JP2009280768A - Siloxane derivative and cured product, and optical semiconductor encapsulant - Google Patents

Siloxane derivative and cured product, and optical semiconductor encapsulant Download PDF

Info

Publication number
JP2009280768A
JP2009280768A JP2008137070A JP2008137070A JP2009280768A JP 2009280768 A JP2009280768 A JP 2009280768A JP 2008137070 A JP2008137070 A JP 2008137070A JP 2008137070 A JP2008137070 A JP 2008137070A JP 2009280768 A JP2009280768 A JP 2009280768A
Authority
JP
Japan
Prior art keywords
siloxane derivative
group
general formula
cured product
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008137070A
Other languages
Japanese (ja)
Other versions
JP5406466B2 (en
Inventor
Toshinobu Ogasawara
利信 小笠原
Hisanao Yamamoto
久尚 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2008137070A priority Critical patent/JP5406466B2/en
Publication of JP2009280768A publication Critical patent/JP2009280768A/en
Application granted granted Critical
Publication of JP5406466B2 publication Critical patent/JP5406466B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)
  • Silicon Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new siloxane derivative, a cured product, and an optical semiconductor encapsulant. <P>SOLUTION: The siloxane derivative has: a partial cleavage cage type silsesquioxane structure; a constitutional unit represented by a general formula (1), wherein R<SP>1</SP>and R<SP>2</SP>each independently represents a hydrogen atom, a halogen atom, a hydrocarbon, or a partial substitution product thereof, respectively, and may be same or different when two or more R<SP>1</SP>and R<SP>2</SP>are present in one molecule; and an epoxy group. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、新規なシロキサン誘導体及び該シロキサン誘導体を重合してなる硬化物並びに該硬化物からなる光半導体封止材に関する。本発明のシロキサン誘導体を重合してなる硬化物は、高い透明性を有し、更に硬化性、耐熱性に優れており、特に、光学部品用、電子部品用の、接着剤、コート材、フォトレジスト、シール材、封止材、絶縁材、レンズ材、基板材等の用途に有用である。本発明は、その中でも光半導体封止材用として好適な、新規なシロキサン誘導体及び該シロキサン誘導体を重合してなる硬化物、に関する。   The present invention relates to a novel siloxane derivative, a cured product obtained by polymerizing the siloxane derivative, and an optical semiconductor sealing material comprising the cured product. The cured product obtained by polymerizing the siloxane derivative of the present invention has high transparency, and further has excellent curability and heat resistance. In particular, adhesives, coating materials, photo materials for optical parts and electronic parts are used. It is useful for applications such as resists, sealing materials, sealing materials, insulating materials, lens materials, and substrate materials. In particular, the present invention relates to a novel siloxane derivative and a cured product obtained by polymerizing the siloxane derivative, which are suitable for an optical semiconductor sealing material.

従来、発光ダイオード(LED)等の光半導体の封止材としては、使用環境、用途等に応じて、エポキシ樹脂、シリコーン樹脂等が用いられる。しかし、エポキシ樹脂を用いた場合には硬化性には優れるものの、耐熱性が不十分で黄変してしまうという問題があり、一方でシリコーン樹脂を用いた場合には耐熱性は優れるものの、軟質材料としたときに埃等が付着するという問題、及び硬質材料としたときに接着性及び耐熱衝撃性が不十分で基材からの剥離、封止材のひび割れが生じてしまうという問題がある。また、シリコーン樹脂においては光取り出し効率の改善という観点から高屈折率化が望まれている。   Conventionally, as a sealing material for an optical semiconductor such as a light emitting diode (LED), an epoxy resin, a silicone resin, or the like is used depending on the use environment, application, or the like. However, when epoxy resin is used, it is excellent in curability, but there is a problem that heat resistance is insufficient and yellowing occurs. On the other hand, when silicone resin is used, heat resistance is excellent, but soft There is a problem that dust or the like adheres when used as a material, and a problem that adhesion and thermal shock resistance are insufficient when a hard material is used, causing peeling from the base material and cracking of the sealing material. In addition, in a silicone resin, a high refractive index is desired from the viewpoint of improving light extraction efficiency.

エポキシ樹脂の硬化特性とシリコーン樹脂の耐熱性を両立させるために、エポキシ基を有するシロキサン誘導体も検討されてきた(特許文献1、特許文献2、特許文献3、特許文献4参照)。しかし、これらシロキサン誘導体はエポキシ基の導入量が多いために、近年のLEDの高輝度化、ハイパワー化に伴い、耐熱性が十分ではなくなってきており、高い透明性を有し、硬化性、耐熱性に優れた硬化物を形成できる新規材料の開発が望まれている。   In order to achieve both the curing characteristics of the epoxy resin and the heat resistance of the silicone resin, siloxane derivatives having an epoxy group have also been studied (see Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4). However, since these siloxane derivatives have a large amount of epoxy groups introduced, with recent increase in brightness and power of LEDs, heat resistance has become insufficient, having high transparency, curability, Development of a new material capable of forming a cured product having excellent heat resistance is desired.

特開2005−171021号公報JP 2005-171021 A 特開2004−238589号公報JP 2004-238589 A 特開2004−359933号公報JP 2004-359933 A 特開2006−104248号公報JP 2006-104248 A

本発明は、高い透明性を有しつつ、硬化性、耐熱性に優れた硬化物を形成でき、特に光半導体封止材用として好適なシロキサン誘導体及び該シロキサン誘導体を重合してなる硬化物を提供することを目的とする。   The present invention is capable of forming a cured product having high transparency and excellent curability and heat resistance, and particularly a siloxane derivative suitable for an optical semiconductor sealing material and a cured product obtained by polymerizing the siloxane derivative. The purpose is to provide.

本発明者らは、前記課題を解決するため鋭意検討を行った結果、特定のシロキサン誘導体、及び該シロキサン誘導体を重合してなる硬化物によって、上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by a specific siloxane derivative and a cured product obtained by polymerizing the siloxane derivative, thereby completing the present invention. It came to.

すなわち、本発明は、以下に記載のシロキサン誘導体、該シロキサン誘導体を重合してなる硬化物及び該硬化物からなる光半導体封止材を提供するものである。本発明は具体的には以下の[1]〜[14]である。   That is, the present invention provides a siloxane derivative described below, a cured product obtained by polymerizing the siloxane derivative, and an optical semiconductor sealing material comprising the cured product. Specifically, the present invention includes the following [1] to [14].

[1] 部分開裂型カゴ状シルセスキオキサン構造、及び下記一般式(1):   [1] Partially cleaved cage silsesquioxane structure and the following general formula (1):

Figure 2009280768
Figure 2009280768

(式中R1及びR2は、各々独立して、水素原子、ハロゲン原子、炭化水素、又はこれらの部分置換体を示し、そしてR1及びR2は1分子中に複数存在する場合同一でも異なっていてもよい。)
で表される構成単位、及び、エポキシ基を有するシロキサン誘導体。
(Wherein R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon, or a partial substituent thereof, and R 1 and R 2 may be the same when a plurality of R 1 and R 2 exist in one molecule) May be different.)
And a siloxane derivative having an epoxy group.

[2] 部分開裂型カゴ状シルセスキオキサン構造が、下記一般式(2):   [2] The partially cleaved cage silsesquioxane structure has the following general formula (2):

Figure 2009280768
Figure 2009280768

(式中R3は、水素原子、ハロゲン原子、炭化水素、又はこれらの部分置換体を示し、そして複数のR3は同一でも異なっていてもよい。)
で表される[1]に記載のシロキサン誘導体。
(In the formula, R 3 represents a hydrogen atom, a halogen atom, a hydrocarbon, or a partially substituted product thereof, and a plurality of R 3 may be the same or different.)
The siloxane derivative according to [1] represented by

[3] エポキシ基を、少なくとも下記一般式(3):   [3] At least the following general formula (3):

Figure 2009280768
Figure 2009280768

(式中R4及びR5は、各々独立して、炭化水素、又はこれらの部分置換体を示し、R6は、エポキシ基含有基を示し、R4、R5及びR6は分子中に複数存在する場合同一でも異なっていてもよい。)
で表される構成単位において含む、[1]又は[2]に記載のシロキサン誘導体。
(In the formula, R 4 and R 5 each independently represent a hydrocarbon or a partially substituted product thereof, R 6 represents an epoxy group-containing group, and R 4 , R 5 and R 6 are present in the molecule. If there are multiple, they may be the same or different.)
The siloxane derivative according to [1] or [2], which is contained in the structural unit represented by

[4] 下記一般式(4):   [4] The following general formula (4):

Figure 2009280768
Figure 2009280768

(式中R7、R8及びR9は、各々独立して、炭化水素、又はこれらの部分置換体を示し、R7、R8及びR9は分子中に複数存在する場合同一でも異なっていてもよい。)
で表される構成単位を更に有する、[1]〜[3]のいずれかに記載のシロキサン誘導体。
(In the formula, R 7 , R 8 and R 9 each independently represent a hydrocarbon or a partial substituent thereof, and when there are a plurality of R 7 , R 8 and R 9 in the molecule, they are the same or different. May be.)
The siloxane derivative according to any one of [1] to [3], further having a structural unit represented by:

[5] R3がフェニル基である、[2]に記載のシロキサン誘導体。 [5] The siloxane derivative according to [2], wherein R 3 is a phenyl group.

[6] R1及びR2がメチル基であり、かつR4、R5、R7、R8及びR9が存在する場合これらがいずれもメチル基である、[1]〜[5]のいずれかに記載のシロキサン誘導体。 [6] R 1 and R 2 are methyl groups, and those cases where R 4, R 5, R 7 , R 8 and R 9 present is either a methyl group, [1] to [5] The siloxane derivative according to any one of the above.

[7] 下記一般式(5):
{(C65SiO3/2a((CH32SiO1/2CH2CH22c+d+e(H(CH32SiO1/2b-(2c+d+e)}(((CH32SiO)n(CH32Si)c(R6d((CH33Si)e・・・(5)
(式中R6はエポキシ基含有基であり、a、b、c、d、e及びnは実数であり、a>0、b>0、c>0、d>0、e≧0、n>0であり、かつb≧2c+d+eである。)
で表される構成単位を含む、[1]〜[6]のいずれかに記載のシロキサン誘導体。
[7] The following general formula (5):
{(C 6 H 5 SiO 3/2 ) a ((CH 3 ) 2 SiO 1/2 CH 2 CH 2 ) 2c + d + e (H (CH 3 ) 2 SiO 1/2 ) b- (2c + d + e) } (((CH 3 ) 2 SiO) n (CH 3 ) 2 Si) c (R 6 ) d ((CH 3 ) 3 Si) e (5)
(Wherein R 6 is an epoxy group-containing group, a, b, c, d, e and n are real numbers, a> 0, b> 0, c> 0, d> 0, e ≧ 0, n > 0 and b ≧ 2c + d + e.)
The siloxane derivative in any one of [1]-[6] containing the structural unit represented by these.

[8] [1]〜[7]のいずれかに記載のシロキサン誘導体を重合してなる硬化物。   [8] A cured product obtained by polymerizing the siloxane derivative according to any one of [1] to [7].

[9] 硬化剤として酸無水物を用いて重合してなる、[8]に記載の硬化物。   [9] The cured product according to [8], which is polymerized using an acid anhydride as a curing agent.

[10] 硬化促進剤を更に用いて重合してなる、[9]に記載の硬化物。   [10] The cured product according to [9], which is polymerized by further using a curing accelerator.

[11] 硬化剤中に存在する酸無水物が、エポキシ基に対する当量比で、酸無水物/エポキシ基=0.01〜0.8となるように重合してなる、[9]又は[10]に記載の硬化物。   [11] The acid anhydride present in the curing agent is polymerized so that the acid anhydride / epoxy group = 0.01 to 0.8 in an equivalent ratio to the epoxy group, [9] or [10 ] The hardened | cured material as described in.

[12] 重合開始剤としてカチオン重合開始剤を用いて重合してなる、[8]に記載の硬化物。   [12] The cured product according to [8], which is polymerized using a cationic polymerization initiator as a polymerization initiator.

[13] 熱により重合してなる、[8]〜[12]のいずれかに記載の硬化物。   [13] The cured product according to any one of [8] to [12], which is polymerized by heat.

[14] [8]〜[13]のいずれかに記載の硬化物からなる光半導体封止材。   [14] An optical semiconductor sealing material comprising the cured product according to any one of [8] to [13].

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のシロキサン誘導体は、部分開裂型カゴ状シルセスキオキサン構造、及び下記一般式(1):   The siloxane derivative of the present invention has a partially cleaved cage silsesquioxane structure and the following general formula (1):

Figure 2009280768
Figure 2009280768

(式中R1及びR2は、各々独立して、水素原子、ハロゲン原子、炭化水素、又はこれらの部分置換体を示し、そしてR1及びR2は1分子中に複数存在する場合同一でも異なっていてもよい。)
で表される構成単位、及び、エポキシ基を有するシロキサン誘導体である。
(Wherein R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon, or a partial substituent thereof, and R 1 and R 2 may be the same when a plurality of R 1 and R 2 exist in one molecule) May be different.)
And a siloxane derivative having an epoxy group.

本発明における部分開裂型カゴ状シルセスキオキサン構造は、基本構成単位がT単位であるポリシロキサンにおける一部のSi−O結合が開裂してなるカゴ状の構造であり、典型的な例としては、下記一般式(6):   The partially-cleavage cage silsesquioxane structure in the present invention is a cage structure in which a part of Si—O bond in a polysiloxane whose basic structural unit is a T unit is cleaved. Is the following general formula (6):

Figure 2009280768
Figure 2009280768

(式中R3は、水素原子、ハロゲン原子、炭化水素、又はこれらの部分置換体であり、そして複数のR3は同一でも異なっていてもよく、i、jは正数であり、6≦i+j≦40、i≧1、j≧4である。)
で表される構造を構成単位とするものがある。
(Wherein R 3 is a hydrogen atom, a halogen atom, a hydrocarbon, or a partially substituted product thereof, and a plurality of R 3 may be the same or different, i and j are positive numbers, and 6 ≦ i + j ≦ 40, i ≧ 1, and j ≧ 4.)
There are some which have a structure represented by

一般式(6)で表される構造の例を一般式(2)、一般式(7)、一般式(8):   Examples of the structure represented by the general formula (6): General formula (2), general formula (7), general formula (8):

Figure 2009280768
Figure 2009280768

Figure 2009280768
Figure 2009280768

Figure 2009280768
Figure 2009280768

に示す。 Shown in

部分開裂型カゴ状シルセスキオキサン構造、より典型的には一般式(6)で表されるような構成単位を有していることにより、本発明のシロキサン誘導体は硬化性に優れ、Tgが高く耐熱性に優れる硬化物を与える。一般式(2)で表される構造は、3次元的に結合でき、特にTgが高く耐熱性に優れるため好ましい。具体的には、トリシラノール型シルセスキオキサンが挙げられ、入手性の観点で好適に用いることができる。また、一般式(1)で表されるような構成単位を有していることにより本発明のシロキサン誘導体は適正な粘度を与え、作業性にも優れる。   By having a partially cleaved cage silsesquioxane structure, more typically a structural unit represented by the general formula (6), the siloxane derivative of the present invention is excellent in curability and has a Tg of Gives a cured product with high heat resistance. The structure represented by the general formula (2) is preferable because it can be three-dimensionally bonded and has particularly high Tg and excellent heat resistance. Specific examples include trisilanol-type silsesquioxane, which can be suitably used from the viewpoint of availability. Moreover, by having a structural unit represented by the general formula (1), the siloxane derivative of the present invention gives an appropriate viscosity and is excellent in workability.

一般式(6)の置換基R3は、水素原子、ハロゲン原子、炭化水素、又はこれらの部分置換体を示し、複数のR3は同一でも異なっていてもよい。置換基R3として採用できる、炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、芳香族構造含有アルケニル基、ポリエン炭化水素基、アリール基、アラアルキル基、アルキレン基等が挙げられる。アルキル基の例としては、メチル、エチル、n−プロピル、i−プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ドデシル等が挙げられる。シクロアルキル基の例としては、シクロペンチル、シクロヘキシル、シクロへキシルエチル、シクロヘプチル、シクロオクチル、シクロノニル、メチルシクロペンチル、メチルシクロヘキシル等が挙げられる。アルケニル基の例としては、ビニル、アリル、1−プロペニル、1−ブテニル、2−ブテニル、3−ブテニル、ペンテニル、ヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニル、ウンデセニル、ドデセニル等が挙げられる。シクロアルケニル基の例としては、シクロペンテニル、シクロヘキセニル、シクロヘキセニルエチル、ノルボネニル、ノルボルネニルエチル等が挙げられる。芳香族構造含有アルケニル基の例としては、シンナミル(C65−CH=CH−CH2−)、スチリル(C65−CH=CH−)、4−ビニルスチリル(CH2=CH−C64−CH=CH−)、アルキル置換スチリル、アルコキシ置換スチリル基等が挙げられる。ポリエン炭化水素基の例としては、1,5−ヘキサジエニル、2,4−ペンタジエニル、シクロオクタジエニル基等が挙げられる。アラアルキル基の例としてはベンジル、フェネチル、2−メチルベンジル、4−メチルベンジル、α−メチルベンジル、2−ビニルフェネチル、4−ビニルフェネチル基等が挙げられる。アルキレン基の例としては、エチレン基、プロピレン基、ブチレン基等が挙げられる。アリール基の例としては、フェニル基、フェニレン基、ナフチル基、ナフチレン基又は炭素数1〜14、より好ましくは炭素数1〜8のアルキル基若しくはアルケニル基で1置換あるいは複数置換された芳香族基等が挙げられる。置換芳香族基の例としては、トリル基、4−メチルフェニル基、2,4−ジメチルフェニル基、4−t−ブチルフェニル基、4−ビニルフェニル基、2−アリルフェニル基、4−アリルフェニル基、ビニルナフチル基等が挙げられる。 The substituent R 3 in the general formula (6) represents a hydrogen atom, a halogen atom, a hydrocarbon, or a partial substituent thereof, and a plurality of R 3 may be the same or different. Examples of the hydrocarbon group that can be employed as the substituent R 3 include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an aromatic structure-containing alkenyl group, a polyene hydrocarbon group, an aryl group, an araalkyl group, and an alkylene group. Etc. Examples of the alkyl group include methyl, ethyl, n-propyl, i-propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl and the like. Examples of the cycloalkyl group include cyclopentyl, cyclohexyl, cyclohexylethyl, cycloheptyl, cyclooctyl, cyclononyl, methylcyclopentyl, methylcyclohexyl and the like. Examples of alkenyl groups include vinyl, allyl, 1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl and the like. Examples of cycloalkenyl groups include cyclopentenyl, cyclohexenyl, cyclohexenylethyl, norbornenyl, norbornenylethyl and the like. Examples of the aromatic structure-containing alkenyl group, a cinnamyl (C 6 H 5 -CH = CH -CH 2 -), styryl (C 6 H 5 -CH = CH -), 4- Binirusuchiriru (CH 2 = CH- C 6 H 4 —CH═CH—), alkyl-substituted styryl, alkoxy-substituted styryl groups and the like. Examples of polyene hydrocarbon groups include 1,5-hexadienyl, 2,4-pentadienyl, cyclooctadienyl groups, and the like. Examples of araalkyl groups include benzyl, phenethyl, 2-methylbenzyl, 4-methylbenzyl, α-methylbenzyl, 2-vinylphenethyl, 4-vinylphenethyl groups and the like. Examples of the alkylene group include an ethylene group, a propylene group, and a butylene group. Examples of the aryl group include a phenyl group, a phenylene group, a naphthyl group, a naphthylene group, or an aromatic group that is mono-substituted or substituted with an alkyl group or an alkenyl group having 1 to 14, more preferably 1 to 8 carbon atoms. Etc. Examples of substituted aromatic groups are tolyl, 4-methylphenyl, 2,4-dimethylphenyl, 4-t-butylphenyl, 4-vinylphenyl, 2-allylphenyl, 4-allylphenyl. Group, vinyl naphthyl group and the like.

一般式(6)におけるR3の全炭素原子数は、耐熱性が高い点で、10個以下が好ましく、より好ましくは6個以下である。また同様の理由で炭素−炭素二重結合を含まない方が好ましい。なお、本発明において「炭素−炭素二重結合」とは、共役二重結合を含むが、芳香環構造は含まない。特に好ましくは、R3はメチル基、エチル基である。また、R3としてフェニル基を導入することで、屈折率を高くすることもできる。なお本明細書を通じて、耐熱性とは、熱による黄変が極めて起こり難いことを指す。 In the general formula (6), the total number of carbon atoms of R 3 is preferably 10 or less, more preferably 6 or less, in view of high heat resistance. For the same reason, it is preferable not to include a carbon-carbon double bond. In the present invention, the “carbon-carbon double bond” includes a conjugated double bond but does not include an aromatic ring structure. Particularly preferably, R 3 is a methyl group or an ethyl group. Further, the refractive index can be increased by introducing a phenyl group as R 3 . Throughout this specification, heat resistance means that yellowing due to heat hardly occurs.

一般式(1)におけるR1及びR2の例としては、各々独立に、前記一般式(6)におけるR3の例の中から選択される少なくとも1種が挙げられる。これらの中では、R1及び/又はR2が直鎖状又は分岐鎖状のアルキル基である場合、耐熱性に優れるという利点があり、また、適正な粘度で作業性良好なシロキサン誘導体を得易い。R1及びR2の各々の、置換基も含めた全炭素原子数は、耐熱性が高い点で、10個以下が好ましく、より好ましくは6個以下であり、同様の観点でR1及びR2は各々非置換の直鎖状又は分岐鎖状のアルキル基であることが好ましい。また同様に、耐熱性が高い点で、R1及びR2は各々直鎖状のアルキル基であることが更に好ましい。以上を踏まえると、一般式(1)におけるR1及びR2は、特に好ましくはメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基であり、最も好ましくは、メチル基、エチル基である。また、R1及びR2の少なくともいずれかとしてフェニル基を導入することで、屈折率を高くすることもできる。一般式(1)で表される構成単位は、1種でも、R1及びR2の少なくともいずれかが異なる2種類以上であってもよい。 Examples of R 1 and R 2 in the general formula (1) are each independently at least one selected from the examples of R 3 in the general formula (6). Among these, when R 1 and / or R 2 is a linear or branched alkyl group, there is an advantage of excellent heat resistance, and a siloxane derivative having good viscosity and good workability is obtained. easy. The total number of carbon atoms, including substituents, of each of R 1 and R 2 is preferably 10 or less, more preferably 6 or less from the viewpoint of high heat resistance, and R 1 and R from the same viewpoint. 2 are each preferably an unsubstituted linear or branched alkyl group. Similarly, R 1 and R 2 are each more preferably a linear alkyl group from the viewpoint of high heat resistance. Based on the above, R 1 and R 2 in the general formula (1) are particularly preferably a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, and an n-hexyl group, Preferably, they are a methyl group and an ethyl group. In addition, the refractive index can be increased by introducing a phenyl group as at least one of R 1 and R 2 . The structural unit represented by the general formula (1) may be one type or two or more types in which at least one of R 1 and R 2 is different.

本発明のシロキサン誘導体は、エポキシ基を、少なくとも一般式(3):   The siloxane derivative of the present invention has an epoxy group at least represented by the general formula (3):

Figure 2009280768
Figure 2009280768

(式中R4及びR5は、各々独立して、炭化水素、又はこれらの部分置換体を示し、R6は、エポキシ基含有基を示し、R4、R5及びR6は分子中に複数存在する場合同一でも異なっていてもよい。)
で表される構成単位において含むことが好ましい。これにより、分子量、エポキシ価の調節が容易になり、適正な粘度で作業性が良好となり、かつ、所定のエポキシ価を有するシロキサン誘導体を容易に得ることができる。
(In the formula, R 4 and R 5 each independently represent a hydrocarbon or a partially substituted product thereof, R 6 represents an epoxy group-containing group, and R 4 , R 5 and R 6 are present in the molecule. If there are multiple, they may be the same or different.)
It is preferable to contain in the structural unit represented by these. Thereby, the molecular weight and the epoxy value can be easily adjusted, the workability is good with an appropriate viscosity, and a siloxane derivative having a predetermined epoxy value can be easily obtained.

一般式(3)におけるR4及びR5の例としては、各々独立に、前記一般式(6)におけるR3の例の中から選択される少なくとも1種が挙げられる。これらの中では、R4及びR5が各々直鎖状又は分岐鎖状のアルキル基である場合、耐熱性に優れるという利点があり、また、適正な粘度で作業性良好なシロキサン誘導体を得易い。R4及びR5の、置換基も含めた全炭素原子数は、耐熱性が高い点で、10個以下が好ましく、より好ましくは6個以下であり、同様の観点で、R4及びR5は各々非置換の直鎖状又は分岐鎖状のアルキル基であることが好ましい。また同様に、耐熱性が高い点で、R4及びR5が各々直鎖状のアルキル基であることが更に好ましい。以上を踏まえると、一般式(3)におけるR4及びR5は、特に好ましくはメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基であり、最も好ましくは、メチル基、エチル基である。また、R4及びR5の少なくともいずれかとしてフェニル基を導入することで、屈折率を高くすることもできる。一般式(3)で表される構成単位は、1種でも、R4及びR5の少なくともいずれかが異なる2種類以上であってもよい。 Examples of R 4 and R 5 in general formula (3) are each independently at least one selected from the examples of R 3 in general formula (6). Among these, when R 4 and R 5 are each a linear or branched alkyl group, there is an advantage of excellent heat resistance, and it is easy to obtain a siloxane derivative having an appropriate viscosity and good workability. . The total number of carbon atoms including substituents in R 4 and R 5 is preferably 10 or less, more preferably 6 or less in view of high heat resistance. From the same viewpoint, R 4 and R 5 Each is preferably an unsubstituted linear or branched alkyl group. Similarly, R 4 and R 5 are each preferably a linear alkyl group in view of high heat resistance. Based on the above, R 4 and R 5 in the general formula (3) are particularly preferably a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, and an n-hexyl group, Preferably, they are a methyl group and an ethyl group. In addition, the refractive index can be increased by introducing a phenyl group as at least one of R 4 and R 5 . The structural unit represented by the general formula (3) may be one type or two or more types in which at least one of R 4 and R 5 is different.

一般式(3)におけるR6は、エポキシ基含有基であり、一般式(9): R 6 in the general formula (3) is an epoxy group-containing group, and the general formula (9):

Figure 2009280768
Figure 2009280768

(式中R10はメチレン基又は二価の炭素数2〜10の直鎖状アルキレン基又は炭素数3〜10の分岐鎖状アルキレン基を示す。)
一般式(10):
(Wherein R 10 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms.)
General formula (10):

Figure 2009280768
Figure 2009280768

(式中R11はメチレン基又は二価の炭素数2〜10の直鎖状アルキレン基又は炭素数3〜10の分岐鎖状アルキレン基を示す。)
一般式(11):
(Wherein R 11 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms.)
General formula (11):

Figure 2009280768
Figure 2009280768

(式中R12はメチレン基又は二価の炭素数2〜10の直鎖状アルキレン基又は炭素数3〜10の分岐鎖状アルキレン基を示す。)
又は一般式(12):
(In the formula, R 12 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms.)
Or general formula (12):

Figure 2009280768
Figure 2009280768

(式中R13はメチレン基又は二価の炭素数2〜10の直鎖状アルキレン基又は炭素数3〜10の分岐鎖状アルキレン基を示す。)
で表される場合、硬化性、耐熱性等の観点で好ましい。
(In the formula, R 13 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms.)
Is preferable in terms of curability, heat resistance, and the like.

10、R11、R12及びR13の炭素数は、耐熱性の観点から10以下が好ましい。このような観点から好ましいR10、R11、R12及びR13の構造を例示すると、−(CH2)−、−(CH22−、−(CH23−、−(CH24−、−(CH25−、−(CH26−、−(CH28−、−(CH210−、−CH(CH3)CH2−、−C(CH32−等が挙げられ、−(CH22−、−(CH23−、−CH(CH3)CH2−がより好ましく、更に好ましくは−(CH22−、−(CH23−である。また、エポキシ基含有基が一般式(9)又は一般式(11)で表されると入手性の観点から好ましく、一般式(9)で表されると硬化性の観点から更に好ましい。以上を総合して、本発明のシロキサン誘導体におけるエポキシ基含有基として特に好ましいものとしては、3−グリシドキシプロピル基、2−(3’、4’−エポキシシクロヘキシル)エチル基、3−(2’−ヒドロキシエトキシ)プロピル基等が挙げられ、その中でも2−(3’、4’−エポキシシクロヘキシル)エチル基が、硬化性に優れる点で最も好ましい。 The number of carbon atoms of R 10 , R 11 , R 12 and R 13 is preferably 10 or less from the viewpoint of heat resistance. From the above viewpoint, preferred structures of R 10 , R 11 , R 12 and R 13 are exemplified by — (CH 2 ) —, — (CH 2 ) 2 —, — (CH 2 ) 3 —, — (CH 2). ) 4 -,-(CH 2 ) 5 -,-(CH 2 ) 6 -,-(CH 2 ) 8 -,-(CH 2 ) 10- , -CH (CH 3 ) CH 2- , -C (CH 3) 2 - and the like, - (CH 2) 2 - , - (CH 2) 3 -, - CH (CH 3) CH 2 - are more preferable, more preferably - (CH 2) 2 -, - (CH 2 ) 3 —. Moreover, when an epoxy group containing group is represented by General formula (9) or General formula (11), it is preferable from a viewpoint of availability, and when represented by General formula (9), it is still more preferable from a sclerosing | hardenable viewpoint. In summary, the epoxy group-containing groups in the siloxane derivative of the present invention are particularly preferable as 3-glycidoxypropyl group, 2- (3 ′, 4′-epoxycyclohexyl) ethyl group, 3- (2 '-Hydroxyethoxy) propyl group and the like can be mentioned. Among them, 2- (3 ′, 4′-epoxycyclohexyl) ethyl group is most preferable in terms of excellent curability.

本発明のシロキサン誘導体の数平均分子量は、特に制限はされないが、500〜100000が好ましい。数平均分子量が500以上であれば硬化性に優れ、硬化物のTgが高くなり、数平均分子量が100000以下であると、シロキサン誘導体及び該シロキサン誘導体を含む硬化性樹脂組成物の作業性に優れる。このような観点から、より好ましい数平均分子量の範囲は、700〜50000、更に好ましくは800〜10000、特に好ましくは900〜8000、最も好ましくは1000〜7000である。なお、数平均分子量はGPC測定における数平均分子量によって規定される。   The number average molecular weight of the siloxane derivative of the present invention is not particularly limited, but is preferably 500 to 100,000. If the number average molecular weight is 500 or more, the curability is excellent, the Tg of the cured product is high, and if the number average molecular weight is 100,000 or less, the workability of the siloxane derivative and the curable resin composition containing the siloxane derivative is excellent. . From such a viewpoint, the more preferable range of the number average molecular weight is 700 to 50000, more preferably 800 to 10000, particularly preferably 900 to 8000, and most preferably 1000 to 7000. The number average molecular weight is defined by the number average molecular weight in GPC measurement.

またシロキサン誘導体のエポキシ価は、硬化性、耐熱性の観点から、0.001〜0.25(当量/100g)であることが好ましく、より好ましくは0.001〜0.15(当量/100g)、更に好ましくは0.005〜0.12(当量/100g)、最も好ましくは0.01〜0.10(当量/100g)である。ここでエポキシ価とはシロキサン誘導体100g中のエポキシ基のモル数を意味する。   The epoxy value of the siloxane derivative is preferably 0.001 to 0.25 (equivalent / 100 g), more preferably 0.001 to 0.15 (equivalent / 100 g) from the viewpoints of curability and heat resistance. More preferably, it is 0.005-0.12 (equivalent / 100 g), and most preferably 0.01-0.10 (equivalent / 100 g). Here, the epoxy value means the number of moles of epoxy groups in 100 g of the siloxane derivative.

本発明のシロキサン誘導体は、一般式(4):   The siloxane derivative of the present invention has the general formula (4):

Figure 2009280768
Figure 2009280768

(式中R7、R8及びR9は、各々独立して、炭化水素、又はこれらの部分置換体を示し、R7、R8及びR9は分子中に複数存在する場合同一でも異なっていてもよい。)
で表される構成単位を更に有することがより好ましい。これにより、分子量、エポキシ価の調節が容易になり、適正な粘度で作業性が良好となり、かつ、所定のエポキシ価を有するシロキサン誘導体を容易に得ることができる。
(In the formula, R 7 , R 8 and R 9 each independently represent a hydrocarbon or a partial substituent thereof, and when there are a plurality of R 7 , R 8 and R 9 in the molecule, they are the same or different. May be.)
It is more preferable to further have a structural unit represented by Thereby, the molecular weight and the epoxy value can be easily adjusted, the workability is good with an appropriate viscosity, and a siloxane derivative having a predetermined epoxy value can be easily obtained.

一般式(4)におけるR7、R8及びR9の例としては、各々独立に、前記一般式(6)におけるR3の例の中から選択される少なくとも1種が挙げられる。これらの中では、R7、R8及びR9が各々直鎖状又は分岐鎖状のアルキル基である場合、耐熱性に優れるという利点がある。R7、R8及びR9の、置換基も含めた全炭素原子数は、耐熱性が高い点で、10個以下が好ましく、より好ましくは6個以下であり、同様の観点でR7、R8及びR9が各々非置換の直鎖状又は分岐鎖状のアルキル基であることが好ましい。また同様に、耐熱性が高い点で、R7、R8及びR9が各々直鎖状のアルキル基であることが更に好ましい。以上を踏まえると、一般式におけるR7、R8及びR9は、特に好ましくはメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基であり、最も好ましくは、メチル基、エチル基である。また、R7、R8及びR9の少なくともいずれかとしてフェニル基を導入することで、屈折率を高くすることもできる。一般式(4)で表される構成単位は、1種でも、R7、R8及びR9の少なくともいずれかが異なる2種類以上であってもよい。 Examples of R 7 , R 8 and R 9 in the general formula (4) each independently include at least one selected from the examples of R 3 in the general formula (6). In these, when R <7> , R < 8 > and R < 9 > are each linear or branched alkyl groups, there exists an advantage that it is excellent in heat resistance. The total number of carbon atoms including substituents in R 7 , R 8 and R 9 is preferably 10 or less, more preferably 6 or less in view of high heat resistance, and R 7 , R 8 and R 9 are each preferably an unsubstituted linear or branched alkyl group. Similarly, R 7 , R 8 and R 9 are each preferably a linear alkyl group in view of high heat resistance. Based on the above, R 7 , R 8 and R 9 in the general formula are particularly preferably a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, and an n-hexyl group, Preferably, they are a methyl group and an ethyl group. Further, the refractive index can be increased by introducing a phenyl group as at least one of R 7 , R 8 and R 9 . The structural unit represented by the general formula (4) may be one type or two or more types in which at least one of R 7 , R 8 and R 9 is different.

本発明のシロキサン誘導体においては、耐熱性に特に優れる硬化物を与えることができる点で、R1、R2、R4、R5、R7、R8及びR9がメチル基であることが特に好ましい。 In the siloxane derivative of the present invention, R 1 , R 2 , R 4 , R 5 , R 7 , R 8 and R 9 may be methyl groups in that a cured product having particularly excellent heat resistance can be provided. Particularly preferred.

本発明のシロキサン誘導体は、一般式(5):
{(C65SiO3/2a((CH32SiO1/2CH2CH22c+d+e(H(CH32SiO1/2b-(2c+d+e)}(((CH32SiO)n(CH32Si)c(R6d((CH33Si)e・・・(5)
(式中R6はエポキシ基含有基であり、a、b、c、d、e及びnは実数であり、a>0、b>0、c>0、d>0、e≧0、n>0であり、かつb≧2c+d+eである。)
で表される構成単位を含むことが好ましい。これにより特に耐熱性に優れる硬化物を与えることができる。
The siloxane derivative of the present invention has a general formula (5):
{(C 6 H 5 SiO 3/2 ) a ((CH 3 ) 2 SiO 1/2 CH 2 CH 2 ) 2c + d + e (H (CH 3 ) 2 SiO 1/2 ) b- (2c + d + e) } (((CH 3 ) 2 SiO) n (CH 3 ) 2 Si) c (R 6 ) d ((CH 3 ) 3 Si) e (5)
(Wherein R 6 is an epoxy group-containing group, a, b, c, d, e and n are real numbers, a> 0, b> 0, c> 0, d> 0, e ≧ 0, n > 0 and b ≧ 2c + d + e.)
It is preferable that the structural unit represented by these is included. Thereby, the hardened | cured material which is excellent in heat resistance especially can be given.

一般式(5)において、2a≦cである場合、本発明のシロキサン誘導体が適正な粘度で作業性に優れる点で好ましく、e>0である場合、分子量、エポキシ価を調節するのに優れる点で好ましい。a、b、c、d、e及びnの値は、29Si−NMRにより求めることができる。 In the general formula (5), when 2a ≦ c, the siloxane derivative of the present invention is preferable in terms of excellent workability with an appropriate viscosity, and when e> 0, it is excellent in adjusting the molecular weight and epoxy value. Is preferable. The values of a, b, c, d, e and n can be determined by 29 Si-NMR.

前述の[1]〜[7]に示されるシロキサン誘導体の合成法としては、特に限定されるものではないが、例えば、ヒドロシリル化による合成方法を挙げることができる。この場合、耐熱性の観点から未反応ビニル基が含まれないように合成することがより好ましい。   Although it does not specifically limit as a synthesis method of the siloxane derivative shown by above-mentioned [1]-[7], For example, the synthesis method by hydrosilylation can be mentioned. In this case, it is more preferable to synthesize so as not to include an unreacted vinyl group from the viewpoint of heat resistance.

本発明の硬化物は本発明のシロキサン誘導体を重合して得ることができる。該シロキサン誘導体を重合して硬化する方法としては、熱硬化、エネルギー線による硬化及びそれらの組み合わせによる硬化が挙げられる。短時間で硬化するにはエネルギー線による硬化が好ましく、耐熱性のより優れる硬化物を得るには、熱硬化がより好ましい。   The cured product of the present invention can be obtained by polymerizing the siloxane derivative of the present invention. Examples of the method for polymerizing and curing the siloxane derivative include thermal curing, curing with energy rays, and curing with a combination thereof. Curing with an energy beam is preferable for curing in a short time, and thermal curing is more preferable for obtaining a cured product with better heat resistance.

本発明のシロキサン誘導体をエネルギー線により硬化させる場合、硬化を促進させる化合物として、光カチオン重合開始剤や光塩基発生剤を添加してもよい。   When the siloxane derivative of the present invention is cured by energy rays, a cationic photopolymerization initiator or a photobase generator may be added as a compound that promotes curing.

前記光カチオン重合開始剤とは、エネルギー線照射によりカチオン重合を開始させる物質を放出することが可能な化合物であり、特に好ましいものとしては照射によりルイス酸を放出するオニウム塩が挙げられる。オニウム塩としては、ルイス酸のジアゾニウム塩、ルイス酸のヨードニウム塩、ルイス酸のスルホニウム塩等が挙げられ、これらはカチオン部分がそれぞれ芳香族ジアゾニウム、芳香族ヨードニウム、芳香族スルホニウムであり、アニオン部分がBF4 -、PF6 -、SbF6 -、[BX4-(ただし、Xは2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基)等により構成されたオニウム塩である。 The cationic photopolymerization initiator is a compound capable of releasing a substance that initiates cationic polymerization by irradiation with energy rays, and particularly preferred is an onium salt that releases a Lewis acid by irradiation. Examples of the onium salt include a diazonium salt of a Lewis acid, an iodonium salt of a Lewis acid, a sulfonium salt of a Lewis acid, and the cation portion is aromatic diazonium, aromatic iodonium, and aromatic sulfonium, respectively, and the anion portion is An onium salt composed of BF 4 , PF 6 , SbF 6 , [BX 4 ] (wherein X is a phenyl group substituted with two or more fluorine or trifluoromethyl groups) and the like.

具体的には、四フッ化ホウ素のフェニルジアゾニウム塩、六フッ化リンのジフェニルヨードニウム塩、六フッ化アンチモンのジフェニルヨードニウム塩、六フッ化ヒ素のトリ−4−メチルフェニルスルホニウム塩、四フッ化アンチモンのトリ−4−メチルフェニルスルホニウム塩、テトラキス(ペンタフルオロフェニル)ホウ素のジフェニルヨードニウム塩、アセチルアセトンアルミニウム塩とオルトニトロベンジルシリルエーテル混合体、フェニルチオピリジウム塩、六フッ化リンアレン−鉄錯体等を挙げることができる。更に具体的には、CD−1012(商品名:SARTOMER社製)、PCI−019、PCI−021(商品名:日本化薬社製)、オプトマーSP−150、オプトマーSP−170(商品名:旭電化社製)、UVI−6990(商品名:ダウケミカル社製)、CPI−100P、CPI−100A(商品名:サンアプロ社製)、TEPBI−S(商品名:日本触媒社製)等を用いることができ、これらは単独でも2種以上を組み合わせて使用することもできる。   Specifically, boron difluoride phenyldiazonium salt, phosphorus hexafluoride diphenyliodonium salt, antimony hexafluoride diphenyliodonium salt, arsenic hexafluoride tri-4-methylphenylsulfonium salt, antimony tetrafluoride Tri-4-methylphenylsulfonium salt, tetrakis (pentafluorophenyl) boron diphenyliodonium salt, acetylacetone aluminum salt and orthonitrobenzylsilyl ether mixture, phenylthiopyridium salt, phosphorus hexafluoride allene-iron complex, etc. be able to. More specifically, CD-1012 (trade name: manufactured by SARTOMER), PCI-019, PCI-021 (trade name: manufactured by Nippon Kayaku Co., Ltd.), Optmer SP-150, Optomer SP-170 (trade name: Asahi) Denki Co., Ltd.), UVI-6990 (trade name: manufactured by Dow Chemical Co., Ltd.), CPI-100P, CPI-100A (trade name: manufactured by San Apro), TEPBI-S (trade name: manufactured by Nippon Shokubai Co., Ltd.), etc. These can be used alone or in combination of two or more.

また、光カチオン重合開始剤には、ベンゾフェノン、ベンゾインイソプロピルエーテル、チオキサントン、アントラセン等の光増感剤を併用することもでき、具体的には4,4’−ビス(ジエチルアミノ)ベンゾフェノン、2,4’−ジエチルチオキサントン、イソプロピルチオキサントン、9,10−ジエトキシアントラセン、9,10−ジブトキシアントラセン等が挙げられる。   In addition, a photosensitizer such as benzophenone, benzoin isopropyl ether, thioxanthone, and anthracene can be used in combination with the photocationic polymerization initiator. Specifically, 4,4′-bis (diethylamino) benzophenone, 2,4 Examples include '-diethylthioxanthone, isopropylthioxanthone, 9,10-diethoxyanthracene, and 9,10-dibutoxyanthracene.

前記光塩基発生剤として、例えばベンジルカルバメイト化合物、ベンゾインカルバメイト化合物、o−カルバモイルヒドロキシアミン類、o−カルバモイルオキシム、芳香族スルホンアミド類、N−(2−アリールエテニル)アミド類、アリールアジド類、N−アリールホルムアミド類、アシルオキシイミノ化合物、及びN−置換−4−(オルトニトロフェニル)ジヒドロピロジン類が挙げられる。   Examples of the photobase generator include benzyl carbamate compounds, benzoin carbamate compounds, o-carbamoyl hydroxyamines, o-carbamoyl oximes, aromatic sulfonamides, N- (2-arylethenyl) amides, aryl azides , N-arylformamides, acyloxyimino compounds, and N-substituted-4- (orthonitrophenyl) dihydropyrrolidines.

これら光重合開始剤の配合量は、硬化性及び硬化物の耐熱性の観点から、本発明のシロキサン誘導体100質量部に対して0.001〜20質量部が好ましく、0.1〜15質量部がより好ましく、0.2〜10質量部が更に好ましい。   The blending amount of these photopolymerization initiators is preferably 0.001 to 20 parts by mass, and 0.1 to 15 parts by mass with respect to 100 parts by mass of the siloxane derivative of the present invention from the viewpoint of curability and heat resistance of the cured product. Is more preferable, and 0.2-10 mass parts is still more preferable.

本発明のシロキサン誘導体を光硬化させる場合、該シロキサン誘導体を硬化させるのに使用できる光源としては、所定の作業時間内で硬化させることができるものであれば特に制限はなく、通常、紫外線、可視光線の波長の光を照射できるものであり、例えば低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハライド灯、無電極放電ランプ等が挙げられる。なお、硬化を促進するために、上記方法で得られた硬化物を恒温槽、赤外線ヒーター等で加温してもよい。   When the siloxane derivative of the present invention is photocured, the light source that can be used for curing the siloxane derivative is not particularly limited as long as it can be cured within a predetermined working time. For example, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a metal halide lamp, or an electrodeless discharge lamp can be used. In addition, in order to accelerate | stimulate hardening, you may heat the hardened | cured material obtained by the said method with a thermostat, an infrared heater, etc.

本発明のシロキサン誘導体を熱硬化させる場合、酸無水物硬化、あるいは、カチオン重合による硬化が、耐熱性に優れる点で好ましい。   When the siloxane derivative of the present invention is thermally cured, acid anhydride curing or curing by cationic polymerization is preferable from the viewpoint of excellent heat resistance.

本発明のシロキサン誘導体を酸無水物により熱硬化する場合、該シロキサン誘導体に酸無水物を添加する。本発明に使用することができる酸無水物としては、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルナジック酸無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水コハク酸、酸無水物末端ポリジメチルシロキサン等の無色〜淡黄色の酸無水物が挙げられ、単独で若しくは2種以上を併せて用いることができ、これらの中でメチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルナジック酸の無水物が耐熱性の観点からより好ましい。   When the siloxane derivative of the present invention is thermally cured with an acid anhydride, the acid anhydride is added to the siloxane derivative. Acid anhydrides that can be used in the present invention include hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, phthalic anhydride, trimellitic anhydride Colorless to pale yellow acid anhydrides such as acid, pyromellitic anhydride, succinic anhydride, and acid anhydride-terminated polydimethylsiloxane can be used, and these can be used alone or in combination of two or more thereof. Methyl hexahydrophthalic anhydride, hexahydrophthalic anhydride, and methyl nadic anhydride are more preferred from the viewpoint of heat resistance.

酸無水物は単独又は2種以上の混合物として使用してもよく、その配合量は、耐熱性等の観点から、本発明のシロキサン誘導体のエポキシ基に対して0.01〜5当量となるように添加するのが好ましく、0.05〜2当量となるように添加するのがより好ましく、0.1〜1.5当量となるように添加するのが更に好ましく、0.15〜1.0当量となるように添加するのが特に好ましく、0.2〜0.8当量となるように添加するのが最も好ましい。   The acid anhydride may be used alone or as a mixture of two or more, and the blending amount is 0.01 to 5 equivalents relative to the epoxy group of the siloxane derivative of the present invention from the viewpoint of heat resistance and the like. Is preferably added so as to be 0.05 to 2 equivalents, more preferably 0.1 to 1.5 equivalents, and more preferably 0.15 to 1.0. It is particularly preferable to add so as to be equivalent, and most preferable to add so as to be 0.2 to 0.8 equivalent.

また、本発明のシロキサン誘導体を酸無水物硬化する場合には、硬化促進剤を更に添加しても良い。硬化促進剤としては、イミダゾール化合物、4級アンモニウム塩、ホスホニウム塩、アミン化合物、アルミニウムキレート化合物、有機ホスフィン化合物等が挙げられる。これらの中でイミダゾール化合物、4級アンモニウム塩、ホスホニウム塩、有機ホスフィン化合物などが着色の少ない硬化物を与えるため、好ましい。具体的には、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリメチルアミン、ベンジルジメチルアミン、トリエチルアミン、ジメチルベンジルアミン、2,4,6−トリスジメチルアミノメチルフェノール等のアミン化合物及びその塩、テトラメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムブロミド、テトラブチルアンモニウムブロミドなどの4級アンモニウム塩、アルミニウムキレート、テトラ−n−ブチルホスホニウムベンゾトリアゾレート、テトラ−n−ブチルホスホニウム−0,0−ジエチルホスホロジチオエートなどの有機ホスフィン化合物、クロム(III)トリカルボキシレート、オクチル酸スズ、アセチルアセトネートCr等が挙げられる。これらの中で、テトラメチルアンモニウムクロリド、テトラ−n−ブチルホスホニウム−0,0−ジエチルホスホロジチオエート等が着色の少ない硬化物を与える。また、市販品としては、サンアプロ社よりU−CAT SA1、U−CAT 2026、U−CAT 18X等を好適に用いることができる。   When the siloxane derivative of the present invention is cured with an acid anhydride, a curing accelerator may be further added. Examples of the curing accelerator include imidazole compounds, quaternary ammonium salts, phosphonium salts, amine compounds, aluminum chelate compounds, and organic phosphine compounds. Among these, imidazole compounds, quaternary ammonium salts, phosphonium salts, organic phosphine compounds, and the like are preferable because they give a cured product with little coloration. Specifically, 2-methylimidazole, 2-ethyl-4-methylimidazole, 1,8-diaza-bicyclo (5,4,0) undecene-7, trimethylamine, benzyldimethylamine, triethylamine, dimethylbenzylamine, 2 , 4,6-trisdimethylaminomethylphenol and other amine compounds and salts thereof, quaternary ammonium salts such as tetramethylammonium chloride, benzyltrimethylammonium bromide, tetrabutylammonium bromide, aluminum chelates, tetra-n-butylphosphonium benzotri Organic phosphine compounds such as azolate, tetra-n-butylphosphonium-0,0-diethyl phosphorodithioate, chromium (III) tricarboxylate, tin octylate, acetylacetonate Cr, etc. It is below. Among these, tetramethylammonium chloride, tetra-n-butylphosphonium-0,0-diethyl phosphorodithioate and the like give a cured product with little coloration. Moreover, as a commercial item, U-CAT SA1, U-CAT 2026, U-CAT 18X etc. can be used suitably from a San Apro company.

これら硬化促進剤は単独又は2種以上の混合物として使用してもよく、その配合量は、本発明のシロキサン誘導体100質量部に対して0質量部より多く、反応性の観点から0.001質量部以上であることが好ましく、また、耐熱性の観点から10質量部以下であることが好ましい。以上の観点から、より好ましくは0.01〜5質量部、更に好ましくは0.01〜2質量部、特に好ましくは0.05〜1質量部である。   These curing accelerators may be used alone or as a mixture of two or more thereof, and the blending amount thereof is more than 0 parts by mass with respect to 100 parts by mass of the siloxane derivative of the present invention, and 0.001 mass from the viewpoint of reactivity. It is preferably 10 parts by mass or less from the viewpoint of heat resistance. From the above viewpoint, it is more preferably 0.01 to 5 parts by mass, still more preferably 0.01 to 2 parts by mass, and particularly preferably 0.05 to 1 part by mass.

本発明のシロキサン誘導体をカチオン重合により熱硬化する場合、該シロキサン誘導体に熱カチオン重合開始剤を添加する。   When the siloxane derivative of the present invention is thermally cured by cationic polymerization, a thermal cationic polymerization initiator is added to the siloxane derivative.

熱カチオン重合開始剤は、熱によりカチオン種を発生して重合を開始させる化合物であり、例えば、第四級アンモニウム塩類、ホスホニウム塩類、スルホニウム塩類等の各種オニウム塩類が例示される。具体的には、第四級アンモニウム塩としては、テトラブチルアンモニウムテトラフルオロボレート、テトラブチルアンモニウムヘキサフルオロホスフェート、テトラブチルアンモニウムハイドロジェンサルフェート、テトラエチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムp−トルエンスルホネート、N,N−ジメチル−N−ベンジルアニリニウムヘキサフルオロアンチモネート、N,N−ジメチル−N−ベンジルアニリニウムテトラフルオロボレート、N,N−ジメチル−N−ベンジルピリジニウムヘキサフルオロアンチモネート、N,N−ジエチル−N−ベンジルトリフルオロメタンスルホネート、N,N−ジメチル−N−(4−メトキシベンジル)ピリジニウムヘキサフルオロアンチモネート、N,N−ジエチル−N−(4−メトキシベンジル)トルイジニウムヘキサフルオロアンチモネート等が挙げられる。ホスホニウム塩としては、エチルトリフェニルホスホニウムヘキサフルオロアンチモネート、テトラブチルホスホニウムヘキサフルオロアンチモネート等が挙げられる。スルホニウム塩としては、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロアルシネート、トリス(4−メトキシフェニル)スルホニウムヘキサフルオロアルシネート、ジフェニル(4−フェニルチオフェニル)スルホニウムヘキサフルオロアルシネート等が挙げられる。   The thermal cationic polymerization initiator is a compound that initiates polymerization by generating cationic species by heat, and examples thereof include various onium salts such as quaternary ammonium salts, phosphonium salts, and sulfonium salts. Specifically, as the quaternary ammonium salt, tetrabutylammonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, tetrabutylammonium hydrogen sulfate, tetraethylammonium tetrafluoroborate, tetraethylammonium p-toluenesulfonate, N, N -Dimethyl-N-benzylanilinium hexafluoroantimonate, N, N-dimethyl-N-benzylanilinium tetrafluoroborate, N, N-dimethyl-N-benzylpyridinium hexafluoroantimonate, N, N-diethyl-N -Benzyltrifluoromethanesulfonate, N, N-dimethyl-N- (4-methoxybenzyl) pyridinium hexafluoroantimonate, N, N-diethyl -N- (4- methoxybenzyl) preparative Luigi hexafluoroantimonate and the like. Examples of the phosphonium salt include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate. Examples of the sulfonium salt include triphenylsulfonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluoroarsinate, tris (4-methoxyphenyl) sulfonium hexafluoroarsinate, diphenyl (4-phenylthiophenyl) sulfonium. Hexafluoroalcinate and the like can be mentioned.

これらオニウム塩類には市販品があり、例えば、アデカオプトンCP−66、CP−77(いずれも製品名:旭電化工業社製)、サンエイドSI−60L、サンエイドSI−80L及びサンエイドSI−100L(いずれも製品名:三新化学工業社製)、CI-2855、CI−2624(いずれも製品名:日本曹達社製)、CAT EX−1(製品名:ダイセル化学工業社製)等が挙げられる。   These onium salts are commercially available, for example, Adeka Opton CP-66, CP-77 (all manufactured by Asahi Denka Kogyo Co., Ltd.), Sun-Aid SI-60L, Sun-Aid SI-80L and Sun-Aid SI-100L (all Product names: manufactured by Sanshin Chemical Industry Co., Ltd.), CI-2855, CI-2624 (all product names: manufactured by Nippon Soda Co., Ltd.), CAT EX-1 (product name: manufactured by Daicel Chemical Industries, Ltd.), and the like.

また、他の熱カチオン重合開始剤として、有機金属錯体類が挙げられ、例えば、アルミニウムトリスアセチルアセトナート等のアルミニウム錯体を含むアルミニウム化合物、テトラキス(エチルアセトアセテート)ジルコニウム等のジルコニウム錯体を含むジルコニウム化合物、ジイソプロポキシビス(アセチルアセトナート)チタネート等のチタニウム錯体を含むチタン化合物等が挙げられる。これらの中では、アルミニウム化合物が好ましい。   Examples of other thermal cationic polymerization initiators include organometallic complexes, such as aluminum compounds containing aluminum complexes such as aluminum trisacetylacetonate, zirconium compounds containing zirconium complexes such as tetrakis (ethylacetoacetate) zirconium. And titanium compounds containing a titanium complex such as diisopropoxybis (acetylacetonate) titanate. In these, an aluminum compound is preferable.

これら熱カチオン重合開始剤は、単独又は2種以上の混合物として使用してもよく、その配合量は、硬化性及び硬化物の耐熱性の観点から、本発明のシロキサン誘導体100質量部に対して0.001〜20質量部が好ましく、0.001〜10質量部がより好ましく、0.002〜1質量部が更に好ましく、0.002〜0.5質量部が特に好ましく、0.005〜0.1質量部が最も好ましい。   These thermal cationic polymerization initiators may be used alone or as a mixture of two or more thereof, and the blending amount thereof is based on 100 parts by mass of the siloxane derivative of the present invention from the viewpoint of curability and heat resistance of the cured product. 0.001-20 mass parts is preferable, 0.001-10 mass parts is more preferable, 0.002-1 mass parts is still more preferable, 0.002-0.5 mass parts is especially preferable, 0.005-0 .1 part by mass is most preferred.

本発明のシロキサン誘導体を熱硬化する場合、酸無水物による硬化とカチオン重合による硬化を組み合わせてもよい。つまり、酸無水物、熱カチオン重合開始剤を組み合わせて使用してもよく、酸無水物、硬化促進剤、熱カチオン重合開始剤を組み合わせて使用してもよい。   When the siloxane derivative of the present invention is thermally cured, curing with an acid anhydride and curing by cationic polymerization may be combined. That is, an acid anhydride and a thermal cationic polymerization initiator may be used in combination, or an acid anhydride, a curing accelerator, and a thermal cationic polymerization initiator may be used in combination.

また、本発明のシロキサン誘導体を含む樹脂組成物(以後、これを硬化性樹脂組成物という)は、これに限定されないが、通常、液状の形態を有し、熱硬化の場合には、該硬化性樹脂組成物を80〜250℃に加熱することにより硬化を行うことができる。熱硬化成形方法は特に限定されず、例えば、注型、低圧トランスファ成形、ポッティング、ディッピング、加圧成形、射出成形などによって成形することができる。また、該硬化性樹脂組成物が固形の場合は、プレス機、低圧トランスファ成形機などを用いて加圧下で加熱硬化させて、成形することができる。   Further, the resin composition containing the siloxane derivative of the present invention (hereinafter referred to as curable resin composition) is not limited to this, but usually has a liquid form, and in the case of thermosetting, the curing The resin composition can be cured by heating to 80 to 250 ° C. The thermosetting molding method is not particularly limited, and can be molded by casting, low-pressure transfer molding, potting, dipping, pressure molding, injection molding, or the like. When the curable resin composition is solid, it can be molded by being heated and cured under pressure using a press, a low-pressure transfer molding machine or the like.

また、本発明のシロキサン誘導体を含む硬化性樹脂組成物に有機溶剤を含有させた組成物を硬化させても良い。そして、該硬化性樹脂組成物又は該硬化性樹脂組成物に有機溶剤を含有させた組成物を、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙等の基材に含浸させ、光硬化又は熱硬化、あるいは加熱乾燥して得たプリプレグを熱プレス成型する等して硬化物を得ることもできる。   Moreover, you may harden the composition which made the curable resin composition containing the siloxane derivative of this invention contain the organic solvent. Then, the curable resin composition or a composition containing an organic solvent in the curable resin composition is impregnated in a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, A cured product can also be obtained by hot press molding a prepreg obtained by photocuring or thermosetting, or heat drying.

本発明のシロキサン誘導体を含む硬化性樹脂組成物には、接着性、可撓性等を付与する目的で有機樹脂を配合することができる。有機樹脂としては、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリイミド樹脂等が挙げられる。特に、他の成分と反応可能な基を有するものが好ましく、エポキシ樹脂が好ましい。エポキシ樹脂としては、ビスA型エポキシ樹脂、ビスF型エポキシ樹脂、水添型エポキシ樹脂、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート等が挙げられる。有機樹脂は、本発明の目的を損なわない範囲で使用することができ、その配合量は通常、本発明のシロキサン誘導体100質量部に対して0〜80質量部、好ましくは0〜30質量部である。   An organic resin can be blended with the curable resin composition containing the siloxane derivative of the present invention for the purpose of imparting adhesiveness and flexibility. Examples of the organic resin include an epoxy resin, an acrylic resin, a polyester resin, and a polyimide resin. In particular, those having groups capable of reacting with other components are preferred, and epoxy resins are preferred. Examples of the epoxy resin include bis A type epoxy resin, bis F type epoxy resin, hydrogenated epoxy resin, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and the like. The organic resin can be used as long as the object of the present invention is not impaired, and the blending amount is usually 0 to 80 parts by mass, preferably 0 to 30 parts by mass with respect to 100 parts by mass of the siloxane derivative of the present invention. is there.

また、本発明のシロキサン誘導体を含む硬化性樹脂組成物を光又は熱によりカチオン重合させて硬化物を得る場合、他のカチオン重合性化合物を配合してもよい。カチオン重合性化合物としては、エポキシ基を有する化合物、オキセタン環を有する化合物、ビニルエーテル化合物、前記以外の環状エーテル化合物、環状ラクトン化合物、環状アセタール化合物、環状チオエーテル化合物、スピロオルソエステル化合物等を挙げることができる。また、以上の化合物が水酸基を有していてもよく、水酸基を有することにより、硬化性や接着性を向上させることができる。これらの中では、硬化性や透明性等の観点で、エポキシ基を有する化合物及び/又はオキセタン環を有する化合物を用いることが好ましい。なお、光硬化性を向上させる、特にキセノンランプ等の長波長領域ランプでの硬化性を向上させるためには、エポキシ基を有する化合物とオキセタン環を有する化合物を併用するのが好ましい。   In addition, when a curable resin composition containing the siloxane derivative of the present invention is cationically polymerized by light or heat to obtain a cured product, another cationically polymerizable compound may be blended. Examples of the cationic polymerizable compound include compounds having an epoxy group, compounds having an oxetane ring, vinyl ether compounds, other cyclic ether compounds, cyclic lactone compounds, cyclic acetal compounds, cyclic thioether compounds, and spiro orthoester compounds. it can. Moreover, the above compound may have a hydroxyl group, and when it has a hydroxyl group, curability and adhesiveness can be improved. Among these, it is preferable to use a compound having an epoxy group and / or a compound having an oxetane ring from the viewpoints of curability and transparency. In order to improve photocurability, particularly in a long wavelength region lamp such as a xenon lamp, it is preferable to use a compound having an epoxy group and a compound having an oxetane ring in combination.

本発明のシロキサン誘導体を含む硬化性樹脂組成物には、本発明の範囲を逸脱しない量的質的範囲内で、染料、劣化防止剤、離型剤、希釈剤、粘度調整剤、酸化防止剤、光安定剤、紫外線吸収剤、シランカップリング剤、熱安定化剤、帯電防止剤、消泡剤、レベリング剤、重合禁止剤、ワックス類、スリップ剤、腐食防止剤、難燃剤、可塑剤、界面活性剤等の添加剤を配合することができる。また、本発明の硬化性樹脂組成物には、耐熱性、硬度、導電性、熱伝導性、チキソ性、低熱膨張性、屈折率の改良及び調整等を目的として、必要に応じて無機酸化物に代表されるフィラーを配合することができる。   The curable resin composition containing the siloxane derivative of the present invention includes a dye, a deterioration inhibitor, a mold release agent, a diluent, a viscosity modifier, and an antioxidant within a quantitative and qualitative range that does not depart from the scope of the present invention. , Light stabilizer, ultraviolet absorber, silane coupling agent, heat stabilizer, antistatic agent, antifoaming agent, leveling agent, polymerization inhibitor, waxes, slip agent, corrosion inhibitor, flame retardant, plasticizer, Additives such as surfactants can be blended. Further, the curable resin composition of the present invention includes an inorganic oxide as necessary for the purposes of heat resistance, hardness, conductivity, thermal conductivity, thixotropy, low thermal expansion, refractive index improvement and adjustment, and the like. The filler represented by can be mix | blended.

酸化防止剤としては、従来公知の全ての酸化防止剤を使用することができる。例えば、2,6−ジ−t−ブチル−4−メチルフェノール、2,5−ジ−t−アミルヒドロキノン、2,5−ジ−t−ブチルヒドロキノン、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)等が挙げられる。   As the antioxidant, all conventionally known antioxidants can be used. For example, 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-amylhydroquinone, 2,5-di-t-butylhydroquinone, 4,4′-butylidenebis (3-methyl- 6-t-butylphenol), 2,2′-methylenebis (4-methyl-6-t-butylphenol), 2,2′-methylenebis (4-ethyl-6-t-butylphenol) and the like.

この酸化防止剤を使用する場合、その配合量は特に制限されないが、通常、本発明のシロキサン誘導体に対して5〜20000質量ppmが好ましく、10〜10000質量ppmがより好ましく、100〜1000質量ppmが特に好ましい。この範囲内で配合すると、酸化防止効果が十分発揮され、着色、白濁もなく、耐熱性にも優れる。   When this antioxidant is used, its blending amount is not particularly limited, but is usually preferably 5 to 20000 mass ppm, more preferably 10 to 10000 mass ppm, and more preferably 100 to 1000 ppm by mass with respect to the siloxane derivative of the present invention. Is particularly preferred. When it mix | blends in this range, the antioxidant effect will fully be exhibited, there is no coloring and cloudiness, and it is excellent also in heat resistance.

耐光性を向上させたい場合には、光安定剤を配合することができる。光安定剤としては、硬化物が劣化の際に生成するラジカルを捕捉するヒンダードアミン系安定剤が適している。上記酸化防止剤と併用しても良く、それにより酸化防止効果をより向上できる。光安定剤の具体例としては、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、4−ベンゾイル−2,2,6,6−テトラメチルピペリジン等が挙げられる。なお、ここでの耐光性とは、光による黄変が極めて起こり難いことを指している。   In order to improve light resistance, a light stabilizer can be blended. As the light stabilizer, a hindered amine stabilizer that captures radicals generated when the cured product deteriorates is suitable. You may use together with the said antioxidant, and, thereby, an antioxidant effect can be improved more. Specific examples of the light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, 4-benzoyl-2,2,6,6-tetramethylpiperidine and the like. Here, the light resistance means that yellowing due to light hardly occurs.

腐食防止剤としては、例えば、イオン交換体、多価カルボン酸、ヒドロキシカルボン酸、有機錫化合物、スルフィド化合物等が挙げられる。   Examples of the corrosion inhibitor include ion exchangers, polyvalent carboxylic acids, hydroxycarboxylic acids, organic tin compounds, and sulfide compounds.

フィラーとしては、シリカ(ヒュームドシリカ、コロイダルシリカ、沈降性シリカ等)、窒化ケイ素、窒化ホウ素、アルミナ、チタニア、ジルコニア等の無機酸化物又は無機窒化物、ガラス、ガラスファイバー、タルク、粘土、セラミックス、銀粉、金粉、銅粉等が挙げられる。それらのフィラーは表面処理をしているか又はしていない状態で使用することができ、表面処理をしていると、フィラーの分散性が高まり、組成物の流動性が高まったり、充填率を上げることができる点等で好ましい。また、これらのフィラーの平均粒径は、500ナノメートル以下であると硬化物の透明性が高いため好ましく、より好ましくは200ナノメートル以下、更に好ましくは100ナノメートル以下であり、最も好ましくは20ナノメートル以下である。   Fillers include silica (fumed silica, colloidal silica, precipitated silica, etc.), silicon nitride, boron nitride, alumina, titania, zirconia and other inorganic oxides or inorganic nitrides, glass, glass fiber, talc, clay, ceramics , Silver powder, gold powder, copper powder and the like. These fillers can be used with or without a surface treatment. When the surface treatment is performed, the dispersibility of the filler is increased, the fluidity of the composition is increased, and the filling rate is increased. This is preferable in that it can be performed. The average particle size of these fillers is preferably 500 nanometers or less because the cured product has high transparency, more preferably 200 nanometers or less, still more preferably 100 nanometers or less, and most preferably 20 nanometers. It is below nanometer.

本発明のシロキサン誘導体及び該シロキサン誘導体を重合してなる硬化物は、高い透明性を有し、硬化性、耐熱性、に優れており、接着剤、塗料、機械部品材料、自動車部品材料、土木建築材料、成型材料等、特に光学部品用、電子部品用の、接着剤、コート材、フォトレジスト、シール材、封止材、絶縁材、レンズ材、基板材等の用途に有用である。具体的には、眼鏡レンズ、光学機器用レンズ、CDやDVDのピックアップ用レンズ、自動車ヘッドランプ用レンズ、プロジェクター用レンズ等のレンズ材料、光ファイバー、光導波路、カラーフィルター等の光フィルター、光学用接着剤、光ディスク基板、光ディスクの光透過層、層間絶縁層、プリント配線板、銅張積層板等の積層板、ディスプレイ基板、導光板、反射防止膜等、また、半導体、液晶、有機EL等の封止材等が挙げられる。そして特には、光半導体装置の封止材、ダイボンディングペースト及びそれを硬化したダイボンド材、あるいはチップの周囲を被覆するチップコート材、レンズ材などの光半導体装置用途に好適に使用することができる。光半導体としては、LEDランプ、チップLED、半導体レーザ、フォトカプラ、フォトダイオードなどを挙げることができる。   The siloxane derivative of the present invention and a cured product obtained by polymerizing the siloxane derivative have high transparency and are excellent in curability and heat resistance. Adhesives, paints, mechanical component materials, automotive component materials, civil engineering It is useful for applications such as adhesives, coating materials, photoresists, sealing materials, sealing materials, insulating materials, lens materials, and substrate materials for building materials, molding materials, etc., especially for optical components and electronic components. Specifically, eyeglass lenses, optical equipment lenses, CD and DVD pickup lenses, automotive headlamp lenses, projector lens and other lens materials, optical filters such as optical fibers, optical waveguides and color filters, and optical adhesives Agents, optical disk substrates, optical transmission layers of optical disks, interlayer insulation layers, printed wiring boards, laminates such as copper-clad laminates, display substrates, light guide plates, antireflection films, etc., and sealing of semiconductors, liquid crystals, organic EL, etc. Examples thereof include a stopping material. In particular, it can be suitably used for optical semiconductor device applications such as a sealing material for an optical semiconductor device, a die bonding paste and a die bond material obtained by curing the same, or a chip coating material or a lens material that covers the periphery of a chip. . Examples of optical semiconductors include LED lamps, chip LEDs, semiconductor lasers, photocouplers, and photodiodes.

本発明のシロキサン誘導体を重合してなる硬化物を用いてなる光半導体の発光波長としては、赤外から赤色、緑色、青色、紫色、紫外までを幅広く用いることができる。本発明のシロキサン誘導体を重合してなる硬化物を光半導体封止材として用いることで、封止材の黄変や剥離が起きず、長期にわたり輝度の劣化が少ない発光ダイオード等の光半導体装置が得られる。   The emission wavelength of the optical semiconductor using the cured product obtained by polymerizing the siloxane derivative of the present invention can be widely used from infrared to red, green, blue, purple and ultraviolet. By using a cured product obtained by polymerizing the siloxane derivative of the present invention as an optical semiconductor encapsulant, an optical semiconductor device such as a light emitting diode with little deterioration in luminance over a long period of time without causing yellowing or peeling of the encapsulant. can get.

本発明のシロキサン誘導体を重合してなる硬化物を用いて光半導体を製造する場合、発光素子を本発明のシロキサン誘導体を含む硬化性樹脂組成物で封止することにより該光半導体を製造することができる。封止の際、本発明のシロキサン誘導体を含む硬化性樹脂組成物のみで封止してもよいが、他の封止材と併用してもよい。併用する場合、本発明のシロキサン誘導体を含む硬化性樹脂組成物で封止した後に他の封止材で封止してもよいし、他の封止材で封止した後に本発明のシロキサン誘導体を含む硬化性樹脂組成物で封止してもよい。他の封止材としては例えば、エポキシ樹脂、シリコーン樹脂、エポキシシリコーン樹脂、アクリル樹脂、ウレタン樹脂、ウレア樹脂、イミド樹脂、ガラス等が挙げられる。封止部分の形状としては、例えば、砲弾型のレンズ形状、板状、薄膜状等が挙げられる。   When producing an optical semiconductor using a cured product obtained by polymerizing the siloxane derivative of the present invention, the optical semiconductor is produced by sealing the light emitting element with a curable resin composition containing the siloxane derivative of the present invention. Can do. At the time of sealing, it may be sealed only with the curable resin composition containing the siloxane derivative of the present invention, but may be used in combination with other sealing materials. When using together, after sealing with curable resin composition containing the siloxane derivative of this invention, you may seal with another sealing material, and after sealing with another sealing material, the siloxane derivative of this invention You may seal with the curable resin composition containing this. Examples of other sealing materials include epoxy resins, silicone resins, epoxy silicone resins, acrylic resins, urethane resins, urea resins, imide resins, and glass. Examples of the shape of the sealing portion include a bullet-shaped lens shape, a plate shape, and a thin film shape.

本発明のシロキサン誘導体を重合してなる硬化物を用いてなる光半導体は、従来公知の方法で性能の向上を図ることができる。性能の向上方法としては、例えば、発光素子背面に光の反射層あるいは集光層を設ける方法、補色着色部を底部に形成する方法、主発光ピークより短波長の光を吸収する層を発光素子上に設ける方法、発光素子を封止した後更に硬質材料で封止する方法、光半導体を貫通孔に挿入して固定する方法、光半導体をフリップチップ接続等によってリード部材等と接続して基板方向から光を取り出す方法、発光素子と封止材の界面や封止材と空気の界面等の各界面に賦形処理をおこなう方法等が挙げられる。   The performance of the optical semiconductor using the cured product obtained by polymerizing the siloxane derivative of the present invention can be improved by a conventionally known method. As a method for improving the performance, for example, a method of providing a light reflecting layer or a condensing layer on the back surface of the light emitting device, a method of forming a complementary colored portion on the bottom, a layer that absorbs light having a wavelength shorter than the main light emitting peak is used. A method of sealing the light-emitting element and sealing with a hard material; a method of inserting and fixing an optical semiconductor into a through hole; and a substrate by connecting the optical semiconductor to a lead member by flip chip connection or the like Examples thereof include a method of extracting light from the direction, a method of performing a shaping process on each interface such as an interface between the light emitting element and the sealing material and an interface between the sealing material and the air.

本発明のシロキサン誘導体を重合してなる硬化物を用いてなる光半導体は、例えば、液晶ディスプレイや携帯電話等のバックライト、照明、自動車ヘッドランプ、車両用計器光源、各種センサー、プリンター、コピー機等の光源、信号灯、表示灯、表示装置、面上発光体の光源、ディスプレイ、装飾、各種ライト等として有用である。   The optical semiconductor using the cured product obtained by polymerizing the siloxane derivative of the present invention includes, for example, a backlight such as a liquid crystal display or a mobile phone, illumination, an automobile headlamp, a vehicle instrument light source, various sensors, a printer, and a copying machine. It is useful as a light source such as a light source, a signal lamp, an indicator lamp, a display device, a light source of a surface light emitter, a display, a decoration, various lights, and the like.

本発明を実施例に基づいて説明する。
本実施例において、エポキシ価(当量/100g)は、JIS K−7236に準拠して求めた。数平均分子量の測定法であるゲルパーミエーションクロマトグラフィー(GPC)測定には、カラムとしてShodex KF−804L(昭和電工社製)、ポンプとしてLC−10AT(島津製作所社製)、検出器としてRID−6A(RI:示差屈折計、島津製作所社製)、移動相としてテトラヒドロフランを用いた。また、NMRスペクトルの測定には、JEOL GSX−400を用いた。含有白金量は四重極ICP質量分析装置(Thermo Elemental製:X7−ICP−MS)を用いて測定した。
また、本実施例における各種物性評価は次の方法で実施した。
The present invention will be described based on examples.
In this example, the epoxy value (equivalent / 100 g) was determined according to JIS K-7236. For gel permeation chromatography (GPC) measurement, which is a method for measuring the number average molecular weight, Shodex KF-804L (made by Showa Denko) as a column, LC-10AT (made by Shimadzu Corporation) as a pump, and RID- as a detector. 6A (RI: differential refractometer, manufactured by Shimadzu Corporation), tetrahydrofuran was used as the mobile phase. Moreover, JEOL GSX-400 was used for the measurement of a NMR spectrum. The amount of platinum contained was measured using a quadrupole ICP mass spectrometer (manufactured by Thermo Elemental: X7-ICP-MS).
Moreover, the various physical property evaluation in a present Example was implemented with the following method.

(1)硬化性
硬化物を指触観察し、硬質の場合は◎、軟質であるがべたつきがない場合は○、べたつきが残っている場合は×とした。
(1) Curability The cured product was observed by finger touch, and it was rated as ◎ if it was hard, ○ when it was soft but not sticky, and × when stickiness remained.

(2)透明性
硬化物を目視観察し、無色透明の場合は◎、わずかに着色している場合は○、着色している場合は×とした。
(2) Transparency When the cured product was visually observed, it was evaluated as ◎ for colorless and transparent, ◯ for slightly colored, and × for colored.

(3)耐熱性
ガラス板に、シロキサン誘導体を含む硬化性樹脂組成物を塗布、硬化し、膜厚105μmの硬化膜を得た。得られたサンプルを、260℃×30分加熱処理した。そして、加熱処理前後の400nmにおける透過率の変化を紫外可視分光光度計V−550(日本分光社製)にて測定し、透過率の保持率(%)を求めた。保持率が90%以上のものを◎、90%未満80%以上のものを○、80%未満のものを×とした。
(3) Heat resistance A curable resin composition containing a siloxane derivative was applied to a glass plate and cured to obtain a cured film having a thickness of 105 μm. The obtained sample was heat-treated at 260 ° C. for 30 minutes. And the change of the transmittance | permeability in 400 nm before and behind heat processing was measured with the ultraviolet visible spectrophotometer V-550 (made by JASCO Corporation), and the transmittance | permeability retention rate (%) was calculated | required. A sample having a retention rate of 90% or more was evaluated as ◎, a sample having a retention rate of less than 90% and 80% or more was evaluated as ○, and a sample having a retention rate of less than 80% was evaluated as ×.

(4)屈折率測定
ガラス板に、シロキサン誘導体を含む硬化性樹脂組成物を塗布、硬化し、膜厚105μmの硬化膜を得た。硬化膜の589nmにおける屈折率を、反射分光膜厚計FE−3000(大塚電子社製)にて測定した。
(4) Refractive Index Measurement A curable resin composition containing a siloxane derivative was applied to a glass plate and cured to obtain a cured film having a thickness of 105 μm. The refractive index at 589 nm of the cured film was measured with a reflection spectral film thickness meter FE-3000 (manufactured by Otsuka Electronics Co., Ltd.).

[合成例1]
攪拌装置を有する反応器に、トリシラノールフェニル−POSS(Hybrid Plastics社製)を50g、脱水テトラヒドロフランを245g入れた。滴下漏斗に、ジメチルクロロシランを18.06g、脱水テトラフドロフランを20g入れ、攪拌しながら反応器内に滴下した。滴下終了後、室温で1.5時間攪拌した。滴下漏斗に、トリエチルアミンを16.39g、脱水テトラヒドロフランを90g入れ、攪拌しながら氷浴につけた反応器内に滴下し、反応溶液を中和した。滴下終了後、氷浴につけたまま1時間攪拌した。滴下漏斗に、トリエチルアミンを4.05g、メタノールを0.96g入れ、攪拌しながら反応器内に滴下し、未反応ジメチルクロロシランを潰した。滴下終了後、室温で1時間攪拌した。
[Synthesis Example 1]
A reactor having a stirrer was charged with 50 g of trisilanol phenyl-POSS (manufactured by Hybrid Plastics) and 245 g of dehydrated tetrahydrofuran. To the dropping funnel, 18.06 g of dimethylchlorosilane and 20 g of dehydrated tetrahydrofuran were added and dropped into the reactor while stirring. After completion of dropping, the mixture was stirred at room temperature for 1.5 hours. To the dropping funnel, 16.39 g of triethylamine and 90 g of dehydrated tetrahydrofuran were added, and the mixture was added dropwise to a reactor placed in an ice bath with stirring to neutralize the reaction solution. After completion of the dropwise addition, the mixture was stirred for 1 hour while being placed in an ice bath. To the dropping funnel, 4.05 g of triethylamine and 0.96 g of methanol were added and dropped into the reactor while stirring to crush unreacted dimethylchlorosilane. After completion of dropping, the mixture was stirred at room temperature for 1 hour.

反応容器内に析出したトリエチルアミン塩酸塩を減圧濾過により除去した。濾液中の溶媒を減圧留去した。得られた固体を少量のテトラヒドロフランに溶かした後、大量のメタノールに滴下することで白色結晶を析出させた。白色結晶を濾過により回収した後、真空乾燥し、白色粉体を得た。   Triethylamine hydrochloride precipitated in the reaction vessel was removed by filtration under reduced pressure. The solvent in the filtrate was distilled off under reduced pressure. The obtained solid was dissolved in a small amount of tetrahydrofuran and then dropped into a large amount of methanol to precipitate white crystals. White crystals were collected by filtration and then vacuum-dried to obtain white powder.

得られた白色粉体は、1H−NMR、29Si−NMR(重クロロホルム、テトラメチルシラン内部標準)により部分開裂型カゴ状シルセスキオキサン構造を持つ(C65SiO3/27((CH32HSiO1/2)3で表される化合物であることがわかった。 The obtained white powder has a partially cleaved cage silsesquioxane structure by 1 H-NMR, 29 Si-NMR (deuterated chloroform, tetramethylsilane internal standard) (C 6 H 5 SiO 3/2 ). It was found to be a compound represented by 7 ((CH 3 ) 2 HSiO 1/2 ) 3 .

[合成例2]
還流冷却器、温度計及び攪拌装置を有する反応器に、合成例1にて合成した白色粉体を15g、両末端ビニルポリジメチルシロキサンDMS−V03(製品名:Gelest社製)を4.06g、4−ビニルシクロヘキセンオキシドを2.49g、1,4−ジオキサンを86.2g入れた。2.2%白金−ジビニルテトラメチルジシロキサン錯体キシレン溶液のPt分が1000ppmとなるように1,4−ジオキサンで希釈したものを、0.356g反応器内に入れた。60℃で4時間攪拌した後、室温まで冷却し、ビニルトリメチルシランを1.42g、1,4−ジオキサンを3g反応器内に入れた。50℃で3時間攪拌した後、室温まで冷却し、活性炭として白鷺A(製品名:武田薬品工業社製)を15g、セライト(和光純薬工業社製)を7g反応器内に入れ、室温で20時間攪拌し、Pt触媒を除去した。その後、減圧濾過により活性炭、セライトを除去した。濾液を加熱減圧処理して溶媒留去し、流動性をもつ無色透明のシロキサン誘導体を得た。
[Synthesis Example 2]
In a reactor having a reflux condenser, a thermometer, and a stirrer, 15 g of the white powder synthesized in Synthesis Example 1 and 4.06 g of both terminal vinyl polydimethylsiloxane DMS-V03 (product name: Gelest Co., Ltd.), 2.49 g of 4-vinylcyclohexene oxide and 86.2 g of 1,4-dioxane were added. A 2.2% platinum-divinyltetramethyldisiloxane complex xylene solution diluted with 1,4-dioxane so that the Pt content was 1000 ppm was placed in a 0.356 g reactor. After stirring at 60 ° C. for 4 hours, the mixture was cooled to room temperature, and 1.42 g of vinyltrimethylsilane and 3 g of 1,4-dioxane were placed in the reactor. After stirring at 50 ° C. for 3 hours, the mixture was cooled to room temperature, and 15 g of Shirakaba A (product name: Takeda Pharmaceutical Company Limited) and 7 g of Celite (Wako Pure Chemical Industries, Ltd.) were placed in the reactor as activated carbon. Stir for 20 hours to remove the Pt catalyst. Thereafter, activated carbon and celite were removed by vacuum filtration. The filtrate was heated under reduced pressure and the solvent was distilled off to obtain a colorless and transparent siloxane derivative having fluidity.

得られたシロキサン誘導体のエポキシ価は、0.079eq/100gであった。GPC測定から3つのピークが検出され、それぞれの数平均分子量は6500、3000、1400であった。また、29Si−NMR(重クロロホルム、テトラメチルシラン内部標準)により、SiH基は91%反応していることを確認した。反応したSiH基は、それぞれDMS−V03と30%、4‐ビニルシクロヘキセンオキシドと58%、ビニルトリメチルシランと12%の割合で反応していた。1H−NMRから、未反応ビニル基は確認できなかった。また、残存Pt触媒は、Pt換算で1ppm以下であった。なお、室温1ヶ月後においても外観に変化はなかった。 The epoxy value of the obtained siloxane derivative was 0.079 eq / 100 g. Three peaks were detected from the GPC measurement, and the number average molecular weights were 6500, 3000, and 1400, respectively. In addition, 29 Si-NMR (deuterated chloroform, tetramethylsilane internal standard) confirmed that 91% of SiH groups had reacted. The reacted SiH groups reacted with DMS-V03 at 30%, 4-vinylcyclohexene oxide at 58%, and vinyltrimethylsilane at 12%. From 1 H-NMR, an unreacted vinyl group could not be confirmed. Moreover, the residual Pt catalyst was 1 ppm or less in terms of Pt. The appearance did not change even after 1 month at room temperature.

[実施例1]
合成例2で得られたシロキサン誘導体100質量部、酸無水物として4−メチルヘキサヒドロ無水フタル酸を主成分とするリカシッドMH−700G(製品名:新日本理化社製)8.2質量部、硬化促進剤としてU−CAT 18X(製品名:サンアプロ社製)0.25質量部を、全体が均一になるまで攪拌後、脱泡して硬化性樹脂組成物を得た。シロキサン誘導体のエポキシ基に対する酸無水物の当量比は0.63である。この硬化性樹脂組成物を、型に注型、及びガラス基板上に塗工したサンプルを、105℃で30分、120℃で2時間、150℃で2時間、更に170℃で30分硬化反応をおこなった。得られた硬化物の性能を表1に示す。
[Example 1]
100 parts by mass of the siloxane derivative obtained in Synthesis Example 2, 8.2 parts by mass of Ricacid MH-700G (product name: Shin Nippon Rika Co., Ltd.) mainly composed of 4-methylhexahydrophthalic anhydride as an acid anhydride, As a curing accelerator, 0.25 part by mass of U-CAT 18X (product name: manufactured by San Apro) was stirred until the whole became uniform, and then defoamed to obtain a curable resin composition. The equivalent ratio of acid anhydride to epoxy group of the siloxane derivative is 0.63. This curable resin composition was cast into a mold and a sample coated on a glass substrate was cured at 105 ° C. for 30 minutes, 120 ° C. for 2 hours, 150 ° C. for 2 hours, and further at 170 ° C. for 30 minutes. I did. Table 1 shows the performance of the obtained cured product.

[実施例2]
4−メチルヘキサヒドロ無水フタル酸を主成分とするリカシッドMH−700G(製品名:新日本理化社製)を8.8質量部とした以外は、実施例1と同様にしておこなった。シロキサン誘導体のエポキシ基に対する酸無水物の当量比は0.68である。得られた硬化物の性能を表1に示す。
[Example 2]
The same procedure as in Example 1 was performed except that ricacid MH-700G (product name: manufactured by Shin Nippon Rika Co., Ltd.) containing 4-methylhexahydrophthalic anhydride as a main component was changed to 8.8 parts by mass. The equivalent ratio of acid anhydride to epoxy group of the siloxane derivative is 0.68. Table 1 shows the performance of the obtained cured product.

[実施例3]
4−メチルヘキサヒドロ無水フタル酸を主成分とするリカシッドMH−700G(製品名:新日本理化社製)9.5質量部とした以外は、実施例1と同様にしておこなった。シロキサン誘導体のエポキシ基に対する酸無水物の当量比は0.73である。得られた硬化物の性能を表1に示す。
[Example 3]
The same procedure as in Example 1 was conducted except that 9.5 parts by mass of Ricacid MH-700G (product name: manufactured by Shin Nippon Rika Co., Ltd.) containing 4-methylhexahydrophthalic anhydride as a main component was used. The equivalent ratio of acid anhydride to epoxy group of the siloxane derivative is 0.73. Table 1 shows the performance of the obtained cured product.

[実施例4]
4−メチルヘキサヒドロ無水フタル酸を主成分とするリカシッドMH−700G(製品名:新日本理化社製)16.4質量部とした以外は、実施例1と同様にしておこなった。シロキサン誘導体のエポキシ基に対する酸無水物の当量比は1.27である。得られた硬化物の性能を表1に示す。
[Example 4]
The same procedure as in Example 1 was carried out except that 16.4 parts by mass of Ricacid MH-700G (product name: manufactured by Shin Nippon Rika Co., Ltd.) containing 4-methylhexahydrophthalic anhydride as a main component was used. The equivalent ratio of acid anhydride to epoxy group of the siloxane derivative is 1.27. Table 1 shows the performance of the obtained cured product.

[実施例5]
合成例2で得られたシロキサン誘導体100質量部、熱カチオン重合開始剤としてアデカオプトンCP−66(製品名:旭電化工業社製)0.01質量部を、全体が均一になるまで攪拌後、脱泡して硬化性樹脂組成物を得た。この硬化性樹脂組成物を、型に注型、及びガラス基板上に塗工したサンプルを、105℃で30分、120℃で2時間、150℃で2時間、更に170℃で30分硬化反応をおこなった。得られた硬化物の性能を表1に示す。
[Example 5]
100 parts by mass of the siloxane derivative obtained in Synthesis Example 2 and 0.01 part by mass of Adeka Opton CP-66 (product name: manufactured by Asahi Denka Kogyo Co., Ltd.) as a thermal cationic polymerization initiator were stirred until the whole became uniform, and then removed. Foaming was performed to obtain a curable resin composition. This curable resin composition was cast into a mold and a sample coated on a glass substrate was cured at 105 ° C. for 30 minutes, 120 ° C. for 2 hours, 150 ° C. for 2 hours, and further at 170 ° C. for 30 minutes. I did. Table 1 shows the performance of the obtained cured product.

[比較例1]
脂環式エポキシ基を有する鎖状のシロキサン誘導体としてECMS−924(製品名:Gelest社製、エポキシ価0.091)100質量部、熱カチオン重合開始剤としてアデカオプトンCP−66(製品名:旭電化工業社製)0.015質量部を、全体が均一になるまで攪拌後、脱泡して硬化性樹脂組成物を得た。性能評価は実施例1と同様にしておこなった。得られた硬化物の性能を表1に示す。
[Comparative Example 1]
100 parts by mass of ECMS-924 (product name: manufactured by Gelest, epoxy value 0.091) as a chain siloxane derivative having an alicyclic epoxy group, and Adeka Opton CP-66 (product name: Asahi Denka) as a thermal cationic polymerization initiator A curable resin composition was obtained by stirring and defoaming 0.015 parts by mass (produced by Kogyo Co., Ltd.) until the whole became uniform. The performance evaluation was performed in the same manner as in Example 1. Table 1 shows the performance of the obtained cured product.

[比較例2]
1,3,5,7−テトラメチル−テトラキス(3,4−エポキシシクロヘキシルエチル)シクロテトラシロキサン(エポキシ価0.50)100重量部、エチレングリコール10部、酸無水物として4−メチルヘキサヒドロ無水フタル酸を主成分とするリカシッドMH−700G(製品名:新日本理化社製)79質量部、硬化促進剤としてU−CAT 18X(製品名:サンアプロ社製)0.25質量部を、全体が均一になるまで攪拌後、脱泡して硬化性樹脂組成物を得た。シロキサン誘導体のエポキシ基に対する酸無水物の当量比は0.96である。性能評価は実施例1と同様にして行った。得られた硬化物の性能を表1に示す。
[Comparative Example 2]
1,3,5,7-tetramethyl-tetrakis (3,4-epoxycyclohexylethyl) cyclotetrasiloxane (epoxy value 0.50) 100 parts by weight, ethylene glycol 10 parts, 4-methylhexahydro anhydride as acid anhydride 79 parts by mass of Ricacid MH-700G (product name: Shin Nippon Rika Co., Ltd.) mainly composed of phthalic acid and 0.25 parts by mass of U-CAT 18X (product name: San Apro Co., Ltd.) as a curing accelerator After stirring until uniform, defoaming was performed to obtain a curable resin composition. The equivalent ratio of acid anhydride to epoxy group of the siloxane derivative is 0.96. The performance evaluation was performed in the same manner as in Example 1. Table 1 shows the performance of the obtained cured product.

以上の結果から、本発明に係わるシロキサン誘導体及び該シロキサン誘導体を重合してなる硬化物を用いて封止材とする光半導体においては、該硬化物の硬化性、耐熱性のバランスが従来に比べ優れていることから、製品寿命の大幅な改善が期待でき、これまで以上に信頼性の高い光半導体の提供が可能となる。   From the above results, in the optical semiconductor used as the sealing material using the siloxane derivative according to the present invention and the cured product obtained by polymerizing the siloxane derivative, the balance between the curability and heat resistance of the cured product is higher than the conventional one. Since it is excellent, it can be expected to greatly improve the product life, and it becomes possible to provide an optical semiconductor with higher reliability than ever.

Figure 2009280768
Figure 2009280768

本発明のシロキサン誘導体及び該シロキサン誘導体を重合してなる硬化物は、透明性、硬化性、耐熱性に優れており、特に光半導体等の分野の封止材等に好適に利用できる。   The siloxane derivative of the present invention and a cured product obtained by polymerizing the siloxane derivative are excellent in transparency, curability, and heat resistance, and can be suitably used particularly for sealing materials in the field of optical semiconductors.

Claims (14)

部分開裂型カゴ状シルセスキオキサン構造、及び下記一般式(1):
Figure 2009280768
(式中R1及びR2は、各々独立して、水素原子、ハロゲン原子、炭化水素、又はこれらの部分置換体を示し、そしてR1及びR2は1分子中に複数存在する場合同一でも異なっていてもよい。)
で表される構成単位、及び、エポキシ基を有することを特徴とするシロキサン誘導体。
Partially cleaved cage silsesquioxane structure and the following general formula (1):
Figure 2009280768
(Wherein R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon, or a partial substituent thereof, and R 1 and R 2 may be the same when a plurality of R 1 and R 2 exist in one molecule) May be different.)
And a siloxane derivative characterized by having an epoxy group.
部分開裂型カゴ状シルセスキオキサン構造が、下記一般式(2):
Figure 2009280768
(式中R3は、水素原子、ハロゲン原子、炭化水素、又はこれらの部分置換体を示し、そして複数のR3は同一でも異なっていてもよい。)
で表される請求項1に記載のシロキサン誘導体。
The partially cleaved cage silsesquioxane structure has the following general formula (2):
Figure 2009280768
(In the formula, R 3 represents a hydrogen atom, a halogen atom, a hydrocarbon, or a partially substituted product thereof, and a plurality of R 3 may be the same or different.)
The siloxane derivative of Claim 1 represented by these.
エポキシ基を、少なくとも下記一般式(3):
Figure 2009280768
(式中R4及びR5は、各々独立して、炭化水素、又はこれらの部分置換体を示し、R6は、エポキシ基含有基を示し、R4、R5及びR6は分子中に複数存在する場合同一でも異なっていてもよい。)
で表される構成単位において含む、請求項1又は2に記載のシロキサン誘導体。
The epoxy group has at least the following general formula (3):
Figure 2009280768
(In the formula, R 4 and R 5 each independently represent a hydrocarbon or a partially substituted product thereof, R 6 represents an epoxy group-containing group, and R 4 , R 5 and R 6 are present in the molecule. If there are multiple, they may be the same or different.)
The siloxane derivative according to claim 1, which is contained in a structural unit represented by
下記一般式(4):
Figure 2009280768
(式中R7、R8及びR9は、各々独立して、炭化水素、又はこれらの部分置換体を示し、R7、R8及びR9は分子中に複数存在する場合同一でも異なっていてもよい。)
で表される構成単位を更に有する、請求項1〜3のいずれかに記載のシロキサン誘導体。
The following general formula (4):
Figure 2009280768
(In the formula, R 7 , R 8 and R 9 each independently represent a hydrocarbon or a partial substituent thereof, and when there are a plurality of R 7 , R 8 and R 9 in the molecule, they are the same or different. May be.)
The siloxane derivative according to claim 1, further comprising a structural unit represented by:
3がフェニル基である、請求項2に記載のシロキサン誘導体。 The siloxane derivative according to claim 2, wherein R 3 is a phenyl group. 1及びR2がメチル基であり、かつR4、R5、R7、R8及びR9が存在する場合これらがいずれもメチル基である、請求項1〜5のいずれか1項に記載のシロキサン誘導体。 The R 1 and R 2 are methyl groups, and when R 4 , R 5 , R 7 , R 8 and R 9 are present, these are all methyl groups. The siloxane derivative described. 下記一般式(5):
{(C65SiO3/2a((CH32SiO1/2CH2CH22c+d+e(H(CH32SiO1/2b-(2c+d+e)}(((CH32SiO)n(CH32Si)c(R6d((CH33Si)e・・・(5)
(式中R6はエポキシ基含有基を示し、a、b、c、d、e及びnは実数であり、a>0、b>0、c>0、d>0、e≧0、n>0であり、かつb≧2c+d+eである。)
で表される構成単位を含む、請求項1〜6のいずれか1項に記載のシロキサン誘導体。
The following general formula (5):
{(C 6 H 5 SiO 3/2 ) a ((CH 3 ) 2 SiO 1/2 CH 2 CH 2 ) 2c + d + e (H (CH 3 ) 2 SiO 1/2 ) b- (2c + d + e) } (((CH 3 ) 2 SiO) n (CH 3 ) 2 Si) c (R 6 ) d ((CH 3 ) 3 Si) e (5)
(Wherein R 6 represents an epoxy group-containing group, a, b, c, d, e and n are real numbers, a> 0, b> 0, c> 0, d> 0, e ≧ 0, n > 0 and b ≧ 2c + d + e.)
The siloxane derivative of any one of Claims 1-6 containing the structural unit represented by these.
請求項1〜7のいずれか1項に記載のシロキサン誘導体を重合してなる硬化物。   Hardened | cured material formed by superposing | polymerizing the siloxane derivative of any one of Claims 1-7. 硬化剤として酸無水物を用いて重合してなる、請求項8に記載の硬化物。   The hardened | cured material of Claim 8 formed by superposing | polymerizing using an acid anhydride as a hardening | curing agent. 硬化促進剤を更に用いて重合してなる、請求項9に記載の硬化物。   The hardened | cured material of Claim 9 formed by superposing | polymerizing further using a hardening accelerator. 硬化物中に存在する酸無水物が、エポキシ基に対する当量比で、酸無水物/エポキシ基=0.01〜0.8となるように重合してなる、請求項9又は10に記載の硬化物。   The curing according to claim 9 or 10, wherein the acid anhydride present in the cured product is polymerized so that the acid anhydride / epoxy group = 0.01 to 0.8 in an equivalent ratio to the epoxy group. object. 重合開始剤としてカチオン重合開始剤を用いて重合してなる、請求項8に記載の硬化物。   The hardened | cured material of Claim 8 formed by superposing | polymerizing using a cationic polymerization initiator as a polymerization initiator. 熱により重合してなる、請求項8〜12のいずれか1項に記載の硬化物。   The hardened | cured material of any one of Claims 8-12 formed by superposing | polymerizing with a heat | fever. 請求項8〜13のいずれか1項に記載の硬化物からなる光半導体封止材。   The optical-semiconductor sealing material which consists of hardened | cured material of any one of Claims 8-13.
JP2008137070A 2008-05-26 2008-05-26 Siloxane derivatives and cured products, and optical semiconductor sealing materials Expired - Fee Related JP5406466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008137070A JP5406466B2 (en) 2008-05-26 2008-05-26 Siloxane derivatives and cured products, and optical semiconductor sealing materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008137070A JP5406466B2 (en) 2008-05-26 2008-05-26 Siloxane derivatives and cured products, and optical semiconductor sealing materials

Publications (2)

Publication Number Publication Date
JP2009280768A true JP2009280768A (en) 2009-12-03
JP5406466B2 JP5406466B2 (en) 2014-02-05

Family

ID=41451552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008137070A Expired - Fee Related JP5406466B2 (en) 2008-05-26 2008-05-26 Siloxane derivatives and cured products, and optical semiconductor sealing materials

Country Status (1)

Country Link
JP (1) JP5406466B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254814A (en) * 2009-04-24 2010-11-11 Chisso Corp Organosilicon compound and thermosetting resin composition containing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101840219B1 (en) 2015-08-31 2018-03-20 삼성에스디아이 주식회사 Low Temperature Curable Composition, Cured Film Prepared therefrom, and Electronic Device Incorporating the Cured Film

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446934A (en) * 1990-06-15 1992-02-17 Fujitsu Ltd Photosensitive heat-resistant resin composition, semiconductor device using the same, and their preparation
JP2002284999A (en) * 2001-03-27 2002-10-03 National Institute Of Advanced Industrial & Technology Silsesquioxane-based polymer molding and method for producing the same
JP2004051889A (en) * 2002-07-23 2004-02-19 Asahi Kasei Corp Polyphenylene ether resin composition
JP2004189840A (en) * 2002-12-10 2004-07-08 Nippon Kayaku Co Ltd Resin composition and hardened matter thereof
JP2006070049A (en) * 2003-03-11 2006-03-16 Chisso Corp Polymer obtained by using silsesquioxane derivative
JP2007169406A (en) * 2005-12-21 2007-07-05 Jsr Corp Optical semiconductor-encapsulating composition, its manufacturing process and optical semiconductor-encapsulating agent
JP2007326988A (en) * 2006-06-09 2007-12-20 Chisso Corp Epoxy resin composition
JP2008074931A (en) * 2006-09-20 2008-04-03 Showa Highpolymer Co Ltd Method for producing organopolysiloxane containing epoxy group
JP2008179811A (en) * 2006-12-28 2008-08-07 Asahi Kasei Corp Siloxane derivative and its cured material
JP2009167325A (en) * 2008-01-17 2009-07-30 Nippon Steel Chem Co Ltd Curable cage-type silsesquioxane compound containing silanol group, copolymer using the same and method for producing them
JP2009227863A (en) * 2008-03-24 2009-10-08 Nippon Steel Chem Co Ltd Cage structure-containing curable silicone copolymer, method for producing the same, curable resin composition using cage structure-containing curable silicone copolymer, and cured product thereof
JP2009280767A (en) * 2008-05-26 2009-12-03 Asahi Kasei Corp Siloxane derivative, cured product, and optical semiconductor sealing material
JP2009280769A (en) * 2008-05-26 2009-12-03 Asahi Kasei Corp Curable resin composition, cured product, and optical semiconductor sealing material

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446934A (en) * 1990-06-15 1992-02-17 Fujitsu Ltd Photosensitive heat-resistant resin composition, semiconductor device using the same, and their preparation
JP2002284999A (en) * 2001-03-27 2002-10-03 National Institute Of Advanced Industrial & Technology Silsesquioxane-based polymer molding and method for producing the same
JP2004051889A (en) * 2002-07-23 2004-02-19 Asahi Kasei Corp Polyphenylene ether resin composition
JP2004189840A (en) * 2002-12-10 2004-07-08 Nippon Kayaku Co Ltd Resin composition and hardened matter thereof
JP2006070049A (en) * 2003-03-11 2006-03-16 Chisso Corp Polymer obtained by using silsesquioxane derivative
JP2007169406A (en) * 2005-12-21 2007-07-05 Jsr Corp Optical semiconductor-encapsulating composition, its manufacturing process and optical semiconductor-encapsulating agent
JP2007326988A (en) * 2006-06-09 2007-12-20 Chisso Corp Epoxy resin composition
JP2008074931A (en) * 2006-09-20 2008-04-03 Showa Highpolymer Co Ltd Method for producing organopolysiloxane containing epoxy group
JP2008179811A (en) * 2006-12-28 2008-08-07 Asahi Kasei Corp Siloxane derivative and its cured material
JP2009167325A (en) * 2008-01-17 2009-07-30 Nippon Steel Chem Co Ltd Curable cage-type silsesquioxane compound containing silanol group, copolymer using the same and method for producing them
JP2009227863A (en) * 2008-03-24 2009-10-08 Nippon Steel Chem Co Ltd Cage structure-containing curable silicone copolymer, method for producing the same, curable resin composition using cage structure-containing curable silicone copolymer, and cured product thereof
JP2009280767A (en) * 2008-05-26 2009-12-03 Asahi Kasei Corp Siloxane derivative, cured product, and optical semiconductor sealing material
JP2009280769A (en) * 2008-05-26 2009-12-03 Asahi Kasei Corp Curable resin composition, cured product, and optical semiconductor sealing material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254814A (en) * 2009-04-24 2010-11-11 Chisso Corp Organosilicon compound and thermosetting resin composition containing the same

Also Published As

Publication number Publication date
JP5406466B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP2008179811A (en) Siloxane derivative and its cured material
JP4322949B2 (en) Thermosetting resin composition and optical semiconductor sealing material
JP4630032B2 (en) Polyorganosiloxane, curable silicone composition containing the same, and use thereof
JP5329904B2 (en) Polysiloxane composition and cured product obtained therefrom
JP2009280767A (en) Siloxane derivative, cured product, and optical semiconductor sealing material
JP5638767B2 (en) Curable composition
KR101408006B1 (en) Epoxy silicone condensate, curable composition comprising epoxy silicone condensate, and cured product thereof
JP2006299149A (en) Composition for sealant and optical device
JP5109873B2 (en) Thermosetting resin composition
JP6066140B2 (en) Curable composition
JP2010229324A (en) Thermosetting resin composition
JP6143359B2 (en) Silicone-modified epoxy resin and composition thereof
US10308803B2 (en) Epoxy resin containing silicone-modified epoxy resin and polyvalent carboxylic acid compound, and cured product thereof
WO2021167053A1 (en) Solventless photocurable liquid composition, cured product thereof, optical filler containing same, and display device including layer comprising said cured product
JP6671222B2 (en) Epoxy resin, epoxy resin composition containing the same and cured product thereof
JP5406466B2 (en) Siloxane derivatives and cured products, and optical semiconductor sealing materials
JP2011063670A (en) Curable composition
JP5141499B2 (en) Thermosetting resin composition
JP2009280769A (en) Curable resin composition, cured product, and optical semiconductor sealing material
JP6377445B2 (en) Epoxy resin composition and cured product thereof
JP2008231333A (en) Synthetic method for curable silicone, curable silicone prepared by the same and its cured product
JP6602170B2 (en) Polyvalent carboxylic acid resin and polyvalent carboxylic acid resin composition, epoxy resin composition, thermosetting resin composition, cured product thereof, and semiconductor device containing the same
JP2017078103A (en) Organic silicon compound, thermosetting composition comprising the organic silicon compound, and optical semiconductor sealing material
JP6478808B2 (en) Polyvalent carboxylic acid, polyvalent carboxylic acid composition containing the same, and epoxy resin composition
TW202413495A (en) Photo-cationically curable silicone composition, silicone cured product, and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131101

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees