JP2009279525A - Electrodialyser and method for operating the same - Google Patents

Electrodialyser and method for operating the same Download PDF

Info

Publication number
JP2009279525A
JP2009279525A JP2008134660A JP2008134660A JP2009279525A JP 2009279525 A JP2009279525 A JP 2009279525A JP 2008134660 A JP2008134660 A JP 2008134660A JP 2008134660 A JP2008134660 A JP 2008134660A JP 2009279525 A JP2009279525 A JP 2009279525A
Authority
JP
Japan
Prior art keywords
chamber
water
fluorine
tank
electrodialysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008134660A
Other languages
Japanese (ja)
Inventor
Makoto Kashiwagi
誠 柏木
Shoji Akahori
晶二 赤堀
Sota Nakagawa
創太 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2008134660A priority Critical patent/JP2009279525A/en
Publication of JP2009279525A publication Critical patent/JP2009279525A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrodialyser and a method for operating the same using no expensive electrode and capable of preventing the corrosion of an electrode throughout the duration of actual servicing. <P>SOLUTION: The electrodialysis tank is partitioned off into a plurality of chambers arranged between electrodes with ion exchange membranes in between, and the chambers are supplied with each prescribed liquid in order to electrodialyze raw water. At least one chamber is washed with a liquid supplied as cleaning water and having a lower concentration of the raw water component than those of the liquids for the electrodialysis of the raw water. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えばフッ素を含む排水(フッ素含有排水)を処理する電気透析装置及びその運用方法に関する。   The present invention relates to an electrodialysis apparatus that treats, for example, wastewater containing fluorine (fluorine-containing wastewater) and an operation method thereof.

電気透析装置は、液体中の有価物の回収または脱イオン・脱塩等に広く用いられている。   Electrodialyzers are widely used for recovering valuable materials in liquids or for deionization / desalination.

近年の資源に関わる問題として、フッ素の原料である良質の蛍石が中国などへ偏在していることから、フッ素の価格が高騰していることが挙げられる。フッ素を取り扱う業界、例えば半導体製造業や電子部品製造業においては、フッ酸(HF)、バッファードフッ酸(NHF+HF)またはPFCsガスの取扱量が多いことから、フッ素含有排水が大量に排出されている。フッ素濃度が10〜1000mg/L程度の希薄な排水については電気透析などの分離濃縮技術による濃厚液としてフッ素を回収する技術、および回収した濃厚液中のフッ素の再資源化を図る技術が求められている。 A problem related to resources in recent years is that the price of fluorine is rising because high-quality fluorite, which is a raw material for fluorine, is unevenly distributed in China and other countries. In the fluorine handling industry, such as the semiconductor manufacturing industry and the electronic component manufacturing industry, a large amount of fluorine-containing wastewater is discharged due to the large amount of hydrofluoric acid (HF), buffered hydrofluoric acid (NH 4 F + HF) or PFCs gas handled. Has been. For dilute wastewater with a fluorine concentration of about 10 to 1000 mg / L, technology to recover fluorine as a concentrated solution by separation and concentration technology such as electrodialysis, and technology to recycle fluorine in the collected concentrated solution is required. ing.

図1は、フッ素濃度が希薄なフッ素含有排水を原水とし、これを電気透析して、フッ素を濃縮したフッ素濃縮水と、フッ素濃度を低減した処理水を得るようにした電気透析装置の電気透析槽の例を模式的に示し、図2は、図1に示す電気透析槽を備えた電気透析装置の全体構成の例を模式的に示す。   FIG. 1 shows electrodialysis of an electrodialysis apparatus in which fluorine-containing wastewater having a low fluorine concentration is used as raw water and electrodialyzed to obtain fluorine-concentrated water in which fluorine is concentrated and treated water in which fluorine concentration is reduced. An example of the tank is schematically shown, and FIG. 2 schematically shows an example of the entire configuration of the electrodialysis apparatus including the electrodialysis tank shown in FIG.

図1に示すように、電気透析槽10の両側には、陽極12と陰極14が配置され、陽極12と陰極14との間には、陽極12側から順に、陽極室16a、バッファ室16b、フッ素濃縮室16c、脱塩室16d、フッ素濃縮室16e、脱塩室16f、フッ素濃縮室16g及び陰極室16hがイオン交換膜18a〜18gで区画されて配列されている。これらのイオン交換膜18a〜18gのうち、陽極室16aとバッファ室16bとの間に配置されるイオン交換膜18a、バッファ室16bとフッ素濃縮室16cとの間に配置されるイオン交換膜18b、脱塩室16dとフッ素濃縮室16eとの間に配置されるイオン交換膜18d、及び脱塩室16fとフッ素濃縮室16gとの間に配置されるイオン交換膜18fはカチオン交換膜で、他のイオン交換膜18c,18e,18gはアニオン交換膜である。   As shown in FIG. 1, an anode 12 and a cathode 14 are disposed on both sides of the electrodialysis tank 10, and an anode chamber 16a, a buffer chamber 16b, The fluorine concentration chamber 16c, the desalting chamber 16d, the fluorine concentration chamber 16e, the desalting chamber 16f, the fluorine concentration chamber 16g, and the cathode chamber 16h are partitioned and arranged by ion exchange membranes 18a to 18g. Among these ion exchange membranes 18a to 18g, an ion exchange membrane 18a disposed between the anode chamber 16a and the buffer chamber 16b, an ion exchange membrane 18b disposed between the buffer chamber 16b and the fluorine concentration chamber 16c, The ion exchange membrane 18d disposed between the desalting chamber 16d and the fluorine concentrating chamber 16e and the ion exchange membrane 18f disposed between the desalting chamber 16f and the fluorine concentrating chamber 16g are cation exchange membranes. The ion exchange membranes 18c, 18e, and 18g are anion exchange membranes.

そして、陽極12と陰極14との間に所定の電圧を印加しながら、脱塩室16d,16fにフッ素含有排水(原水)を供給し、同時に、図2に示すように、陽極水槽20から陽極室16aに陽極水を、陰極水槽(図示せず)から陰極室16hに陰極水を、バッファ水槽22からバッファ室16bにバッファ水を、更にフッ素濃縮水槽24からフッ素濃縮室16c,16e,16gにフッ素濃縮水をそれぞれ通水して循環させる。   Then, while applying a predetermined voltage between the anode 12 and the cathode 14, fluorine-containing waste water (raw water) is supplied to the desalting chambers 16d and 16f, and at the same time, as shown in FIG. Anode water in the chamber 16a, cathode water from the cathode water tank (not shown) to the cathode chamber 16h, buffer water from the buffer water tank 22 to the buffer chamber 16b, and further from the fluorine concentrated water tank 24 to the fluorine concentrated chambers 16c, 16e, 16g. Fluorine-concentrated water is circulated through each water.

これにより、脱塩室16d,16fに供給されるフッ素含有排水(原水)中のフッ素をフッ素イオンFとして分離し、この分離されたフッ素イオンFをフッ素濃縮室16c,16eに通水されて循環するフッ素濃縮水側へ移動させて、原水からフッ素を除き、同時に、フッ素濃縮水のフッ素濃度を高める。これによって、フッ素が濃縮されたフッ素濃縮水とフッ素濃度を低減させた処理水を得ることができる。 As a result, fluorine in the fluorine-containing waste water (raw water) supplied to the desalting chambers 16d and 16f is separated as fluorine ions F , and the separated fluorine ions F are passed through the fluorine concentration chambers 16c and 16e. The fluorine concentration is removed from the raw water, and at the same time the fluorine concentration of the fluorine concentration water is increased. As a result, fluorine-concentrated water in which fluorine is concentrated and treated water in which the fluorine concentration is reduced can be obtained.

なお、図3に示すように、図1に示す電気透析槽10からバッファ室16b及びバッファ室16bとフッ素濃縮室16cとの間に配置されるイオン交換膜18bを省略して電気透析槽10aを構成してもよい。   In addition, as shown in FIG. 3, the electrodialysis tank 10a is omitted by omitting the buffer chamber 16b and the ion exchange membrane 18b disposed between the buffer chamber 16b and the fluorine concentration chamber 16c from the electrodialysis tank 10 shown in FIG. It may be configured.

図4は、電気透析槽の別の一例を模式的に示し、図5は、図4に示す電気透析槽を備えた電気透析装置の構成の例を示す。原水中に、スケール生成の原因となるCa2+、Mg2+や、再資源化を阻害するNH が含まれる場合の例であり、これらの物質とフッ素を別々に濃縮する構成である。 FIG. 4 schematically shows another example of the electrodialysis tank, and FIG. 5 shows an example of the configuration of the electrodialysis apparatus including the electrodialysis tank shown in FIG. This is an example in which raw water contains Ca 2+ , Mg 2+ that cause scale generation, and NH 4 + that inhibits recycling, and is a configuration in which these substances and fluorine are separately concentrated.

図4に示すように、電気透析槽10bの両側には、陽極12と陰極14が配置され、陽極12と陰極14との間には、陽極12側から順に、陽極室26a、バッファ室26b、フッ素濃縮室26c、脱塩室26d、アルカリ濃縮室26e、酸供給室26f、複極室26g、バッファ室26h、フッ素濃縮室26i、脱塩室26j、アルカリ濃縮室26k、酸供給室26l及び陰極室26mがイオン交換膜28a〜28lで区画されて配列されている。このイオン交換膜28a〜28lのうち、陽極室26aとバッファ室26bとの間に配置されるイオン交換膜28a、バッファ室26bとフッ素濃縮室26cとの間に配置されるイオン交換膜28b、脱塩室26dとアルカリ濃縮室26eとの間に配置されるイオン交換膜28d、複極室26gとバッファ室26hとの間に配置されるイオン交換膜28g、バッファ室26hとフッ素濃縮室26iとの間に配置されるイオン交換膜28h、及び脱塩室26jとアルカリ濃縮室26kとの間に配置されるイオン交換膜28jはカチオン交換膜で、他のイオン交換膜28c,28e,28f、28i、28k,28lはアニオン交換膜である。   As shown in FIG. 4, the anode 12 and the cathode 14 are disposed on both sides of the electrodialysis tank 10b, and the anode chamber 26a, the buffer chamber 26b, Fluorine concentration chamber 26c, desalting chamber 26d, alkali concentration chamber 26e, acid supply chamber 26f, bipolar electrode 26g, buffer chamber 26h, fluorine concentration chamber 26i, desalting chamber 26j, alkali concentration chamber 26k, acid supply chamber 26l and cathode The chambers 26m are partitioned and arranged by ion exchange membranes 28a to 28l. Of these ion exchange membranes 28a to 28l, an ion exchange membrane 28a disposed between the anode chamber 26a and the buffer chamber 26b, an ion exchange membrane 28b disposed between the buffer chamber 26b and the fluorine concentration chamber 26c, An ion exchange membrane 28d disposed between the salt chamber 26d and the alkali concentrating chamber 26e, an ion exchange membrane 28g disposed between the bipolar chamber 26g and the buffer chamber 26h, and the buffer chamber 26h and the fluorine concentrating chamber 26i. The ion exchange membrane 28h disposed between them, and the ion exchange membrane 28j disposed between the desalting chamber 26j and the alkali concentration chamber 26k are cation exchange membranes, and other ion exchange membranes 28c, 28e, 28f, 28i, 28k and 28l are anion exchange membranes.

この例にあっては、陽極12と陰極14との間に所定の電圧を印加しながら、脱塩室26d,26jにフッ素含有排水(原水)を供給し、同時に、図5に示すように、陽極水槽20から陽極室26a及び複極室26gに陽極水を、陰極水槽(図示せず)から陰極室26mに陰極水を、バッファ水槽22からバッファ室26b,26hにバッファ水を、フッ素濃縮水槽24からフッ素濃縮室26c,26iにフッ素濃縮水をそれぞれ通水して循環させる。更に、酸供給槽30から酸供給室26f、26lにHCl等の酸を、アルカリ濃縮水槽32からアルカリ濃縮室26e,26kにアルカリ濃縮水をそれぞれ供給して循環させる。   In this example, while applying a predetermined voltage between the anode 12 and the cathode 14, fluorine-containing waste water (raw water) is supplied to the desalting chambers 26d and 26j, and at the same time, as shown in FIG. Anode water from the anode water tank 20 to the anode chamber 26a and the bipolar chamber 26g, cathode water from the cathode water tank (not shown) to the cathode chamber 26m, buffer water from the buffer water tank 22 to the buffer chambers 26b and 26h, and a fluorine concentrated water tank Fluorine concentrated water is circulated through the fluorine concentration chambers 26c and 26i from 24 respectively. Further, an acid such as HCl is supplied from the acid supply tank 30 to the acid supply chambers 26f and 26l, and alkali concentrated water is supplied from the alkali concentrated water tank 32 to the alkali concentration chambers 26e and 26k and circulated.

これにより、脱塩室26d、26jに供給されるフッ素含有排水(原水)中のフッ素をフッ素イオンFとして分離し、この分離されたフッ素イオンFをフッ素濃縮室26c,26iに供給されて循環されるフッ素濃縮水側へ移動させて、フッ素濃縮水のフッ素濃度を高める。同時に、フッ素含有排水(原水)中のフッ化物に含まれるCa2+、Mg2+やNH 等の陽イオンMとしてフッ化物イオンから分離し、この分離された陽イオンMをアルカリ濃縮室26e,26kに供給されて循環されるアルカリ濃縮水側に移動させて、アルカリ濃縮水のアルカリ濃度を高める。これによって、フッ素濃縮水、アルカリ濃縮水、及びフッ素濃度を低減させた処理水を得ることができる。 Thus, fluorine in the fluorine-containing waste water (raw water) supplied to the desalting chambers 26d and 26j is separated as fluorine ions F , and the separated fluorine ions F are supplied to the fluorine concentration chambers 26c and 26i. Move to the circulating fluorine concentrated water side to increase the fluorine concentration of the fluorine concentrated water. At the same time, it is separated from fluoride ions as cations M + such as Ca 2+ , Mg 2+ and NH 4 + contained in fluoride in fluorine-containing waste water (raw water), and the separated cations M + are separated into alkali concentration chambers. 26e and 26k are moved to the side of the alkali concentrated water to be circulated to increase the alkali concentration of the alkali concentrated water. As a result, fluorine-concentrated water, alkali-concentrated water, and treated water with a reduced fluorine concentration can be obtained.

なお、図6に示すように、図4に示す電気透析槽10bからバッファ室26b,26h、バッファ室26bとフッ素濃縮室26cとの間に配置されるイオン交換膜28b、及びバッファ室26hとフッ素濃縮室26iとの間に配置されるイオン交換膜28hを省略して電気透析槽10cを構成してもよい。   As shown in FIG. 6, from the electrodialysis tank 10b shown in FIG. 4, the buffer chambers 26b and 26h, the ion exchange membrane 28b disposed between the buffer chamber 26b and the fluorine concentrating chamber 26c, and the buffer chamber 26h and the fluorine The electrodialysis tank 10c may be configured by omitting the ion exchange membrane 28h disposed between the concentrating chamber 26i.

更に、図7に示すように、図4に示す電気透析槽10bから酸供給室26f,26lを省略して電気透析槽10dを構成したり、更には、図8に示すように、図7に示す電気透析槽10dからバッファ室26b、26hを省略して電気透析槽10eを構成してもよい。   Further, as shown in FIG. 7, the acid supply chambers 26f and 26l are omitted from the electrodialysis tank 10b shown in FIG. 4, so that the electrodialysis tank 10d is configured. Further, as shown in FIG. The electrodialysis tank 10e may be configured by omitting the buffer chambers 26b and 26h from the illustrated electrodialysis tank 10d.

フッ素は強い腐食性がある。このため、例えば図1及び図2に示すように、フッ素含有排水の処理に電気透析装置を適用する場合に、電極12,14が腐食されることが問題となっている。電気透析槽10の陽極12には、チタン材に白金めっきした電極(白金めっき電極)が一般に使用されている。陽極が設置される陽極室内に循環通水される陽極水中のフッ素濃度が1mg−F/L未満では、白金めっき電極のフッ酸による腐食は認められずに、電気透析装置の安定した運転が継続できるが、陽極水中のフッ素濃度が1mg−F/Lを超えると、ごく短時間で白金めっき電極の腐食が観察されるようになり、次第に白金めっき電極が消耗して、基材のチタンの溶解が進行し、同時に電気透析槽の運転電圧も上昇するという不具合が生じる。このため、フッ素に耐え得る電極が要望されているが、これまで長時間安定して実用可能な電極は存在せず、フッ素含有排水の処理に電気透析法を用いる場合には、短時間での電極の交換が必須であった。   Fluorine is highly corrosive. For this reason, as shown in FIGS. 1 and 2, for example, when an electrodialysis apparatus is applied to the treatment of fluorine-containing waste water, the electrodes 12 and 14 are corroded. For the anode 12 of the electrodialysis tank 10, an electrode (platinum plating electrode) obtained by platinum-plating a titanium material is generally used. When the fluorine concentration in the anode water circulated through the anode chamber where the anode is installed is less than 1 mg-F / L, the platinum plating electrode is not corroded by hydrofluoric acid, and the electrodialysis apparatus continues to operate stably. However, when the fluorine concentration in the anode water exceeds 1 mg-F / L, corrosion of the platinum plating electrode is observed in a very short time, and the platinum plating electrode is gradually consumed, so that the titanium of the base material is dissolved. Advances, and at the same time, the operating voltage of the electrodialysis tank increases. Therefore, there is a demand for an electrode that can withstand fluorine. However, there is no electrode that can be stably used for a long period of time, and when electrodialysis is used for treatment of fluorine-containing wastewater, the electrode can be used in a short time. It was essential to replace the electrode.

フッ酸に耐える金属は、金と白金だけであることが知られている。金は非常に安定した金属で、耐食性に優れ、電気抵抗も小さい金属であるが、高価である。電極としての金の使用量を低減するため、導電性の母材の上に金めっきを施した電極(金めっき電極)を使用しようとすると、薄い金めっき膜にはピンホールが多く存在して、そこから母材が腐食されるという問題がある。めっき膜厚を厚くすると、ピンホールは少なくなるが、ゼロになるわけではなく、母材の腐食の問題は解決されない。しかも、金の使用量が増えるので高価となる。また、純金めっきは柔らか過ぎて耐摩耗性に劣り、母材への付着力が弱く剥離しやすいという欠点もある。さらに、金めっき電極を電気透析槽の陽極として用いようとすると、水が電気分解した際に発生する酸素によって電極表面が消耗するという現象も見られる。このため、これまで金めっき電極は、電気透析槽の陽極として使用されていなかった。   It is known that gold and platinum are the only metals that resist hydrofluoric acid. Gold is a very stable metal with excellent corrosion resistance and low electrical resistance, but is expensive. In order to reduce the amount of gold used as an electrode, there are many pinholes in a thin gold-plated film when trying to use a gold-plated electrode (gold-plated electrode) on a conductive base material. There is a problem that the base material is corroded from there. When the plating film thickness is increased, the number of pinholes decreases, but it does not become zero, and the problem of corrosion of the base material cannot be solved. Moreover, since the amount of gold used increases, it becomes expensive. Further, pure gold plating is too soft and inferior in wear resistance, and has a drawback that it is weak in adhesion to the base material and easily peels off. Furthermore, when the gold plating electrode is used as an anode of an electrodialysis tank, a phenomenon that the electrode surface is consumed by oxygen generated when water is electrolyzed is also observed. For this reason, until now, the gold plating electrode has not been used as an anode of an electrodialysis tank.

導電性の母材、特にチタン金属に白金めっきした白金めっき電極は、(1)電気伝導率が非常に良い、(2)中性電解液に限らず、酸性、アルカリ性の電解液に対しても耐食性が優れている、(3)発生期の酸素に耐えられる、(4)電気めっき法による加工はプロセス的に最も簡便な方法であり、めっき技術の向上で、1〜10μmの膜厚のめっき膜を自由にめっき出来るようになっている、(5)白金はチタンから剥離できて再生加工が容易である、などの電極として優れた特徴を有している。このため、白金は高価であるにもかかわらず、白金めっき電極は、万能型電極として広く使われている。   Electroplating base material, especially platinum-plated electrode plated with platinum on titanium metal, (1) very good electrical conductivity, (2) not only neutral electrolytes, but also acidic and alkaline electrolytes It has excellent corrosion resistance, (3) can withstand nascent oxygen, (4) processing by electroplating is the simplest process, and plating with a thickness of 1 to 10 μm is achieved by improving plating technology It has excellent characteristics as an electrode such that the film can be freely plated, and (5) platinum can be peeled off from titanium and can be easily reprocessed. For this reason, although platinum is expensive, platinum-plated electrodes are widely used as universal electrodes.

しかし、白金めっき膜は、デンドライトが成長しやすく、凹凸の大きいピンホールや水素吸蔵等の問題から、めっき膜に欠陥が生じやすいという問題がある。めっき膜に欠陥が生じすると、欠陥部は、チタンが露出した状態となり、このため、特に腐食性の強いフッ酸環境下で電極として使用するとチタン自身の腐食が生じやすい。   However, the platinum plating film has a problem that dendrites are likely to grow and defects in the plating film are likely to occur due to problems such as pinholes with large irregularities and hydrogen storage. When a defect occurs in the plating film, the defect portion is in a state where titanium is exposed. Therefore, when used as an electrode in a highly corrosive hydrofluoric acid environment, corrosion of titanium itself is likely to occur.

チタンの腐食は、白金めっき膜の下を平面方向に進み(アンダーカッティング腐食)、白金めっき膜とチタンとの結合力を失わせて白金めっき膜を脱落させる。このアンダーカッティング腐食は、加速度的に進行するので、電極の劣化が始まると短時間に電極寿命がつきる。このため、純白金板をフッ酸環境下で陽極として使用した際の白金の溶出・損耗は非常に小さいにもかかわらず、白金めっき電極の場合には、実際のめっき厚に相当した寿命が発揮されないという問題があった。   The corrosion of titanium proceeds in the plane direction under the platinum plating film (undercutting corrosion), causing the platinum plating film to fall off by losing the bonding force between the platinum plating film and titanium. Since this undercutting corrosion proceeds at an accelerated rate, the electrode life is shortened in a short time when the electrode starts to deteriorate. For this reason, when a pure platinum plate is used as an anode in a hydrofluoric acid environment, the elution and wear of platinum is very small. There was a problem of not being.

このため、フッ酸環境下での電極の長寿命化を目的として、緻密で欠陥のないめっき膜を形成する技術の開発が試みられてきたが、純白金と同等までの長寿命化は達成できていない。また、従来の白金めっき電極に比較して寿命が延びた電極の報告もあるが、この場合、(1)電極の製造方法が複雑でコストが高い、(2)製造可能な電極の大きさや形状に制約がある、(3)純白金と同等の寿命には程遠い、などの問題があり、工業的に実用に供され、フッ酸環境下で長時間に亘って安定して使用される電極は未だ開発されていないのが現状である。   For this reason, attempts have been made to develop a technology for forming a dense and defect-free plating film for the purpose of extending the life of the electrode in a hydrofluoric acid environment. Not. In addition, there are reports of electrodes having a longer life compared to conventional platinum-plated electrodes. In this case, (1) the electrode manufacturing method is complicated and expensive, and (2) the size and shape of the electrode that can be manufactured. (3) There is a problem that it is far from the life equivalent to that of pure platinum, and the electrodes that are practically used industrially and that are stably used for a long time in a hydrofluoric acid environment are The current situation is that it has not been developed yet.

フッ素含有排水を対象とする電気透析装置に関しては、導電性の基板の表面にホウ素をドープしたCVDダイヤモンド薄膜を成膜した電極を使用するようにしたもの(特許文献1参照)や、電極室とフッ酸が濃縮された濃縮室との間にバッファ室を設け、濃縮室に高濃度に存在するフッ酸が電極室に到達する現象を抑制するようにしたもの(特許文献2,3参照)等が提案されている。   Regarding the electrodialysis apparatus for fluorine-containing wastewater, an electrode in which a CVD diamond thin film doped with boron is formed on the surface of a conductive substrate (see Patent Document 1), an electrode chamber, A buffer chamber is provided between the concentration chamber and the concentration chamber in which the hydrofluoric acid is concentrated, so that the concentration of hydrofluoric acid present in the concentration chamber at the electrode chamber is suppressed (see Patent Documents 2 and 3), etc. Has been proposed.

特開2003−126863JP 2003-126863 A 特開2003−305475JP 2003-305475 A 特開2004−174439JP 2004-174439 A

しかしながら、電極そのものを高い耐食性を持つダイヤモンド電極にすると、電極そのものがかなり高価となる。また、電極室とフッ酸が濃縮された濃縮室との間にバッファ室を設けても、電気透析装置の休止中または停止中における濃縮室中のフッ素の挙動が問題となり、実用上の問題は解決されていない。以下、電気透析装置の休止中または停止中における濃縮室中のフッ素の挙動について説明する。   However, if the electrode itself is a diamond electrode having high corrosion resistance, the electrode itself is considerably expensive. In addition, even if a buffer chamber is provided between the electrode chamber and the concentration chamber in which hydrofluoric acid is concentrated, the behavior of fluorine in the concentration chamber during the rest or stop of the electrodialyzer becomes a problem, and practical problems are It has not been solved. Hereinafter, the behavior of fluorine in the concentration chamber when the electrodialysis apparatus is stopped or stopped will be described.

例えば、図1及び図2に示すように、電気透析槽10には、陽極12を設置する陽極室16aと陰極14を設置する陰極室16hがあり、陽極12と陰極14との間に電圧を印加することで、フッ素含有排水(原水)中のフッ素をフッ素濃縮水側へ移動させる。運転中の場合、フッ素濃縮水中のフッ素イオンは、陽極室16aおよび陰極室16hへリークすることなく、安定した運転が可能となる。しかし、運転停止後、フッ素濃縮水を循環通水させるフッ素濃縮室16c,16e,16gにおけるフッ素濃度が高い状態で長時間放置された状態にあると、濃度拡散により、図1及び図2に示すように、フッ素濃縮室16c,16e内のフッ素イオンFが陽極室16aにリークして陽極12を腐食してしまう。このことは、陰極側にあっても同様である。 For example, as shown in FIGS. 1 and 2, the electrodialysis tank 10 has an anode chamber 16 a in which the anode 12 is installed and a cathode chamber 16 h in which the cathode 14 is installed, and a voltage is applied between the anode 12 and the cathode 14. By applying it, the fluorine in the fluorine-containing waste water (raw water) is moved to the fluorine concentrated water side. During operation, the fluorine ions in the fluorine-enriched water can be stably operated without leaking to the anode chamber 16a and the cathode chamber 16h. However, after the operation is stopped, if the fluorine concentration chambers 16c, 16e, and 16g through which the fluorine-concentrated water is circulated are left in a state where the fluorine concentration is high and left for a long time, the concentration is diffused as shown in FIGS. As described above, the fluorine ions F in the fluorine concentration chambers 16 c and 16 e leak into the anode chamber 16 a and corrode the anode 12. The same applies to the cathode side.

また、図4に示す電気透析槽10bにあっても同様に、運転停止後、フッ素濃縮水を通水して循環させるフッ素濃縮室26c,26iにおけるフッ素濃度が高い状態で長時間放置された状態にあると、図5に示すように、フッ素イオンFが陽極側にリークして陽極12を腐食してしまう。 Similarly, even in the electrodialysis tank 10b shown in FIG. 4, after the operation is stopped, the fluorine concentration chambers 26c and 26i in which the fluorine concentrated water is circulated and circulated are left for a long time in a state where the fluorine concentration is high. 5, fluorine ions F leak to the anode side and corrode the anode 12 as shown in FIG.

従って、安価で、フッ酸環境下で長時間に亘って安定して使用される電極が未だ開発されていない現状では、運転停止後に、電気透析槽内のフッ素濃度の高い室をフッ素濃度の低い洗浄水によって洗浄し、各室におけるフッ素濃度を低減させることで、フッ素イオンのリークによる電極の腐食を防止して、長期間安定して電気透析装置の運転を行うことが考えられる。   Therefore, at present, an electrode that is inexpensive and can be used stably over a long period of time in a hydrofluoric acid environment has not yet been developed. It is conceivable that the electrodialyzer is operated stably for a long period of time by washing with washing water and reducing the fluorine concentration in each chamber to prevent corrosion of the electrode due to the leakage of fluorine ions.

本発明は上記事情に鑑みてなされたもので、高価な電極を用いることなく、しかも実運用期間を通じて電極の腐食が生じないようにした電気透析装置及びその運用方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an electrodialysis apparatus and an operation method thereof that do not cause corrosion of the electrode throughout an actual operation period without using an expensive electrode. .

請求項1に記載の発明は、電極間にイオン交換膜で区画された複数の室を配列し各室に所定の液体を供給して原水の電気透析を行う電気透析槽と、前記各室に液体を供給する液体供給系と、前記複数の室の少なくとも1つの室に、電気透析の際に供給される液体よりも原水成分濃度が低い流体を洗浄水として供給して該室を洗浄するように前記液体供給系を制御する制御部を有することを特徴とする電気透析装置である。   The invention according to claim 1 is an electrodialysis tank in which a plurality of chambers partitioned by an ion exchange membrane are arranged between electrodes and a predetermined liquid is supplied to each chamber to perform electrodialysis of raw water. A liquid supply system for supplying a liquid and at least one of the plurality of chambers is supplied with a fluid having a lower raw water component concentration than the liquid supplied at the time of electrodialysis as washing water to wash the chamber. The electrodialysis apparatus further includes a control unit for controlling the liquid supply system.

請求項2に記載の発明は、電極間にイオン交換膜で区画された複数の室を配列し各室に所定の液体を供給して原水の電気透析を行う電気透析槽の少なくとも1つの室に、電気透析の際に供給される液体よりも原水成分濃度が低い液体を洗浄水として供給して該室を洗浄することを特徴とする電気透析装置の運用方法である。   According to a second aspect of the present invention, at least one chamber of an electrodialysis tank that performs electrodialysis of raw water by arranging a plurality of chambers partitioned by an ion exchange membrane between electrodes and supplying a predetermined liquid to each chamber. An operation method of an electrodialysis apparatus, characterized in that a liquid having a lower raw water component concentration than that supplied during electrodialysis is supplied as cleaning water to clean the chamber.

このように、電気透析槽を構成する複数の室の少なくとも1つの室を、該室に電気透析の際に供給される液体よりも原水成分濃度が低い液体(洗浄水)で洗浄することで、該室における原水成分濃度、例えばフッ素濃度を低くして、運転停止時におけるフッ素イオン等のリークを防止することができる。   Thus, by washing at least one chamber of the plurality of chambers constituting the electrodialysis tank with a liquid (washing water) having a raw water component concentration lower than the liquid supplied to the chamber at the time of electrodialysis, The raw water component concentration in the chamber, for example, the fluorine concentration can be lowered to prevent leakage of fluorine ions and the like when the operation is stopped.

請求項3に記載の発明は、前記洗浄水として前記室に供給される原水成分濃度が低い液体は、電気透析の際に他の室に供給される液体、または処理水であることを特徴とする請求項2記載の電気透析装置の運用方法である。
これにより、電気透析装置に使用される液体、または処理水を有効に利用して、装置としての簡素化を図ることができる。
The invention according to claim 3 is characterized in that the liquid having a low concentration of raw water components supplied to the chamber as the wash water is a liquid supplied to another chamber during electrodialysis or treated water. The operation method of the electrodialysis apparatus according to claim 2.
Thereby, the liquid used for an electrodialysis apparatus, or treated water can be used effectively, and simplification as an apparatus can be achieved.

請求項4に記載の発明は、前記室の洗浄水による洗浄を、電気透析装置の運転を停止する前または後に行うことを特徴とする請求項2または3記載の電気透析装置の運用方法である。
なお、ここで言う電気透析装置の運転を停止する前または後とは、電気透析槽の陽極と陰極との間に電圧を印加することを停止する前または後、または電気透析装置で処理する原水の供給を停止する前または後を指す。
The invention according to claim 4 is the operation method of the electrodialyzer according to claim 2 or 3, wherein the cleaning of the chamber with the wash water is performed before or after the operation of the electrodialyzer is stopped. .
Here, before or after stopping the operation of the electrodialyzer, before or after stopping the application of voltage between the anode and the cathode of the electrodialysis tank, or raw water treated by the electrodialyzer Before or after stopping the supply.

請求項5に記載の発明は、前記原水は、フッ素を含む排水であることを特徴とする請求項2乃至4のいずれかに記載の電気透析装置の運用方法である。
これにより、強い腐食性があるフッ素を含む排水を、高価な電極を用いることなく、しかも実運用期間を通じて電極腐食が生じないようして、処理することができる。
The invention according to claim 5 is the method of operating an electrodialysis apparatus according to any one of claims 2 to 4, wherein the raw water is waste water containing fluorine.
Accordingly, wastewater containing fluorine having strong corrosive properties can be treated without using an expensive electrode and without causing electrode corrosion throughout the actual operation period.

これにより、フッ素含有排水を電気透析装置で処理する時に、最もフッ素濃度が高くなるフッ素濃縮室内におけるフッ素濃度を低くして、例えば運転停止時や運転休止時におけるフッ素イオンのリークによる電極の腐食を防止することができる。   As a result, when fluorine-containing wastewater is treated with an electrodialyzer, the fluorine concentration in the fluorine concentration chamber where the fluorine concentration is the highest is reduced, for example, corrosion of the electrode due to fluorine ion leakage at the time of shutdown or shutdown. Can be prevented.

本発明によれば、電気透析槽を構成する複数の室の少なくとも1つの室を、該室に電気透析の際に供給される液体よりも原水成分濃度が低い液体(洗浄水)で洗浄することで、該室における原水成分濃度、例えばフッ素濃度を低くして、例えば運転停止時や運転休止時におけるフッ素イオン等のリークによる電極の腐食を防止して、高価な電極を使用することなく、長期間安定して運転を行うことができる。   According to the present invention, at least one of the plurality of chambers constituting the electrodialysis tank is washed with a liquid (washing water) having a lower raw water component concentration than the liquid supplied to the chamber during electrodialysis. Therefore, the raw water component concentration in the chamber, for example, the fluorine concentration is lowered to prevent corrosion of the electrode due to, for example, leakage of fluorine ions at the time of operation stop or operation stop, and without using an expensive electrode, Operation can be performed stably for a period of time.

以下、本発明の実施の形態を図面を参照して説明する。以下の例では、フッ素濃度が希薄なフッ素含有排水を原水としている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following examples, raw water is fluorine-containing wastewater having a low fluorine concentration.

本発明の電気透析装置の運用方法では、図9に示すように、電気透析装置が運転状態から運転待機に至る途中の、電気透析装置の運転を停止する前または後に、電気透析槽内の任意の室を洗浄して該室におけるフッ素濃度を低減させ、これによって、電気透析装置が待機状態にある時に、フッ素イオンFのリークによって、電極が腐食されるのを防止するようにしている。 In the operation method of the electrodialysis apparatus of the present invention, as shown in FIG. 9, before or after stopping the operation of the electrodialysis apparatus in the middle of the operation of the electrodialysis apparatus from the operating state to the operation standby state, The chamber is washed to reduce the fluorine concentration in the chamber, thereby preventing the electrode from being corroded by the leakage of fluorine ions F when the electrodialyzer is in a standby state.

図10は、本発明の実施の形態の電気透析装置における電気透析槽内の構成を簡略化して示す。図10に示すように、電気透析槽内にイオン交換膜で区画されて配列され、洗浄水によって洗浄されるA室40は、供給配管42と戻り配管44でA槽46に接続されており、この供給配管42には入口側三方弁48が、戻り配管44には出口側三方弁50が介装されている。ここで、三方弁と同様の機能を持つ構成を複数の二方弁で形成しても良い。A槽46は、電気透析を行う時にA室40に通水し循環させる液体52を貯蔵する槽である。A槽46の底部には、液引抜き管54aの一端が接続され、この液引抜き管54aの他端はB槽56に接続されている。   FIG. 10 shows a simplified configuration of the electrodialysis tank in the electrodialysis apparatus according to the embodiment of the present invention. As shown in FIG. 10, the A chamber 40 partitioned and arranged in the electrodialysis tank by an ion exchange membrane and washed with washing water is connected to the A tank 46 by a supply pipe 42 and a return pipe 44. An inlet side three-way valve 48 is interposed in the supply pipe 42, and an outlet side three-way valve 50 is interposed in the return pipe 44. Here, a configuration having the same function as the three-way valve may be formed by a plurality of two-way valves. The A tank 46 is a tank that stores a liquid 52 that is circulated through the A chamber 40 during electrodialysis. One end of a liquid extraction pipe 54 a is connected to the bottom of the A tank 46, and the other end of the liquid extraction pipe 54 a is connected to the B tank 56.

なお、このA槽46がフッ素濃縮水槽の場合、A槽(フッ素濃縮水槽)46には、内部の液体(フッ素濃縮水)52を引抜いてフッ素再資源化装置に導くか、または産業廃棄物処理するための液引抜き管54bが接続される。   In addition, when this A tank 46 is a fluorine concentrated water tank, the internal liquid (fluorine concentrated water) 52 is drawn into the A tank (fluorine concentrated water tank) 46 and led to a fluorine recycling apparatus, or industrial waste treatment. A liquid extraction tube 54b is connected.

A槽46には、この内部に洗浄水を直接供給する洗浄水供給管58aが接続されている。また、入口側三方弁48の1つの入口ポートに洗浄水供給管58bが、出口側三方弁50の1つの出口ポートに洗浄水排出管60がそれぞれ接続されており、洗浄水排出管60の他端は、B槽56に接続されている。これらの配管によって、A室40への液体供給系が構成されており、この液体供給系は、制御部によって制御されるようになっている。   The A tank 46 is connected with a cleaning water supply pipe 58a for supplying cleaning water directly into the tank A. Further, a cleaning water supply pipe 58 b is connected to one inlet port of the inlet side three-way valve 48, and a cleaning water discharge pipe 60 is connected to one outlet port of the outlet side three-way valve 50. The end is connected to the B tank 56. A liquid supply system to the A chamber 40 is configured by these pipes, and this liquid supply system is controlled by a control unit.

ここで、A室40は、具体的には、図1及び図2に示す電気透析槽10にあっては、陽極室16a、バッファ室16b、フッ素濃縮室16c,16d、及び陰極室16hのいずれか1つの室であり、図4及び図5に示す電気透析槽10bにあっては、陽極室26a、バッファ室26b,26h、フッ素濃縮室26c,26i、アルカリ濃縮室26e,26k、複極室26g及び酸供給室26f,26lのいずれか1つの室である。   Here, specifically, in the electrodialysis tank 10 shown in FIGS. 1 and 2, the A chamber 40 is any of the anode chamber 16a, the buffer chamber 16b, the fluorine concentration chambers 16c and 16d, and the cathode chamber 16h. In the electrodialysis tank 10b shown in FIGS. 4 and 5, the anode chamber 26a, the buffer chambers 26b and 26h, the fluorine concentration chambers 26c and 26i, the alkali concentration chambers 26e and 26k, the bipolar chamber 26g and one of the acid supply chambers 26f and 26l.

A槽46は、具体的には、図1及び図2に示す電気透析槽10にあっては、陽極水槽20、バッファ水槽22、フッ素濃縮水槽24及び陰極水槽(図示せず)のいずれか1つの槽であり、図4及び図5に示す電気透析槽10bにあっては、陽極水槽20、バッファ水槽22、フッ素濃縮水槽24、陰極水槽、酸供給槽30及びアルカリ濃縮水槽32のいずれか1つの槽である。B槽56は、電気透析装置に設置されるA槽46以外の循環槽または原水槽である。   Specifically, the A tank 46 in the electrodialysis tank 10 shown in FIGS. 1 and 2 is any one of the anode water tank 20, the buffer water tank 22, the fluorine concentrated water tank 24, and the cathode water tank (not shown). In the electrodialysis tank 10b shown in FIGS. 4 and 5, any one of the anode water tank 20, the buffer water tank 22, the fluorine concentrated water tank 24, the cathode water tank, the acid supply tank 30, and the alkali concentrated water tank 32 is provided. There are two tanks. The B tank 56 is a circulation tank or a raw water tank other than the A tank 46 installed in the electrodialysis apparatus.

洗浄水は、A槽46内に貯蔵されて、電気透析の時にA室40に循環通水される液体52よりもフッ素濃度が低い液であり、例えばA槽46がフッ素濃縮槽の場合、洗浄水として該当する液として、フッ素濃縮水よりもフッ素濃度が低い、バッファ水、陽極水、陰極水、アルカリ濃縮水、酸供給水、処理水、及びイオン交換水(純水)、市水、工業用水等が挙げられる。   The washing water is stored in the A tank 46 and has a lower fluorine concentration than the liquid 52 circulated through the A chamber 40 during electrodialysis. For example, when the A tank 46 is a fluorine concentration tank, washing is performed. As liquid that corresponds to water, the concentration of fluorine is lower than that of concentrated fluorine water, buffer water, anode water, cathode water, alkali concentrated water, acid supply water, treated water, ion-exchanged water (pure water), city water, industrial Water, etc. are mentioned.

次に、図11乃至図18を参照して、A室40の第1の洗浄方法について説明する。なお、図11及び図18において、太線は液体の流れを示す。このことは、以下の例においても同様である。   Next, a first cleaning method for the A chamber 40 will be described with reference to FIGS. 11 to 18. In FIG. 11 and FIG. 18, the bold line indicates the flow of the liquid. The same applies to the following examples.

図11は、例えば図1及び図2に示す電気透析槽10の陽極12と陰極14との間に所定の電圧を印加しながら、電気透析槽10の各室16a〜16hに所定の液体を供給して、フッ素含有排水(原水)中のフッ素をフッ素イオンとして分離・濃縮する、電気透析装置の運転状態を示す。この時、循環ポンプ(図示せず)の駆動に伴って、A室(例えばフッ素濃縮室)40にはA槽(例えばフッ素濃縮水槽)46から液体(例えばフッ素濃縮水)52が通水されて循環する。   11 supplies a predetermined liquid to the chambers 16a to 16h of the electrodialysis tank 10 while applying a predetermined voltage between the anode 12 and the cathode 14 of the electrodialysis tank 10 shown in FIGS. 1 and 2, for example. The operation state of the electrodialysis apparatus that separates and concentrates fluorine in fluorine-containing wastewater (raw water) as fluorine ions is shown. At this time, as the circulation pump (not shown) is driven, a liquid (for example, fluorine concentrated water) 52 is passed from the A tank (for example, fluorine concentrated water tank) 46 to the A chamber (for example, fluorine concentrated chamber) 40. Circulate.

そして、電気透析装置の運転を停止する場合には、例えば図1及び図2に示す電気透析槽10の陽極12と陰極14との間への電圧の印加を解き、電気透析槽10の各室16a〜16hへの所定の液体の供給を停止する。これにより、図12に示すように、A槽46からA室40への液体52の通水が停止される。   When stopping the operation of the electrodialysis apparatus, for example, the application of voltage between the anode 12 and the cathode 14 of the electrodialysis tank 10 shown in FIGS. The supply of a predetermined liquid to 16a to 16h is stopped. Thereby, as shown in FIG. 12, the flow of the liquid 52 from the A tank 46 to the A chamber 40 is stopped.

次に、図13に示すように、例えばA槽46がフッ素濃縮水槽である場合には、A槽(フッ素濃縮水槽)46内の液体(フッ素濃縮水)52を、液引抜き管54bを通して排水して、フッ素再資源化装置に導くか、または産業廃棄物処理する。A槽46がフッ素濃縮水槽以外の槽である場合には、A槽46内の液体52を、液引抜き管54aを通して排水してB槽56に導く。   Next, as shown in FIG. 13, for example, when the tank A 46 is a fluorine concentrated water tank, the liquid (fluorine concentrated water) 52 in the tank A (fluorine concentrated water tank) 46 is drained through the liquid extraction pipe 54b. To lead to fluorine recycling equipment or to dispose of industrial waste. When the A tank 46 is a tank other than the fluorine-concentrated water tank, the liquid 52 in the A tank 46 is drained through the liquid extraction pipe 54 a and led to the B tank 56.

A槽46内が空となった時に、図14に示すように、洗浄水供給管58aからA槽46内に洗浄水62を供給する。洗浄水62は、電気透析の時にA槽46からA室40に供給される液体52よりフッ素濃度が低い液であり、例えばA槽46がフッ素濃縮槽の場合、洗浄水62として、バッファ水、陽極水、陰極水、酸供給水、処理水、またはイオン交換水(純水)等が使用される。   When the inside of the A tank 46 becomes empty, as shown in FIG. 14, the cleaning water 62 is supplied into the A tank 46 from the cleaning water supply pipe 58a. The washing water 62 is a liquid having a lower fluorine concentration than the liquid 52 supplied from the A tank 46 to the A chamber 40 at the time of electrodialysis. For example, when the A tank 46 is a fluorine concentration tank, the washing water 62 includes buffer water, Anode water, cathode water, acid supply water, treated water, ion exchange water (pure water) or the like is used.

そして、洗浄水の供給を停止した後、図15に示すように、循環ポンプ(図示せず)を駆動して、A槽46内の洗浄水62をA室40に通水し循環させる。これによって、A室40の内部を、電気透析の時にA槽46からA室40に供給される液体52よりフッ素濃度が低い洗浄水62で洗浄し、A室40におけるフッ素濃度を低減させる。   Then, after the supply of the cleaning water is stopped, as shown in FIG. 15, a circulation pump (not shown) is driven to pass the cleaning water 62 in the A tank 46 through the A chamber 40 for circulation. Thereby, the inside of the A chamber 40 is washed with the washing water 62 having a fluorine concentration lower than that of the liquid 52 supplied from the A tank 46 to the A chamber 40 during electrodialysis, and the fluorine concentration in the A chamber 40 is reduced.

A室40の内部を所定時間に亘って洗浄液62で洗浄した後、図16に示すように、A槽46内の洗浄液62を、液引抜き管54aを通して引抜いてB槽56に排水する。
上記図14〜図16に示す工程を、必要に応じて、繰返し行ってもよく(繰返し洗浄)、これによって、新たな洗浄水を使用して、A室40におけるフッ素濃度を徐々に低減させることができる。
After the inside of the A chamber 40 is cleaned with the cleaning liquid 62 for a predetermined time, as shown in FIG. 16, the cleaning liquid 62 in the A tank 46 is extracted through the liquid extraction pipe 54a and drained into the B tank 56.
The steps shown in FIGS. 14 to 16 may be repeated as necessary (repeated cleaning), thereby gradually reducing the fluorine concentration in the A chamber 40 using new cleaning water. Can do.

そして、図17に示すように、洗浄水供給管56aを通してA槽46内に洗浄水62を再度供給して、A槽46内を洗浄液62で満たす。そして、図18に示すように、この状態で、次回の電気透析装置の運転開始まで待機するのであり、A室40は、前述のように、洗浄液62で洗浄され、A室40内のフッ素濃度が低減されているため、この待機時にA室40内のフッ素イオンが拡散によって隣接した他の室にリークすることが防止される。   Then, as shown in FIG. 17, the cleaning water 62 is supplied again into the A tank 46 through the cleaning water supply pipe 56 a, and the A tank 46 is filled with the cleaning liquid 62. Then, as shown in FIG. 18, in this state, the apparatus waits until the next start of operation of the electrodialyzer, and the A chamber 40 is cleaned with the cleaning liquid 62 as described above, and the fluorine concentration in the A chamber 40 is increased. Therefore, it is possible to prevent the fluorine ions in the A chamber 40 from leaking to other adjacent chambers due to diffusion during this standby time.

次に、図19乃至図25を参照して、A室40の第2の洗浄方法について説明する。
図19は、前記図11と同様に、例えば図1及び図2に示す電気透析槽10の陽極12と陰極14との間に所定の電圧を印加しながら、電気透析槽10の各室16a〜16hに所定の液体を供給して、フッ素含有排水(原水)中のフッ素をフッ素イオンとして分離・濃縮する、電気透析装置の運転状態を示す。この時、循環ポンプ(図示せず)の駆動に伴って、A室(例えばフッ素濃縮室)40にはA槽(例えばフッ素濃縮水槽)46から液体(例えばフッ素濃縮水)52が通水されて循環する。
Next, a second cleaning method for the A chamber 40 will be described with reference to FIGS.
FIG. 19 is similar to FIG. 11, for example, while applying a predetermined voltage between the anode 12 and the cathode 14 of the electrodialysis tank 10 shown in FIGS. An operation state of an electrodialysis apparatus is shown in which a predetermined liquid is supplied to 16h to separate and concentrate fluorine in fluorine-containing wastewater (raw water) as fluorine ions. At this time, as the circulation pump (not shown) is driven, a liquid (for example, fluorine concentrated water) 52 is passed from the A tank (for example, fluorine concentrated water tank) 46 to the A chamber (for example, fluorine concentrated chamber) 40. Circulate.

そして、電気透析装置の運転を停止する場合には、例えば図1及び図2に示す電気透析槽10の陽極12と陰極14との間への電圧の印加を解き、電気透析槽10の各室16a〜16hへの所定の液体の供給を停止する。これにより、図20に示すように、A槽46からA室40への液体52の通水が停止される。   When stopping the operation of the electrodialysis apparatus, for example, the application of voltage between the anode 12 and the cathode 14 of the electrodialysis tank 10 shown in FIGS. The supply of a predetermined liquid to 16a to 16h is stopped. Thereby, as shown in FIG. 20, water flow of the liquid 52 from the A tank 46 to the A chamber 40 is stopped.

次に、図21に示すように、供給配管42に設置した入口側三方弁48と戻り配管44に介装した出口側三方弁50のA槽46側ポートを閉じてA室40とA槽46を遮断し、入口側三方弁48の洗浄水供給管58b側ポートと出口側三方弁50の洗浄水排出管60側ポートを開く。   Next, as shown in FIG. 21, the A tank 46 side port of the inlet side three-way valve 48 installed in the supply pipe 42 and the outlet side three-way valve 50 interposed in the return pipe 44 is closed to close the A chamber 40 and the A tank 46. And the cleaning water supply pipe 58b side port of the inlet side three-way valve 48 and the cleaning water discharge pipe 60 side port of the outlet side three way valve 50 are opened.

この状態で、図22に示すように、洗浄水供給管58bを通してA室40内に洗浄水を連続的に供給し、A室40内を通過した洗浄水を、洗浄水排出管60を通してB槽56に排出する。この洗浄水は、前述と同様に、A槽46内に貯蔵されて、電気透析の時にA室40に循環通水される液体52によりもフッ素濃度が低い液である。これによって、A室40の内部を、電気透析の時にA槽46からA室40に循環通水される液体52よりフッ素濃度が低い洗浄水で洗浄し、A室40におけるフッ素濃度を低減させる。   In this state, as shown in FIG. 22, the cleaning water is continuously supplied into the A chamber 40 through the cleaning water supply pipe 58b, and the cleaning water that has passed through the A chamber 40 passes through the cleaning water discharge pipe 60 to the tank B. To 56. This washing water is a liquid having a lower fluorine concentration than the liquid 52 stored in the A tank 46 and circulated through the A chamber 40 during electrodialysis as described above. Thus, the inside of the A chamber 40 is washed with washing water having a lower fluorine concentration than the liquid 52 circulated from the A tank 46 to the A chamber 40 during electrodialysis, and the fluorine concentration in the A chamber 40 is reduced.

A室40の内部を、所定時間に亘って洗浄水で洗浄した後、図23に示すように、洗浄水供給管58bからの洗浄水の供給を停止し、しかる後、図24に示すように、入口側三方弁48と出口側三方弁50のA槽46側ポートを開き、入口側三方弁48の洗浄水供給管58b側ポートと出口側三方弁50の洗浄水排出管60側ポートを閉じる。そして、図25に示すように、この状態で、次回の電気透析装置の運転開始まで待機する。   After the inside of the A chamber 40 is washed with washing water for a predetermined time, as shown in FIG. 23, the supply of the washing water from the washing water supply pipe 58b is stopped, and then, as shown in FIG. Then, the A tank 46 side port of the inlet side three-way valve 48 and the outlet side three way valve 50 is opened, and the cleaning water supply pipe 58 b side port of the inlet side three way valve 48 and the cleaning water discharge pipe 60 side port of the outlet side three way valve 50 are closed. . Then, as shown in FIG. 25, in this state, the apparatus waits until the next operation start of the electrodialysis apparatus.

次に、図26乃至図37を参照して、電気透析装置の電気透析槽を構成するフッ素濃縮室及びバッファ室の洗浄例について説明する。図26乃至図37に示すように、電気透析装置には、処理の対象となるフッ素含有排水(原水)を溜める原水槽70と、原水の電気透析を行う電気透析槽72と、循環槽としての陽極水槽74、バッファ水槽76、フッ素濃縮水槽78及び陰極水槽80と、処理後の処理水を溜める処理水槽82と、フッ素濃度を高めたフッ素濃縮水を溜める濃縮水槽84が備えられている。電気透析槽72には、陽極室86a、バッファ室86b、フッ素濃縮室86c、脱塩室86d及び陰極室86eがイオン交換膜(図示せず)で区画されて備えられており、陽極室86aには陽極が、陰極室86eには陰極がそれぞれ設置されている。   Next, with reference to FIGS. 26 to 37, a cleaning example of the fluorine concentration chamber and the buffer chamber constituting the electrodialysis tank of the electrodialysis apparatus will be described. As shown in FIGS. 26 to 37, the electrodialysis apparatus includes a raw water tank 70 for storing fluorine-containing waste water (raw water) to be treated, an electrodialysis tank 72 for performing electrodialysis of raw water, and a circulation tank. An anode water tank 74, a buffer water tank 76, a fluorine concentrated water tank 78 and a cathode water tank 80, a treated water tank 82 for storing treated water after treatment, and a concentrated water tank 84 for storing fluorine concentrated water having a higher fluorine concentration are provided. The electrodialysis tank 72 includes an anode chamber 86a, a buffer chamber 86b, a fluorine concentration chamber 86c, a desalting chamber 86d, and a cathode chamber 86e, which are partitioned by an ion exchange membrane (not shown). Is provided with an anode, and a cathode is provided in the cathode chamber 86e.

電気透析装置の運転に際しては、陽極室86a内に設置した陽極と陰極室86e内に設置した陰極との間に所定の電圧を印加しながら、図26に示すように、原水槽70内の原水(フッ素含有排水)を脱塩室86dに供給し、同時に、陽極水槽74内の陽極水を陽極室86a内に、バッファ水槽76内のバッファ水をバッファ室86bに、フッ素濃縮水槽78内のフッ素濃縮水をフッ素濃縮室86cにそれぞれ通水し循環させる。これによって、脱塩室86dに供給されるフッ素含有排水(原水)中のフッ素をフッ素イオンとして分離し、この分離されたフッ素イオンをフッ素濃縮室86cに通水されて循環されるフッ素濃縮水側へ移動させて、原水からフッ素を除き、同時に、フッ素濃縮水のフッ素濃度を高める。   During operation of the electrodialyzer, the raw water in the raw water tank 70 is applied as shown in FIG. 26 while applying a predetermined voltage between the anode installed in the anode chamber 86a and the cathode installed in the cathode chamber 86e. (Fluorine-containing wastewater) is supplied to the desalting chamber 86d. At the same time, the anode water in the anode water tank 74 is supplied to the anode chamber 86a, the buffer water in the buffer water tank 76 is supplied to the buffer chamber 86b, and the fluorine in the fluorine concentrated water tank 78 is supplied. The concentrated water is circulated through the fluorine concentration chamber 86c. As a result, the fluorine in the fluorine-containing waste water (raw water) supplied to the desalting chamber 86d is separated as fluorine ions, and the separated fluorine ions are circulated through the fluorine concentration chamber 86c for circulation. To remove fluorine from the raw water and at the same time increase the fluorine concentration of the fluorine-enriched water.

そして、陽極水槽74内に純水を供給しながら、陽極水槽74内の陽極水の一部をバッファ水槽76に、バッファ水槽76内のバッファ水の一部をフッ素濃縮水槽78にそれぞれ移送しながら、フッ素濃度を高めたフッ素濃縮水槽78内のフッ素濃縮水の一部を濃縮水槽84に引抜き、フッ素再資源化装置で再資源として利用するか、または廃棄処分する。陰極水槽80にあっては、陰極水槽80に純水を供給しつつ、陰極水槽80内の陰極水の一部を原水槽70に移送する。一方、脱塩室86dを出た、フッ素濃度が低減された処理水は、処理水槽82に溜められて、例えば純水製造装置に送られるか、スクラバ循環水として利用されるか、または中和処理槽に送られる。   While supplying pure water into the anode water tank 74, a part of the anode water in the anode water tank 74 is transferred to the buffer water tank 76 and a part of the buffer water in the buffer water tank 76 is transferred to the fluorine concentrated water tank 78. Then, a part of the fluorine-concentrated water in the fluorine-concentrated water tank 78 in which the fluorine concentration has been increased is drawn out to the concentrated water tank 84 and used as a resource for recycling in the fluorine-recycling apparatus, or disposed of. In the cathode water tank 80, a part of the cathode water in the cathode water tank 80 is transferred to the raw water tank 70 while supplying pure water to the cathode water tank 80. On the other hand, the treated water that has exited the desalting chamber 86d and has a reduced fluorine concentration is stored in the treated water tank 82 and sent to, for example, a pure water production apparatus, used as scrubber circulating water, or neutralized. It is sent to the treatment tank.

原水槽70内の原水のフッ素濃度は、例えば10〜100ppm程度で、処理水槽82内の処理水のフッ素濃度は、例えば数ppm以下である。濃縮水槽84内のフッ素濃縮水のフッ素濃度は、例えば10000ppm程度である。   The fluorine concentration of raw water in the raw water tank 70 is, for example, about 10 to 100 ppm, and the fluorine concentration of treated water in the treated water tank 82 is, for example, several ppm or less. The fluorine concentration of the concentrated fluorine water in the concentrated water tank 84 is, for example, about 10,000 ppm.

そして、電気透析装置の運転を停止する場合には、陽極室86a内の陽極と陰極室86e内の陰極14との間への電圧の印加を解き、図27に示すように、電気透析槽72の各室86a〜86eへの所定の液体の通水(供給)を停止する。そして、電気透析装置の運転を停止した直後に、バッファ室86b及びフッ素濃縮室86cの洗浄を開始する。   When the operation of the electrodialysis apparatus is stopped, the voltage application between the anode in the anode chamber 86a and the cathode 14 in the cathode chamber 86e is released, and as shown in FIG. Water supply (supply) of a predetermined liquid to each of the chambers 86a to 86e is stopped. Then, immediately after the operation of the electrodialyzer is stopped, washing of the buffer chamber 86b and the fluorine concentration chamber 86c is started.

先ず、図28に示すように、フッ素濃縮水槽78内のフッ素濃縮水を引抜いて濃縮水槽84に排出する。濃縮水槽84内に溜められたフッ素濃縮水は、フッ素再資源化装置に移送されるか、または廃棄処分される。そして、図29に示すように、バッファ水槽76内のバッファ水をフッ素濃縮水槽78内に移送し、更に、図30に示すように、陽極水槽74内の陽極水をバッファ水槽76内に移送する。これにより、フッ素濃縮水槽78は、電気透析を行う時にフッ素濃縮室86cに循環通水されるフッ素濃縮水よりもフッ素濃度の低いバッファ水で満たされ、バッファ水槽76は、電気透析を行う時にバッファ室86bに循環通水されるバッファ水よりもフッ素濃度の低い陽極水で満たされる。この例では、バッファ水を洗浄水としてフッ素濃縮室86cを洗浄し、陽極水を洗浄水としてバッファ室86bを洗浄するようにしている。   First, as shown in FIG. 28, the fluorine concentrated water in the fluorine concentrated water tank 78 is drawn out and discharged to the concentrated water tank 84. The fluorine concentrated water stored in the concentrated water tank 84 is transferred to a fluorine recycling apparatus or discarded. 29, the buffer water in the buffer water tank 76 is transferred into the fluorine-concentrated water tank 78, and further, the anode water in the anode water tank 74 is transferred into the buffer water tank 76 as shown in FIG. . Thereby, the fluorine concentrated water tank 78 is filled with buffer water having a lower fluorine concentration than the fluorine concentrated water circulated through the fluorine concentration chamber 86c when performing electrodialysis, and the buffer water tank 76 is buffered when performing electrodialysis. It is filled with anode water having a lower fluorine concentration than the buffer water circulated through the chamber 86b. In this example, the fluorine concentrating chamber 86c is cleaned using buffer water as cleaning water, and the buffer chamber 86b is cleaned using anode water as cleaning water.

つまり、フッ素濃縮水槽78内をバッファ水で、バッファ水槽76内を陽極水でそれぞれ満たした状態で、図31に示すように、洗浄水としてのバッファ水をフッ素濃縮室86cに、洗浄水としての陽極水をバッファ室86bにそれぞれ通水して循環させる。これによって、フッ素濃縮室86c内をバッファ水で、バッファ室86b内を陽極水でそれぞれ洗浄して、フッ素濃縮室86c及びバッファ室86bにおけるフッ素濃度を低減させる。   That is, in the state where the inside of the fluorine-concentrated water tank 78 is filled with buffer water and the inside of the buffer water tank 76 is filled with anode water, as shown in FIG. 31, the buffer water as washing water is supplied to the fluorine concentration chamber 86c as washing water. The anode water is circulated through the buffer chamber 86b. As a result, the inside of the fluorine concentrating chamber 86c is washed with buffer water, and the inside of the buffer chamber 86b is washed with anode water, so that the fluorine concentrations in the fluorine concentrating chamber 86c and the buffer chamber 86b are reduced.

フッ素濃縮室86c及びバッファ室86bの洗浄を終了した後、図32に示すように、フッ素濃縮水槽78内に残る洗浄水として使用したバッファ水を原水槽70に移送し、しかる後、図33に示すように、バッファ水槽76内に残る洗浄水として使用した陽極水をフッ素濃縮水槽78に移送する。この状態で、図34に示すように、洗浄水としての陽極水をフッ素濃縮室86cに通水して循環させる。これによって、フッ素濃縮室86c内を陽極水で再度洗浄して、フッ素濃縮室86cにおけるフッ素濃度を更に低減させる。   After finishing the cleaning of the fluorine concentration chamber 86c and the buffer chamber 86b, as shown in FIG. 32, the buffer water used as the cleaning water remaining in the fluorine concentration water tank 78 is transferred to the raw water tank 70, and thereafter, as shown in FIG. As shown, the anode water used as the cleaning water remaining in the buffer water tank 76 is transferred to the fluorine concentrated water tank 78. In this state, as shown in FIG. 34, anodic water as cleaning water is passed through the fluorine concentration chamber 86c and circulated. As a result, the inside of the fluorine concentration chamber 86c is washed again with the anode water, and the fluorine concentration in the fluorine concentration chamber 86c is further reduced.

次に、図35に示すように、フッ素濃縮水槽78内に残る洗浄水として使用した陽極水を原水槽70に移送し、また陰極水槽80内の陰極水も原水槽70に移送する。しかる後、図36に示すように、処理水槽82内の、フッ素濃度が、例えば数ppm以下の処理水を、陽極水槽74、バッファ水槽76、フッ素濃縮水槽78及び陰極水槽80にそれぞれ移送する。そして、図37に示すように、この状態で、次回の電気透析装置の運転開始まで待機する。   Next, as shown in FIG. 35, the anode water used as the cleaning water remaining in the fluorine concentrated water tank 78 is transferred to the raw water tank 70, and the cathode water in the cathode water tank 80 is also transferred to the raw water tank 70. Thereafter, as shown in FIG. 36, the treated water having a fluorine concentration of, for example, several ppm or less in the treated water tank 82 is transferred to the anode water tank 74, the buffer water tank 76, the fluorine concentrated water tank 78, and the cathode water tank 80, respectively. Then, as shown in FIG. 37, in this state, the apparatus waits until the next operation start of the electrodialysis apparatus.

この例によれば、電気透析の際に最もフッ素濃度が高いフッ素濃縮水が循環通水されるフッ素濃縮室86c内を、運転停止直後に、フッ素濃縮水よりもフッ素濃度が低いバッファ水、更にバッファ水よりもフッ素濃度が低い陽極水で洗浄して、フッ素濃縮室86cにおけるフッ素濃度を低くし、また電気透析の際にバッファ水が循環通水されるバッファ室86b内を、運転停止直後に、バッファ水よりもフッ素濃度が低い陽極水で洗浄して、バッファ室86bにおけるフッ素濃度を低くすることができる。これによって、例えば運転停止時や運転休止時に、フッ素イオンのリークによって電極が腐食されるのを防止して、高価な電極を使用することなく、長期間安定して運転を行うことができる。   According to this example, in the fluorine concentration chamber 86c through which the fluorine concentration water having the highest fluorine concentration is circulated during electrodialysis, immediately after the operation is stopped, the buffer water having a fluorine concentration lower than that of the fluorine concentration water, Immediately after the operation is stopped, the inside of the buffer chamber 86b, in which the buffer water is circulated and passed through the electrodialysis, is washed by anodic water having a fluorine concentration lower than that of the buffer water to lower the fluorine concentration in the fluorine concentration chamber 86c. The fluorine concentration in the buffer chamber 86b can be lowered by washing with anode water having a fluorine concentration lower than that of the buffer water. Accordingly, for example, when the operation is stopped or stopped, the electrode is prevented from being corroded by the leakage of fluorine ions, and the operation can be stably performed for a long time without using an expensive electrode.

電気透析装置の電気透析槽を模式的に示す図である。It is a figure which shows typically the electrodialysis tank of an electrodialysis apparatus. 図1に示す電気透析槽を有する電気透析装置を模式的に示す図である。It is a figure which shows typically the electrodialysis apparatus which has an electrodialysis tank shown in FIG. 電気透析槽の他の例を模式的に示す図である。It is a figure which shows typically the other example of an electrodialysis tank. 電気透析槽の更に他の例を模式的に示す図である。It is a figure which shows typically the other example of an electrodialysis tank. 図4に示す電気透析槽を有する電気透析装置を模式的に示す図である。It is a figure which shows typically the electrodialysis apparatus which has an electrodialysis tank shown in FIG. 電気透析槽の更に他の例を模式的に示す図である。It is a figure which shows typically the other example of an electrodialysis tank. 電気透析槽の更に他の例を模式的に示す図である。It is a figure which shows typically the other example of an electrodialysis tank. 電気透析槽の更に他の例を模式的に示す図である。It is a figure which shows typically the other example of an electrodialysis tank. 本発明の電気透析装置の運用方法を示すブロック図である。It is a block diagram which shows the operation method of the electrodialysis apparatus of this invention. 本発明の実施の形態の電気透析装置における電気透析槽内の構成を簡略化して示す図である。It is a figure which simplifies and shows the structure in the electrodialysis tank in the electrodialysis apparatus of embodiment of this invention. 図10に示す電気透析装置を使用して室の第1の洗浄方法を実施する時の運転状態を示す図である。It is a figure which shows the driving | running state when implementing the 1st washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 図10に示す電気透析装置を使用して室の第1の洗浄方法を実施する時の運転停止状態を示す図である。It is a figure which shows the operation stop state when implementing the 1st washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 図10に示す電気透析装置を使用して室の第1の洗浄方法を実施する時の液体排出工程を示す図である。It is a figure which shows the liquid discharge process when implementing the 1st washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 図10に示す電気透析装置を使用して室の第1の洗浄方法を実施する時の洗浄液流入工程を示す図である。It is a figure which shows the washing | cleaning liquid inflow process when implementing the 1st washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 図10に示す電気透析装置を使用して室の第1の洗浄方法を実施する時の洗浄液による循環洗浄工程を示す図である。It is a figure which shows the circulation washing | cleaning process by the washing | cleaning liquid at the time of implementing the 1st washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 図10に示す電気透析装置を使用して室の第1の洗浄方法を実施する時の洗浄水排出工程を示す図である。It is a figure which shows the washing water discharge process when implementing the 1st washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 図10に示す電気透析装置を使用して室の第1の洗浄方法を実施する時の洗浄水流入工程を示す図である。It is a figure which shows the washing | cleaning water inflow process when implementing the 1st washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 図10に示す電気透析装置を使用して室の第1の洗浄方法を実施する時の運転待機状態を示す図である。It is a figure which shows the operation standby state when implementing the 1st washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 図10に示す電気透析装置を使用して室の第2の洗浄方法を実施する時の運転状態を示す図である。It is a figure which shows the driving | running state when implementing the 2nd washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 図10に示す電気透析装置を使用して室の第2の洗浄方法を実施する時の運転停止状態を示す図である。It is a figure which shows the operation stop state when implementing the 2nd washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 図10に示す電気透析装置を使用して室の第2の洗浄方法を実施する時のバルブ切替え後の状態を示す図である。It is a figure which shows the state after valve switching at the time of implementing the 2nd washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 図10に示す電気透析装置を使用して室の第2の洗浄方法を実施する時の通水洗浄工程を示す図である。It is a figure which shows the water flow washing | cleaning process at the time of implementing the 2nd washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 図10に示す電気透析装置を使用して室の第2の洗浄方法を実施する時の通水停止時の状態を示す図である。It is a figure which shows the state at the time of a water flow stop at the time of implementing the 2nd washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 図10に示す電気透析装置を使用して室の第2の洗浄方法を実施する時のバルブ切替え後の状態を示す図である。It is a figure which shows the state after valve switching at the time of implementing the 2nd washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 図10に示す電気透析装置を使用して室の第2の洗浄方法を実施する時の運転待機状態を示す図である。It is a figure which shows the operation standby state when implementing the 2nd washing | cleaning method of a chamber using the electrodialyzer shown in FIG. 電気透析装置の電気透析槽の洗浄例における電気透析装置の運転状態を示す図である。It is a figure which shows the driving | running state of the electrodialysis apparatus in the washing | cleaning example of the electrodialysis tank of an electrodialysis apparatus. 電気透析装置の電気透析槽の洗浄例における電気透析装置の運転停止状態を示す図である。It is a figure which shows the operation stop state of the electrodialysis apparatus in the example of washing | cleaning of the electrodialysis tank of an electrodialysis apparatus. 電気透析装置の電気透析槽の洗浄例におけるフッ素濃縮水排出工程を示す図である。It is a figure which shows the fluorine concentrated water discharge process in the example of washing | cleaning of the electrodialysis tank of an electrodialysis apparatus. 電気透析装置の電気透析槽の洗浄例におけるバッファ水のフッ素濃縮水槽への移送工程を示す図である。It is a figure which shows the transfer process to the fluorine concentration water tank of the buffer water in the washing | cleaning example of the electrodialysis tank of an electrodialysis apparatus. 電気透析装置の電気透析槽の洗浄例における陽極水のバッファ水槽への移送工程を示す図である。It is a figure which shows the transfer process to the buffer water tank of the anode water in the washing | cleaning example of the electrodialysis tank of an electrodialysis apparatus. 電気透析装置の電気透析槽の洗浄例におけるフッ素濃縮室及びバッファ室の洗浄工程を示す図である。It is a figure which shows the washing | cleaning process of the fluorine concentration chamber and the buffer chamber in the example of washing | cleaning of the electrodialysis tank of an electrodialysis apparatus. 電気透析装置の電気透析槽の洗浄例におけるフッ素濃縮室洗浄水排出工程を示す図である。It is a figure which shows the fluorine concentration chamber washing water discharge process in the example of washing | cleaning of the electrodialysis tank of an electrodialysis apparatus. 電気透析装置の電気透析槽の洗浄例におけるバッファ水(陽極水)のフッ素濃縮室への移送工程を示す図である。It is a figure which shows the transfer process to the fluorine concentration chamber of the buffer water (anode water) in the example of washing | cleaning of the electrodialysis tank of an electrodialysis apparatus. 電気透析装置の電気透析槽の洗浄例におけるフッ素濃縮室の洗浄工程を示す図である。It is a figure which shows the washing | cleaning process of the fluorine concentration chamber in the example of washing | cleaning of the electrodialysis tank of an electrodialysis apparatus. 電気透析装置の電気透析槽の洗浄例におけるフッ素濃縮室洗浄水及び陰極水の排出工程を示す図である。It is a figure which shows the discharge process of the fluorine concentration chamber washing | cleaning water and cathode water in the washing | cleaning example of the electrodialysis tank of an electrodialysis apparatus. 電気透析装置の電気透析槽の洗浄例における処理水の各槽への移送工程を示す図である。It is a figure which shows the transfer process to each tank of the process water in the washing | cleaning example of the electrodialysis tank of an electrodialysis apparatus. 電気透析装置の電気透析槽の洗浄例における運転待機状態を示す図である。It is a figure which shows the operation standby state in the example of washing | cleaning of the electrodialysis tank of an electrodialysis apparatus.

符号の説明Explanation of symbols

10 電気透析槽
12 陽極
14 陰極
40 A室
42 供給配管
44 戻り配管
46 A槽
48,50 三方弁
52 液体
54a,54b 液引抜き管
56 B槽
58a,58b 洗浄水供給管
60 洗浄水排出管
62 洗浄水
70 原水槽
72 電気透析槽
74 陽極水槽
76 バッファ水槽
78 フッ素濃縮水槽
80 陰極水槽
82 処理水槽
84 濃縮水槽
86a 陽極室
86b バッファ室
86c フッ素濃縮室
86d 脱塩室
86e 陰極室
10 Electrodialysis tank 12 Anode 14 Cathode 40 A chamber 42 Supply pipe 44 Return pipe 46 A tank 48, 50 Three-way valve 52 Liquid 54a, 54b Liquid extraction pipe 56 B tank 58a, 58b Wash water supply pipe 60 Wash water discharge pipe 62 Wash Water 70 Raw water tank 72 Electrodialysis tank 74 Anode water tank 76 Buffer water tank 78 Fluorine concentrated water tank 80 Cathode water tank 82 Treated water tank 84 Concentrated water tank 86a Anode chamber 86b Buffer chamber 86c Fluorine concentration chamber 86d Desalination chamber 86e Cathode chamber

Claims (5)

電極間にイオン交換膜で区画された複数の室を配列し各室に所定の液体を供給して原水の電気透析を行う電気透析槽と、
前記各室に液体を供給する液体供給系と、
前記複数の室の少なくとも1つの室に、電気透析の際に供給される液体よりも原水成分濃度が低い流体を洗浄水として供給して該室を洗浄するように前記液体供給系を制御する制御部を有することを特徴とする電気透析装置。
An electrodialysis tank that arranges a plurality of chambers partitioned by an ion exchange membrane between electrodes and supplies a predetermined liquid to each chamber to perform electrodialysis of raw water,
A liquid supply system for supplying a liquid to each chamber;
Control for controlling the liquid supply system so that at least one of the plurality of chambers supplies a fluid having a raw water component concentration lower than that of the liquid supplied during electrodialysis as washing water to wash the chamber. An electrodialysis apparatus having a section.
電極間にイオン交換膜で区画された複数の室を配列し各室に所定の液体を供給して原水の電気透析を行う電気透析槽の少なくとも1つの室に、電気透析の際に供給される液体よりも原水成分濃度が低い液体を洗浄水として供給して該室を洗浄することを特徴とする電気透析装置の運用方法。   A plurality of chambers partitioned by ion exchange membranes are arranged between the electrodes, and a predetermined liquid is supplied to each chamber to supply at least one chamber of an electrodialysis tank for performing electrodialysis of raw water during electrodialysis. An operation method of an electrodialysis apparatus, comprising supplying a liquid having a lower raw water component concentration than the liquid as cleaning water to clean the chamber. 前記洗浄水として前記室に供給される原水成分濃度が低い液体は、電気透析の際に他の室に供給される液体、または処理水であることを特徴とする請求項2記載の電気透析装置の運用方法。   The electrodialysis apparatus according to claim 2, wherein the liquid having a low concentration of raw water components supplied to the chamber as the wash water is a liquid supplied to another chamber during electrodialysis or treated water. Operation method. 前記室の洗浄水による洗浄を、電気透析装置の運転を停止する前または後に行うことを特徴とする請求項2または3記載の電気透析装置の運用方法。   4. The method of operating an electrodialysis apparatus according to claim 2, wherein the chamber is washed with water before or after the operation of the electrodialysis apparatus is stopped. 前記原水は、フッ素を含む排水であることを特徴とする請求項2乃至4のいずれかに記載の電気透析装置の運用方法。   The method of operating an electrodialysis apparatus according to any one of claims 2 to 4, wherein the raw water is wastewater containing fluorine.
JP2008134660A 2008-04-25 2008-05-22 Electrodialyser and method for operating the same Pending JP2009279525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134660A JP2009279525A (en) 2008-04-25 2008-05-22 Electrodialyser and method for operating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008114881 2008-04-25
JP2008134660A JP2009279525A (en) 2008-04-25 2008-05-22 Electrodialyser and method for operating the same

Publications (1)

Publication Number Publication Date
JP2009279525A true JP2009279525A (en) 2009-12-03

Family

ID=41450557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134660A Pending JP2009279525A (en) 2008-04-25 2008-05-22 Electrodialyser and method for operating the same

Country Status (1)

Country Link
JP (1) JP2009279525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504680A (en) * 2011-02-03 2014-02-24 セラム ハイド In particular, an electrolytic cell for producing H2 and O2 and an assembly comprising the electrolytic cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504680A (en) * 2011-02-03 2014-02-24 セラム ハイド In particular, an electrolytic cell for producing H2 and O2 and an assembly comprising the electrolytic cell

Similar Documents

Publication Publication Date Title
US7862700B2 (en) Water treatment system and method
KR100396955B1 (en) Wet treatment method
JP5287713B2 (en) Cleaning and sterilization method for ultrapure water production system
KR101154154B1 (en) Electromembrane process and apparatus
CN1180988C (en) Water treatment facilities
JP2008036486A (en) Electric deionizer
JP2015500402A (en) Double diaphragm electrolyzer assembly and method for producing a cleaning solution free of residual salts and at the same time producing a disinfecting solution with predetermined levels of free active chlorine and PH
WO2009076225A1 (en) Membrane cycle cleaning
CN1865506A (en) Electrolytic cell, ion water purifier based on the electrolytic cell and electrolytic cell cleaning method
JP5844558B2 (en) Recycling method for waste liquid containing tetraalkylammonium hydroxide
JP2009279525A (en) Electrodialyser and method for operating the same
WO2020090468A1 (en) Apparatus for treating acidic treatment solution, and method for treating acidic treatment solution
TWI383955B (en) Water treatment system and method
JP2010194442A (en) Ion separation treatment method and ion separation treatment apparatus
JP2015195376A (en) Electrodialysis device and method and etching device using the same
TWI715974B (en) Method for removing chlorine-containing salt from industrial wastewater and apparatus thereof
KR100698580B1 (en) Device for circulation the electrode water for electrodeionization apparatus
JP2009142733A (en) Insoluble electrode and electrochemical liquid treatment apparatus
JP4505965B2 (en) Pure water production method
KR102523503B1 (en) Systems and methods for removing contamination from electroplating systems
JP6158681B2 (en) Deionized water production system and operation method thereof
JP2001252672A (en) Operation method for electric deionized water production device
JP2007157750A (en) Cleaning equipment and method
CN206529367U (en) A kind of processing of high slat-containing wastewater and resource recovery device
JP4051678B2 (en) Aluminum alloy surface treatment method and plating method, and aluminum alloy surface treatment facility and plating facility