JP2009280446A - High strength vitreous light filler material and method for producing the same - Google Patents

High strength vitreous light filler material and method for producing the same Download PDF

Info

Publication number
JP2009280446A
JP2009280446A JP2008134732A JP2008134732A JP2009280446A JP 2009280446 A JP2009280446 A JP 2009280446A JP 2008134732 A JP2008134732 A JP 2008134732A JP 2008134732 A JP2008134732 A JP 2008134732A JP 2009280446 A JP2009280446 A JP 2009280446A
Authority
JP
Japan
Prior art keywords
filler material
fluidized bed
hollow sphere
strength
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008134732A
Other languages
Japanese (ja)
Other versions
JP5077848B2 (en
Inventor
Kenichi Sodeyama
研一 袖山
Shunichi Nakamura
俊一 中村
Kazuro Higashi
和朗 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PRINCIPLE KK
Kagoshima Prefecture
Principle Co Ltd
Original Assignee
PRINCIPLE KK
Kagoshima Prefecture
Principle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PRINCIPLE KK, Kagoshima Prefecture, Principle Co Ltd filed Critical PRINCIPLE KK
Priority to JP2008134732A priority Critical patent/JP5077848B2/en
Publication of JP2009280446A publication Critical patent/JP2009280446A/en
Application granted granted Critical
Publication of JP5077848B2 publication Critical patent/JP5077848B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved method for producing a vitreous light filler material which provides a high strength vitreous hollow sphere no matter what type of raw ores are used and can expand the use field as a filler material. <P>SOLUTION: The method for producing the vitreous hollow sphere comprises removing a heavy mineral from a volcanic glass raw ore, followed by roughly classifying the whole into three types, a fine-particle fraction, a middle-particle fraction, and a coarse-particle fraction, and feeding the middle-particle fraction to an internal combustion medium fluidized bed furnace as a stock. The feed stock is preheated by mixing it with exhaust gas discharged from the fluidized bed furnace and allowing heat exchange between the both. The preheated stock is then passed through a cyclone to remove the coarse-particle portion and the fine-particle portion, and only the middle-particle portion having a particle size of 7-210 μm is sent to the internal combustion medium fluidized bed furnace to be fired and foamed. The temperature of the stock mixture at the first point of contact between the feed stock and the exhaust gas is controlled in the range of 490-790°C, and the temperature of the stock mixture at an inlet port of the cyclone is controlled in the range of 100-300°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高強度ガラス質中空球からなる軽量フィラー材料及びその製造方法に関するものである。   The present invention relates to a lightweight filler material comprising a high-strength glassy hollow sphere and a method for producing the same.

軽量フィラーの中で、ガラス質微小中空球は、軽量で耐熱性である上、等方性を示すため、マトリックス材料に異方性を与えず、耐衝撃性を付与することができ、流動性やハンドリング性にも優れているため、セメント系建築材料、紙粘土、プラスチックのフィラーとして多用されている(非特許文献1参照)。   Among lightweight fillers, glassy hollow microspheres are lightweight and heat resistant, and are isotropic, so they can impart impact resistance without giving anisotropy to the matrix material, and fluidity In addition, it is widely used as a filler for cement-based building materials, paper clay, and plastics (see Non-Patent Document 1).

このガラス質微小中空球の代表的なものであるシラスバルーンは、ガラス質火山噴出堆積物のシラスを焼成発泡させたものであるが、原料が容易に入手でき、比較的簡単に発泡できるため、開発されて以来、その製造方法が多数提案されている。   Shirasu balloon, which is representative of this glassy micro-hollow sphere, is made by firing and foaming shirasu of glassy volcanic eruption deposits, but since the raw materials are readily available and can be foamed relatively easily, Since its development, many manufacturing methods have been proposed.

このシラスバルーンの製造方法としては、最初、電気炉やロータリーキルンを用いて焼成する方法が行われ、例えばシラスを分級して微粒区分を分離し、これを電気炉や外熱式ロータリーキルンにより800〜1200℃で10秒〜10分間熱処理したのち、水中における比重分離(以下、浮水分離と称す)又は空気分級することによる微細中空ガラス球状体の製造方法(特許文献1参照)が知られている。   As a manufacturing method of this shirasu balloon, first, a method of firing using an electric furnace or a rotary kiln is performed. For example, shirasu is classified and fine particles are separated, and this is divided into 800 to 1200 by an electric furnace or an external heating rotary kiln. There is known a method for producing fine hollow glass spheres (see Patent Document 1) by performing specific gravity separation in water (hereinafter referred to as floating water separation) or air classification after heat treatment at 10 ° C. for 10 seconds to 10 minutes.

その後、高温流動層を用いて発泡物質を製造する方法が開発され(特許文献2参照)、これを利用した内燃式熱媒体流動床炉を用いたガラス質微小中空球の製造方法が主流を占めるようになり、これまでに、火山ガラス質堆積物の微粒子と、この微粒子の親水性を減少させる親水性減少剤との混合物を流動層式加熱炉を用いて900〜1200℃で熱処理する微粒中空ガラス球状体の製造方法(特許文献3参照)、平均粒径20μm以下であって、40μm以上の粒分を25%以上48%以下含む火山ガラス原料を内燃式流動床炉で発泡させて得られる中空ガラス球状体を含む気流を、直列に連結した複数のサイクロンに供給してタッピングかさ密度0.25g/cm3以下、平均粒径20μm以下の中空ガラス球状体及び平均粒径の異なる2種類以上の中空ガラス球状体を連続的に製造する方法(特許文献4参照)、内燃式流動床炉内のセラミックスボールを用い、このセラミックスボールに燃料ガスと空気との混合ガスを供給し、この燃料ガスの燃焼熱でセラミックスボールを900℃以上まで昇温し、設定温度±3℃以内で温度制御を行うと同時に微粒中空ガラス球状体の原料粉体を前記混合ガスに随伴させて供給することにより微粒中空ガラス球状体を製造する方法(特許文献5参照)、天然軽石を内燃式熱媒体流動床炉の排気側から流動床に供給し、900〜1100℃で焼成し、ゆるみ見掛比重0.18〜0.31の焼成発泡軽石の連続的製造方法(特許文献6参照)などがこれまでに提案されている。 Thereafter, a method for producing a foamed material using a high-temperature fluidized bed was developed (see Patent Document 2), and a method for producing glassy hollow microspheres using an internal combustion heat medium fluidized bed furnace using the same dominates. So far, fine hollow particles in which a mixture of fine particles of volcanic glassy deposits and a hydrophilic reducing agent that reduces the hydrophilicity of the fine particles is heat treated at 900 to 1200 ° C. using a fluidized bed heating furnace. A method for producing glass spheres (see Patent Document 3), obtained by foaming a volcanic glass raw material having an average particle diameter of 20 μm or less and containing particles of 40 μm or more in a range of 25% to 48% in an internal fluidized bed furnace. the air flow containing the hollow glass, tapping bulk density 0.25 g / cm 3 or less is supplied to the plurality of cyclones which are coupled in series, different average particle size 20μm or less of the hollow glass microspheres and the mean particle size of 2 A method for continuously producing spherical glass spheres of the kind or higher (see Patent Document 4), using ceramic balls in an internal fluidized bed furnace, supplying a mixed gas of fuel gas and air to the ceramic balls, The ceramic ball is heated to 900 ° C. or higher with the combustion heat of the fuel gas, and the temperature is controlled within the set temperature ± 3 ° C., and at the same time, the raw material powder of the fine hollow glass sphere is supplied along with the mixed gas. (See Patent Document 5), natural pumice is supplied to the fluidized bed from the exhaust side of the internal combustion heat medium fluidized bed furnace, calcined at 900 to 1100 ° C., and loose apparent specific gravity is 0 A continuous production method of fired foamed pumice stone of 18 to 0.31 (see Patent Document 6) has been proposed so far.

他方、中空球構造をとらず、開放型気泡からなる多泡構造を有する球状パーライトについては、粉砕、粒度調整した天然ガラス質岩石を、その軟化点より低い温度で予備加熱して含有水分量を0.1〜2重量%に調整し、次いでこれに高融点微粉末を30〜200容量%混合してロータリーキルンや電気炉により900〜1300℃の温度で発泡焼成させた後、生成したパーライトを高融点微粉末から分離する方法(特許文献7参照)や、流紋岩質の非造粒岩石粒を原料とした、平均粒径5mm以下、真球度0.7以上、圧縮強度25N/mm2以上の硬質発泡パーライト及び平均粒径0.6mm〜5mm、含水量3wt%以下の流紋岩質の非造粒岩石粒を一段焼成する際に、焼成後の発泡パーライトの圧縮強度に応じて焼成温度を選択する方法(特許文献8参照)などが知られている。 On the other hand, for spherical pearlite that has a multi-bubble structure consisting of open-type bubbles without taking a hollow sphere structure, natural glassy rocks that have been crushed and adjusted in particle size are preheated at a temperature lower than their softening point to reduce the water content. After adjusting the content to 0.1 to 2% by weight, and then mixing 30 to 200% by volume of a high melting point fine powder and foaming and firing it at a temperature of 900 to 1300 ° C. with a rotary kiln or electric furnace, A method of separating from a melting point fine powder (refer to Patent Document 7) and a rhyolitic non-granulated rock grain as a raw material, an average particle diameter of 5 mm or less, a sphericity of 0.7 or more, and a compressive strength of 25 N / mm 2 When the above-mentioned hard foamed pearlite and rhyolitic non-granulated rock grains having an average particle size of 0.6 to 5 mm and a water content of 3 wt% or less are fired in one step, firing is performed according to the compressive strength of the foamed perlite after firing. Who chooses the temperature And the like are known (see Patent Document 8).

「工業材料」、日刊工業新聞社発行、第42巻、1994年、p.102−111“Industrial Materials”, published by Nikkan Kogyo Shimbun, Volume 42, 1994, p. 102-111 特公昭48−17645号公報(特許請求の範囲その他)Japanese Patent Publication No. 48-17645 (claims and others) 特公昭51−22922号公報(特許請求の範囲その他)Japanese Patent Publication No. 51-22922 (claims and others) 特公平7−24299号公報(特許請求の範囲その他)Japanese Patent Publication No. 7-24299 (Claims and others) 特開2002−338280号公報(特許請求の範囲その他)JP 2002-338280 A (Claims and others) 特開平11−11960号公報(特許請求の範囲その他)Japanese Patent Laid-Open No. 11-11960 (Claims and others) 特開2004−91283号公報(特許請求の範囲その他)JP 2004-91283 A (Claims and others) 特開平9−183612号公報(特許請求の範囲その他)JP-A-9-183612 (Claims and others) 特開2007−320805号公報(特許請求の範囲その他)JP 2007-320805 A (Claims and others)

従来の製造方法により火山噴出堆積物を原料として得られるガラス質中空球は、いずれも剪断力に対する耐性が小さく、樹脂やセメントなどにフィラーとして配合する場合、混合操作により崩壊しやすいという欠点がある。この解決策として微細化して耐圧性を高め、高強度化するという試みもなされているが、これまで十分に満足し得る結果は得られていない。   Glassy hollow spheres obtained by using volcanic eruption deposits as a raw material by conventional manufacturing methods all have low resistance to shearing force, and when blended as fillers in resins, cements, etc., they have the disadvantage of being easily disintegrated by mixing operations. . Attempts have been made to reduce the size to increase pressure resistance and increase the strength as a solution, but no satisfactory results have been obtained so far.

本発明は、このような事情のもとで、どのような原鉱石を用いても、一様に高強度のガラス質中空球を与え、フィラー材料としての利用分野を拡大することができる改良された製造方法を提供することを目的としてなされたものである。   Under such circumstances, the present invention is an improvement that can uniformly give high-strength glassy hollow spheres regardless of the use of any ore, and can expand the field of use as a filler material. It was made for the purpose of providing a manufacturing method.

本発明者らは、多種多様のガラス質火山噴出物のいずれを原料として用いても、従来のガラス質中空球に比べ、著しく高強度のガラス質中空球を得ることができる新規な方法を開発するために鋭意研究を重ねた結果、特定の手段により、火山ガラス原鉱から分級された中粒画分を、内燃式媒体流動床炉に供給して焼成する際、該流動床炉からの排ガスを利用して制御された温度条件で原料を予熱し、かつ予熱した原料を複数のサイクロンにより分級して、特定の画分のみを該流動床炉に送入し、連続的に焼成することにより、意外にも高い強度の新規なガラス質中空球が得られ、これは軽量フィラー材料として好適であることを見出し、この知見に基づいて本発明をなすに至った。   The present inventors have developed a novel method capable of obtaining glassy hollow spheres with significantly higher strength than conventional glassy hollow spheres using any of a wide variety of glassy volcanic products as raw materials. As a result of earnest research, the exhaust gas from the fluidized bed furnace is obtained when the medium-sized fraction classified from the volcanic glass ore is supplied to the internal combustion medium fluidized bed furnace and calcined by specific means. By preheating the raw material under controlled temperature conditions using the, and classifying the preheated raw material with a plurality of cyclones, sending only a specific fraction into the fluidized bed furnace, and continuously firing Surprisingly, a new glassy hollow sphere with high strength was obtained, which was found to be suitable as a lightweight filler material, and based on this finding, the present invention was made.

すなわち、本発明は、粒径10〜300μmの8MPaで1分間の静水圧浮揚率50%以上に相当する耐圧強度を有することを特徴とする高強度ガラス質中空球からなる軽量フィラー材料、及び火山ガラス原鉱より重鉱物を除去したのち、全体を微粒画分、中粒画分及び粗粒画分の3種に粗分級し、その中粒画分を原料として用いて内燃式媒体流動床炉に供給し、ガラス質中空球を製造する方法において、上記供給原料を上記流動床炉から排出される排ガスと混合し、両者の間で熱交換させることにより予熱すること、予熱した原料をさらにサイクロンを通して、粗粒部分及び微粒部分を除き、粒径7〜210μmの中粒部分のみを内燃式媒体流動床炉に送り、焼成発泡すること及び上記供給原料と排ガスとの最初の接触点における原料混合物の温度を490〜790℃に、サイクロンの導入口における原料混合物の温度を100〜300℃に制御することを特徴とするガラス質中空球からなる軽量フィラー材料の製造方法を提供するものである。
火山ガラス原鉱を内燃式媒体流動床炉に供給する前の工程で、サイクロンを多数連結している理由は、上記に示した粒度調整の他に原鉱粒子形状の改善がある。すなわち、サイクロン内や管路内での原鉱粒子の管内壁面への衝突、粒子同士の衝突を繰り返すことにより、角張った形状の原鉱粒子の角を取り、丸みを帯びた形状に近づけることによって、結果的にガラス質中空球の真球度を向上させることができる。
That is, the present invention is a lightweight filler material comprising a high-strength vitreous hollow sphere characterized by having a pressure strength equivalent to a hydrostatic levitation rate of 50% or more at 8 MPa with a particle size of 10 to 300 μm for 1 minute, and a volcano After removing heavy minerals from the glass ore, the whole is roughly classified into three types: fine fraction, medium fraction and coarse fraction, and the medium fraction is used as a raw material. In the method for producing a glassy hollow sphere, the feedstock is mixed with the exhaust gas discharged from the fluidized bed furnace and preheated by exchanging heat between the two, and the preheated raw material is further recycled to a cyclone. The raw material mixture at the first contact point between the feedstock and the exhaust gas is sent to the internal-combustion medium fluidized bed furnace by excluding the coarse and fine parts, and only the medium-sized part is sent to the internal combustion medium fluidized bed furnace. The temperature of 490 to 790 ° C. and the temperature of the raw material mixture at the cyclone inlet are controlled to 100 to 300 ° C. A method for producing a lightweight filler material comprising glassy hollow spheres is provided.
The reason why a large number of cyclones are connected in the process before supplying the volcanic glass ore to the internal combustion medium fluidized bed furnace is the improvement of the ore particle shape in addition to the particle size adjustment described above. In other words, by repeating the collision of the ore particles with the inner wall of the pipe in the cyclone and the pipe, and the collision between the particles, the corners of the ore particles with an angular shape are taken and brought closer to a rounded shape. As a result, the sphericity of the glassy hollow sphere can be improved.

本発明方法において用いる火山ガラス原鉱としては、通常のシラスバルーンの製造に用いているシラス、例えば加久藤シラス、吉田シラスのほか、ガラス質中空球の製造原料としてシラスと同様に用いられている中野白土、美瑛白土などの風化火山灰や、黒曜石、真珠岩、松脂岩、天然軽石、ボラ、コラなどの火山噴出物がある。本発明方法によれば、重鉱物が多く含まれるためシラスバルーンの原料として不適とされていた南九州のシラス台地を形成するシラスなどの火砕流堆積物を用いることができる。そのほか、火山ガラスを主成分とする風化した降下軽石からなる鹿沼土や南九州の鹿屋土等も同様に用いることができる。   As the volcanic glass ore used in the method of the present invention, Shirasu used for the production of ordinary Shirasu balloons, for example, Kakuto Shirasu, Yoshida Shirasu, as well as Shirasu as a raw material for producing glassy hollow spheres. There are weathered volcanic ash such as white clay and Biei white clay, and volcanic eruptions such as obsidian, pearlite, pine stone, natural pumice, mullet and kora. According to the method of the present invention, pyroclastic flow deposits such as shirasu forming a shirasu plateau in south Kyushu, which is considered unsuitable as a raw material for shirasu balloons because of its large amount of heavy minerals, can be used. In addition, Kanuma soil composed of weathered pumice that is mainly composed of volcanic glass and Kanoya soil in Minami Kyushu can be used in the same manner.

これらの火山ガラス原鉱は、低温含水量(室温から200℃までの脱水量)で0.3〜13%、高温含水量(200℃から800℃までの脱水量)で1.8〜6.0%という広い温度範囲にわたる異なった含水量を有している。低温含水量とは、熱重量分析において昇温速度10℃/分で室温から200℃までに蒸散する脱水量のことであり、高温含水量とは、同じく200℃から800℃までに蒸散する脱水量のことである。
従来のガラス質中空球の製造方法においては、発泡源としてほとんど寄与せず蒸発熱を奪うだけで発泡効率を低減させる低温含水量を減らすために、ロータリーキルンや乾燥器などであらかじめ乾燥処理を施して、発泡源として寄与する高温含水量をできるだけ減らさぬように注意しながら、高温含水量を適正範囲内に調整した上、昇温温度を制御して水分を消失しないように焼成する必要があった。
本発明方法においては、熱媒体を用いる流動床炉を用いた急速加熱方式であることと、あらかじめ、火山ガラス原料を、流動床炉から排出される高温の排ガスと混合し、両者の間で熱交換させることにより予熱する方式であるので、従来技術の予備乾燥における上記の手間と配慮を行う必要はなく、採掘した火砕流堆積物などの火山ガラス原鉱から粒径1mm以上の重鉱物を除去しただけで、そのまま流動床炉に供給し得るという利点がある。
These volcanic glass ores have a low water content (dehydrated from room temperature to 200 ° C) of 0.3 to 13%, and a high temperature water content (dehydrated from 200 ° C to 800 ° C) of 1.8 to 6. It has different moisture content over a wide temperature range of 0%. The low-temperature water content is a dehydration amount that evaporates from room temperature to 200 ° C. at a heating rate of 10 ° C./min in thermogravimetric analysis, and the high-temperature water content is a dehydration that also evaporates from 200 ° C. to 800 ° C. It is a quantity.
In the conventional method for producing glassy hollow spheres, in order to reduce the low-temperature water content, which reduces the foaming efficiency only by removing the heat of evaporation without contributing to the foaming source, a drying process is performed in advance using a rotary kiln or dryer. It was necessary to adjust the high-temperature water content within an appropriate range while keeping the high-temperature water content that contributes as a foaming source as low as possible, and to control the temperature rise so that the water was not lost. .
In the method of the present invention, it is a rapid heating method using a fluidized bed furnace using a heat medium, and a volcanic glass raw material is mixed with hot exhaust gas discharged from a fluidized bed furnace in advance, and heat is generated between the two. Since it is a preheating method by exchanging, it is not necessary to take the above-mentioned trouble and consideration in the preliminary drying of the prior art, and heavy minerals with a particle size of 1 mm or more were removed from the volcanic glass ore such as mined pyroclastic flow deposits. There is an advantage that it can be supplied to the fluidized bed furnace as it is.

上記の重鉱物の除去は、例えば原鉱を室温下で、気流分級することにより容易に行うことができる。このようにして除去される粒径1mm以上の重鉱物は原鉱の種類や産地により変動するが、通常原鉱の質量に基づき3〜10質量%程度である。   The removal of the heavy mineral can be easily performed, for example, by classifying the ore at a room temperature and air flow classification. The heavy mineral having a particle diameter of 1 mm or more removed in this manner varies depending on the type of the ore and the production area, but is usually about 3 to 10% by mass based on the mass of the ore.

次に、添付図面に従って本発明方法を詳細に説明する。
図1は、本発明方法を実施するための装置の1例を示す略解図である。火山ガラス原鉱は、投入口1より処理塔2に供給され、ここで室温下、下方から送風される空気流と対向的に接触し、石英や長石など比重が2.4より大きい粒径1mm以上の重鉱物のみ沈降して重鉱物受器3に捕集され、残りの部分は排気ブロワー7により吸引され、空気流に搬送されて原鉱分画帯に入る。この原鉱分画帯はサイクロンの入口と出口を逆に連結した逆サイクロン4と、大容量サイクロン5と、小容量サイクロン6とから構成され、逆サイクロン4により粗粒画分すなわち粒径515μm以上の画分が、また大容量サイクロン5により微粒画分すなわち粒径7μm以下の画分が除かれ、粒径7μm〜515μmの中粒画分のみが下部排出口よりスクリューフィーダ8により、原料供給管に送られる。原鉱微粒画分は小容量サイクロン6によって回収される。この原料供給管は、後出の内燃式媒体流動床炉22から排出された排ガスが送られる管路10とスクリューフィーダ8から送られる原鉱中粒画分を導入する管路9と、中空球分離用サイクロン26によりガラス質中空球と分離された排ガスと原鉱中粒画分との混合物を原料分画帯域へ供給する管路11から構成されている。
Next, the method of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention. The volcanic glass ore is supplied from the inlet 1 to the processing tower 2 where it comes into contact with the air flow blown from below at room temperature, and the specific gravity of quartz, feldspar, etc. is larger than 2.4. Only the above heavy minerals settle and are collected in the heavy mineral receiver 3, and the remaining portion is sucked by the exhaust blower 7, transported to the air flow, and enters the ore fraction zone. This ore fraction zone is composed of a reverse cyclone 4 in which the inlet and outlet of the cyclone are connected in reverse, a large-capacity cyclone 5 and a small-capacity cyclone 6, and the coarse cyclone fraction, that is, a particle size of 515 μm or more by the reverse cyclone 4 The large-volume cyclone 5 removes the fine particle fraction, that is, the fraction having a particle size of 7 μm or less, and only the medium particle fraction having a particle size of 7 μm to 515 μm is fed from the lower discharge port by the screw feeder 8 to the raw material supply pipe. Sent to. The ore fines fraction is collected by a small cyclone 6. This raw material supply pipe includes a pipe 10 through which exhaust gas discharged from an internal combustion medium fluidized bed furnace 22 which will be described later is sent, a pipe 9 through which the raw ore medium grain fraction sent from the screw feeder 8 is introduced, and a hollow sphere. The pipe 11 is composed of a mixture of the exhaust gas separated from the glassy hollow spheres by the separation cyclone 26 and the raw ore middle-grain fraction to the raw material fractionation zone.

この原料供給管を通過した原鉱中粒画分と排ガスと混合物は、次いで逆サイクロン12と大容量サイクロン14と両者の連結管13からなる原料分画帯域に送られ分級され、粒径7〜210μmの範囲の中粒画分のみが、スクリューフィーダ18及び管路19を介して流動床炉の下部へ、コンプレッサ20から供給される空気と燃料ガス導入口21から導入される燃料ガスとの混合ガスにより圧送される。この際、大容量サイクロン14で分級された細粒画分は、燃焼ガスと共に吸引され管路15を経て小容量サイクロン16により気流から分離回収され、燃焼ガスが排気ブロワー17から排出される。   The ore middle-grain fraction, exhaust gas, and mixture that have passed through this raw material supply pipe are then sent to a raw material fractionation zone comprising a reverse cyclone 12, a large-capacity cyclone 14, and a connecting pipe 13 of both, and are classified. Only the medium grain fraction in the range of 210 μm is mixed with the air supplied from the compressor 20 and the fuel gas introduced from the fuel gas inlet 21 to the lower part of the fluidized bed furnace via the screw feeder 18 and the pipe 19. Pumped by gas. At this time, the fine-grained fraction classified by the large-capacity cyclone 14 is sucked together with the combustion gas, separated and recovered from the airflow by the small-capacity cyclone 16 through the pipe line 15, and the combustion gas is discharged from the exhaust blower 17.

上記の内燃式媒体流動床炉22は、縦長円筒体24とその内部を上部の流動層形成部と下部の風箱部に区画する分散板25と上部の区画に装填された熱媒体から構成されている。縦長円筒体24は、ステンレス鋼のような耐食性、耐熱性材料で作られ、そのサイズは、目的とするガラス質中空球の生産量に応じ適宜選択される。工業的に実施する場合には、通常、内径50〜1000mm、高さ1〜10mの範囲内で選ばれるが、特に制限はない。   The internal combustion medium fluidized bed furnace 22 includes a vertically long cylindrical body 24, a dispersion plate 25 that divides the inside of the vertically long cylindrical body 24 into an upper fluidized bed forming part and a lower wind box part, and a heat medium loaded in the upper compartment. ing. The vertically long cylindrical body 24 is made of a corrosion-resistant and heat-resistant material such as stainless steel, and its size is appropriately selected according to the production amount of the target glassy hollow sphere. When implemented industrially, it is usually selected within a range of an inner diameter of 50 to 1000 mm and a height of 1 to 10 m, but there is no particular limitation.

分散板としては、耐食、耐熱性の金属、例えばステンレス鋼の厚さ2〜8mmの板に、直径1.5〜5mmの孔を開孔比2〜5%の割合で穿孔した多孔板が用いられている。熱媒体としては、直径2.0〜3.5mmの耐熱性セラミックボール例えばムライト製ボールが用いられるが、本発明方法においては、火山ガラス原鉱から除去された粒径1mm以上の重鉱物や粒径1.7mm以上のムライト破砕物を用いることにより、効率を向上させることができる。   As the dispersion plate, a perforated plate in which holes having a diameter of 1.5 to 5 mm are drilled in a ratio of 2 to 5% in a plate of corrosion resistant and heat resistant metal such as stainless steel having a thickness of 2 to 8 mm is used. It has been. As the heat medium, a heat-resistant ceramic ball having a diameter of 2.0 to 3.5 mm, for example, a mullite ball, is used. Efficiency can be improved by using crushed mullite having a diameter of 1.7 mm or more.

この流動床炉の温度は、上記のコンプレッサ20から圧送される燃料ガスと空気の混合物の供給量及び燃料ガスと空気との割合を調節することにより900〜1150℃の範囲内に制御することができる。内燃式媒体流動床炉22で生成したガラス質中空球は連結管23を通って中空球分離用サイクロン26に送られ回収される。   The temperature of the fluidized bed furnace can be controlled within the range of 900 to 1150 ° C. by adjusting the supply amount of the fuel gas and air mixture pumped from the compressor 20 and the ratio of the fuel gas and air. it can. The vitreous hollow spheres produced in the internal-combustion medium fluidized bed furnace 22 are sent to the cyclone 26 for separating hollow spheres through the connecting pipe 23 and collected.

また、本発明方法においては、流動床の静止層高を50〜300mm、空塔速度0.4〜2.0m/sの条件下で、かつ火山ガラス原鉱の供給量5〜40kg/hrで操作するのが好ましい。   In the method of the present invention, the static bed height of the fluidized bed is 50 to 300 mm, the superficial velocity is 0.4 to 2.0 m / s, and the volcanic glass ore supply rate is 5 to 40 kg / hr. It is preferable to operate.

本発明方法において、所望の高強度ガラス質中空球を得るには、粒径7〜210μmの中粒画分からなる供給原料と排ガスとの最初の接触点(図1のA点)における原料混合物の温度が、高すぎると発泡して殻壁の膜厚が薄く(1μm以下)耐圧強度の低い多泡中空球構造になる原因となるので、最初の接触点(A点)の原料混合物の温度を490〜790℃、好ましくは510〜780℃に、またサイクロンの導入口(図1のB点)における原料混合物の温度を100〜300℃、好ましくは110〜280℃にそれぞれ制御することが必要である。これらの温度範囲は、媒体流動床炉やそれに連結するサイクロン、管路、連結管の寸法やそれらの断熱被覆材などの装置設計上で限定することができ、細かな温度制御は、火山ガラス原鉱の供給速度及び流動床炉中の焼成温度すなわち流動床炉中に圧入される燃料ガスと空気の混合ガスの混合割合と供給量を増減することによって行うことができる。
上記の複数のサイクロンを組み合わせた原料の予熱工程において、順次、温度制御された高温気流中で熱交換され、原料粒子が均一に予熱されることが、所望の高強度ガラス質中空球を得るために非常に重要な要素となっている。
なお、上記のA点とB点の間における逆サイクロン導入口の温度は、通常305〜480℃に維持される。
In the method of the present invention, in order to obtain a desired high-strength vitreous hollow sphere, the raw material mixture at the first contact point (point A in FIG. 1) between the feedstock consisting of a medium particle fraction having a particle size of 7 to 210 μm and exhaust gas is used. If the temperature is too high, foaming will result in a thin shell wall thickness (less than 1 μm), resulting in a multi-bubble hollow sphere structure with low pressure strength, so the temperature of the raw material mixture at the first contact point (point A) It is necessary to control the temperature of the raw material mixture at 490 to 790 ° C., preferably 510 to 780 ° C., and the temperature of the raw material mixture at the cyclone inlet (point B in FIG. 1) to 100 to 300 ° C., preferably 110 to 280 ° C. is there. These temperature ranges can be limited in the design of equipment such as the medium fluidized bed furnace, the cyclone connected to it, the pipes, the dimensions of the connecting pipes and their insulation coating materials, etc. This can be achieved by increasing or decreasing the feed rate of the ore and the firing temperature in the fluidized bed furnace, that is, the mixing ratio and the supply amount of the mixed gas of fuel gas and air injected into the fluidized bed furnace.
In order to obtain a desired high-strength vitreous hollow sphere, the raw material particles are preheated in a high-temperature air flow controlled in temperature in order to preheat the raw material particles uniformly in the raw material preheating step in which a plurality of cyclones are combined. It has become a very important element.
In addition, the temperature of the reverse cyclone inlet between said A point and B point is normally maintained at 305-480 degreeC.

次に、この温度制御の内容をまとめて、表1として示す。   Next, the contents of this temperature control are summarized and shown in Table 1.

このようにして、粒径10〜300μmの単泡中空球構造を有し、真球度が0.80以上、8MPaで1分間の静水圧浮揚率50%以上に相当する耐圧強度をもつ新規なガラス質中空球が、火山ガラス原鉱の種類や供給量に基づき、30%以上の回収率で得ることができる。   Thus, it has a single-bubble hollow sphere structure with a particle size of 10 to 300 μm, and has a sphericity of 0.80 or more and a pressure strength equivalent to a hydrostatic levitation rate of 50% or more at 8 MPa for 1 minute. Glassy hollow spheres can be obtained with a recovery rate of 30% or more based on the type and supply of volcanic glass ore.

従来の粒径30〜300μmのガラス質中空球は、いずれも多泡構造で、真球度が0.80未満であり、8MPaで1分間の静水圧浮揚率は41%以下であることからみて、本発明方法により、このような高真球度、高強度のガラス質中空球が得られたことは、全く予想外のことであった。   The conventional glassy hollow spheres having a particle diameter of 30 to 300 μm are all multi-bubble structures, have a sphericity of less than 0.80, and a hydrostatic levitation rate of 1 MPa at 8 MPa is 41% or less. It was completely unexpected that the vitreous hollow sphere having such high sphericity and high strength was obtained by the method of the present invention.

また、従来のガラス質単泡中空球は、殻壁の膜厚は1μm以下であるのに対し、上記のガラス質中空球は平均1.4〜5.5μmという厚い殻壁を有している点でも両者の間に明らかに構造上の差異が認められる。更に、本発明によれば、5.5μm以上の膜厚のガラス質微細中空球を製造することも可能である。   The conventional glassy single-bubble hollow sphere has a shell wall thickness of 1 μm or less, whereas the glassy hollow sphere has a thick shell wall with an average of 1.4 to 5.5 μm. There is also a clear structural difference between the two. Furthermore, according to the present invention, it is also possible to produce glassy fine hollow spheres having a film thickness of 5.5 μm or more.

なお、本発明において耐圧強度を示すファクターとして用いている8MPaで1分間の静水圧浮揚率とは、VSI研究会発行「新時代を築く火山噴出物」のVSI研究会規格に記載されているシラスバルーンの耐圧強度を示すファクターであって、シラスバルーンの耐圧強度を表わす実用化されている規格として唯一のものである。以下の方法により測定されるものである。   In addition, the hydrostatic levitation rate at 8 MPa for 1 minute used as a factor indicating the pressure strength in the present invention is the shirasu described in the VSI workshop standard published by the VSI workshop “Volcanic ejecta that builds a new era”. It is a factor indicating the pressure resistance of the balloon, and is the only standard that is practically used to express the pressure resistance of the shirasu balloon. It is measured by the following method.

内径20.0±0.5mm、高さ70.0±0.5mm、透明プラスチックパイプの上下に、JIS Z 8801の呼び寸法32μm網ふるいを当接して形成された試料容器に、所定量の試料を装入し、これを試料容器の1.2倍以上の有効高さを有する水を満たした耐圧容器中に沈める。
次いで、耐圧容器を密閉し、1分間以上かけて、その内部圧力を8MPaまで昇圧し、そのまま1分間以上保持したのち、耐圧容器を開放し、試料容器を取り出す。次に試料容器の内容物すべてを浮沈分離器に移し、浮揚物と沈降物が完全に分離した後、浮揚物を、るつぼ形ガラスろ過器に流し入れ、吸引ろ過する。次いで、このるつぼ形ガラスろ過器を105±2℃で8時間以上乾燥する。この操作を2回繰り返す。それぞれについて次の式に従って、静水圧浮揚率H(質量%)を求め、2回の測定値を平均して8MPaで1分間の静水圧浮揚率とする。
H=[(m1−m0)/S]×100
ただし、m1は、ガラスろ過器及び水中浮揚試料の全質量(g)、m0は空のガラスろ過器の質量(g)、Sは試料の質量である。
A predetermined amount of sample is placed in a sample container formed by contacting a mesh sieve of JIS Z 8801 with a nominal size of 32 μm on the top and bottom of a transparent plastic pipe with an inner diameter of 20.0 ± 0.5 mm and a height of 70.0 ± 0.5 mm. Is submerged in a pressure vessel filled with water having an effective height of 1.2 times or more of the sample vessel.
Next, the pressure vessel is sealed, the internal pressure is increased to 8 MPa over 1 minute or more, and the pressure vessel is held for 1 minute or more. Then, the pressure vessel is opened and the sample vessel is taken out. Next, the entire contents of the sample container are transferred to a floatation / sink separator, and after the floated material and sediment are completely separated, the floated material is poured into a crucible glass filter and suction filtered. Next, the crucible glass filter is dried at 105 ± 2 ° C. for 8 hours or more. This operation is repeated twice. The hydrostatic levitation rate H (mass%) is obtained according to the following formula for each, and the measured values of the two times are averaged to obtain a hydrostatic levitation rate of 1 minute at 8 MPa.
H = [(m 1 −m 0 ) / S] × 100
However, m 1 is the total mass of the glass filter and the water flotation sample (g), m 0 is empty glass filter mass (g), S is the mass of the sample.

従来の市販の火山ガラス質中空球は、多泡構造をしており耐圧強度が8MPaで1分間の静水圧浮揚率換算で41%以下と低いため、軽量フィラー材料として使用する場合、その利用分野が制限されるのを免れなかったが、本発明のフィラー材料は、8MPaで1分間の静水圧浮揚率換算の耐圧強度が50%以上と高いため、その利用分野を拡大し得るという効果を奏する。   Conventional commercially available volcanic glassy hollow spheres have a multi-bubble structure and have a compressive strength of 8 MPa and a low hydrostatic pressure levitation rate of 41% or less in terms of hydrostatic pressure for 1 minute. However, the filler material of the present invention has an effect that the application field can be expanded because the pressure strength in terms of the hydrostatic levitation rate for 1 minute at 8 MPa is as high as 50% or more. .

次に、実施例により、本発明を実施するための最良の形態を説明する。
なお、各例においては、内燃式媒体流動床炉として、内径129mm、高さ1.8mのステンレス鋼製円筒容器内に、厚さ4.0mmのステンレス鋼板に直径1.7mmの孔を開孔比2.9%で設けた分散板を配置し、底部の風箱部に逆火防止用の直径26〜31mmの磁性ボールを装填したものを用いた。熱媒体には、火山ガラス原鉱より回収した粒径1mm以上の重鉱物または粒径1.7mm以上のムライト破砕物を用いた。
Next, the best mode for carrying out the present invention will be described by way of examples.
In each example, as an internal combustion medium fluidized bed furnace, a hole having a diameter of 1.7 mm is opened in a stainless steel plate having a thickness of 4.0 mm in a stainless steel cylindrical container having an inner diameter of 129 mm and a height of 1.8 m. A dispersion plate provided at a ratio of 2.9% was disposed, and a magnetic box having a diameter of 26 to 31 mm for preventing flashback was loaded on the bottom air box portion. As the heat medium, heavy minerals having a particle diameter of 1 mm or more collected from volcanic glass ore or crushed mullite having a particle diameter of 1.7 mm or more were used.

図1の装置を用い、火山ガラス原鉱としては、鹿児島県曽於郡大崎町に産出する入戸火砕流堆積物の大崎シラス(平均粒径290μm)を用いて行った。すなわち、投入口1より処理塔2に45.5kg/hで1時間供給し、粒径1mm以上の重鉱物を2.4kg回収した。残りの部分は空気流に搬送されて原鉱分画帯に入り、サイクロンの入口と出口を逆に接続した逆サイクロン4で29.6kg回収し、大容量サイクロン5で中粒画分12.7kg回収し、小容量サイクロン6で0.4kg回収した。残りの微粉は、排気ブロワー7の手前に接続したバグフィルターで回収した。   1 was used as the volcanic glass ore using Osaki Shirasu (average particle size of 290 μm) of the Ito pyroclastic flow deposit produced in Osaki-cho, Kago-gun, Kagoshima Prefecture. That is, it was supplied from the inlet 1 to the treatment tower 2 at 45.5 kg / h for 1 hour, and 2.4 kg of heavy mineral having a particle diameter of 1 mm or more was recovered. The remaining part is transported to the air stream and enters the ore fraction zone, and 29.6 kg is recovered by the reverse cyclone 4 with the cyclone inlet and outlet connected in reverse, and the medium fraction 12.7 kg by the large capacity cyclone 5 It was recovered and 0.4 kg was recovered with a small-capacity cyclone 6. The remaining fine powder was collected by a bag filter connected in front of the exhaust blower 7.

逆サイクロン4により粗粒画分すなわち粒径515μm以上の画分が、また大容量サイクロン5により微粒画分すなわち粒径8.5μm以下の画分が除かれる。粒径7μm〜515μmの中粒画分のみを下部排出口よりスクリューフィーダ8により12.7kg/hrで原料供給管に送った。この原料供給管は、後出の内燃式媒体流動床炉22から排出された排ガスが送られる管路10とスクリューフィーダ8から送られる原鉱中粒画分を導入する管路9と、中空球分離用サイクロン26によりガラス質中空球と分離された排ガスと原鉱中粒画分との混合物を原料分画帯域へ供給する管路11から構成されている。   The reverse cyclone 4 removes the coarse-grained fraction, that is, the fraction having a particle diameter of 515 μm or more, and the large-capacity cyclone 5 removes the fine-grained fraction, that is, the fraction having a particle diameter of 8.5 μm or less. Only the medium particle fraction having a particle size of 7 μm to 515 μm was sent from the lower discharge port to the raw material supply pipe at 12.7 kg / hr by the screw feeder 8. This raw material supply pipe includes a pipe 10 through which exhaust gas discharged from an internal combustion medium fluidized bed furnace 22 which will be described later is sent, a pipe 9 through which the raw ore medium grain fraction sent from the screw feeder 8 is introduced, and a hollow sphere. The pipe 11 is composed of a mixture of the exhaust gas separated from the glassy hollow spheres by the separation cyclone 26 and the raw ore middle-grain fraction to the raw material fractionation zone.

この原料供給管を通過した原鉱中粒画分と排ガス(中空球分離用サイクロン26から排出)との混合物は、気流温度524℃(図1のA点)に調整されたのち、逆サイクロン12(気流温度308℃)で粗粒画分が除去され、両者の連結管13からなる原料分画帯域に送られ、気流中で乾燥されながら分級され、粒径7〜210μmの範囲の中粒画分のみが、大容量サイクロン14(図1のB点の気流温度252℃)に平均粒径82.8μmの原料が回収されスクリューフィーダ18及び管路19を介して流動床炉の下部へ送られ、コンプレッサ20により供給される空気と燃料ガスとの混合ガスで圧送される。   The mixture of the ore medium grain fraction and the exhaust gas (discharged from the hollow sphere separation cyclone 26) that has passed through the raw material supply pipe is adjusted to an airflow temperature of 524 ° C. (point A in FIG. 1), and then the reverse cyclone 12 The coarse-grained fraction is removed at (airflow temperature 308 ° C.), sent to the raw material fractionation zone consisting of both connecting pipes 13, classified while being dried in the airflow, and the medium-grain fraction in the range of particle size 7 to 210 μm. Only a minute portion of the raw material having an average particle size of 82.8 μm is recovered in the large-capacity cyclone 14 (the air temperature at the point B in FIG. 1 is 252 ° C.) and sent to the lower part of the fluidized bed furnace through the screw feeder 18 and the pipe 19. Then, it is pumped by a mixed gas of air and fuel gas supplied by the compressor 20.

内燃式媒体流動床炉22は、耐熱ステンレス鋼製の縦長円筒体24(内径129mm、高さ1.8m)とその内部を上部の流動層形成部と下部の風箱部に区画する分散板25と上部の区画に装填された熱媒体から構成されている。   The internal combustion medium fluidized bed furnace 22 includes a heat-resistant stainless steel vertical cylinder 24 (inner diameter 129 mm, height 1.8 m) and a dispersion plate 25 that divides the inside into an upper fluidized bed forming portion and a lower windbox portion. And a heat medium loaded in the upper compartment.

分散板25としては、厚さ4mmのステンレス鋼板に、直径1.7mmの孔を開孔比2.9%の割合で穿孔した多孔板を用いた。熱媒体としては、大崎シラス原鉱から上記処理塔2で分離除去された粒径1mm以上の重鉱物のうち2.2kgを用いた。   As the dispersion plate 25, a perforated plate in which holes having a diameter of 1.7 mm were formed in a stainless steel plate having a thickness of 4 mm at a rate of 2.9% was used. As the heat medium, 2.2 kg of heavy mineral having a particle diameter of 1 mm or more separated and removed from the Osaki Shirasu ore by the treatment tower 2 was used.

この流動床炉の温度は、上記のコンプレッサ20から圧送される燃料ガスと空気の混合物の供給量及び燃料ガスと空気との割合を調節することにより1050℃±5℃で温度制御した。流動床の静止層高を122mm、空塔速度1.1m/sの条件下で、スクリューフィーダ18のシラス原料供給量8.9kg/hrで操作した。   The temperature of the fluidized bed furnace was controlled at 1050 ° C. ± 5 ° C. by adjusting the supply amount of the fuel gas / air mixture pumped from the compressor 20 and the ratio of the fuel gas / air. The fluidized bed was operated at a static bed height of 122 mm and a superficial velocity of 1.1 m / s with a shirasu raw material supply rate of 8.9 kg / hr in the screw feeder 18.

シラス原料は、内燃式媒体流動床炉22を経て発泡しガラス質中空球となり、排気ガスに搬送されて中空球分離用サイクロン26で排気ガスと分離した。回収したガラス質中空球を浮水分離して得られた高強度ガラス質中空球の収率は45.7%であり、平均粒径112.5μm、ゆるみ見掛比重0.56、静水圧浮揚率は75.0%であった。ゆるみ見掛比重は、ホソカワミクロン製パウダーテスタPT−E型を用いて、専用の金属製カップ(内容積100ml)に専用の振動ふるいを通して20〜30秒で試験粉体を堆積させて、比重を測定した。   The shirasu raw material was foamed through an internal-combustion medium fluidized bed furnace 22 to become glassy hollow spheres, conveyed to the exhaust gas, and separated from the exhaust gas by the cyclone 26 for separating the hollow spheres. The yield of the high-strength glassy hollow spheres obtained by separating the collected glassy hollow spheres with water is 45.7%, the average particle size is 112.5 μm, the loose apparent specific gravity is 0.56, and the hydrostatic pressure levitation rate. Was 75.0%. Loose apparent specific gravity is measured by depositing test powder in a dedicated metal cup (internal volume 100 ml) through a dedicated vibrating screen in 20-30 seconds using a Hosokawa Micron powder tester PT-E type. did.

高強度ガラス質中空球の電子顕微鏡写真(日本電子製JSM−840使用、加速電圧15kV、二次電子像)を図2に示す。その真球度は0.87であった。真球度は、電子顕微鏡倍率150倍の写真を撮影し、最大径MDと、これに直行する径BDの比(BD/MD)で表され、真球度が1に近いほど真球に近くなる。本実施例では測定数20個の平均値を真球度の数値とした。   An electron micrograph (using JSM-840 manufactured by JEOL Ltd., acceleration voltage 15 kV, secondary electron image) of the high-strength glassy hollow sphere is shown in FIG. Its sphericity was 0.87. The sphericity is taken as a ratio of the maximum diameter MD and the diameter BD (BD / MD) perpendicular to this by taking a photograph with an electron microscope magnification of 150 times. The closer the sphericity is to 1, the closer to the sphere. Become. In this example, the average value of 20 measurements was taken as the value of sphericity.

高強度ガラス質中空球の代表的な粒子断面の電子顕微鏡写真を図3に示す。殻壁の膜厚は5.5μmであった。殻壁の膜厚は、ガラス質中空球を冷間埋込エポキシ系樹脂に分散して24時間室温で硬化させ、320番の耐水研磨紙で粗研磨後、2400番の耐水研磨紙で精密研磨して、乾燥後、金蒸着したものを電子顕微鏡で観察し、ガラス質中空球の粒子断面における殻壁の4点を計測し、その平均値を算出した。   An electron micrograph of a typical particle cross section of a high-strength glassy hollow sphere is shown in FIG. The shell wall thickness was 5.5 μm. The film thickness of the shell wall was determined by dispersing glassy hollow spheres in cold-embedded epoxy resin, curing at room temperature for 24 hours, rough polishing with No. 320 water-resistant abrasive paper, and precision polishing with No. 2400 water-resistant abrasive paper. After drying, the gold-deposited material was observed with an electron microscope, and four points on the shell wall in the particle cross section of the glassy hollow sphere were measured, and the average value was calculated.

火山ガラス原鉱には、鹿児島県曽於郡大崎町に産出する入戸火砕流堆積物の大崎シラスを、衝突板式JET気流粉砕分級装置(日本ニューマチック工業製IDS−2型)を用い、平均粒径26.7μmに粉砕したものを用い、実施例1と同様にして製造した。ただし、図1のスクリューフィーダ18のシラス原料供給量を9.0kg/hrに変え、内燃式媒体流動床炉22により1050℃±5℃で温度制御した。この際の図1のA点の温度は508℃で、B点の温度は246℃であった。
図1の中空球分離用サイクロン26で回収したガラス質中空球を浮水分離して得られた単泡中空球構造を有する高強度ガラス質中空球の収率は37.0%であり、平均粒径は76.2μm、ゆるみ見掛比重0.61、8MPaで1分間の静水圧浮揚率は55.0%であった。
高強度ガラス質中空球の真球度は0.80であり、このものの粒子断面の殻壁の膜厚は2.2μmであった。
For the volcanic glass ore, the average particle size of the Oshira Shirasu of the Ito pyroclastic flow deposit produced in Osaki-cho, Kagoshima Prefecture, using a collision plate type JET airflow crushing and classifying device (IDS-2 type manufactured by Nippon Pneumatic Industry) A product pulverized to 26.7 μm was used in the same manner as in Example 1. However, the supply amount of the shirasu raw material of the screw feeder 18 in FIG. 1 was changed to 9.0 kg / hr, and the temperature was controlled at 1050 ° C. ± 5 ° C. by the internal combustion medium fluidized bed furnace 22. At this time, the temperature at point A in FIG. 1 was 508 ° C., and the temperature at point B was 246 ° C.
The yield of high-strength vitreous hollow spheres having a single-bubble hollow sphere structure obtained by floating water separation of the vitreous hollow spheres collected by the cyclone 26 for separating hollow spheres in FIG. 1 is 37.0%. The diameter was 76.2 μm, the loose apparent specific gravity was 0.61, and the hydrostatic levitation rate for 1 minute was 55.0% at 8 MPa.
The sphericity of the high-strength glassy hollow sphere was 0.80, and the film thickness of the shell wall of the particle cross section was 2.2 μm.

火山ガラス原鉱として、兵庫県産の真珠岩を粉砕した真珠岩微粉(平均粒径18.1μm)を用い、実施例1と同様にして製造した。ただし、図1のスクリューフィーダ18のシラス原料供給量を5.4kg/hrに変え、内燃式媒体流動床炉22により1130℃±5℃で温度制御した。熱媒体としては、伊藤忠セラテック製の粒径1.7〜2.8mmのムライト破砕物3.2kgを用いた。この際の図1のA点の温度は614℃で、B点の温度は287℃であった。
図1の中空球分離用サイクロン26で回収したガラス質中空球を浮水分離して得られた単泡中空球構造を有する高強度ガラス質中空球の収率は77.4%であり、平均粒径は73.0μm、ゆるみ見掛比重0.39、8MPaで1分間の静水圧浮揚率は60.0%であった。
高強度ガラス質中空球の電子顕微鏡写真を図4に示す。その真球度は0.89であった。
高強度ガラス質中空球の代表的な粒子断面の殻壁の膜厚は1.4μmであった。
A pearlite fine powder (average particle size 18.1 μm) obtained by crushing pearlite from Hyogo Prefecture was used as the volcanic glass ore in the same manner as in Example 1. However, the supply amount of the shirasu raw material of the screw feeder 18 in FIG. 1 was changed to 5.4 kg / hr, and the temperature was controlled at 1130 ° C. ± 5 ° C. by the internal combustion medium fluidized bed furnace 22. As the heat medium, 3.2 kg of mullite crushed material having a particle size of 1.7 to 2.8 mm manufactured by ITOCHU CERATECH was used. The temperature at point A in FIG. 1 at this time was 614 ° C., and the temperature at point B was 287 ° C.
The yield of high-strength vitreous hollow spheres having a single-bubble hollow sphere structure obtained by floating water separation of vitreous hollow spheres collected by cyclone 26 for separating hollow spheres in FIG. The diameter was 73.0 μm, the loose apparent specific gravity was 0.39, and the hydrostatic levitation rate for 1 minute was 60.0% at 8 MPa.
An electron micrograph of the high-strength glassy hollow sphere is shown in FIG. Its sphericity was 0.89.
The film thickness of the shell wall of a typical particle cross section of the high-strength glassy hollow sphere was 1.4 μm.

火山ガラス原鉱として、中華人民共和国産の真珠岩を粉砕した真珠岩微粉(平均粒径25.3μm)を用い、実施例1と同様にして製造した。ただし、図1のスクリューフィーダ18のシラス原料供給量を8.3kg/hrに変え、内燃式媒体流動床炉22により1130℃±5℃で温度制御した。熱媒体としては、伊藤忠セラテック製の粒径1.7〜2.8mmのムライト破砕物3.2kgを用いた。この際の図1のA点の温度は621℃で、B点の温度は299℃であった。
図1の中空球分離用サイクロン26で回収したガラス質中空球を浮水分離して得られた単泡中空球構造を有する高強度ガラス質中空球の収率は66.4%であり、平均粒径は70.2μm、ゆるみ見掛比重0.45、8MPaで1分間の静水圧浮揚率は63.5%であった。
高強度ガラス質中空球の電子顕微鏡写真を図5に示す。その真球度は0.87であった。
高強度ガラス質中空球の代表的な粒子断面の殻壁の膜厚は1.7μmであった。
A pearlite fine powder (average particle size 25.3 μm) obtained by pulverizing pearlite from the People's Republic of China was used as the volcanic glass ore in the same manner as in Example 1. However, the supply amount of the shirasu material of the screw feeder 18 in FIG. 1 was changed to 8.3 kg / hr, and the temperature was controlled at 1130 ° C. ± 5 ° C. by the internal-combustion medium fluidized bed furnace 22. As the heat medium, 3.2 kg of mullite crushed material having a particle size of 1.7 to 2.8 mm manufactured by ITOCHU CERATECH was used. At this time, the temperature at point A in FIG. 1 was 621 ° C., and the temperature at point B was 299 ° C.
The yield of high-strength vitreous hollow spheres having a single-bubble hollow sphere structure obtained by floating separation of vitreous hollow spheres collected by cyclone 26 for separating hollow spheres in FIG. The diameter was 70.2 μm, the loose apparent specific gravity was 0.45, and the hydrostatic pressure levitation rate for 1 minute was 63.5% at 8 MPa.
An electron micrograph of the high-strength glassy hollow sphere is shown in FIG. Its sphericity was 0.87.
The film thickness of the shell wall of the typical particle cross section of the high-strength glassy hollow sphere was 1.7 μm.

比較例
比較のために、市販されているシラスバルーンの静水圧浮揚率、真球度及び形状を表2に示す。
Comparative Example For comparison, Table 2 shows the hydrostatic levitation rate, sphericity, and shape of a commercially available shirasu balloon.

このように、市販されているシラスバルーンは、形状が不均一であり、ほとんどが多泡状である上、いずれも静水圧浮揚率は41%以下で殻壁の膜厚は総じて1μm以下と非常に薄く、真球度は0.80未満である。   Thus, the commercially available shirasu balloons are non-uniform in shape, mostly foamy, and all have a hydrostatic levitation rate of 41% or less and a shell wall thickness of 1 μm or less as a whole. The sphericity is less than 0.80.

本発明は、軽量フィラー材料として好適なガラス質微細中空球の製造方法として有用である。   The present invention is useful as a method for producing a vitreous fine hollow sphere suitable as a lightweight filler material.

本発明方法を実施するための装置の1例を示す略解図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic solution which shows one example of the apparatus for implementing this invention method. 実施例1で得られた高強度ガラス質中空球の電子顕微鏡表面写真図。The electron microscope surface photograph figure of the high intensity | strength glassy hollow sphere obtained in Example 1. FIG. 実施例1で得られた高強度ガラス質中空球の電子顕微鏡断面写真図。The electron microscope cross-sectional photograph figure of the high intensity | strength glassy hollow sphere obtained in Example 1. FIG. 実施例3で得られた高強度ガラス質中空球の電子顕微鏡表面写真図。The electron microscope surface photograph figure of the high intensity | strength glassy hollow sphere obtained in Example 3. FIG. 実施例4で得られた高強度ガラス質中空球の電子顕微鏡表面写真図。The electron microscope surface photograph figure of the high intensity | strength glassy hollow sphere obtained in Example 4. FIG.

符号の説明Explanation of symbols

1 投入口
2 処理塔
3 重鉱物受器
4、12 逆サイクロン
5、14 大容量サイクロン
6、16 小容量サイクロン
7、17 排気ブロワー
8、18 スクリューフィーダ
9、10、11、15、19 管路
13、23 連結管
20 コンプレッサ
21 燃料ガス導入口
22 内燃式媒体流動床炉
24 縦長円筒体
25 分散板
26 中空球分離用サイクロン
DESCRIPTION OF SYMBOLS 1 Input port 2 Processing tower 3 Heavy mineral receiver 4, 12 Reverse cyclone 5, 14 Large capacity cyclone 6, 16 Small capacity cyclone 7, 17 Exhaust blower 8, 18 Screw feeder 9, 10, 11, 15, 19 Pipe 13 , 23 Connecting pipe 20 Compressor 21 Fuel gas inlet 22 Internal combustion medium fluidized bed furnace 24 Long cylindrical body 25 Dispersion plate 26 Cyclone for separating hollow spheres

Claims (8)

粒径10〜300μmの8MPaで1分間の静水圧浮揚率50%以上に相当する耐圧強度を有することを特徴とする高強度ガラス質中空球からなる軽量フィラー材料。   A lightweight filler material comprising a high-strength glassy hollow sphere having a pressure strength equivalent to a hydrostatic levitation rate of 50% or more at 8 MPa with a particle size of 10 to 300 μm for 1 minute. 真球度0.80以上を有する請求項2記載の高強度ガラス質中空球からなる軽量フィラー材料。   A lightweight filler material comprising the high-strength vitreous hollow sphere according to claim 2 having a sphericity of 0.80 or more. 単泡中空構造を有する請求項1又は2記載の高強度ガラス質中空球からなる軽量フィラー材料。   A lightweight filler material comprising a high-strength vitreous hollow sphere according to claim 1 or 2 having a single-bubble hollow structure. 火山ガラス原鉱より重鉱物を除去したのち、全体を微粒画分、中粒画分及び粗粒画分の3種に粗分級し、その中粒画分を原料として用いて内燃式媒体流動床炉に供給し、ガラス質中空球を製造する方法において、上記供給原料を上記流動床炉から排出される排ガスと混合し、両者の間で熱交換させることにより予熱すること、予熱した原料をさらにサイクロンを通して、粗粒部分及び微粒部分を除き、粒径7〜210μmの中粒部分のみを内燃式媒体流動床炉に送り、焼成発泡すること及び上記供給原料と排ガスとの最初の接触点における原料混合物の温度を490〜790℃に、サイクロンの導入口における原料混合物の温度を100〜300℃に制御することを特徴とするガラス質中空球からなる軽量フィラー材料の製造方法。   After removing the heavy minerals from the volcanic glass ore, the whole is roughly classified into three types: a fine-grained fraction, a medium-grained fraction, and a coarse-grained fraction. In the method for producing a glassy hollow sphere by supplying to the furnace, the feedstock is mixed with the exhaust gas discharged from the fluidized bed furnace and preheated by heat exchange between them, Through the cyclone, excluding the coarse and fine parts, only the medium part of the particle size of 7 to 210 μm is sent to the internal combustion medium fluidized bed furnace, fired and foamed, and the raw material at the first contact point between the above feed and exhaust gas A method for producing a lightweight filler material comprising glassy hollow spheres, wherein the temperature of the mixture is controlled to 490 to 790 ° C, and the temperature of the raw material mixture at the cyclone inlet is controlled to 100 to 300 ° C. 粒径10〜300μmの8MPaで1分間の静水圧浮揚率50%以上に相当する耐圧強度を有することを特徴とする請求項4記載の高強度ガラス質中空球からなる軽量フィラー材料の製造方法。   5. The method for producing a lightweight filler material comprising a high-strength vitreous hollow sphere according to claim 4, which has a compressive strength corresponding to a hydrostatic levitation rate of 50% or more at 8 MPa with a particle size of 10 to 300 [mu] m for 1 minute. 真球度0.80以上を有する請求項4又は5記載の高強度ガラス質中空球からなる軽量フィラー材料の製造方法。   The method for producing a lightweight filler material comprising a high-strength vitreous hollow sphere according to claim 4 or 5, having a sphericity of 0.80 or more. 単泡中空構造を有する請求項4ないし6のいずれかに記載の高強度ガラス質中空球からなる軽量フィラー材料の製造方法。   A method for producing a lightweight filler material comprising a high-strength vitreous hollow sphere according to any one of claims 4 to 6, which has a single-bubble hollow structure. 内燃式媒体流動床における熱媒体として、火山ガラス原鉱より除去された粒径1mm以上の重鉱物を用いる請求項4ないし7のいずれかに記載の軽量フィラー材料の製造方法。   The manufacturing method of the lightweight filler material in any one of Claim 4 thru | or 7 which uses the heavy mineral with a particle size of 1 mm or more removed from the volcanic glass ore as a heat medium in an internal combustion medium fluidized bed.
JP2008134732A 2008-05-22 2008-05-22 High-strength glassy lightweight filler material Expired - Fee Related JP5077848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134732A JP5077848B2 (en) 2008-05-22 2008-05-22 High-strength glassy lightweight filler material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134732A JP5077848B2 (en) 2008-05-22 2008-05-22 High-strength glassy lightweight filler material

Publications (2)

Publication Number Publication Date
JP2009280446A true JP2009280446A (en) 2009-12-03
JP5077848B2 JP5077848B2 (en) 2012-11-21

Family

ID=41451327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134732A Expired - Fee Related JP5077848B2 (en) 2008-05-22 2008-05-22 High-strength glassy lightweight filler material

Country Status (1)

Country Link
JP (1) JP5077848B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064933A (en) * 2008-09-12 2010-03-25 Principle:Kk Method of producing high strength glassy hollow sphere
JP2011126762A (en) * 2009-12-21 2011-06-30 Taiheiyo Materials Corp Methods for producing perlite and inorganic foamed material, and fluidized bed firing furnace
JP2015067488A (en) * 2013-09-30 2015-04-13 大建工業株式会社 Calcium silicate board and method for producing the same
RU2556758C1 (en) * 2013-12-30 2015-07-20 Общество С Ограниченной Ответственностью "Научно-Производственное Объединение "Диатомит" Line for furnace charge preparation and for manufacture of granulate for manufacture of foamglass and foam glass-ceramics
RU2556747C1 (en) * 2013-12-30 2015-07-20 Общество С Ограниченной Ответственностью "Научно-Производственное Объединение "Диатомит" Method for preparation of charge and manufacture of granulate for production of foam glass and foam glass ceramics
RU2610615C1 (en) * 2015-12-31 2017-02-14 Общество с ограниченной ответственностью "Сферастек" Furnace for foaming granules
JP2019064119A (en) * 2017-09-29 2019-04-25 株式会社カワタ Feeding device and measuring and mixing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05221687A (en) * 1992-02-05 1993-08-31 Hattori Kk Fine spherular inorganic foam having thick skin shell and its production
JP2006193373A (en) * 2005-01-13 2006-07-27 Tokai Kogyo Kk Fine glass bubble and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05221687A (en) * 1992-02-05 1993-08-31 Hattori Kk Fine spherular inorganic foam having thick skin shell and its production
JP2006193373A (en) * 2005-01-13 2006-07-27 Tokai Kogyo Kk Fine glass bubble and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064933A (en) * 2008-09-12 2010-03-25 Principle:Kk Method of producing high strength glassy hollow sphere
JP2011126762A (en) * 2009-12-21 2011-06-30 Taiheiyo Materials Corp Methods for producing perlite and inorganic foamed material, and fluidized bed firing furnace
JP2015067488A (en) * 2013-09-30 2015-04-13 大建工業株式会社 Calcium silicate board and method for producing the same
RU2556758C1 (en) * 2013-12-30 2015-07-20 Общество С Ограниченной Ответственностью "Научно-Производственное Объединение "Диатомит" Line for furnace charge preparation and for manufacture of granulate for manufacture of foamglass and foam glass-ceramics
RU2556747C1 (en) * 2013-12-30 2015-07-20 Общество С Ограниченной Ответственностью "Научно-Производственное Объединение "Диатомит" Method for preparation of charge and manufacture of granulate for production of foam glass and foam glass ceramics
RU2610615C1 (en) * 2015-12-31 2017-02-14 Общество с ограниченной ответственностью "Сферастек" Furnace for foaming granules
JP2019064119A (en) * 2017-09-29 2019-04-25 株式会社カワタ Feeding device and measuring and mixing device
JP6994233B2 (en) 2017-09-29 2022-01-14 株式会社カワタ Feeder and metering mixer

Also Published As

Publication number Publication date
JP5077848B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5077848B2 (en) High-strength glassy lightweight filler material
JP5576510B2 (en) Method for refining stainless steel slag and steel slag for metal recovery
CN101705076B (en) Method for producing green silicon carbide FEPA F P
JP6458267B2 (en) Volcanic ejecta deposit mineral dry separation method, volcanic ejecta deposit mineral dry separation apparatus, fine aggregate and volcanic glass material manufacturing method
JP7362144B2 (en) Recycled aluminum silicate material and particulate mixture containing recycled aluminum silicate material
CN102083540A (en) Upgraded combustion ash and its method of production
CN113019648B (en) High-efficient preparation system of abandonment concrete regeneration sand powder
JP3876296B2 (en) Method for continuously producing hollow glass spheres
CN105924140A (en) Method for preparing high-pressure-resistance alumina grinding medium through roll forming
CN104550026B (en) Method for sorting limestone chips by utilizing fluidized bed
JP5076197B2 (en) Method for producing high-strength glassy hollow sphere
KR20210092746A (en) Ceramic Particulate Mixture Containing Coal-Fired Fly Ash
JP5145498B2 (en) Manufacturing method of high strength, high sphericity shirasu balloon
JP2010018507A (en) Method for producing high-strength vitreous balloon
CN106966697A (en) Method based on high sulfur coal gangue slime separation brickmaking
JP5070505B2 (en) Manufacturing method of high sphericity shirasu balloon and high sphericity shirasu balloon obtained thereby
JP5035563B2 (en) Manufacturing method of high strength, high sphericity glassy fine hollow sphere
JP2023088941A (en) Method and apparatus for producing volcanic glass fine powders
JP2019006610A (en) Volcanic ejecta compound, method of producing the same, concrete composition, and cured product
JPH07315869A (en) Production of hollow glass microsphere
JP6912696B2 (en) Hydraulic lime and its manufacturing method
EP2507187B1 (en) Method for upgrading combustion ash
RU2212276C2 (en) Method of separation of cenospheres of fly ashes of thermal power stations
CN112469677A (en) Hollow spherical glass particles
CN111153408A (en) Method for recovering metallic silicon in silicon slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5077848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees