JP2009280461A - Glass substrate for information recording medium - Google Patents

Glass substrate for information recording medium Download PDF

Info

Publication number
JP2009280461A
JP2009280461A JP2008136104A JP2008136104A JP2009280461A JP 2009280461 A JP2009280461 A JP 2009280461A JP 2008136104 A JP2008136104 A JP 2008136104A JP 2008136104 A JP2008136104 A JP 2008136104A JP 2009280461 A JP2009280461 A JP 2009280461A
Authority
JP
Japan
Prior art keywords
component
information recording
glass
glass substrate
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008136104A
Other languages
Japanese (ja)
Other versions
JP4691135B2 (en
Inventor
Toshitake Yagi
俊剛 八木
Naoyuki Goto
直雪 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2008136104A priority Critical patent/JP4691135B2/en
Priority to MYPI20091760 priority patent/MY147778A/en
Publication of JP2009280461A publication Critical patent/JP2009280461A/en
Application granted granted Critical
Publication of JP4691135B2 publication Critical patent/JP4691135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass substrate for an information recording medium, which has no bubble in glass even though an arsenic component or an antimony component is not used and has physical properties for use as a substrate for the next-generation information recording medium, in particular, which has a good balance between specific gravity and mechanical strength applicable as the substrate for the next-generation information recording medium, in which reboil does not occur when the glass substrate is pressed, and which is suitable when a direct press method is used. <P>SOLUTION: The glass substrate for the information recording medium contains an SiO<SB>2</SB>component, Al<SB>2</SB>O<SB>3</SB>and a R<SB>2</SB>O component (wherein R is one or more elements selected from Li, Na and K) as essential components in terms of oxides, further contains an α element as a clarifying component and has <0.1 molar ratio βm/αm, a compound of a β element to an oxide of the α element in the glass, and <2.7 specific gravity. The α element is one of Sn and Ce and the β element is one or more elements selected from Sn, Ce, Mn, W, Ta, Bi, S, Cl and F but is not the same as the α element. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、情報磁気記録媒体用ガラス基板に関する。
特に本発明は、人体及び環境に対して悪影響をおよぼす砒素成分やアンチモン成分を使用しなくとも、情報記録媒体基板用途としての物性を備えたガラス基板を提供するものである。
The present invention relates to a glass substrate for information magnetic recording media.
In particular, the present invention provides a glass substrate having physical properties for use as an information recording medium substrate without using an arsenic component or an antimony component that adversely affects the human body and the environment.

尚、本発明において「情報記録媒体」とは、パーソナルコンピュータのハードディスクとして使用される、固定型ハードディスク、リムーバル型ハードディスク、もしくはカード型ハードディスク、デジタルビデオカメラ、デジタルカメラ、もしくはオーディオ用ハードディスク、カーナビ用ハードディスク、携帯電話用ハードディスクまたは各種電子デバイス用ハードディスクにおいて使用可能な情報磁気記録媒体を意味する。   In the present invention, the “information recording medium” refers to a fixed hard disk, a removable hard disk, a card hard disk, a digital video camera, a digital camera, an audio hard disk, or a car navigation hard disk used as a hard disk of a personal computer. It means an information magnetic recording medium that can be used in a mobile phone hard disk or a hard disk for various electronic devices.

近年、パーソナルコンピュータのマルチメディア化への対応のため、また、デジタルビデオカメラ、デジタルカメラ、携帯型のオーディオ装置で動画や音声等の大きなデータが扱われるようになり、大容量の情報磁気記録装置が必要となっている。その結果、情報磁気記録媒体は年々高記録密度化の要求が高まっている。   In recent years, large-capacity information magnetic recording devices have come to handle large amounts of data such as moving images and voices in digital video cameras, digital cameras, and portable audio devices in order to cope with the multimediaization of personal computers. Is required. As a result, information magnetic recording media are increasingly required to have a higher recording density year by year.

これに対応するべく、垂直磁気記録方式の採用、量産化が進められている。この垂直磁気記録方式においては、従来よりも優れた基板の耐熱性、表面の平滑性が求められている。また従来、情報磁気記録装置はパーソナルコンピュータ用途など静的な環境下で使用されることが殆どであったが、近年においては携帯型オーディオ装置等に代表されるように動的な環境下で使用されることが多くなっている。この為、次世代の情報記録媒体用基板は、スピンドルモーターへの負担を軽減するための低比重化と、ディスクのクラッシュを防止するための高い機械的強度を有することが従来にもまして重要になっている。しかし低比重であることと高い機械的強度、優れた量産性を有することは相反する関係にあり、動的な環境下の使用を考慮した次世代の情報記録媒体用基板においては、この二つの要素をどのようにバランスさせるかの研究が行われている。   In order to cope with this, the adoption of the perpendicular magnetic recording system and the mass production are being promoted. In this perpendicular magnetic recording system, the heat resistance of the substrate and the smoothness of the surface, which are superior to those of the prior art, are required. Conventionally, information magnetic recording devices have been mostly used in a static environment such as for personal computers. However, in recent years, information magnetic recording devices have been used in a dynamic environment such as a portable audio device. There is a lot to be done. Therefore, it is more important than ever for next-generation information recording media substrates to have low specific gravity to reduce the burden on the spindle motor and high mechanical strength to prevent disk crashes. It has become. However, low specific gravity, high mechanical strength, and excellent mass productivity are in conflict with each other. In the next generation of information recording media substrates that are considered for use in dynamic environments, There is research on how to balance elements.

上記の様な要求を満たす情報記録媒体用基板の材料の一つとしてガラス材料が研究されている。ガラス材料を使用する場合、厚さ1mm以下のディスク状の基板を低コストで製造するために、溶融ガラスを直接プレスするダイレクトプレス法が用いられている。
ダイレクトプレス法においては、ガラスを溶融する際に、溶融ガラスから泡を除くために清澄剤として砒素やアンチモン成分が使用されていたが、近年、人体及び環境に対して悪影響を及ぼす恐れがあるとして、その含有量を低減、あるいは使用しないことが求められている。
Glass materials have been studied as one of materials for information recording medium substrates that satisfy the above requirements. When using a glass material, in order to manufacture a disk-shaped substrate having a thickness of 1 mm or less at a low cost, a direct press method of directly pressing molten glass is used.
In the direct press method, when melting glass, arsenic and antimony components have been used as fining agents to remove bubbles from the molten glass, but in recent years there is a risk of adverse effects on the human body and the environment. Therefore, it is required to reduce the content or not to use it.

特許文献1には砒素成分やアンチモン成分を使用せず、SnO成分、CeO成分及びF成分を使用したアルミノケイ酸塩ガラスが開示されている。しかしながらこのガラスは成形型へキャストした場合にはある程度まで泡の存在を抑制できるが、ダイレクトプレス法を用いてディスク状に成形すると、プレス時の衝撃等が原因となってリボイル(清澄後のガラスから再度泡が発生してしまう現象)が発生し、清澄効果が得られないという欠点がある。 Patent Document 1 discloses an aluminosilicate glass that uses an SnO 2 component, a CeO 2 component, and an F 2 component without using an arsenic component or an antimony component. However, when this glass is cast into a mold, the presence of bubbles can be suppressed to some extent. However, when it is formed into a disk using the direct press method, reboiling (glass after clarification) is caused due to impact during pressing. From which the bubbles are generated again), and the clarification effect cannot be obtained.

特許文献2には砒素成分やアンチモン成分を使用しない情報記録媒体用ガラス基板が開示されている、しかしながら、プレス時のリボイル発生の問題や、次世代の情報記録媒体用基板として適用しうる比重と機械的強度のバランスについて検討がされていない。その為、次世代の情報記録媒体用基板として適用しうる比重と機械的強度のバランスを備え、かつ、プレス時のリボイルの発生を抑制できるガラスは開示されていない。
特開平10−72238号公報 特開2001−76336号公報
Patent Document 2 discloses a glass substrate for an information recording medium that does not use an arsenic component or an antimony component. However, there is a problem of reboil generation during pressing, and a specific gravity that can be applied as a substrate for a next-generation information recording medium. The balance of mechanical strength has not been studied. Therefore, a glass that has a balance between specific gravity and mechanical strength that can be applied as a next-generation information recording medium substrate and that can suppress the occurrence of reboil during pressing is not disclosed.
Japanese Patent Laid-Open No. 10-72238 JP 2001-76336 A

本発明の目的は、人体及び環境に対して悪影響をおよぼすおそれのある砒素成分やアンチモン成分を実質的に使用せずともガラス中に泡がなく、垂直磁気記録方式等に代表される次世代の情報記録媒体基板用途としての物性を備えたガラス基板を提供することにある。とりわけ、動的な環境下での使用を前提とした次世代の情報記録媒体用基板として適用しうる比重と機械的強度のバランスを備え、高速回転化や落下衝撃に耐え得る高強度を有し、プレス時のリボイルの発生がなく、ダイレクトプレス法に適した生産性の高い情報記録媒体用ガラス基板を提供することにある。   The object of the present invention is to produce the next generation represented by a perpendicular magnetic recording system and the like without bubbles in the glass without substantially using an arsenic component or an antimony component which may adversely affect the human body and the environment. An object of the present invention is to provide a glass substrate having physical properties for use as an information recording medium substrate. In particular, it has a balance between specific gravity and mechanical strength that can be applied as a substrate for next-generation information recording media assuming use in a dynamic environment, and has high strength that can withstand high-speed rotation and drop impact. An object of the present invention is to provide a glass substrate for an information recording medium which is free from reboil during pressing and has a high productivity suitable for the direct pressing method.

本発明者は、上記目的を達成するために鋭意試験研究を重ねた結果、比重を特定の値とすることで、次世代の情報記録媒体用基板として適用しうる比重と機械的強度のバランスを備えることができ、さらに清澄剤として使用する成分の含有量を特定の範囲に限定することで、ダイレクトプレス時にもリボイル発生を抑止し、生産性が高く、十分な清澄効果が得られることを見いだした。加えて、化学的耐久性と磁気ヘッドの低浮上化に対応可能な極めて平滑な基板表面を有し、ドライブ搭載時の落下強度にも優れている(>1200G)ことを見出した。より具体的には、本発明は以下のようなものを提供する。   As a result of intensive studies and studies to achieve the above object, the present inventor achieved a balance between specific gravity and mechanical strength that can be applied as a next-generation information recording medium substrate by setting the specific gravity to a specific value. Furthermore, by limiting the content of the components used as a clarifier to a specific range, it was found that reboiling was suppressed even during direct pressing, high productivity and a sufficient clarification effect were obtained. It was. In addition, it has been found that it has an extremely smooth substrate surface that can cope with chemical durability and low flying height of the magnetic head, and has excellent drop strength when mounted on a drive (> 1200 G). More specifically, the present invention provides the following.

(構成1)
酸化物基準において、SiO成分、Al3、O成分を必須で含有し、さらに清澄成分としてα元素を含有し、ガラス中のα元素酸化物とβ元素化合物のモル比βm/αmが0.1未満であり、比重が2.70未満であることを特徴とする情報記録媒体用ガラス基板。ただし、α元素は、Sn、Ceのうちどちらか1種の元素であり、β元素は、Sn、Ce、Mn、W、Ta、Bi、S、Cl、およびFから選ばれる1種以上でありα元素と重複しない。また、Rは、Li、Na、Kから選ばれる1種以上である。
(構成2)
前記α元素の含有量は酸化物基準の質量%で、
SnO 0.01〜2.3%、または、
CeO 0.01〜2.5%、
である構成1に記載の情報記録媒体用ガラス基板。
(構成3)
酸化物基準の質量%で
SiO:55〜80%、および
Al:2〜20%、および
O:3〜20%、
の各成分を含有する構成1または2に記載の情報記録媒体用ガラス基板。
(構成4)
酸化物基準の質量%で
:0〜3.0%、および/または
ZrO:0〜10%、および/または
:0〜15%、および/または
BaO:0〜15%、および/または
SrO:0〜15%、および/または
MgO:0〜20%、および/または
CaO:0〜20%、および/または
ZnO:0〜20%、および/または
TiO:0〜10%、および/または
Gd成分、La成分、Y成分、Nb成分Ga成分から選ばれる1種以上の合計の含有量:0〜15%、
の各成分を含有する構成1〜3のいずれかに記載の情報記録媒体用ガラス基板。
(構成5)
ヤング率が81GPa以上、かつ、ヤング率と比重の比である比弾性率が30以上である構成1〜4のいずれかに記載の情報記録媒体用ガラス基板。
(構成6)
前記β元素を実質的に含有しない構成1〜5のいずれかに記載の情報記録媒体用ガラス基板。
(構成7)
酸化物基準でAs成分およびSb成分を実質的に含有しない構成1〜6のいずれかに記載の情報記録媒体用ガラス基板。
(構成8)
構成1〜7のいずれかに記載の基板の表面に圧縮応力層を設けた情報記録媒体用ガラス基板。
(構成9)
前記圧縮応力層は表面層に存在するアルカリ成分よりもイオン半径の大きなアルカリ成分で置換することにより形成されてなる構成8に記載の情報記録媒体用ガラス基板。
(構成10)
前記圧縮応力層は基板の加熱、その後急冷によって形成されたことを特徴とする構成8または9に記載の情報記録媒体用ガラス基板。
(構成11)
表面粗度Ra(算術平均粗さ)が2Å以下であることを特徴とする構成1から10のいずれかに記載の情報記録媒体用ガラス基板。
(構成12)
構成1から11に記載の情報記録媒体用ガラス基板を用いた情報記録媒体。
(Configuration 1)
In terms of oxide, it contains SiO 2 component, Al 2 O 3, R 2 O component as essential components, further contains α element as a refining component, and a molar ratio βm / β of α element oxide and β element compound in glass. A glass substrate for information recording media, wherein αm is less than 0.1 and specific gravity is less than 2.70. However, the α element is one of Sn and Ce, and the β element is one or more selected from Sn, Ce, Mn, W, Ta, Bi, S, Cl, and F. Does not overlap with α element. R is at least one selected from Li, Na, and K.
(Configuration 2)
The content of the α element is mass% based on oxide,
SnO 2 0.01~2.3%, or,
CeO 2 0.01-2.5%,
The glass substrate for information recording media of the structure 1 which is.
(Configuration 3)
SiO 2 : 55 to 80% and Al 2 O 3 : 2 to 20% and R 2 O: 3 to 20% by mass% based on oxide
The glass substrate for information recording media of the structure 1 or 2 containing each component of these.
(Configuration 4)
P 2 O 5 : 0 to 3.0% and / or ZrO 2 : 0 to 10% and / or B 2 O 3 : 0 to 15% and / or BaO: 0 to 0% by mass based on oxide 15%, and / or SrO: 0-15%, and / or
MgO: 0 to 20%, and / or CaO: 0 to 20%, and / or ZnO: 0 to 20%, and / or TiO 2: 0~10%, and / or Gd 2 O 3 components, La 2 O Total content of one or more selected from three components, Y 2 O 3 component, Nb 2 O 5 component Ga 2 O 3 component: 0 to 15%,
The glass substrate for information recording media in any one of the structures 1-3 containing each component of these.
(Configuration 5)
The glass substrate for an information recording medium according to any one of configurations 1 to 4, wherein the Young's modulus is 81 GPa or more and the specific elastic modulus, which is a ratio of Young's modulus and specific gravity, is 30 or more.
(Configuration 6)
The glass substrate for information recording media according to any one of configurations 1 to 5, which does not substantially contain the β element.
(Configuration 7)
A glass substrate for an information recording medium according to any of the 1-6 that is substantially free of As 2 O 3 component and Sb 2 O 3 component on an oxide basis.
(Configuration 8)
The glass substrate for information recording media which provided the compressive-stress layer on the surface of the board | substrate in any one of the structures 1-7.
(Configuration 9)
The glass substrate for an information recording medium according to Configuration 8, wherein the compressive stress layer is formed by substituting with an alkali component having an ionic radius larger than that of an alkali component present in the surface layer.
(Configuration 10)
The glass substrate for an information recording medium according to Configuration 8 or 9, wherein the compressive stress layer is formed by heating the substrate and then rapidly cooling the substrate.
(Configuration 11)
11. The glass substrate for an information recording medium according to any one of constitutions 1 to 10, wherein the surface roughness Ra (arithmetic average roughness) is 2 mm or less.
(Configuration 12)
An information recording medium using the glass substrate for information recording medium according to any one of Structures 1 to 11.

本発明によれば、次世代の情報記録媒体用基板として適用しうる比重と機械的強度のバランスを備えることができ、人体及び環境に対して悪影響を及ぼす恐れのある砒素成分やアンチモン成分を使用せずとも、清澄剤として使用する成分の含有量を特定の範囲に限定したガラスは生産性が高く、情報記録媒体基板用途に耐えうる物性を備え、従来のような多量の砒素成分やアンチモン成分を含有させた場合と同等の清澄作用を有し、かつ、ダイレクトプレス成形等の場合にリボイル発生を抑制する上で従来よりも優れた効果を奏するガラス基板を提供することができる。   According to the present invention, it is possible to provide a balance between specific gravity and mechanical strength that can be applied as a next-generation information recording medium substrate, and use an arsenic component or an antimony component that may adversely affect the human body and the environment. Even if it is not, glass with a limited content of components used as fining agents is highly productive and has physical properties that can withstand information recording medium substrate applications. It is possible to provide a glass substrate that has a refining action equivalent to the case of containing bismuth and exhibits an effect superior to that of the prior art in suppressing reboil generation in the case of direct press molding or the like.

次に、本発明について、具体的な実施態様について説明する。
本明細書において本発明のガラス基板とは、アモルファスガラス基板、結晶化ガラス基板を総称し、このガラス基板を構成する各組成成分について述べるとき、特に記載が無い場合は、各成分の含有量は酸化物基準の質量%で示す。ここで、「酸化物基準」とは、本発明のガラスの構成成分の原料として使用される酸化物、硝酸塩等が溶融時にすべて分解され酸化物へ変化すると仮定して、ガラス中に含有される各成分の組成を表記する方法であり、この生成酸化物の質量の総和を100質量%として、ガラス中に含有される各成分の量を表記する。
Next, specific embodiments of the present invention will be described.
In this specification, the glass substrate of the present invention is a generic term for an amorphous glass substrate and a crystallized glass substrate, and when describing each component constituting the glass substrate, unless otherwise specified, the content of each component is It is expressed as mass% based on oxide. Here, the “oxide standard” is contained in the glass on the assumption that oxides, nitrates, etc. used as raw materials of the constituent components of the glass of the present invention are all decomposed and changed into oxides when melted. This is a method of expressing the composition of each component, and the amount of each component contained in the glass is described with the total mass of the generated oxides being 100% by mass.

本発明のガラスはSiO成分、Al3、O成分を必須で含有し、さらに清澄成分としてα元素を含有する。ここで、α元素は主たる清澄成分であり、SnまたはCeのうちから選ばれるどちらか1種の元素である。これらを清澄成分として使用することにより情報記録媒体用基板に要求される物性を維持しつつ、高い清澄効果を得ることができる。 The glass of the present invention essentially contains an SiO 2 component, an Al 2 O 3, and an R 2 O component, and further contains an α element as a refining component. Here, the α element is a main clarification component and is any one element selected from Sn and Ce. By using these as a clarification component, a high clarification effect can be obtained while maintaining the physical properties required for an information recording medium substrate.

上記α元素として選択したSnまたはCeの清澄成分に対して他の清澄成分を併用することも可能だが、清澄剤の混在は、清澄効果を打ち消しあったり、ダイレクトプレス時のリボイル発生を引き起こしやすくなる。本発明においてはα元素として選択した清澄成分以外の清澄成分の量を特定の範囲以下とすることにより、清澄効果を打ち消し合うことなく、ダイレクトプレス時のリボイル発生を引き起こしにくくすることを見いだしたのである。 具体的にはα元素として選択したSn、Ceのうちどちらか1種の元素の含有量をαmモル%とし、他の清澄成分であるβ元素の含有量をβmモル%とした場合、ガラス中のα元素酸化物とβ元素化合物のモル比βm/αmの上限を0.1未満となるように、他の清澄成分の含有範囲を設定することで、前記の効果を得ることができる。また、より前記の効果を得やすくするためには前記βm/αmの値は0.095以下であることがより好ましく、0.09以下であることが最も好ましい。 Although it is possible to use other clarification components in combination with the clarification component of Sn or Ce selected as the α element, the mixture of clarification agents tends to cancel the clarification effect or cause reboiling during direct pressing. . In the present invention, it was found that by making the amount of the clarification component other than the clarification component selected as the α element below a specific range, it becomes difficult to cause reboil generation during direct pressing without canceling the clarification effect. is there. Specifically, when the content of any one element of Sn and Ce selected as the α element is αm mol% and the content of the β element as the other fining component is β m mol%, The effect described above can be obtained by setting the content range of the other clarified components so that the upper limit of the molar ratio βm / αm of the α element oxide and β element compound is less than 0.1. In order to make it easier to obtain the above effect, the βm / αm value is more preferably 0.095 or less, and most preferably 0.09 or less.

ここで、β元素は、ガラスの清澄効果が得られるSn、Ce、Mn、W、Ta、Bi、S、Cl、およびFから選ばれる1種以上の元素に相当するが、α元素として選択した元素とは重複しない。すなわち、例えば主たる清澄成分(α元素)としてCeを選択した場合は、β元素の含有量を算出する際にCeの含有量は除外される。
また、上記モル比の算出は次のように求める。まずβ元素として含有される成分を除外して、α元素を含めたガラスの構成成分が酸化物としてガラス中に存在すると仮定して、それら酸化物の総数を100モル%とした時のα元素酸化物のモル%をαmとし、前記β元素を除外したガラスを構成する各酸化物の総数に対するβ元素化合物のモル%をβmとする。
α元素を酸化物としてそのモル%を算出する場合は、SnをSnO、CeをCeOとする。β元素を化合物としてそのモル%を算出する場合は、SnをSnO、CeをCeO、MnをMnO、WをWO、TaをTa、BiをBi、SをSO、ClをCl、FをFとする。
前記β元素は、ダイレクトプレス時のリボイルを抑制するためには実質的に含有しないことが最も好ましい。
Here, the β element corresponds to one or more elements selected from Sn, Ce, Mn, W, Ta, Bi, S, Cl, and F that can provide a glass refining effect, but was selected as the α element. Does not overlap with elements. That is, for example, when Ce is selected as the main clarification component (α element), the content of Ce is excluded when calculating the content of β element.
The molar ratio is calculated as follows. First, excluding components contained as β elements, assuming that the constituent components of glass including α elements exist in the glass as oxides, α elements when the total number of oxides is 100 mol% The mole% of the oxide is αm, and the mole% of the β element compound with respect to the total number of oxides constituting the glass excluding the β element is βm.
In the case of calculating the mol% of an α element as an oxide, Sn is SnO 2 and Ce is CeO 2 . In the case of calculating the mol% of β element as a compound, Sn is SnO 2 , Ce is CeO 2 , Mn is MnO 2 , W is WO 3 , Ta is Ta 2 O 5 , Bi is Bi 2 O 3 , S is SO 3 , Cl is Cl 2 , and F is F 2 .
The β element is most preferably not substantially contained in order to suppress reboil during direct pressing.

本発明者らは、スピンドルモーターにかかる負荷を低減し、次世代の情報記録媒体用基板として適用しうる比重と機械的強度のバランスを得るために、ガラスの比重を2.70未満とすることが好ましいことを見いだした。前記のバランスをより良くするためには比重を2.69以下とすることが最も好ましい。一方、比重が2.20を下回ると、所望の剛性を有する基板は実質上得難いため、比重を2.20以上とすることが好ましく、2.30以上とすることがより好ましく、2.35以上とすることが最も好ましい。   In order to reduce the load applied to the spindle motor and to obtain a balance between specific gravity and mechanical strength that can be applied as a next-generation information recording medium substrate, the present inventors set the specific gravity of the glass to less than 2.70. Found that is preferable. In order to improve the balance, the specific gravity is most preferably 2.69 or less. On the other hand, when the specific gravity is less than 2.20, it is substantially difficult to obtain a substrate having a desired rigidity. Therefore, the specific gravity is preferably 2.20 or more, more preferably 2.30 or more, and 2.35 or more. Is most preferable.

情報記録媒体用基板に要求される物性を維持しつつ、高い清澄効果を得るためには、主たる清澄成分であるα元素としてSn、Ceから選ばれる1種の元素を含有することが好ましい。高い清澄効果を得るためには、酸化物基準でSnO成分又はCeO成分の含有量の下限が0.01%であることが好ましく、0.05%であることがより好ましく、0.1%であることが最も好ましい。
一方、機械的強度を維持しつつ、比重を低くし、高い清澄効果を得て、かつダイレクトプレス時のリボイル抑制効果を高めるためには、SnO成分の含有量の上限は2.3%が好ましく、2.2%がより好ましく、2.0%が最も好ましく、CeO成分の上限は2.5%が好ましく、2.3%がより好ましく、2.1%が最も好ましい。
上記SnO成分とCeO成分はα元素として含有されるのはどちらか一方のみであるが、α元素として含有されない他方の元素については、β元素として上記に規定したβm/αmの比を満たす範囲であれば含有することができる。
In order to obtain a high clarification effect while maintaining the physical properties required for the information recording medium substrate, it is preferable to contain one element selected from Sn and Ce as the α element as the main clarification component. In order to obtain a high clarification effect, the lower limit of the content of the SnO 2 component or CeO 2 component on the oxide basis is preferably 0.01%, more preferably 0.05%, % Is most preferred.
On the other hand, to maintain the mechanical strength, lower the specific gravity, obtain a high clarification effect, and increase the reboil suppression effect during direct pressing, the upper limit of the SnO 2 component content is 2.3% Preferably, 2.2% is more preferable, 2.0% is most preferable, and the upper limit of the CeO 2 component is preferably 2.5%, more preferably 2.3%, and most preferably 2.1%.
Only one of the SnO 2 component and the CeO 2 component is contained as the α element, but the other element not contained as the α element satisfies the ratio βm / αm defined above as the β element. If it is in the range, it can be contained.

As成分やSb成分は清澄剤として作用するが、環境上有害となりうる成分であり、その使用は控えるべきである。本発明のガラスはAs成分やSb成分を含有しなくても清澄効果を得る事ができるし、これら成分と本願の清澄剤成分を添加した場合、清澄剤同士で清澄効果が相殺されてしまうことになる。 As 2 O 3 component and Sb 2 O 3 component act as fining agents, but they can be harmful to the environment, and their use should be refrained. The glass of the present invention can obtain a clarification effect even if it does not contain an As 2 O 3 component or an Sb 2 O 3 component, and when these components and the clarifier component of the present application are added, the clarification effect is achieved between the clarifiers. Will be offset.

SiO成分は、ガラス網目構造を形成し、化学的安定性の向上や低比重化を達成するためにも必須の含有成分である。その量が55%未満では、得られたガラスの化学的耐久性が乏しく、かつ、他成分含有量の増加に伴い比重が高くなる傾向にあるので、含有量の下限は55%であることが好ましく、57%がより好ましく、58%が最も好ましい。また80%を超えると粘性の上昇に伴い溶解、成形性が困難になり易く、その結果材料の均質性や清澄効果が低下しやすくなるので、含有量の上限は80%とすることが好ましく、78%がより好ましく、77%が最も好ましい。 The SiO 2 component is an essential component for forming a glass network structure and achieving an improvement in chemical stability and a reduction in specific gravity. If the amount is less than 55%, the chemical durability of the obtained glass is poor, and the specific gravity tends to increase with an increase in the content of other components, so the lower limit of the content may be 55%. Preferably, 57% is more preferable, and 58% is most preferable. Further, if it exceeds 80%, dissolution and moldability are likely to be difficult as the viscosity increases, and as a result, the homogeneity and clarification effect of the material are likely to be lowered. Therefore, the upper limit of the content is preferably 80%, 78% is more preferred and 77% is most preferred.

Al成分は、ガラスの安定化、化学的耐久性向上にも寄与する重要な成分であるが、その量が2%未満ではその効果に乏しいので、含有量の下限は2%であることが好ましく、2.5%がより好ましく、3.4%が最も好ましい。また20%を超えるとかえって溶解、成形性、耐失透性が悪化し、その結果均質性や清澄効果が低下しやすくなるので、含有量の上限は、20%とすることが好ましく、19%がより好ましく、18.5%が最も好ましい。 Al 2 O 3 component is an important component that contributes to stabilization of glass and improvement of chemical durability, but if its amount is less than 2%, its effect is poor, so the lower limit of the content is 2%. Preferably 2.5%, more preferably 3.4%. On the other hand, if it exceeds 20%, dissolution, moldability, and devitrification resistance are deteriorated, and as a result, homogeneity and clarification effect are likely to be lowered. Therefore, the upper limit of the content is preferably 20%, 19% Is more preferable, and 18.5% is most preferable.

O成分におけるRはLi、Na、Kから選ばれる一種以上のアルカリ金属を指しているが、ガラスの低粘度化、成形性向上、均質性向上、化学強化のためには必須の成分である一方、情報記録媒体基板用途としては化学的耐久性が高い、すなわち、アルカリ成分溶出量は出来るだけ少なくすることが好ましい。垂直磁気記録方式等に代表される次世代の情報記録媒体用途として使用しうるアルカリ成分の溶出量とするために、必要に応じて含有されるLiO成分、NaO成分、KO成分の1種以上の合計量を20%以下とすることが好ましく、18%以下とすることがより好ましく、17%以下とすることが最も好ましい。一方、その下限については、これら1種以上の合計量を3%以上とすることが好ましく、5%以上とすることがより好ましく、8%以上とすることが最も好ましい。 R in the R 2 O component indicates one or more alkali metals selected from Li, Na, and K, but is an essential component for reducing the viscosity of the glass, improving moldability, improving homogeneity, and chemical strengthening. On the other hand, for information recording medium substrate applications, it is preferable that the chemical durability is high, that is, the alkaline component elution amount is as small as possible. Li 2 O component, Na 2 O component, K 2 O contained as necessary in order to obtain an elution amount of an alkali component that can be used as a next-generation information recording medium application typified by a perpendicular magnetic recording system. The total amount of one or more components is preferably 20% or less, more preferably 18% or less, and most preferably 17% or less. On the other hand, regarding the lower limit, the total amount of one or more of these is preferably 3% or more, more preferably 5% or more, and most preferably 8% or more.

成分はガラスを熱処理して結晶化ガラスとする場合に核形成剤として使用し得る成分であり任意で添加することができる。この成分は低粘性化に寄与するとともにSiOとの共存により原ガラスの溶融、清澄性を向上するが、この成分を過剰に添加するとガラス化し難くなり、失透や分相が発生しやすくなるので、含有量の上限は3.0%とすることが好ましく、2.7%がより好ましく、2.6%が最も好ましい。 The P 2 O 5 component is a component that can be used as a nucleating agent when the glass is heat-treated into a crystallized glass, and can be optionally added. This component contributes to lower viscosity and improves the melting and clarity of the original glass by coexistence with SiO 2. However, if this component is added excessively, it becomes difficult to vitrify, and devitrification and phase separation tend to occur. Therefore, the upper limit of the content is preferably 3.0%, more preferably 2.7%, and most preferably 2.6%.

ZrO成分はガラスの化学的耐久性の向上、物理的特性の向上に寄与し、任意で添加することができるが、この成分の添加量が10%を超えると溶け残りやZrSiO(ジルコン)が発生しやすく、かつ、ガラス比重が高くなるので、含有量の上限は10%とすることが好ましく、8%がより好ましく、6%が最も好ましい。 The ZrO 2 component contributes to the improvement of the chemical durability and physical properties of the glass and can be optionally added. However, if the amount of this component exceeds 10%, it remains undissolved or ZrSiO 4 (zircon). Since the glass specific gravity is high, the upper limit of the content is preferably 10%, more preferably 8%, and most preferably 6%.

成分はガラスの低粘性化に寄与し、溶解、成形性を向上するので、任意成分として添加することができる。しかしこの成分が15%以上だと原ガラスが分相しやすくガラス化が困難になるので、含有量の上限を15%とすることが好ましい。より好ましい上限値は12%であり、さらに好ましい上限値は10%である。 The B 2 O 3 component contributes to lowering the viscosity of the glass and improves melting and moldability, so it can be added as an optional component. However, if this component is 15% or more, the original glass tends to phase-separate and it is difficult to vitrify, so the upper limit of the content is preferably 15%. A more preferred upper limit is 12%, and a more preferred upper limit is 10%.

BaO成分やSrO成分は、ガラスの低粘性化と化学的耐久性向上に有効な成分として任意成分として添加することができるが、過剰に添加させるとガラス比重が高くなるため、BaO成分またはSrO成分各々の含有量の上限は比重を適切な値とするために15%以下が好ましく、14%以下がより好ましく、13%以下が最も好ましい。   The BaO component and the SrO component can be added as an optional component as an effective component for reducing the viscosity of the glass and improving the chemical durability. However, if added excessively, the glass specific gravity increases, so the BaO component or the SrO component. The upper limit of each content is preferably 15% or less, more preferably 14% or less, and most preferably 13% or less in order to set the specific gravity to an appropriate value.

MgO、CaO、ZnO成分は、ガラスの低粘性化に有効であるので任意成分として添加することができる。しかし、MgOが20%、CaOが20%、またはZnOが20%を超えると、原ガラスが失透しやすくなる。したがって、これらの成分の含有量の上限は、MgOが20%、CaOが20%、ZnOが20%であり、より好ましい上限値はMgOが15%、CaOが15%、ZnOが15%であり、さらに好ましい上限値はMgOが8%、CaOが10%、ZnOが10%である。   Since MgO, CaO, and ZnO components are effective in reducing the viscosity of glass, they can be added as optional components. However, when MgO exceeds 20%, CaO exceeds 20%, or ZnO exceeds 20%, the original glass tends to be devitrified. Therefore, the upper limit of the content of these components is 20% for MgO, 20% for CaO, and 20% for ZnO, and more preferable upper limit values are 15% for MgO, 15% for CaO, and 15% for ZnO. Further, more preferable upper limit values are 8% for MgO, 10% for CaO, and 10% for ZnO.

TiO成分はガラスの低粘性化、化学的耐久性の向上に寄与する成分として任意に添加することができる。しかし、この成分の添加量が10%を超えるとガラスの比重値が高くなり、更にはガラス化が困難になるため、含有量の上限は10%とすることが好ましく、8%がより好ましく、6%が最も好ましい。 The TiO 2 component can be arbitrarily added as a component that contributes to lowering the viscosity of glass and improving chemical durability. However, if the added amount of this component exceeds 10%, the specific gravity value of the glass increases, and further vitrification becomes difficult, so the upper limit of the content is preferably 10%, more preferably 8%, 6% is most preferred.

Gd、La、Y、Nb、Ga成分はガラスの低粘性化、ヤング率向上による機械的特性の向上、耐熱性向上に寄与するため、任意成分として添加することができるが、添加量の増加は比重の上昇や原料コストの上昇も招く。従って、その量はこれら成分のうち1種以上の合計量が15%までで充分であり、合計量が15%を超えるとガラス化及び結晶化がし難くなる。したがって、これら成分の合計量の上限は15%とすることが好ましく、10%がより好ましく、8%が最も好ましい。 Gd 2 O 3 , La 2 O 3 , Y 2 O 3 , Nb 2 O 5 , Ga 2 O 3 components contribute to lowering the viscosity of glass, improving mechanical properties by improving Young's modulus, and improving heat resistance. Although it can be added as an optional component, an increase in the amount added causes an increase in specific gravity and an increase in raw material cost. Accordingly, the total amount of one or more of these components is sufficient up to 15%. If the total amount exceeds 15%, vitrification and crystallization are difficult. Therefore, the upper limit of the total amount of these components is preferably 15%, more preferably 10%, and most preferably 8%.

ガラスの着色成分として用いられるV、Cu、Mn、Cr、Co、Mo、Ni、Fe、Te、Pr、Nd、Er,Eu、Sm等の成分は、硝種混合防止目的にて添加させることが可能であるが、比重の上昇、原料コスト上昇、ガラス形成能力の低下を招くため、その量はこれら成分のうち1種以上の合計量が5%までで充分である。従って、これら成分の合計量の上限は酸化物基準で5%とすることが好ましく、4%がより好ましく、3%が最も好ましい。   Components such as V, Cu, Mn, Cr, Co, Mo, Ni, Fe, Te, Pr, Nd, Er, Eu, and Sm, which are used as glass coloring components, can be added for the purpose of preventing glass mixture. However, since the specific gravity increases, the raw material costs increase, and the glass forming ability decreases, the total amount of one or more of these components is sufficient up to 5%. Therefore, the upper limit of the total amount of these components is preferably 5% on the oxide basis, more preferably 4%, and most preferably 3%.

ヤング率について述べる。前記のように、記録密度およびデータ転送速度を向上するために、情報記録媒体ディスク基板の高速回転化傾向が進行しているが、この傾向に対応するには、基板材は高速回転時の撓みによるディスク振動を防止すべく、高剛性、低比重でなければならない。また、ヘッドの接触やリムーバブル記録装置のような携帯型の記録装置に用いた場合においては、それに十分耐え得る機械的強度、高ヤング率、表面硬度を有する事が好ましく、具体的には、ヤング率で81GPa以上であることが好ましく、81.5GPa以上であることがより好ましく、82GPa以上であることが最も好ましい。   The Young's modulus is described. As described above, in order to improve the recording density and the data transfer speed, the tendency of high-speed rotation of the information recording medium disk substrate is progressing. To cope with this trend, the substrate material is bent at the time of high-speed rotation. In order to prevent disc vibration due to, it must have high rigidity and low specific gravity. In addition, when used in a portable recording apparatus such as a head contact or a removable recording apparatus, it is preferable to have sufficient mechanical strength, high Young's modulus, and surface hardness that can withstand it. The rate is preferably 81 GPa or more, more preferably 81.5 GPa or more, and most preferably 82 GPa or more.

ところが、単に高剛性であっても比重が大きければ、高速回転時にその重量が大きいことによって撓みが生じ、振動を発生する。逆に低比重でも剛性が小さければ、同様に振動が発生することになる。また比重を低くし過ぎると、結果として所望の機械的強度を得ることが難しくなる。したがって、高剛性でありながら低比重という一見相反する特性のバランスを取らなければならず、その好ましい範囲はヤング率[GPa]/比重で表わされる比弾性率が30以上であり、より好ましい範囲は31以上であり、最も好ましい範囲は32以上である。
上記ヤング率、およびヤング率[GPa]/比重で表わされる比弾性率の値は、上記比重の値を特定の範囲に限定することで達成することができる。
However, even if the rigidity is simply high, if the specific gravity is large, the weight is large at the time of high-speed rotation, so that bending occurs and vibration is generated. On the other hand, if the rigidity is small even at a low specific gravity, vibration will occur in the same manner. If the specific gravity is too low, it becomes difficult to obtain a desired mechanical strength as a result. Therefore, it is necessary to balance the seemingly contradictory characteristics of low specific gravity while having high rigidity, and a preferable range thereof is a Young's modulus [GPa] / specific gravity expressed by specific gravity of 30 or more, and a more preferable range is 31 or more, and the most preferable range is 32 or more.
The Young's modulus and the value of specific modulus expressed by Young's modulus [GPa] / specific gravity can be achieved by limiting the specific gravity value to a specific range.

本発明のガラス基板は表面に圧縮応力層を設けることにより、機械的強度をより向上させる効果を得られる。   The glass substrate of the present invention can obtain the effect of further improving the mechanical strength by providing a compressive stress layer on the surface.

圧縮応力層の形成方法としては、例えば圧縮応力層形成前のガラス基板の表面層に存在するアルカリ成分よりもイオン半径の大きなアルカリ成分とで交換反応させることによる化学強化法がある。また、ガラス基板を加熱し、その後急冷する熱強化法、ガラス基板の表面層にイオンを注入するイオン注入法がある。   As a method for forming the compressive stress layer, for example, there is a chemical strengthening method by performing an exchange reaction with an alkali component having an ionic radius larger than that of the alkali component present in the surface layer of the glass substrate before forming the compressive stress layer. Further, there are a heat strengthening method in which a glass substrate is heated and then rapidly cooled, and an ion implantation method in which ions are implanted into the surface layer of the glass substrate.

化学強化法としては、例えばカリウム又はナトリウムを含有する塩、例えば硝酸カリウム(KNO)、硝酸ナトリウム(NaNO)またはその複合塩の溶融塩に300〜600℃の温度にて0.5〜12時間浸漬する。これにより、基板表面付近のガラス成分に存在するリチウム成分(Liイオン)がLiよりもイオン半径の大きなアルカリ成分であるナトリウム成分(Naイオン)もしくはカリウム成分(Kイオン)との交換反応、または、基板表面付近のガラス成分に存在するナトリウム成分(Naイオン)よりもイオン半径の大きなアルカリ成分であるカリウム成分との交換反応が進行し、これにより結晶化ガラスの容積増加が起こりガラス基板表面層中に圧縮応力が発生し、その結果、衝撃特性の指標であるリング曲げ強度が増加する。 As the chemical strengthening method, for example, a salt containing potassium or sodium, for example, potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ), or a molten salt thereof is used at a temperature of 300 to 600 ° C. for 0.5 to 12 hours. Immerse. As a result, the lithium component (Li + ion) present in the glass component near the substrate surface exchanges with a sodium component (Na + ion) or potassium component (K + ion), which is an alkali component having an ionic radius larger than that of Li. Alternatively, an exchange reaction with a potassium component which is an alkali component having an ionic radius larger than that of a sodium component (Na + ion) present in the glass component near the substrate surface proceeds, thereby increasing the volume of crystallized glass. Compressive stress is generated in the substrate surface layer, and as a result, the ring bending strength, which is an index of impact characteristics, increases.

熱強化法については特に限定されないが、例えばガラス基板を、300℃〜600℃に加熱した後に水冷および/または空冷等の急速冷却を実施することにより、ガラス基板の表面と内部の温度差によって生じる圧縮応力層を形成することができる。尚、上記化学処理法と組み合わせることにより圧縮応力層をより効果的に形成することができる。   Although it does not specifically limit about the heat-strengthening method, For example, it heats from 300 degreeC-600 degreeC, and then implements rapid cooling, such as water cooling and / or air cooling, and arises by the temperature difference between the surface of a glass substrate and an inside. A compressive stress layer can be formed. In addition, a compression stress layer can be formed more effectively by combining with the above chemical treatment method.

本発明のガラス基板については、結晶化処理によりガラスの内部に結晶を生成させることで、機械的強度やヤング率を向上させることもできる。結晶化ガラスを製造するには、上記の各成の原料を含有するガラス原料を溶融・急冷して原ガラスを作成し、該原ガラスを熱処理し核形成工程を行い、この核形成工程の後に核形成工程より高い温度で熱処理することにより結晶成長工程を行う。   About the glass substrate of this invention, mechanical strength and a Young's modulus can also be improved by producing | generating a crystal | crystallization inside glass by a crystallization process. In order to produce crystallized glass, a glass raw material containing the above-mentioned raw materials is melted and rapidly cooled to prepare a raw glass, and the raw glass is heat-treated to perform a nucleation step. The crystal growth step is performed by heat treatment at a higher temperature than the nucleation step.

また、本発明の情報記録媒体用基板を作製するためには、上記の条件で作製した溶融ガラスを下型に滴下し、上下型でプレスすることによってディスク状に成形し、必要に応じ形状加工を施し、公知の方法でラッピング加工、研磨加工を施せば良い。   Moreover, in order to produce the information recording medium substrate of the present invention, the molten glass produced under the above conditions is dropped onto a lower mold and pressed into an upper and lower mold to form a disk, and if necessary, shape processing And lapping and polishing may be performed by a known method.

より具体的には以下の方法で製造する。
まず、上記の組成範囲のガラス構成成分を有する様に酸化物、炭酸塩、硝酸塩等の原料を混合し、白金や石英等の坩堝を使用した通常の溶解装置を用いて、ガラス融液の粘度が2.3〜3.0dPa・sとなる温度で溶解する。
次にガラス融液の温度を、粘度が1.5〜2.3dPa・s、好ましくは1.9〜2.2dPa・sとなる温度まで昇温し、ガラス融液内に泡を発生させ撹拌効果を引き起こし均質度を向上させる。
その後、ガラス融液の温度を、粘度が2.2〜2.6dPa・s、好ましくは2.3〜2.5dPa・sとなる温度まで降温し、ガラス内部に発生していた泡の消泡、清澄を行い、その後この温度を維持する。
More specifically, it is produced by the following method.
First, mix the raw materials such as oxides, carbonates and nitrates so as to have the glass components in the above composition range, and use a normal melting apparatus using a crucible such as platinum or quartz, the viscosity of the glass melt Is dissolved at a temperature of 2.3 to 3.0 dPa · s.
Next, the temperature of the glass melt is raised to a temperature at which the viscosity is 1.5 to 2.3 dPa · s, preferably 1.9 to 2.2 dPa · s, and bubbles are generated in the glass melt and stirred. Causes effects and improves homogeneity.
Thereafter, the temperature of the glass melt is lowered to a temperature at which the viscosity becomes 2.2 to 2.6 dPa · s, preferably 2.3 to 2.5 dPa · s, and the defoaming of bubbles generated inside the glass is performed. Clarify, then maintain this temperature.

次にプレス成形型の上型の温度を300±100℃、好ましくは300±50℃、下型の温度をガラスのTg±50℃、好ましくはTg±30℃に設定する。
さらに坩堝からプレス成型形へガラスを導くためのガラス流出パイプの温度を、ガラスの粘度が2.2〜2.6dPa・s、好ましくは2.3〜2.5dPa・sとなる温度に設定し、前記下型上に所定量のガラスを滴下し、上型と下型を接近させプレスし、ガラス成形体を得る。
情報記録媒体用基板の製造においては、1枚あたりのコスト低減が求められるため、プレススピード150〜700mm/sec、サイクルタイム(プレス開始後次のプレス開始までの時間)1〜2secという高速でプレスするが、このようなプレス時の衝撃においても本発明のガラスを使用し、ガラス融液の温度と製造装置の温度を上記の様に管理することで、プレス時のリボイルの発生を抑制することが可能となる。
Next, the upper mold temperature is set to 300 ± 100 ° C., preferably 300 ± 50 ° C., and the lower mold temperature is set to Tg ± 50 ° C., preferably Tg ± 30 ° C. of the glass.
Further, the temperature of the glass outlet pipe for guiding the glass from the crucible to the press-molded shape is set to a temperature at which the viscosity of the glass is 2.2 to 2.6 dPa · s, preferably 2.3 to 2.5 dPa · s. Then, a predetermined amount of glass is dropped on the lower mold, and the upper mold and the lower mold are brought close to each other and pressed to obtain a glass molded body.
In manufacturing information recording medium substrates, cost reduction per sheet is required, so press speeds of 150 to 700 mm / sec, cycle time (time from the start of press to the start of the next press) of 1 to 2 sec. However, even in such an impact during pressing, the glass of the present invention is used, and by controlling the temperature of the glass melt and the temperature of the manufacturing apparatus as described above, the occurrence of reboil during pressing can be suppressed. Is possible.

得られたガラス成形体を結晶化ガラスとする場合には、プレス成形後のガラス成形体を核形成として500〜650℃で0.5〜10時間、結晶成長として600〜750℃で2〜20時間熱処理をする。結晶成長での熱処理温度は核形成での熱処理温度より高いことが好ましい。   When the obtained glass molded body is crystallized glass, the glass molded body after press molding is nucleated at 500 to 650 ° C. for 0.5 to 10 hours, and the crystal growth is 600 to 750 ° C. at 2 to 20 hours. Heat treatment for hours. The heat treatment temperature for crystal growth is preferably higher than the heat treatment temperature for nucleation.

次に平均粒径5〜30μmの砥粒にて約10分〜60分ラッピングし、内外径加工の後平均粒径0.5μm〜2μmの酸化セリウム等の遊離砥粒を用いて約30分〜60分間研磨し、情報記録媒体用基板を得ることができる。ラッピング及び研磨工程に関しては上記に限らず公知の方法を適宜用いて良い。   Next, lapping is performed for about 10 to 60 minutes with abrasive grains having an average particle diameter of 5 to 30 μm, and after processing of the inner and outer diameters, free abrasive grains such as cerium oxide having an average particle diameter of 0.5 to 2 μm are used for about 30 minutes to By polishing for 60 minutes, an information recording medium substrate can be obtained. The lapping and polishing steps are not limited to the above, and known methods may be used as appropriate.

次に本発明の好適な実施例について説明する。なお、本発明はこれらの実施例に限定されるものではない。   Next, preferred embodiments of the present invention will be described. The present invention is not limited to these examples.

本発明の上記実施例のガラスは、いずれも酸化物、炭酸塩、硝酸塩等の原料を混合し、これを石英の坩堝を用いて約1300〜1400℃の温度で溶解し原料となるバッチを溶け残りが発生しないよう充分溶解した後、約1400〜1500℃の温度に昇温後、1,450〜1,300℃の温度まで降温し、ガラス内部に発生していた泡の消泡、清澄化を行った。その後、温度を維持したまま所定量のガラスを流出しダイレクトプレス方式により上型の温度を300±100℃、下型の温度をTg±50℃に設定した上、ディスク状に成形して、冷却しガラス成形体を得た。次いで一部を結晶化し、得られたガラス成形体を上述の方法でラッピングおよび研磨し、情報記録媒体用の基板を得た。この時の基板の表面粗度Ra(算術平均粗さ)はすべて2Å以下であった。また、作製した基板100枚を無作為に抽出し、顕微鏡を用いて内部欠陥検査を行い、良品率(%)を求めた。ここで、良品率とはプレス後の基板内に泡が無いものを良品とし、良品の存在する割合をいう。
なお、表面粗度Ra(算術平均粗さ)は原子間力顕微鏡(AFM)にて測定した。
All the glasses of the above-mentioned embodiments of the present invention are mixed with raw materials such as oxides, carbonates, nitrates, etc., and melted at a temperature of about 1300-1400 ° C. using a quartz crucible to melt the raw material batch. After sufficiently dissolving so that no residue is generated, the temperature is raised to a temperature of about 1400 to 1500 ° C., then the temperature is lowered to a temperature of 1,450 to 1,300 ° C., and the bubbles generated inside the glass are defoamed and clarified. Went. After that, a predetermined amount of glass flows out while maintaining the temperature, and the upper mold temperature is set to 300 ± 100 ° C. and the lower mold temperature is set to Tg ± 50 ° C. by the direct press method. A glass molded body was obtained. Subsequently, a part was crystallized, and the obtained glass molded body was lapped and polished by the above-described method to obtain a substrate for an information recording medium. At this time, the surface roughness Ra (arithmetic mean roughness) of the substrate was all 2 mm or less. In addition, 100 manufactured substrates were randomly extracted, and an internal defect inspection was performed using a microscope to obtain a yield rate (%). Here, the non-defective product rate refers to the ratio of non-defective products in which no bubbles are present in the pressed substrate, and the proportion of non-defective products.
The surface roughness Ra (arithmetic average roughness) was measured with an atomic force microscope (AFM).

表1〜表7に実施例1〜30および比較例1〜3のガラス組成、プレス成形後の基板の良品率、比重、ヤング率、ヤング率/比重、25℃〜100℃における平均線膨張係数(CTE)を示す。
また、本発明のガラスの温度−粘度グラフを図1に示す。
ガラスの粘度測定は球引上げ式粘度計(有限会社オプト企業製BVM−13LH)を用いて測定した。
また、平均線膨張係数はJOGIS(日本光学硝子工業会規格)16−2003「光学ガラスの常温付近の平均線膨張係数の測定方法」に則り、温度範囲を25℃から100℃に換えて測定した値をいう。
比重はアルキメデス法、ヤング率は超音波法を用いて測定した。








Tables 1 to 7 show glass compositions of Examples 1 to 30 and Comparative Examples 1 to 3, non-defective ratio of substrate after press molding, specific gravity, Young's modulus, Young's modulus / specific gravity, average linear expansion coefficient at 25 ° C to 100 ° C. (CTE).
Moreover, the temperature-viscosity graph of the glass of this invention is shown in FIG.
The viscosity of the glass was measured using a ball pulling viscometer (BVM-13LH manufactured by Opto Corporation).
The average linear expansion coefficient was measured by changing the temperature range from 25 ° C. to 100 ° C. according to JOGIS (Japan Optical Glass Industry Association Standard) 16-2003 “Measurement Method of Average Linear Expansion Coefficient of Optical Glass Near Room Temperature”. Value.
Specific gravity was measured using Archimedes method, and Young's modulus was measured using ultrasonic method.





































































































表1〜7に示されるとおり、本発明の実施例は、プレス時のリボイル発生による泡の存在が効果的に抑制されており、良品率が78〜97%の範囲であった。   As shown in Tables 1 to 7, in the examples of the present invention, the presence of bubbles due to reboil generation during pressing was effectively suppressed, and the yield rate was in the range of 78 to 97%.

(実施例31)
実施例1の2.5インチHDD用研磨基板(65φ×0.635mmt)を400℃の硝酸カリウムと硝酸ナトリウムの混合塩(KNO:NaNO=1:3)に0.5時間浸漬し、表面に圧縮応力層を形成した。この基板はリング曲げ強度が圧縮応力層形成前(260MPa)の7倍に向上していることが確認された。なお、リング曲げ強度とは、直径が65mmで厚み0.635mmの薄い円板状試料を作成し、円形の支持リングと荷重リングにより該円板状試料の強度を測定する同心円曲げ法で測定した曲げ強度をいう。
(Example 31)
The 2.5-inch HDD polishing substrate (65φ × 0.635 mmt) of Example 1 was immersed in a mixed salt of potassium nitrate and sodium nitrate (KNO 3 : NaNO 3 = 1: 3) at 400 ° C. for 0.5 hour to obtain a surface. A compressive stress layer was formed. It was confirmed that the ring bending strength of this substrate was improved to 7 times that before formation of the compressive stress layer (260 MPa). The ring bending strength was measured by a concentric bending method in which a thin disk sample having a diameter of 65 mm and a thickness of 0.635 mm was prepared, and the strength of the disk sample was measured with a circular support ring and a load ring. Refers to bending strength.

(実施例32)
実施例10の2.5インチHDD用研磨基板(65φ×0.635mmt)をに400℃の硝酸カリウムと硝酸ナトリウムの混合塩(KNO:NaNO=1:3)に0.5時間浸漬し、表面に圧縮応力層を形成した。この基板はリング曲げ強度が圧縮応力層形成前(280MPa)の5倍に向上していることが確認された。
(Example 32)
The 2.5-inch HDD polishing substrate (65φ × 0.635 mmt) of Example 10 was immersed in a mixed salt of potassium nitrate and sodium nitrate (KNO 3 : NaNO 3 = 1: 3) at 400 ° C. for 0.5 hour, A compressive stress layer was formed on the surface. It was confirmed that the ring bending strength of this substrate was improved 5 times that before the compression stress layer was formed (280 MPa).

(実施例33)
実施例1の2.5インチHDD用研磨基板(65φ×0.635mmt)を300℃〜600℃に加熱した後に空冷法で急速冷却を実施し、表面に圧縮応力層を形成した。この基板はリング曲げ強度が向上していることが確認された。
(Example 33)
The 2.5-inch HDD polishing substrate (65φ × 0.635 mmt) of Example 1 was heated to 300 ° C. to 600 ° C. and then rapidly cooled by an air cooling method to form a compressive stress layer on the surface. This substrate was confirmed to have improved ring bending strength.

本発明のガラスは熱処理を行うことでガラス内部に微細な結晶粒子を均一に析出させることができ、機械的強度の向上を図ることができる。特に微細なクラックの成長を析出結晶粒子が防止するため、研磨加工時におけるチッピング等による微細な欠けを著しく低減できる。   In the glass of the present invention, fine crystal particles can be uniformly deposited in the glass by heat treatment, and the mechanical strength can be improved. In particular, since the precipitated crystal particles prevent the growth of fine cracks, fine chips caused by chipping during polishing can be remarkably reduced.

(実施例34)
実施例1のガラスを500℃〜650℃で熱処理し核形成工程を行い、この核形成工程の後に、600℃〜850℃の範囲で核形成工程より高い温度で熱処理することにより結晶成長工程を行うことにより、二珪酸リチウム及び二珪酸リチウム固溶体、α−石英、α石英固溶体が析出し、比重2.48g/cm、ヤング率102GPa、ヤング率/比重41.1、CTE85×10−7/℃のガラスを作製することができた。なお、結晶相の同定はX線回折装置(パナリティカル社製、商品名:X’pert−MPD)で得たX線回折図形から求めた。
(Example 34)
The glass of Example 1 is heat treated at 500 ° C. to 650 ° C. to perform a nucleation step, and after this nucleation step, a crystal growth step is performed by heat treatment at a temperature higher than the nucleation step in the range of 600 ° C. to 850 ° C. By carrying out, lithium disilicate and lithium disilicate solid solution, α-quartz, α-quartz solid solution were precipitated, specific gravity 2.48 g / cm 3 , Young's modulus 102 GPa, Young's modulus / specific gravity 41.1, CTE 85 × 10 −7 / A glass at 0 ° C. could be produced. In addition, the identification of the crystal phase was calculated | required from the X-ray-diffraction figure obtained with the X-ray-diffraction apparatus (The product made by Panalical, brand name: X'pert-MPD).

(実施例35)
また、実施例34の2.5インチHDD用研磨基板(65φ×0.635mmt)を公知の方法で作製し、400℃の硝酸カリウムと硝酸ナトリウムの混合塩(KNO:NaNO=1:3)に0.5時間浸漬し、表面に圧縮応力層を形成した。この基板はリング曲げ強度が圧縮応力層形成前(500MPa)の3倍に向上していることが確認された。
(Example 35)
Also, a 2.5-inch HDD polishing substrate (65φ × 0.635 mmt) of Example 34 was prepared by a known method, and a mixed salt of potassium nitrate and sodium nitrate at 400 ° C. (KNO 3 : NaNO 3 = 1: 3). For 0.5 hour to form a compressive stress layer on the surface. It was confirmed that the ring bending strength of this substrate was improved to 3 times that before the compression stress layer was formed (500 MPa).

(実施例36)
また、上記の実施例により得られた基板に、DCスパッタ法により、クロム合金下地層、コバルト合金磁性層を成膜し、さらにダイヤモンドライクカーボン層を形成し、次いでパーフルオロポリエーテル系潤滑剤を塗布して、情報磁気記録媒体を得た。
(Example 36)
Further, a chromium alloy underlayer and a cobalt alloy magnetic layer are formed on the substrate obtained by the above-described example by DC sputtering, and further a diamond-like carbon layer is formed, and then a perfluoropolyether lubricant is added. This was coated to obtain an information magnetic recording medium.

本発明の磁気記録媒体用基板等の基板は、面記録密度を大きくすることができ、記録密度の向上するために基板自体を高回転化しても、撓みや変形が発生することがなく、この回転による振動が低減され、振動や撓みによるデータ読み取りのエラー数(TMR)を低下させることになる。その上、耐衝撃特性に優れているため、特にモバイル用途等の情報記録媒体としてヘッドクラッシュ、基板の破壊が発生しにくく、その結果、優れた安定動作性を示すこととなる。   The substrate such as the magnetic recording medium substrate of the present invention can increase the surface recording density, and even if the substrate itself is rotated at a high speed in order to improve the recording density, there is no occurrence of bending or deformation. Vibration due to rotation is reduced, and the number of data reading errors (TMR) due to vibration and deflection is reduced. In addition, since it has excellent impact resistance characteristics, it is difficult to cause head crashes and substrate breakage particularly as an information recording medium for mobile applications, and as a result, excellent stable operation is exhibited.

本発明の実施例1の温度−粘度グラフであり、縦軸は粘度(dPa・s)の対数logηの値であり、横軸は球引上げ式粘度計が示すガラスの温度(℃)である。It is a temperature-viscosity graph of Example 1 of this invention, a vertical axis | shaft is the value of logarithmic log (eta) of a viscosity (dPa * s), and a horizontal axis | shaft is the temperature (degreeC) of the glass which a ball pulling-type viscometer shows.

Claims (12)

酸化物基準において、SiO成分、Al3、O成分を必須で含有し、さらに清澄成分としてα元素を含有し、ガラス中のα元素酸化物とβ元素化合物のモル比βm/αmが0.1未満であり、比重が2.70未満であることを特徴とする情報記録媒体用ガラス基板。ただし、α元素は、Sn、Ceのうちどちらか1種の元素であり、β元素は、Sn、Ce、Mn、W、Ta、Bi、S、Cl、およびFから選ばれる1種以上でありα元素と重複しない。また、Rは、Li、Na、Kから選ばれる1種以上である。 In terms of oxide, it contains SiO 2 component, Al 2 O 3, R 2 O component as essential components, further contains α element as a refining component, and a molar ratio βm / β of α element oxide and β element compound in glass. A glass substrate for information recording media, wherein αm is less than 0.1 and specific gravity is less than 2.70. However, the α element is one of Sn and Ce, and the β element is one or more selected from Sn, Ce, Mn, W, Ta, Bi, S, Cl, and F. Does not overlap with α element. R is at least one selected from Li, Na, and K. 前記α元素の含有量は酸化物基準の質量%で、
SnO 0.01〜2.3%、または、
CeO 0.01〜2.5%、
である請求項1に記載の情報記録媒体用ガラス基板。
The content of the α element is mass% based on oxide,
SnO 2 0.01~2.3%, or,
CeO 2 0.01-2.5%,
The glass substrate for an information recording medium according to claim 1.
酸化物基準の質量%で
SiO:55〜80%、および
Al:2〜20%、および
O:3〜20%、
の各成分を含有する請求項1または2に記載の情報記録媒体用ガラス基板。
SiO 2 : 55 to 80% and Al 2 O 3 : 2 to 20% and R 2 O: 3 to 20% by mass% based on oxide
The glass substrate for information recording media of Claim 1 or 2 containing each component of these.
酸化物基準の質量%で
:0〜3.0%、および/または
ZrO:0〜10%、および/または
:0〜15%、および/または
BaO:0〜15%、および/または
SrO:0〜15%、および/または
MgO:0〜20%、および/または
CaO:0〜20%、および/または
ZnO:0〜20%、および/または
TiO:0〜10%、および/または
Gd成分、La成分、Y成分、Nb成分、Ga成分から選ばれる1種以上の合計の含有量:0〜15%、
の各成分を含有する請求項1〜3のいずれかに記載の情報記録媒体用ガラス基板。
P 2 O 5 : 0 to 3.0% and / or ZrO 2 : 0 to 10% and / or B 2 O 3 : 0 to 15% and / or BaO: 0 to 0% by mass based on oxide 15%, and / or SrO: 0-15%, and / or
MgO: 0 to 20%, and / or CaO: 0 to 20%, and / or ZnO: 0 to 20%, and / or TiO 2: 0~10%, and / or Gd 2 O 3 component, La 2 O Total content of one or more selected from three components, Y 2 O 3 component, Nb 2 O 5 component, and Ga 2 O 3 component: 0 to 15%,
The glass substrate for information recording media in any one of Claims 1-3 containing each component of these.
ヤング率が81GPa以上、かつ、ヤング率と比重の比である比弾性率が30以上である請求項1〜4のいずれかに記載の情報記録媒体用ガラス基板。 The glass substrate for an information recording medium according to any one of claims 1 to 4, wherein the Young's modulus is 81 GPa or more and the specific elastic modulus, which is the ratio of Young's modulus and specific gravity, is 30 or more. 前記β元素を実質的に含有しない請求項1〜5のいずれかに記載の情報記録媒体用ガラス基板。 The glass substrate for information recording media according to any one of claims 1 to 5, which does not substantially contain the β element. 酸化物基準でAs成分およびSb成分を実質的に含有しない請求項1〜6のいずれかに記載の情報記録媒体用ガラス基板。 The glass substrate for information recording media according to any one of claims 1 to 6, which contains substantially no As 2 O 3 component and no Sb 2 O 3 component on an oxide basis. 請求項1〜7のいずれかに記載の基板の表面に圧縮応力層を設けた情報記録媒体用ガラス基板。   The glass substrate for information recording media which provided the compressive-stress layer on the surface of the board | substrate in any one of Claims 1-7. 前記圧縮応力層は表面層に存在するアルカリ成分よりもイオン半径の大きなアルカリ成分で置換することにより形成されてなる請求項8に記載の情報記録媒体用ガラス基板。   9. The glass substrate for an information recording medium according to claim 8, wherein the compressive stress layer is formed by substituting with an alkali component having an ionic radius larger than that of an alkali component present in the surface layer. 前記圧縮応力層は基板の加熱、その後急冷によって形成されたことを特徴とする請求項8または9に記載の情報記録媒体用ガラス基板。   The glass substrate for an information recording medium according to claim 8 or 9, wherein the compressive stress layer is formed by heating the substrate and then rapidly cooling the substrate. 表面粗度Ra(算術平均粗さ)が2Å以下であることを特徴とする請求項1から10のいずれかに記載の情報記録媒体用ガラス基板。   11. The glass substrate for an information recording medium according to claim 1, wherein the surface roughness Ra (arithmetic average roughness) is 2 mm or less. 請求項1から11に記載の情報記録媒体用ガラス基板を用いた情報記録媒体。   An information recording medium using the glass substrate for an information recording medium according to claim 1.
JP2008136104A 2008-05-23 2008-05-23 Glass substrate for information recording media Expired - Fee Related JP4691135B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008136104A JP4691135B2 (en) 2008-05-23 2008-05-23 Glass substrate for information recording media
MYPI20091760 MY147778A (en) 2008-05-23 2009-04-30 Glass substrate for information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008136104A JP4691135B2 (en) 2008-05-23 2008-05-23 Glass substrate for information recording media

Publications (2)

Publication Number Publication Date
JP2009280461A true JP2009280461A (en) 2009-12-03
JP4691135B2 JP4691135B2 (en) 2011-06-01

Family

ID=41451341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008136104A Expired - Fee Related JP4691135B2 (en) 2008-05-23 2008-05-23 Glass substrate for information recording media

Country Status (2)

Country Link
JP (1) JP4691135B2 (en)
MY (1) MY147778A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037001A1 (en) * 2009-09-28 2011-03-31 コニカミノルタオプト株式会社 Glass substrate for information recording media and information recording medium
JP2012126626A (en) * 2010-12-17 2012-07-05 Konica Minolta Advanced Layers Inc Glass substrate for recording medium
CN108793735A (en) * 2018-07-02 2018-11-13 芜湖东旭光电装备技术有限公司 A kind of glass composition and the glass of resistance to greasy dirt and the preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191212A (en) * 1997-12-25 1999-07-13 Toshitomo Morisane High strength smooth glass substrate
JPH11302033A (en) * 1998-04-17 1999-11-02 Nippon Sheet Glass Co Ltd Glass composition and its production
JP2000187828A (en) * 1998-02-26 2000-07-04 Ohara Inc High rigidity glass ceramic substrate for information magnetic storage medium
JP2000302481A (en) * 1998-03-23 2000-10-31 Ohara Inc Glass ceramic substrate for information recording medium
JP2000322731A (en) * 1999-05-07 2000-11-24 Ishizuka Glass Co Ltd Glass substrate for information recording medium
US20020031670A1 (en) * 1998-03-23 2002-03-14 Naoyuki Goto Glass-ceramic substrate for an information storage medium
JP2002356349A (en) * 2001-05-31 2002-12-13 National Institute Of Advanced Industrial & Technology Colored glass doped with recyclable precious metal, production method therefor and method for recycling thereof
JP2004026570A (en) * 2002-06-25 2004-01-29 Fuji Electric Holdings Co Ltd Glass substrate for information recording medium, its manufacturing process and magnetic recording medium for recording information
JP2008115072A (en) * 2006-10-10 2008-05-22 Nippon Electric Glass Co Ltd Reinforced glass substrate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191212A (en) * 1997-12-25 1999-07-13 Toshitomo Morisane High strength smooth glass substrate
JP2000187828A (en) * 1998-02-26 2000-07-04 Ohara Inc High rigidity glass ceramic substrate for information magnetic storage medium
JP2000302481A (en) * 1998-03-23 2000-10-31 Ohara Inc Glass ceramic substrate for information recording medium
JP2001019489A (en) * 1998-03-23 2001-01-23 Ohara Inc Glass ceramic material
US20020031670A1 (en) * 1998-03-23 2002-03-14 Naoyuki Goto Glass-ceramic substrate for an information storage medium
JPH11302033A (en) * 1998-04-17 1999-11-02 Nippon Sheet Glass Co Ltd Glass composition and its production
JP2000322731A (en) * 1999-05-07 2000-11-24 Ishizuka Glass Co Ltd Glass substrate for information recording medium
JP2002356349A (en) * 2001-05-31 2002-12-13 National Institute Of Advanced Industrial & Technology Colored glass doped with recyclable precious metal, production method therefor and method for recycling thereof
JP2004026570A (en) * 2002-06-25 2004-01-29 Fuji Electric Holdings Co Ltd Glass substrate for information recording medium, its manufacturing process and magnetic recording medium for recording information
JP2008115072A (en) * 2006-10-10 2008-05-22 Nippon Electric Glass Co Ltd Reinforced glass substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037001A1 (en) * 2009-09-28 2011-03-31 コニカミノルタオプト株式会社 Glass substrate for information recording media and information recording medium
US20120183812A1 (en) * 2009-09-28 2012-07-19 Hiroshi Kajita Glass Substrate for Information Recording Media and Information Recording Medium
JP5613164B2 (en) * 2009-09-28 2014-10-22 Hoya株式会社 Glass substrate for information recording medium and information recording medium
US9053734B2 (en) * 2009-09-28 2015-06-09 Konica Minolta Opto, Inc. Glass substrate for information recording media and information recording medium
JP2012126626A (en) * 2010-12-17 2012-07-05 Konica Minolta Advanced Layers Inc Glass substrate for recording medium
CN108793735A (en) * 2018-07-02 2018-11-13 芜湖东旭光电装备技术有限公司 A kind of glass composition and the glass of resistance to greasy dirt and the preparation method and application thereof

Also Published As

Publication number Publication date
JP4691135B2 (en) 2011-06-01
MY147778A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP4559523B2 (en) Glass substrate for information recording medium and manufacturing method thereof
JP5053948B2 (en) Crystallized glass
JP5070006B2 (en) Crystallized glass
JP4815002B2 (en) Crystallized glass substrate for information recording medium and manufacturing method thereof
US9236075B2 (en) Crystallized glass and crystallized glass substrate for information recording medium
JP4755135B2 (en) Crystallized glass
JP5829447B2 (en) Crystallized glass and crystallized glass substrate for information recording medium
JP4086211B2 (en) Glass composition and method for producing the same
JP5734189B2 (en) Glass for magnetic recording medium substrate, magnetic recording medium substrate and manufacturing method thereof, and magnetic recording medium
JP4785274B2 (en) Glass article and glass substrate for magnetic recording medium using the same
JP5375608B2 (en) Glass for data storage medium substrate, glass substrate for data storage medium and magnetic disk
JP2008097821A (en) Information storage medium and device
JP4774466B1 (en) Crystallized glass substrate for information recording medium and manufacturing method thereof
JP2023166439A (en) Glass for magnetic recording medium substrate or for glass spacer for magnetic recording/reproducing device, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing device, and magnetic recording/reproducing device
JP7165655B2 (en) Glass for information recording medium substrate, information recording medium substrate, information recording medium and glass spacer for recording/reproducing device
JP2011246290A (en) Glass substrate
JP4691135B2 (en) Glass substrate for information recording media
JP4323597B2 (en) Crystallized glass for information recording disk and method for producing the same
JP4619115B2 (en) Glass substrate for information recording medium and information recording medium
WO2024053056A1 (en) Glass for magnetic recording medium substrate or for glass spacer to be used in magnetic recording/reproduction device, magnetic recording medium substrate, magnetic recording medium, glass spacer to be used in magnetic recording/reproduction device, and magnetic recording/reproduction device
JPWO2013094451A1 (en) Glass substrate

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100323

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110218

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees