協会にて検査を行なった。 A mixture of general waste incineration ash from Sayama City, Saitama Prefecture and a composition mixture in a weight ratio of 1: 1, a mixture of general waste incineration ash from Kakudate City, Akita Prefecture, and a composition mixture in a ratio of 1: 1, each 10 cm x The above mixture is packed in a 10 cm mold, sprinkled to cause the composition mixture and water to react and solidify, then crushed to 2 mm or less, soaked in pure water for 7 days, and filtered. The dissolution test was conducted by the dissolution test method based on No. 1. The actual organization was inspected by the Tochigi Environmental Technology Association.

その結果が、図3、図4に示す通りであり、本発明の試料による溶出試験結果が河川健康項目環境基準の環境基準である26項目対し、全て基準値以下にすることができ、汚染物質が組成混合物により溶出防止が可能であることを示すと共に、組成混合物の配合量が妥当であることが証明された。 The results are as shown in FIG. 3 and FIG. 4, and the results of the elution test using the sample of the present invention can be all below the standard value for the 26 items which are the environmental standards of the river health item environmental standards. Shows that elution can be prevented by the composition mixture, and that the blending amount of the composition mixture is proved to be appropriate.

本発明は、舗装材その他のブロック体として広く利用が可能である。 The present invention can be widely used as a paving material and other block bodies.

図1は、本発明ブロック体を示す斜視図である。FIG. 1 is a perspective view showing a block body of the present invention. 図2は、混合する対象物と該組成混合物の混合状況を示す模式図である。FIG. 2 is a schematic diagram showing a mixing state of an object to be mixed and the composition mixture. 図3は、狭山産ゴミ焼却灰の溶出試験の結果を示す表図である。FIG. 3 is a table showing the results of a dissolution test of Sayama waste incineration ash. 図4は、角館産ゴミ焼却灰の溶出試験の結果を示す表図である。FIG. 4 is a table showing the results of a dissolution test of Kakunodate garbage incineration ash.

Claims (1)

(a)平均粒子径10mm以下の山砂100重量部と、平均粒子径5mm以下の炭5〜15重量部と,ポルトランドセメント60〜65重量部、パーライト4〜10重量部および若干のノニオン系界面活性剤とを混合して成る組成混合物と、(b)一般ゴミ焼却灰とを、(c)1:0.8〜1.2の割合で混合撹拌したものに水分を含ませて固化したことを特徴とする一般ゴミ焼却灰を利用したブロック体。

(A) 100 parts by weight of sand with an average particle diameter of 10 mm or less, 5-15 parts by weight of charcoal with an average particle diameter of 5 mm or less, 60-65 parts by weight of Portland cement, 4-10 parts by weight of pearlite, and some nonionic interfaces The composition mixture formed by mixing the activator and (b) general waste incineration ash was mixed and stirred in a ratio of (c) 1: 0.8 to 1.2 and solidified by adding water. Block body using general waste incineration ash characterized by

JP2008132301A 2008-05-20 2008-05-20 Block body using general waste incineration ash Expired - Fee Related JP5431682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132301A JP5431682B2 (en) 2008-05-20 2008-05-20 Block body using general waste incineration ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132301A JP5431682B2 (en) 2008-05-20 2008-05-20 Block body using general waste incineration ash

Publications (2)

Publication Number Publication Date
JP2009281003A true JP2009281003A (en) 2009-12-03
JP5431682B2 JP5431682B2 (en) 2014-03-05

Family

ID=41451736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132301A Expired - Fee Related JP5431682B2 (en) 2008-05-20 2008-05-20 Block body using general waste incineration ash

Country Status (1)

Country Link
JP (1) JP5431682B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102319716A (en) * 2011-06-02 2012-01-18 福建工程学院 Covering layer of sanitary landfill
JP2012026818A (en) * 2010-07-22 2012-02-09 Ngk Insulators Ltd Radioactive silicone oil processing method
CN104556871A (en) * 2014-12-23 2015-04-29 同济大学 Bamboo charcoal-based and cement-based composite humidity conditioning material formed by quick casting and preparation method of humidity conditioning material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319758A (en) * 1998-05-14 1999-11-24 Taihei Kogyo Co Ltd Granulated material containing trivalent chromium
JP2005131579A (en) * 2003-10-31 2005-05-26 Ohbayashi Corp Method for purifying contaminated cohesive soil
JP2007320825A (en) * 2006-06-02 2007-12-13 Nippon Glass Kogyo Kk Block using soil generated through water purification and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319758A (en) * 1998-05-14 1999-11-24 Taihei Kogyo Co Ltd Granulated material containing trivalent chromium
JP2005131579A (en) * 2003-10-31 2005-05-26 Ohbayashi Corp Method for purifying contaminated cohesive soil
JP2007320825A (en) * 2006-06-02 2007-12-13 Nippon Glass Kogyo Kk Block using soil generated through water purification and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026818A (en) * 2010-07-22 2012-02-09 Ngk Insulators Ltd Radioactive silicone oil processing method
CN102319716A (en) * 2011-06-02 2012-01-18 福建工程学院 Covering layer of sanitary landfill
CN104556871A (en) * 2014-12-23 2015-04-29 同济大学 Bamboo charcoal-based and cement-based composite humidity conditioning material formed by quick casting and preparation method of humidity conditioning material

Also Published As

Publication number Publication date
JP5431682B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
Tang et al. Valorization of concrete slurry waste (CSW) and fine incineration bottom ash (IBA) into cold bonded lightweight aggregates (CBLAs): Feasibility and influence of binder types
Lynn et al. Environmental impacts of sewage sludge ash in construction: Leaching assessment
Yusuf et al. Use of sewage sludge ash (SSA) in the production of cement and concrete–a review
CN102897992B (en) Method for solidifying and stabilizing sludge from urban sewage treatment plant
CN108503386A (en) The technique for preparing baking-free ceramicite using metallurgical contaminated soil
Wang et al. Sustainable and efficient stabilization/solidification of Pb, Cr, and Cd in lead-zinc tailings by using highly reactive pozzolanic solid waste
JP2014047121A (en) Coal ash granulated body and granulated body mixture
JP2003334526A (en) Method for solidifying and insolubilizing polluted soil, or the like
JP5431682B2 (en) Block body using general waste incineration ash
JP2013202550A (en) Method of producing solidified material from biomass incineration ash
JP2006273921A (en) Soil improving material, soil improving method, sludge ash for preventing dissolution of heavy metal in soil, and sludge ash for shortening curing period for developing strength
Komaei et al. Stabilization and solidification of arsenic contaminated silty sand using alkaline activated slag
Soltaninejad et al. Environmental-friendly mortar produced with treated and untreated coal wastes as cement replacement materials
JP3765415B2 (en) Heavy metal stabilizer, heavy metal stabilization method, and heavy metal-containing material treatment method
Movahedrad et al. Effect of basic oxygen furnace slag incorporation into calcium-based materials on solidification/stabilization of a zinc-contaminated kaolin clay
JP4209224B2 (en) Method for producing calcium sulfide heavy metal fixing agent
Singh et al. Utilization of industrial waste in concrete mixes—A review
JP2008137842A (en) Method of manufacturing artificial aggregate using construction waste
JP5308068B2 (en) Method for improving contaminated soil
KR20000063216A (en) The method for recycling of construction materials for waste using inorganic matter
Ali et al. Valorization of fine recycled C&D aggregate and incinerator bottom ash for the preparation of controlled low-strength material (CLSM)
Jawaid et al. Solidification/stabilization of hospital solid waste incinerator ash for utilization in geotechnical construction
KR100357524B1 (en) Solidity material for reapplication of assignment waste harding foam having excellent compressive strength using the solidity material
JP2010053327A (en) Solidifying material for oil-contaminated soil, high organic volcanic ash, and oil-containing waste fluid
KR20040069521A (en) Preparing method of soil solidifier and solidifying soil thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5431682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees