JP2009278840A - Regenerative braking control unit of electric vehicle - Google Patents

Regenerative braking control unit of electric vehicle Download PDF

Info

Publication number
JP2009278840A
JP2009278840A JP2008130333A JP2008130333A JP2009278840A JP 2009278840 A JP2009278840 A JP 2009278840A JP 2008130333 A JP2008130333 A JP 2008130333A JP 2008130333 A JP2008130333 A JP 2008130333A JP 2009278840 A JP2009278840 A JP 2009278840A
Authority
JP
Japan
Prior art keywords
braking force
wheel
driving wheel
rear wheel
regenerative braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008130333A
Other languages
Japanese (ja)
Inventor
Naoe Iwata
直衛 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008130333A priority Critical patent/JP2009278840A/en
Publication of JP2009278840A publication Critical patent/JP2009278840A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform regenerative braking regulation in accordance with a braking slip of a driving wheel, so as not to exceedingly deviate a distribution of a braking force in front and rear wheels from an ideal distribution, even under any degree of required deceleration. <P>SOLUTION: A distribution rate in the braking force of driving wheels (rear wheels) is determined to value constant an approximate to an ideal distribution characteristic of the braking force in the front and rear wheels in the case of small slipping as shown in α of the distribution characteristic of the braking force in the front and rear wheels, when the slipping degree Slip of the driving wheels (rear wheels) amounts to a small value on braking; and as constant in the value approximate to the ideal distribution characteristic of the braking force in the front and rear wheels, in the case of large slipping as shown in β of the distribution characteristic of the braking force in the front and rear wheels, as the slipping degree Slip of the driving wheels (rear wheels) amounts to a larger value on braking. A regenerative braking force is regulated in the driving wheels (rear wheels) in accordance with the slipping degree Slip, based on the distribution rate in the braking force of the driving wheels (rear wheels). When giving a comment on a case where the degree of slipping is small, therefore, an operating point moves from A3 to A5, B3 to B5 when regulating the regenerative braking force, thereby minimizing deviation from the ideal distribution characteristic of the braking force in the front and rear wheels irrespective of the level of deceleration. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、原動機としてエンジンおよびモータ/ジェネレータを搭載し、モータ/ジェネレータのみによる電気走行や、エンジンおよび/またはモータ/ジェネレータによるハイブリッド走行が可能なハイブリッド車両とか、原動機として電動モータのみを搭載した電気自動車とかの電動車両の回生制動制御装置、特に、モータ/ジェネレータにより回生制動されている駆動輪が制動スリップを発生した時、旋回挙動が不安定になるのを防止すべく駆動輪の制動スリップを解消するための回生制動制限技術に関するものである。   The present invention includes an engine and a motor / generator mounted as a prime mover, and an electric vehicle equipped with only an electric motor as a prime mover, or a hybrid vehicle capable of electric travel using only the motor / generator, or hybrid travel using the engine and / or motor / generator. A regenerative braking control device for an electric vehicle such as an automobile, especially when a driving wheel regeneratively braked by a motor / generator generates a braking slip, the braking slip of the driving wheel is prevented to prevent the turning behavior from becoming unstable. The present invention relates to a regenerative braking restriction technique for solving the problem.

回生制動中の駆動輪が制動スリップを発生した時の回生制動制限技術としては従来、例えば特許文献1に記載のごとく、
駆動されない従動輪である前輪または後輪の車輪速に対し、駆動輪である他方の後輪または前輪の車輪速が相対的に低くなったのを、回生制動中の駆動輪が制動スリップを発生したとして、従動輪速に対する駆動輪速の車輪速偏差(駆動輪制動スリップ量)に応じ回生制動力を制限する技術が提案されている。
この提案技術は、上記の車輪速偏差(駆動輪制動スリップ量)が大きいほど回生制動力を強く制限して、回生制動中における駆動輪の制動スリップを制動力の制限により防止するというものである。
特開2006−246657号公報
As a regenerative braking restriction technique when the driving wheel during regenerative braking generates a braking slip, for example, as described in Patent Document 1, for example,
The driving wheel during regenerative braking generates braking slip because the wheel speed of the other rear wheel or front wheel, which is the driving wheel, is relatively lower than the wheel speed of the front wheel or rear wheel, which is the driven wheel that is not driven. Therefore, a technique has been proposed in which the regenerative braking force is limited according to the wheel speed deviation of the driving wheel speed (the driving wheel braking slip amount) with respect to the driven wheel speed.
In this proposed technique, the regenerative braking force is more strongly limited as the wheel speed deviation (drive wheel braking slip amount) is larger, and the braking slip of the drive wheel during regenerative braking is prevented by limiting the braking force. .
JP 2006-246657 A

しかし、従来のかかる駆動輪回生制動制限技術は、回生制動力の制限程度を上記の車輪速偏差(駆動輪制動スリップ量)が大きいほど強くするも、回生制動力の制限程度を車輪速偏差(駆動輪制動スリップ量)により一義的に決定するものであるため、以下に説明するような問題を生ずる。   However, this conventional driving wheel regenerative braking restriction technology increases the degree of restriction of the regenerative braking force as the above wheel speed deviation (drive wheel braking slip amount) increases, but the degree of restriction of the regenerative braking force is reduced to the wheel speed deviation ( The driving wheel braking slip amount) is unambiguously determined, resulting in problems as described below.

図10に基づき説明するに、Aは、ブレーキペダルを強く踏み込んだ大減速度要求時の制限前における回生制動力、Bは、ブレーキペダル踏力を小さくした小減速度要求時の制限前における回生制動力をそれぞれ示す。
これら大減速度要求時および小減速度要求時に、同じ車輪速偏差(駆動輪制動スリップ量)が発生した場合、回生制動力A,Bはそれぞれ、この車輪速偏差(駆動輪制動スリップ量)により一義的に決まる同じ回生制動力制限量A2,B2だけ制限されて、制限後回生制動力A1,B1へと低下される。
そして、これら回生制動力の制限分(低下分)A2,B2がそれぞれ、液圧ブレーキなどによる摩擦制動力により補われる。
Referring to FIG. 10, A is the regenerative braking force before the restriction at the time of requesting a large deceleration with the brake pedal strongly depressed, and B is the regenerative braking before the restriction at the time of a request for a small deceleration with a reduced brake pedal depression force. Each power is shown.
If the same wheel speed deviation (driving wheel braking slip amount) occurs at the time of requesting large deceleration and small deceleration, the regenerative braking forces A and B are respectively determined by this wheel speed deviation (driving wheel braking slip amount). Only the same regenerative braking force limit amount A2, B2 determined uniquely is limited, and the regenerative braking force A1, B1 after the limit is reduced.
Then, these regenerative braking force limits (decreases) A2 and B2 are supplemented by friction braking force by a hydraulic brake or the like, respectively.

しかし、大減速度要求時も小減速度要求時も、回生制動力A,Bを、車輪速偏差(駆動輪制動スリップ量)により一義的に決まる回生制動力制限量A2,B2だけ制限するというのでは、車輪速偏差(駆動輪制動スリップ量)が同じである場合、大減速度要求時も小減速度要求時も回生制動力制限量A2,B2が図10に示すように同じである。
このため、前輪または後輪のみをモータ駆動し、他方が従動輪である電動車両の場合、全てのブレーキペダル踏力(要求減速度)で適切な前後輪制動力配分とならない虞がある。
However, the regenerative braking force A, B is limited only by the regenerative braking force limit amount A2, B2, which is uniquely determined by the wheel speed deviation (drive wheel braking slip amount), both when requesting large deceleration and when requesting small deceleration. In the case where the wheel speed deviation (drive wheel braking slip amount) is the same, the regenerative braking force limit amounts A2 and B2 are the same as shown in FIG. 10 when the large deceleration is requested and when the small deceleration is requested.
For this reason, in the case of an electric vehicle in which only the front wheels or the rear wheels are motor-driven and the other is a driven wheel, there is a possibility that not all brake pedal depression forces (required deceleration) will provide an appropriate front-rear wheel braking force distribution.

例えば図11に示すように、A3点で後輪(駆動輪)を回生制動しながら制限前回生制動力Aで大減速度要求を実現しているとき、後輪(駆動輪)が制動スリップを生じて回生制動力Aを、この制動スリップ量により一義的に決まる回生制動力制限量A2だけ低下され、制限後回生制動力A1で後輪(駆動輪)を回生制動することになった場合、対応する等減速度前後輪制動力配分特性線上のA4点での制動となる。   For example, as shown in FIG. 11, when the rear wheel (driving wheel) achieves a large deceleration request with the limited previous braking force A while regeneratively braking the rear wheel (driving wheel) at point A3, the rear wheel (driving wheel) performs braking slip. If the regenerative braking force A is reduced by the regenerative braking force limit amount A2 that is uniquely determined by the braking slip amount and the rear wheel (drive wheel) is to be regeneratively braked with the regenerative braking force A1 after limitation, The braking is performed at point A4 on the corresponding equal deceleration front and rear wheel braking force distribution characteristic line.

また、小減速度要求時は同図に示すように、B3点で後輪(駆動輪)を回生制動しながら制限前回生制動力Bで小減速度要求を実現しているとき、後輪(駆動輪)が大減速度要求時と同じ制動スリップを生じて回生制動力Bを、この制動スリップ量により一義的に決まる回生制動力制限量B2(=A2)だけ低下され、制限後回生制動力B1で後輪(駆動輪)を回生制動することになった場合、対応する等減速度前後輪制動力配分特性線上のB4点での制動となる。   When small deceleration is requested, as shown in the figure, the rear wheel (driving wheel) is regeneratively braked at point B3, while the limited deceleration braking force B is used to achieve the small deceleration request, the rear wheel ( The drive wheel) generates the same braking slip as when a large deceleration is requested, and the regenerative braking force B is reduced by the regenerative braking force limit amount B2 (= A2) that is uniquely determined by this braking slip amount. When regenerative braking is applied to the rear wheels (drive wheels) at B1, braking is performed at point B4 on the corresponding constant deceleration front and rear wheel braking force distribution characteristic line.

図11の回生制動制限後動作点A4,B4の比較から明らかなように、小減速度要求時は回生制動が制限された場合に動作点がB4点となり、前後輪が同時に制動ロックする前後輪制動力理想配分特性線上に位置し、前後輪制動力配分が適切なものであるものの、
大減速度要求時は回生制動が制限された場合に動作点がA4点となり、前後輪制動力理想配分特性線から大きく乖離し、前後輪制動力配分が適切なものにならない。
As is clear from the comparison of the operation points A4 and B4 after regenerative braking restriction in Fig. 11, the operation point becomes B4 when regenerative braking is restricted at the time of a small deceleration request, and the front and rear wheels that simultaneously brake and lock the front and rear wheels Although it is located on the braking force ideal distribution characteristic line and the front and rear wheel braking force distribution is appropriate,
When regenerative braking is restricted at the time of a large deceleration request, the operating point becomes A4 point, which is greatly deviated from the front and rear wheel braking force ideal distribution characteristic line, and the front and rear wheel braking force distribution is not appropriate.

かように、ブレーキペダル踏力(要求減速度)と関係なく、回生制動力の制限量を駆動輪の制動スリップ量に応じ一義的に決めて回生制動力を制限するのでは(駆動輪制動スリップ量が同じなら回生制動力制限量を、要求減速度が大きい場合も小さい場合も同じにするのでは)、
上記のごとく、小減速度要求中の回生制動制限時に動作点が前後輪制動力理想配分特性線の近くに位置して前後輪制動力配分が適切なものとなるような回生制動制限態様にすると、
大減速度要求時に回生制動力制限量が充分でなくなって、摩擦制動力をも含めた車両全体の前後輪制動力配分が駆動輪制動力過多な配分となり、従動輪よりも先に駆動輪がタイヤ限界性能を超えて制動ロックを生じ、車両挙動が不安定になる。
In this way, regardless of the brake pedal depression force (required deceleration), the regenerative braking force limit amount is uniquely determined according to the braking slip amount of the driving wheel and the regenerative braking force is limited (driving wheel braking slip amount). If the two are the same, the regenerative braking force limit amount is the same whether the required deceleration is large or small)
As described above, when the regenerative braking restriction during the request for small deceleration is performed, the regenerative braking restriction mode is such that the operating point is located near the front / rear wheel braking force ideal distribution characteristic line and the front / rear wheel braking force distribution becomes appropriate. ,
When the large deceleration is requested, the regenerative braking force limit amount is not sufficient, and the front and rear wheel braking force distribution including the friction braking force becomes an excessive distribution of the driving wheel braking force, so that the driving wheel is ahead of the driven wheel. Brake lock occurs beyond the tire limit performance, and vehicle behavior becomes unstable.

つまり、図11の場合がそうであるが、後輪が駆動輪であり、前輪が従動輪である場合に、前輪よりも先に後輪がタイヤ限界性能を超えて制動ロックを生じることとなり、後輪よりも先に前輪が制動ロックを生じた場合よりも、車両の挙動が不安定になって好ましくない。   That is, as in the case of FIG. 11, when the rear wheel is a driving wheel and the front wheel is a driven wheel, the rear wheel exceeds the tire limit performance before the front wheel, and a braking lock is generated. This is not preferable because the behavior of the vehicle becomes unstable as compared with the case where the front wheel is braked before the rear wheel.

かといって逆に、大減速度要求中の回生制動制限時に動作点が前後輪制動力理想配分特性線の近くに位置して前後輪制動力配分が適切なものとなるような回生制動制限態様にすると、
後輪が駆動輪であり、前輪が従動輪である場合において、小減速度要求中の回生制動制限時に動作点が前後輪制動力理想配分特性線よりも前輪先ロック域に位置することとなり、上記した車両挙動の不安定についての問題は生じないものの、
上記の動作点が前後輪制動力理想配分特性線よりも必要以上に大きく離れて前輪先ロック域に位置することとなり、回生制動力制限量が過大であって、回生制動による燃費向上効果が低下するという問題を生ずる。
On the contrary, the regenerative braking restriction mode in which the operating point is located near the front and rear wheel braking force ideal distribution characteristic line and the front and rear wheel braking force distribution becomes appropriate when regenerative braking is restricted during a large deceleration request. Then
When the rear wheel is the driving wheel and the front wheel is the driven wheel, the operating point is located in the front wheel tip lock area than the front and rear wheel braking force ideal distribution characteristic line when regenerative braking is restricted while requesting small deceleration, Although the above problem of instability in vehicle behavior does not occur,
The above operating point is located farther than necessary from the front / rear wheel braking force ideal distribution characteristic line and is located in the front wheel tip lock region, and the regenerative braking force limit is excessive, reducing the fuel efficiency improvement effect due to regenerative braking. Cause problems.

本発明は、回生制動力制限量を駆動輪制動スリップ量に応じて決める限り上記の問題が発生するとの事実認識にもとづき、
この代わりに、回生制動される駆動輪の制動力配分比が、駆動輪制動スリップ量に応じて変化する前後輪制動力理想配分特性に近似する一定の前後輪制動力配分特性に対応したものとなるよう、駆動輪制動スリップ時回生制動制限制御を行う構成となして、
上記した二律背反の関係にある諸問題を共に解決し得るようにした電動車両の回生制動制御装置を提案することを目的とする。
The present invention is based on the fact that the above problem occurs as long as the regenerative braking force limit amount is determined according to the driving wheel braking slip amount,
Instead, the braking force distribution ratio of the regenerative braking drive wheel corresponds to a constant front and rear wheel braking force distribution characteristic that approximates the front and rear wheel braking force ideal distribution characteristic that changes according to the driving wheel braking slip amount. As a configuration to perform regenerative braking restriction control at the time of driving wheel braking slip,
It is an object of the present invention to propose a regenerative braking control device for an electric vehicle that can solve the above-mentioned problems of trade-off.

この目的のため本発明による電動車両の回生制動制御装置、請求項1に記載のごとく、
原動機として少なくともモータ/ジェネレータを搭載し、該モータ/ジェネレータにより駆動輪としての前輪または後輪を駆動したり回生制動し、回生制動力を、従動輪である後輪または前輪の車輪速に対する駆動輪の車輪速の偏差に応じ制限するようにした電動車両において、
駆動輪制動力配分比が、実用領域で前後輪制動力理想配分特性に近似する一定の前後輪制動力配分特性に対応したものとなるよう前記回生制動力の制限を行う構成としたことを特徴とするものである。
For this purpose, the regenerative braking control device for an electric vehicle according to the present invention, as claimed in claim 1,
At least a motor / generator is mounted as a prime mover, and the front wheel or rear wheel as a driving wheel is driven or regeneratively braked by the motor / generator, and the regenerative braking force is driven to the rear wheel or the front wheel speed that is the driven wheel. In an electric vehicle that is limited according to the wheel speed deviation of
The regenerative braking force is limited so that the driving wheel braking force distribution ratio corresponds to a constant front and rear wheel braking force distribution characteristic that approximates the front and rear wheel braking force ideal distribution characteristic in a practical range. It is what.

かかる本発明の構成によれば、
駆動輪としての前輪または後輪の回生制動力を、従動輪である後輪または前輪の車輪速に対する駆動輪の車輪速の偏差に応じ制限するに際し、
駆動輪制動力配分比が、実用領域で前後輪制動力理想配分特性に近似する一定の前後輪制動力配分特性に対応したものとなるよう当該回生制動力の制限を行うため、
大減速度要求中の回生制動制限時も、小減速度要求中の回生制動制限時も、動作点が前後輪制動力理想配分特性線の近くに位置して前後輪制動力配分を適切なものにすることができる。
According to the configuration of the present invention,
When limiting the regenerative braking force of the front wheel or the rear wheel as the driving wheel according to the deviation of the wheel speed of the driving wheel with respect to the wheel speed of the rear wheel or the front wheel which is the driven wheel,
In order to limit the regenerative braking force so that the driving wheel braking force distribution ratio corresponds to a constant front and rear wheel braking force distribution characteristic that approximates the front and rear wheel braking force ideal distribution characteristic in the practical range,
Appropriate front / rear wheel braking force distribution with the operating point located close to the front / rear wheel braking force ideal distribution characteristic line when regenerative braking is restricted while requesting large deceleration and when regenerative braking is restricted while requesting small deceleration Can be.

このため、大減速度要求中の回生制動制限時に後輪が前輪よりも先にタイヤ限界性能を超えて制動ロックを生じ、車両の挙動が不安定になるという前記の問題を生ずることがないし、
小減速度要求中の回生制動制限時に回生制動力制限量が不必要に多くなって、回生制動による燃費向上効果が低下するという前記の問題を生ずることもない。
For this reason, when regenerative braking is restricted during a large deceleration request, the rear wheel exceeds the tire limit performance before the front wheel, causing a braking lock, and the above problem that the behavior of the vehicle becomes unstable does not occur.
The regenerative braking force limit amount is unnecessarily increased when the regenerative braking is restricted during the small deceleration request, and the above-described problem that the fuel efficiency improvement effect due to the regenerative braking is reduced does not occur.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
図1は、本発明の一実施例になる回生制動制御装置を搭載したフロントエンジン・リヤホイールドライブ式ハイブリッド車両(電動車両)のパワートレーンを、その制御系とともに示し、
1は原動機としてのエンジン、2FL,2FRはそれぞれ左右前輪(左右従動輪)、3RL,3RRはそれぞれ左右後輪(左右駆動輪)である。
図1に示すハイブリッド車両のパワートレーンにおいては、通常の後輪駆動車と同様にエンジン1の車両前後方向後方に自動変速機4をタンデムに配置し、エンジン1(詳しくはクランクシャフト1a)からの回転を自動変速機4の入力軸4aへ伝達する軸5に結合して、第2の原動機であるモータ/ジェネレータ6を設ける。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
FIG. 1 shows a power train of a front engine / rear wheel drive hybrid vehicle (electric vehicle) equipped with a regenerative braking control device according to an embodiment of the present invention, along with its control system,
1 is an engine as a prime mover, 2FL and 2FR are left and right front wheels (left and right driven wheels), and 3RL and 3RR are left and right rear wheels (right and left drive wheels), respectively.
In the power train of the hybrid vehicle shown in FIG. 1, an automatic transmission 4 is arranged in tandem at the rear of the engine 1 in the vehicle front-rear direction in the same manner as a normal rear wheel drive vehicle, and the engine 1 (specifically, the crankshaft 1a) A motor / generator 6 serving as a second prime mover is provided in connection with the shaft 5 that transmits the rotation to the input shaft 4a of the automatic transmission 4.

モータ/ジェネレータ6は、ハウジング内に固設した環状のステータ6aと、このステータ6a内に所定のエアギャップを持たせて同心に配置したロータ6bとよりなり、運転状態の要求に応じ、モータ(電動機)として作用したり、ジェネレータ(発電機)として作用するもので、エンジン1および自動変速機4間に配置する。
モータ/ジェネレータ6は、ロータ6bの中心に上記の軸5を貫通して結着し、この軸5をモータ/ジェネレータ軸として利用する。
The motor / generator 6 includes an annular stator 6a fixed in the housing and a rotor 6b disposed concentrically with a predetermined air gap in the stator 6a. Acts as an electric motor) or as a generator (generator), and is disposed between the engine 1 and the automatic transmission 4.
The motor / generator 6 is connected to the center of the rotor 6b through the shaft 5, and this shaft 5 is used as a motor / generator shaft.

かかるモータ/ジェネレータ6およびエンジン1間、詳しくは、モータ/ジェネレータ軸5とエンジンクランクシャフト1aとの間に第1クラッチ7を介挿し、この第1クラッチ7によりエンジン1およびモータ/ジェネレータ6間を切り離し可能に結合する。
ここで第1クラッチ7は、伝達トルク(クラッチ締結)容量を連続的に変更可能なものとし、例えば、比例ソレノイドでクラッチ作動油流量およびクラッチ作動油圧を連続的に制御して伝達トルク(クラッチ締結)容量を変更可能な湿式多板クラッチで構成する。
The first clutch 7 is inserted between the motor / generator 6 and the engine 1, more specifically, between the motor / generator shaft 5 and the engine crankshaft 1a, and the engine 1 and the motor / generator 6 are connected by the first clutch 7. Combine in a detachable manner.
Here, it is assumed that the first clutch 7 is capable of continuously changing the transmission torque (clutch engagement) capacity. For example, the first clutch 7 continuously controls the clutch hydraulic oil flow rate and the clutch operation hydraulic pressure with a proportional solenoid to transmit the transmission torque (clutch engagement). ) Consists of wet multi-plate clutch with variable capacity.

モータ/ジェネレータ6および自動変速機4間は、モータ/ジェネレータ軸5と変速機入力軸4aとの直接結合により相互に直結させる。
自動変速機4は、周知の遊星歯車組式自動変速機と同様なものであるが、これからトルクコンバータを排除して、その代わりにモータ/ジェネレータ6を変速機入力軸4aに直接結合したものとし、
複数の変速摩擦要素(クラッチやブレーキ等)を選択的に締結させたり、解放することで、これら変速摩擦要素の締結・解放の組み合わせにより伝動系路(変速段)を決定するものとする。
The motor / generator 6 and the automatic transmission 4 are directly coupled to each other by direct coupling of the motor / generator shaft 5 and the transmission input shaft 4a.
The automatic transmission 4 is similar to the known planetary gear set type automatic transmission, except that the torque converter is excluded from this, and instead the motor / generator 6 is directly coupled to the transmission input shaft 4a. ,
By selectively engaging or releasing a plurality of speed change friction elements (clutch, brake, etc.), the transmission system path (speed stage) is determined by a combination of engagement and release of these speed change friction elements.

従って自動変速機4は、入力軸4aからの回転を選択変速段に応じたギヤ比で変速して出力軸4bに出力する。
この出力回転は、ディファレンシャルギヤ装置8により左右後輪3RL,3RRへ分配して伝達され、車両の走行に供される。
但し自動変速機4は、上記したような有段式のものに限られず、無段変速機であってもよいのは言うまでもない。
Accordingly, the automatic transmission 4 shifts the rotation from the input shaft 4a with a gear ratio corresponding to the selected shift speed, and outputs it to the output shaft 4b.
This output rotation is distributed and transmitted to the left and right rear wheels 3RL and 3RR by the differential gear device 8, and is used for traveling of the vehicle.
However, it goes without saying that the automatic transmission 4 is not limited to the stepped type as described above, and may be a continuously variable transmission.

なおハイブリッド車両にあっては、モータ/ジェネレータ6および駆動輪3RL,3RR を切り離し可能に結合する第2クラッチ9が必要であるが、
本実施例においてはこの第2クラッチ9を自動変速機4の前、若しくは、後に追加して新設する構成を採用せず、
この代わりに第2クラッチ9として、自動変速機4内に既存する前記した変速摩擦要素のうち、前進変速段選択用の変速摩擦要素または後退変速段選択用の変速摩擦要素を流用する。
In the hybrid vehicle, the second clutch 9 that detachably couples the motor / generator 6 and the drive wheels 3RL and 3RR is necessary.
In this embodiment, the second clutch 9 is not added to the automatic transmission 4 or after the automatic transmission 4, and a new configuration is not adopted.
Instead, among the above-described shift friction elements existing in the automatic transmission 4, as the second clutch 9, a shift friction element for selecting a forward shift stage or a shift friction element for selecting a reverse shift stage is used.

ちなみに、第2クラッチ9として用いる自動変速機4内に既存の前進変速段選択用の変速摩擦要素または後退変速段選択用の変速摩擦要素はもともと、前記した第1クラッチ7と同様、伝達トルク容量(クラッチ締結容量)を連続的に変更可能なものである。
かように、第2クラッチ9として自動変速機4内に既存の前進変速段選択用の変速摩擦要素または後退変速段選択用の変速摩擦要素を流用する場合、第2クラッチ9が以下に説明するモード選択機能を果たすのに加えて、この機能を果たすよう締結される時に自動変速機を対応変速段への変速により動力伝達状態にすることとなり、専用の第2クラッチが不要でコスト上大いに有利である。
Incidentally, in the automatic transmission 4 used as the second clutch 9, the existing transmission friction element for selecting the forward shift stage or the shift friction element for selecting the reverse shift stage is originally transmitted torque capacity similarly to the first clutch 7 described above. The (clutch engagement capacity) can be continuously changed.
As described above, when the existing shift friction element for selecting the forward shift stage or the shift friction element for selecting the reverse shift stage is used as the second clutch 9 in the automatic transmission 4, the second clutch 9 will be described below. In addition to fulfilling the mode selection function, the automatic transmission is put into a power transmission state by shifting to the corresponding gear stage when engaged to fulfill this function, and a dedicated second clutch is unnecessary, which is very advantageous in terms of cost. It is.

以下、図1につき上述したパワートレーンのモード選択機能を説明する。
図1に示したパワートレーンにおいては、停車状態からの発進時などを含む低負荷・低車速時に用いられる電気走行(EV走行)モードが要求される場合、第1クラッチ7を解放し、自動変速機4を第2クラッチ9の締結により動力伝達可能状態にする。
The power train mode selection function described above with reference to FIG. 1 will be described below.
In the power train shown in FIG. 1, when the electric driving (EV driving) mode used at low load and low vehicle speed including when starting from a stopped state is required, the first clutch 7 is disengaged and the automatic shifting is performed. The machine 4 is brought into a power transmission enabled state by engaging the second clutch 9.

この状態でモータ/ジェネレータ6を駆動すると、当該モータ/ジェネレータ6からの出力回転のみが変速機入力軸4aに達することとなり、自動変速機4が当該入力軸4aへの回転を、選択中の変速段に応じ変速して変速機出力軸4bより出力する。
変速機出力軸4bからの回転はその後、ディファレンシャルギヤ装置8を経て後輪3RL,3RRに至り、車両をモータ/ジェネレータ6のみによって電気走行(EV走行)させることができる。
When the motor / generator 6 is driven in this state, only the output rotation from the motor / generator 6 reaches the transmission input shaft 4a, and the automatic transmission 4 changes the rotation to the input shaft 4a to the selected shift speed. The speed is changed according to the speed and output from the transmission output shaft 4b.
The rotation from the transmission output shaft 4b then reaches the rear wheels 3RL and 3RR via the differential gear device 8, and the vehicle can be electrically driven (EV traveling) only by the motor / generator 6.

高速走行時や大負荷走行時などで用いられるハイブリッド走行(HEV走行)モードが要求される場合、第1クラッチ7を締結させると共に、自動変速機4を第2クラッチ9の締結により動力伝達可能状態にする。
この状態では、エンジン1からの出力回転、または、エンジン1からの出力回転およびモータ/ジェネレータ6からの出力回転の双方が変速機入力軸4aに達することとなり、自動変速機4が当該入力軸4aへの回転を、選択中の変速段に応じ変速して、変速機出力軸4bより出力する。
変速機出力軸4bからの回転はその後、ディファレンシャルギヤ装置8を経て後輪3RL,3RRに至り、車両をエンジン1およびモータ/ジェネレータ6の双方によってハイブリッド走行(HEV走行)させることができる。
When the hybrid travel (HEV travel) mode used for high speed travel or heavy load travel is required, the first clutch 7 is engaged and the automatic transmission 4 can be transmitted power by engaging the second clutch 9. To.
In this state, the output rotation from the engine 1, or both the output rotation from the engine 1 and the output rotation from the motor / generator 6 reach the transmission input shaft 4a, and the automatic transmission 4 is connected to the input shaft 4a. Is rotated according to the selected gear position and output from the transmission output shaft 4b.
The rotation from the transmission output shaft 4b then reaches the rear wheels 3RL and 3RR via the differential gear device 8, and the vehicle can be hybrid-run (HEV-run) by both the engine 1 and the motor / generator 6.

かかるHEV走行中において、エンジン1を最適燃費で運転させるとエネルギーが余剰となる場合、この余剰エネルギーによりモータ/ジェネレータ6を発電機として作動させることで余剰エネルギーを電力に変換し、この発電電力をモータ/ジェネレータ6のモータ駆動に用いるよう蓄電しておくことでエンジン1の燃費を向上させることができる。   In such HEV traveling, if the engine 1 is operated with the optimum fuel efficiency and the energy becomes surplus, the surplus energy is converted into electric power by operating the motor / generator 6 as a generator by this surplus energy, and this generated power is converted into electric power. By accumulating power to be used for driving the motor of the motor / generator 6, the fuel consumption of the engine 1 can be improved.

以下、上記したハイブリッド車両のパワートレーンを成すエンジン1、モータ/ジェネレータ6、第1クラッチ7、および第2クラッチ9の制御システムを、図1に基づき概略説明する。
この制御システムは、パワートレーンの動作点を統合制御する統合コントローラ11を具え、該パワートレーンの動作点を、目標エンジントルクtTeと、目標モータ/ジェネレータトルクtTmと、第1クラッチ7の目標締結容量tTc1(第1クラッチ締結圧指令値tPc1)と、第2クラッチ9の目標締結容量tTc2(第2クラッチ締結圧指令値tPc2)とで規定する。
Hereinafter, a control system for the engine 1, the motor / generator 6, the first clutch 7, and the second clutch 9 constituting the power train of the hybrid vehicle described above will be schematically described with reference to FIG.
This control system includes an integrated controller 11 that performs integrated control of the operating point of the power train. The operating point of the power train includes the target engine torque tTe, the target motor / generator torque tTm, and the target engagement capacity of the first clutch 7. It is defined by tTc1 (first clutch engagement pressure command value tPc1) and target engagement capacity tTc2 (second clutch engagement pressure command value tPc2) of the second clutch 9.

統合コントローラ11には、上記パワートレーンの動作点を決定するために、
エンジン回転数Neを検出するエンジン回転センサ12からの信号と、
モータ/ジェネレータ回転数Nmを検出するモータ/ジェネレータ回転センサ13からの信号と、
変速機入力回転数Niを検出する入力回転センサ14からの信号と、
変速機出力回転数Noを検出する出力回転センサ15からの信号と、
アクセルペダル踏み込み量(アクセル開度APO)を検出するアクセル開度センサ16からの信号と、
モータ/ジェネレータ6用の電力を蓄電しておくバッテリ31の蓄電状態SOC(持ち出し可能電力)を検出する蓄電状態センサ17からの信号と、
ブレーキペダル踏力に応じたマスターシリンダ液圧Pmを検出するマスターシリンダ液圧センサ18からの信号と、
左右前輪(左右従動輪)2FL,2FRおよび左右後輪(左右駆動輪)3RL,3RRの車輪速Vwを個々に検出する車輪速センサ群21からの信号とを入力する。
In the integrated controller 11, in order to determine the operating point of the power train,
A signal from the engine speed sensor 12 for detecting the engine speed Ne;
A signal from the motor / generator rotation sensor 13 for detecting the motor / generator rotation speed Nm,
A signal from the input rotation sensor 14 for detecting the transmission input rotation speed Ni;
A signal from the output rotation sensor 15 that detects the transmission output rotation speed No,
A signal from the accelerator opening sensor 16 for detecting the accelerator pedal depression amount (accelerator opening APO);
A signal from a storage state sensor 17 that detects a storage state SOC (carryable power) of a battery 31 that stores power for the motor / generator 6;
A signal from the master cylinder hydraulic pressure sensor 18 that detects the master cylinder hydraulic pressure Pm according to the brake pedal depression force,
Signals from a wheel speed sensor group 21 that individually detect the wheel speeds Vw of the left and right front wheels (left and right driven wheels) 2FL and 2FR and the left and right rear wheels (right and left drive wheels) 3RL and 3RR are input.

統合コントローラ11は、上記入力情報のうちアクセル開度APO、バッテリ蓄電状態SOC、および変速機出力回転数No(車速VSP)から、運転者が希望している車両の駆動力を実現可能な運転モード(EVモード、HEVモード)を選択すると共に、目標エンジントルクtTe、目標モータ/ジェネレータトルクtTm、第1クラッチ目標締結容量tTc1、および第2クラッチ目標締結容量tTc2をそれぞれ演算する。   The integrated controller 11 is a driving mode in which the driving force of the vehicle desired by the driver can be realized from the accelerator opening APO, the battery storage state SOC, and the transmission output rotational speed No (vehicle speed VSP) among the above input information. (EV mode, HEV mode) is selected, and target engine torque tTe, target motor / generator torque tTm, first clutch target engagement capacity tTc1, and second clutch target engagement capacity tTc2 are calculated.

目標エンジントルクtTeはエンジンコントローラ32に供給され、このエンジンコントローラ32は、センサ12で検出したエンジン回転数Neと目標エンジントルクtTeとから、エンジン回転数Neのもとで目標エンジントルクtTeを実現するためのスロットル開度制御や燃料噴射量制御などにより、エンジントルクが目標エンジントルクtTeとなるようエンジン1を制御する。   The target engine torque tTe is supplied to the engine controller 32. The engine controller 32 realizes the target engine torque tTe based on the engine speed Ne from the engine speed Ne detected by the sensor 12 and the target engine torque tTe. Therefore, the engine 1 is controlled so that the engine torque becomes the target engine torque tTe by the throttle opening control and the fuel injection amount control.

目標モータ/ジェネレータトルクtTmはモータ/ジェネレータコントローラ33に供給され、このモータ/ジェネレータコントローラ33は、バッテリ31の電力をインバータ34により直流−交流変換して、またインバータ34による制御下でモータ/ジェネレータ6のステータ6aに供給し、モータ/ジェネレータトルクが目標モータ/ジェネレータトルクtTmに一致するようモータ/ジェネレータを制御する。   The target motor / generator torque tTm is supplied to the motor / generator controller 33. The motor / generator controller 33 converts the electric power of the battery 31 from DC to AC by the inverter 34, and the motor / generator 6 under the control of the inverter 34. And the motor / generator torque is controlled so that the motor / generator torque matches the target motor / generator torque tTm.

なお目標モータ/ジェネレータトルクtTmが、モータ/ジェネレータ6に回生制動作用を要求するようなものである場合、モータ/ジェネレータコントローラ33はインバータ34を介し、センサ17で検出したバッテリ蓄電状態SOC(持ち出し可能電力)との関連においてバッテリ31が過充電とならないような発電負荷をモータ/ジェネレータ6に与え、
モータ/ジェネレータ6が回生制動により発電した電力を交流−直流変換してバッテリ31に充電する。
When the target motor / generator torque tTm is such that the motor / generator 6 requires regenerative braking action, the motor / generator controller 33 is connected to the battery storage state SOC detected by the sensor 17 via the inverter 34 (can be taken out) In relation to the electric power), a power generation load is applied to the motor / generator 6 so that the battery 31 is not overcharged.
The electric power generated by the regenerative braking by the motor / generator 6 is AC-DC converted and the battery 31 is charged.

かかるモータ/ジェネレータ6の回生ブレーキのみでは制動力が不足する場合、統合コントローラ11は、不足分の制動力を液圧ブレーキシステムで補うべく摩擦制動力指令値Tfを回生協調ブレーキ制御指令としてブレーキコントローラ35に供給する。
ブレーキコントローラ35は、回生協調ブレーキ制御指令がない場合(摩擦制動力指令値Tf=0の場合)、ブレーキペダル踏力に応じたマスターシリンダ液圧Pmを検出するマスターシリンダ液圧センサ18からの信号をもとに、各輪ブレーキユニットのブレーキ液圧をそれぞれ、変更不能な固定の前後輪摩擦制動力配分比でマスターシリンダ液圧Pmに応じた液圧に制御するが、
統合コントローラ11から回生協調ブレーキ制御指令(摩擦制動力指令値Tf>0)を受けるときブレーキコントローラ35は、摩擦制動力指令値Tf(>0)を液圧ブレーキシステムにより実現すべく各輪ブレーキユニットのブレーキ液圧をそれぞれ、変更不能な固定の前後輪摩擦制動力配分比で摩擦制動力指令値Tfに応じた液圧に制御する。
When the braking force is insufficient with only the regenerative braking of the motor / generator 6, the integrated controller 11 uses the brake braking command value Tf as a regenerative cooperative brake control command to supplement the insufficient braking force with the hydraulic brake system. Supply to 35.
When there is no regenerative cooperative brake control command (when the friction braking force command value Tf = 0), the brake controller 35 receives a signal from the master cylinder hydraulic pressure sensor 18 that detects the master cylinder hydraulic pressure Pm according to the brake pedal depression force. Originally, the brake fluid pressure of each wheel brake unit is controlled to a fluid pressure corresponding to the master cylinder fluid pressure Pm with a fixed front and rear wheel friction braking force distribution ratio that cannot be changed,
When receiving the regenerative cooperative brake control command (friction braking force command value Tf> 0) from the integrated controller 11, the brake controller 35 is configured to apply the friction braking force command value Tf (> 0) to each wheel brake unit by the hydraulic brake system. The brake hydraulic pressure is controlled to a hydraulic pressure corresponding to the friction braking force command value Tf with a fixed front and rear wheel friction braking force distribution ratio that cannot be changed.

第1クラッチ目標締結容量tTc1は第1クラッチコントローラ36に供給され、この第1クラッチコントローラ36は、第1クラッチ目標締結容量tTc1に対応した第1クラッチ締結圧指令値tPc1と、センサ19で検出した第1クラッチ7の締結圧Pc1との対比により、第1クラッチ7の締結圧Pc1が第1クラッチ締結圧指令値tPc1となるよう第1クラッチ締結圧制御ユニット37を介して第1クラッチ7の締結圧を制御して第1クラッチ7の締結容量制御を行う。   The first clutch target engagement capacity tTc1 is supplied to the first clutch controller 36. The first clutch controller 36 detects the first clutch engagement pressure command value tPc1 corresponding to the first clutch target engagement capacity tTc1 and the sensor 19. The first clutch 7 is engaged via the first clutch engagement pressure control unit 37 so that the engagement pressure Pc1 of the first clutch 7 becomes the first clutch engagement pressure command value tPc1 by comparison with the engagement pressure Pc1 of the first clutch 7. The engagement capacity of the first clutch 7 is controlled by controlling the pressure.

第2クラッチ目標締結容量tTc2は変速機コントローラ38に供給され、
この変速機コントローラ38は、第2クラッチ目標締結容量tTc2に対応した第2クラッチ締結圧指令値tPc2と、センサ20で検出した第2クラッチ9の締結圧Pc2との対比により、第2クラッチ9の締結圧Pc2が第2クラッチ締結圧指令値tPc2となるよう第2クラッチ締結圧制御ユニット39を介して第2クラッチ9の締結圧を制御して第2クラッチ9の締結容量制御を行う。
The second clutch target engagement capacity tTc2 is supplied to the transmission controller 38,
The transmission controller 38 compares the second clutch engagement pressure command value tPc2 corresponding to the second clutch target engagement capacity tTc2 with the engagement pressure Pc2 of the second clutch 9 detected by the sensor 20, and The engagement capacity of the second clutch 9 is controlled by controlling the engagement pressure of the second clutch 9 via the second clutch engagement pressure control unit 39 so that the engagement pressure Pc2 becomes the second clutch engagement pressure command value tPc2.

なお変速機コントローラ38は、センサ15で検出した変速機出力回転数No(車速VSP)およびセンサ16で検出したアクセル開度APOから予定の変速マップをもとに、現在の運転状態に好適な変速段を求め、現在の変速段からこの好適変速段への自動変速をも行うものとする。   The transmission controller 38 selects a gear suitable for the current driving state based on the planned shift map from the transmission output rotation speed No (vehicle speed VSP) detected by the sensor 15 and the accelerator opening APO detected by the sensor 16. It is assumed that an automatic shift from the current gear to this preferred gear is also performed.

以上は、図1の制御システムが実行する通常制御の概要であるが、
本実施例においては図1における統合コントローラ11が、図示せざるブレーキペダルの踏み込みによる減速要求中、図2に示す制御プログラムを実行して、本発明が狙いとする回生制動制御を以下のように行うものとする。
The above is an outline of the normal control executed by the control system of FIG.
In this embodiment, the integrated controller 11 in FIG. 1 executes the control program shown in FIG. 2 during a deceleration request by depressing a brake pedal (not shown), and the regenerative braking control targeted by the present invention is as follows: Assumed to be performed.

ステップS11においては、センサ18で検出したマスターシリンダ液圧Pm(ブレーキペダルの踏み込みストロークでもよい)から、運転者が希望している車両の目標減速度Gsを算出する。
次のステップS12においては、この目標減速度Gsを発生させるために必要な車両の目標総制動力Tbを、予定の目標制動力マップの検索により、または車両モデルに基づく演算により求める。
In step S11, the vehicle target deceleration Gs desired by the driver is calculated from the master cylinder hydraulic pressure Pm detected by the sensor 18 (may be a brake pedal depression stroke).
In the next step S12, the target total braking force Tb of the vehicle necessary for generating the target deceleration Gs is obtained by searching a planned target braking force map or by calculation based on the vehicle model.

次のステップS13においては、車輪速センサ群21で検出した車輪速Vwをもとに、従動輪速(前輪速)から駆動輪速(後輪速)を差し引いて両者間の車輪速偏差を算出し、この車輪速偏差を駆動輪(後輪)の制動スリップ量Slipとする。
この駆動輪(後輪)制動スリップ量Slipを算出するに際しては、図3に明示するごとく、右従動輪速(右前輪速)から右駆動輪速(右後輪速)を差し引いて右車輪速偏差を算出すると共に、左従動輪速(左前輪速)から左駆動輪速(左後輪速)を差し引いて左車輪速偏差を算出し、右車輪速偏差および左車輪速偏差のうち、大きい方の車輪速偏差を選択して(MAXにより示す)、駆動輪(後輪)の制動スリップ量Slipとする。
In the next step S13, based on the wheel speed Vw detected by the wheel speed sensor group 21, the wheel speed deviation between the two is calculated by subtracting the driving wheel speed (rear wheel speed) from the driven wheel speed (front wheel speed). The wheel speed deviation is defined as the braking slip amount Slip of the drive wheel (rear wheel).
When calculating the driving wheel (rear wheel) braking slip amount Slip, as clearly shown in FIG. 3, the right wheel speed is calculated by subtracting the right driving wheel speed (right rear wheel speed) from the right driven wheel speed (right front wheel speed). While calculating the deviation, the left wheel speed deviation is calculated by subtracting the left driving wheel speed (left rear wheel speed) from the left driven wheel speed (left front wheel speed), and the larger of the right wheel speed deviation and the left wheel speed deviation. One wheel speed deviation is selected (indicated by MAX) to be the braking slip amount Slip of the driving wheel (rear wheel).

ステップS14においては、図4に例示するマップをもとに上記の駆動輪(後輪)制動スリップ量Slipから駆動輪(後輪)制動力配分比BTOrを検索し、1から駆動輪(後輪)制動力配分比BTOrを差し引いて従動輪(前輪)制動力配分比BTOfを算出する。
ここで駆動輪(後輪)制動力配分比BTOrは、図4から明らかなように駆動輪(後輪)制動スリップ量Slipが多いほど小さくするが、
駆動輪(後輪)制動スリップ量Slipが第1の設定スリップ量Slip1未満である場合、駆動輪(後輪)制動力配分比BTOrを、駆動輪(後輪)制動スリップ量Slipが第1の設定スリップ量Slip1である時の上限値に保つ。
なお、かかる駆動輪(後輪)制動力配分比BTOrの上限値は、前後輪制動力配分特性が図6にαで例示するごとく実用領域において、当該少ない駆動輪(後輪)制動スリップ量のもとでの図示する前後輪制動力理想配分特性に近似する一定配分比となるような値に対応させる。
In step S14, the driving wheel (rear wheel) braking force distribution ratio BTOr is retrieved from the driving wheel (rear wheel) braking slip amount Slip based on the map illustrated in FIG. ) Subtract the braking force distribution ratio BTOr to calculate the driven wheel (front wheel) braking force distribution ratio BTOf.
Here, the driving wheel (rear wheel) braking force distribution ratio BTOr is made smaller as the driving wheel (rear wheel) braking slip amount Slip increases, as is apparent from FIG.
When the driving wheel (rear wheel) braking slip amount Slip is less than the first set slip amount Slip1, the driving wheel (rear wheel) braking force distribution ratio BTOr is set, and the driving wheel (rear wheel) braking slip amount Slip is the first amount. Keep the upper limit when the set slip amount is Slip1.
Note that the upper limit value of the driving wheel (rear wheel) braking force distribution ratio BTOr is such that the front and rear wheel braking force distribution characteristics are represented by α in FIG. It is made to correspond to a value that becomes a constant distribution ratio that approximates the ideal front / rear wheel braking force distribution characteristic shown in the figure.

そして図4に示すごとく、駆動輪(後輪)制動スリップ量Slipが第1の設定スリップ量Slip1以上、第2の設定スリップ量Slip2未満である場合、駆動輪(後輪)制動スリップ量Slipが大きくなるほど駆動輪(後輪)制動力配分比BTOrを上記の上限値から徐々に低下させる。
かかる駆動輪(後輪)制動力配分比BTOrの低下は、駆動輪(後輪)制動スリップ量Slipが大きくなるにつれて前後輪制動力理想配分特性が図6に示すものから一層なだらかなものに変化するのに対応させ、当該変化した前後輪制動力理想配分特性に対し、上記低下した駆動輪(後輪)制動力配分比BTOrが前後輪制動力配分特性を近似させ続けるようになす。
As shown in FIG. 4, when the driving wheel (rear wheel) braking slip amount Slip is not less than the first set slip amount Slip1 and less than the second set slip amount Slip2, the driving wheel (rear wheel) braking slip amount Slip is As the value increases, the driving wheel (rear wheel) braking force distribution ratio BTOr is gradually reduced from the upper limit.
This decrease in the driving wheel (rear wheel) braking force distribution ratio BTOr changes the ideal distribution characteristic of the front and rear wheel braking force from the one shown in FIG. 6 to a more gentle one as the driving wheel (rear wheel) braking slip amount Slip increases. Accordingly, the reduced driving wheel (rear wheel) braking force distribution ratio BTOr keeps approximating the front and rear wheel braking force distribution characteristics with respect to the changed front and rear wheel braking force ideal distribution characteristics.

駆動輪(後輪)制動スリップ量Slipが第2の設定スリップ量Slip2以上である場合、駆動輪(後輪)制動力配分比BTOrを、駆動輪(後輪)制動スリップ量Slipが第2の設定スリップ量Slip2である時の下限値に保つ。
ここで、駆動輪(後輪)制動力配分比BTOrの下限値は、前後輪制動力配分特性が図6にβで例示するごときものとし、
好ましくは、図1のブレーキコントローラ35につき前述した、液圧式摩擦ブレーキの変更不能な固定の前後輪摩擦制動力配分比に対応する値となすのが良い。
よって、駆動輪(後輪)制動力配分比BTOrと、これから演算により求めた従動輪(前輪)制動力配分比BTOfとで決まる前後輪制動力配分特性は、駆動輪(後輪)制動スリップ量Slipが多くなるにつれ、図6のα特性からβ特性に向けて変化する。
When the driving wheel (rear wheel) braking slip amount Slip is equal to or larger than the second set slip amount Slip2, the driving wheel (rear wheel) braking force distribution ratio BTOr is set, and the driving wheel (rear wheel) braking slip amount Slip is the second setting slip amount Slip2. Keep the lower limit when the set slip amount is Slip2.
Here, the lower limit value of the driving wheel (rear wheel) braking force distribution ratio BTOr is as shown in FIG.
Preferably, the value should correspond to the fixed front and rear wheel friction braking force distribution ratio of the hydraulic friction brake, which cannot be changed, as described above with respect to the brake controller 35 of FIG.
Therefore, the front and rear wheel braking force distribution characteristics determined by the driving wheel (rear wheel) braking force distribution ratio BTOr and the driven wheel (front wheel) braking force distribution ratio BTOf obtained from the calculation are the driving wheel (rear wheel) braking slip amount. As the number of slips increases, the α characteristic in FIG. 6 changes toward the β characteristic.

図2のステップS15においては、センサ17で検出したバッテリ蓄電状態SOC(持ち出し可能電力)およびセンサ13で検出したモータ/ジェネレータ回転数Nmなどから決まる許容最大回生制動力Tmmaxをマップ検索などにより求める。
次のステップS16においては、ステップS12で求めた目標総制動力Tbに、ステップS14で求めた従動輪(前輪)制動力配分比RTOfを乗じて、従動輪(前輪)の摩擦制動力Tbffを算出する。
In step S15 in FIG. 2, the allowable maximum regenerative braking force Tmmax determined from the battery storage state SOC (capable power to be taken out) detected by the sensor 17 and the motor / generator rotation speed Nm detected by the sensor 13 is obtained by map search or the like.
In the next step S16, the target total braking force Tb obtained in step S12 is multiplied by the driven wheel (front wheel) braking force distribution ratio RTOf obtained in step S14 to calculate the friction braking force Tbff of the driven wheel (front wheel). To do.

ステップS17においては、ステップS16で求めた従動輪(前輪)摩擦制動力Tbffに、図1のブレーキコントローラ35につき前述した、液圧式摩擦ブレーキの変更不能な固定の前後輪摩擦制動力配分比RTOmechaを乗じて、駆動輪(後輪)の摩擦制動力Tbrfを算出する。
ステップS18においては、ステップS12で求めた目標総制動力Tbに、ステップS14で求めた駆動輪(後輪)制動力配分比RTOrを乗じて、駆動輪(後輪)の総制動力Tbrを算出する。
In step S17, the driven wheel (front wheel) friction braking force Tbff obtained in step S16 is set to the fixed front and rear wheel friction braking force distribution ratio RTOmecha, which is described above for the brake controller 35 in FIG. Multiply to calculate the friction braking force Tbrf of the drive wheel (rear wheel).
In step S18, the target total braking force Tb obtained in step S12 is multiplied by the driving wheel (rear wheel) braking force distribution ratio RTOr obtained in step S14 to calculate the total braking force Tbr of the driving wheel (rear wheel). To do.

ステップS19においては、ステップS17で上記のごとくに求めた駆動輪(後輪)摩擦制動力Tbrf(負値)と、ステップS18で上記のごとくに求めた駆動輪(後輪)総制動力Tbr(負値)とを対比し、Tbrf> Tbrか否かを、つまり|Tbrf|< |Tbr|か否かにより、駆動輪(後輪)の回生制動が可能か否かをチェックする。   In step S19, the driving wheel (rear wheel) friction braking force Tbrf (negative value) obtained as described above in step S17 and the driving wheel (rear wheel) total braking force Tbr (determined as described above in step S18). (Negative value) and whether or not Tbrf> Tbr, that is, whether or not | Tbrf | <| Tbr |, is checked whether regenerative braking of the drive wheels (rear wheels) is possible.

ステップS19で駆動輪(後輪)の回生制動が可能であると判定するときは、ステップS20において、
駆動輪(後輪)総制動力Tbrから駆動輪(後輪)摩擦制動力Tbrfを差し引いた差値を駆動輪(後輪)回生制動力Tbrmとし、これを目標モータ/ジェネレータトルクtTmとして図1のごとくモータ/ジェネレータコントローラ33に指令すると共に、
ステップS16およびステップS17で求めた従動輪(前輪)摩擦制動力Tbffおよび駆動輪(後輪)摩擦制動力Tbrfの和値を摩擦制動力指令値Tfとして、図1のごとくブレーキコントローラ35へ出力する。
When it is determined in step S19 that the regenerative braking of the driving wheel (rear wheel) is possible, in step S20,
The difference obtained by subtracting the driving wheel (rear wheel) friction braking force Tbrf from the driving wheel (rear wheel) total braking force Tbr is the driving wheel (rear wheel) regenerative braking force Tbrm, and this is set as the target motor / generator torque tTm. Instruct the motor / generator controller 33 like
The sum of the driven wheel (front wheel) friction braking force Tbff and the driving wheel (rear wheel) friction braking force Tbrf obtained in step S16 and step S17 is output to the brake controller 35 as shown in FIG. 1 as the friction braking force command value Tf. .

ステップS19で駆動輪(後輪)の回生制動が不能であると判定するときは、ステップS21において、
駆動輪(後輪)回生制動力Tbrm=0とし、これを目標モータ/ジェネレータトルクtTmとして図1のごとくモータ/ジェネレータコントローラ33に指令すると共に、
ステップS16およびステップS17で求めた従動輪(前輪)摩擦制動力Tbffおよび駆動輪(後輪)摩擦制動力Tbrfの和値を摩擦制動力指令値Tfとして、図1のごとくブレーキコントローラ35へ出力する。
When it is determined in step S19 that the regenerative braking of the driving wheel (rear wheel) is impossible, in step S21,
The drive wheel (rear wheel) regenerative braking force Tbrm = 0 is set as a target motor / generator torque tTm, and the motor / generator controller 33 is commanded as shown in FIG.
The sum of the driven wheel (front wheel) friction braking force Tbff and the driving wheel (rear wheel) friction braking force Tbrf obtained in step S16 and step S17 is output to the brake controller 35 as shown in FIG. 1 as the friction braking force command value Tf. .

上記した駆動輪(後輪)回生制動力Tbrm、従動輪(前輪)摩擦制動力Tbffおよび駆動輪(後輪)摩擦制動力Tbrfの算出要領をブロック線図により示すと、図5のごときものとなる。
つまり、車両の目標総制動力Tbと、駆動輪(後輪)制動スリップ量Slipに応じた駆動輪(後輪)制動力配分比BTOrおよび従動輪(前輪)制動力配分比BTOfとから、
従動輪(前輪)摩擦制動力Tbff(=Tb×RTOf)を算出すると共に、駆動輪(後輪)総制動力Tbr(=Tb×RTOr)を算出する。
次いで、従動輪(前輪)摩擦制動力Tbffと、液圧式摩擦ブレーキの変更不能な固定の前後輪摩擦制動力配分比RTOmechaとから、
駆動輪(後輪)摩擦制動力Tbrf(=Tbff×RTOmecha)を算出し、
前記の駆動輪(後輪)総制動力Tbrから駆動輪(後輪)摩擦制動力Tbrfを差し引いて得られる差値を駆動輪(後輪)回生制動力Tbrm(=Tbr−Tbrf)する。
The calculation procedure of the driving wheel (rear wheel) regenerative braking force Tbrm, driven wheel (front wheel) friction braking force Tbff and driving wheel (rear wheel) friction braking force Tbrf is shown in a block diagram as shown in FIG. Become.
That is, from the target total braking force Tb of the vehicle, the driving wheel (rear wheel) braking force distribution ratio BTOr and the driven wheel (front wheel) braking force distribution ratio BTOf according to the driving wheel (rear wheel) braking slip amount Slip,
A driven wheel (front wheel) friction braking force Tbff (= Tb × RTOf) is calculated, and a driving wheel (rear wheel) total braking force Tbr (= Tb × RTOr) is calculated.
Next, from the driven wheel (front wheel) friction braking force Tbff and the fixed front and rear wheel friction braking force distribution ratio RTOmecha of the hydraulic friction brake,
Calculate the driving wheel (rear wheel) friction braking force Tbrf (= Tbff x RTOmecha)
A difference value obtained by subtracting the driving wheel (rear wheel) friction braking force Tbrf from the driving wheel (rear wheel) total braking force Tbr is used as the driving wheel (rear wheel) regenerative braking force Tbrm (= Tbr−Tbrf).

ところで上記した本実施例においては、駆動輪(後輪)の回生制動力Tbrmを、従動輪(前輪)速に対する駆動輪(後輪)速の偏差(駆動輪制動スリップ量Slip)に応じ制限するに際し、
駆動輪(後輪)制動スリップ量Slipが第1の設定スリップ量Slip1(図4参照)未満である場合、駆動輪(後輪)制動力配分比BTOrを、前後輪制動力配分特性が図6にαで例示するごとく小スリップ時前後輪制動力理想配分特性に近似した一定の前後輪制動力配分特性となるような上限値となし、
駆動輪(後輪)制動スリップ量Slipが第2の設定スリップ量Slip2(図4参照)以上である場合、駆動輪(後輪)制動力配分比BTOrを、前後輪制動力配分特性が図6にβで例示するごとく液圧式摩擦ブレーキの変更不能な前後輪摩擦制動力配分比に対応した一定の前後輪制動力配分特性となるような上限値となし、
駆動輪(後輪)制動スリップ量Slipが第1の設定スリップ量Slip1から第2の設定スリップ量Slip2まで大きくなるにつれ、このスリップ量変化にともなう前後輪制動力理想配分特性の変化に対応させて、駆動輪(後輪)制動力配分比BTOrを上限値から下限値に向けて低下させ、
かかる駆動輪(後輪)制動力配分比BTOrに基づき上記回生制動力の制限を行うため、以下の作用効果が奏し得られる。
In the above-described embodiment, the regenerative braking force Tbrm of the driving wheel (rear wheel) is limited according to the deviation of the driving wheel (rear wheel) speed from the driven wheel (front wheel) speed (driving wheel braking slip amount Slip). On the occasion
When the driving wheel (rear wheel) braking slip amount Slip is less than the first set slip amount Slip1 (see FIG. 4), the driving wheel (rear wheel) braking force distribution ratio BTOr is shown, and the front and rear wheel braking force distribution characteristics are shown in FIG. And an upper limit value that gives a constant front and rear wheel braking force distribution characteristic approximated to the front and rear wheel braking force ideal distribution characteristic at the time of small slip as exemplified by α,
When the driving wheel (rear wheel) braking slip amount Slip is equal to or larger than the second set slip amount Slip2 (see FIG. 4), the driving wheel (rear wheel) braking force distribution ratio BTOr is shown, and the front and rear wheel braking force distribution characteristics are shown in FIG. And an upper limit value that gives a constant front and rear wheel braking force distribution characteristic corresponding to the unchangeable front and rear wheel friction braking force distribution ratio of the hydraulic friction brake as illustrated by β in FIG.
As the drive wheel (rear wheel) braking slip amount Slip increases from the first set slip amount Slip1 to the second set slip amount Slip2, the change in the ideal distribution characteristic of the front and rear wheel braking force accompanying this change in slip amount is accommodated. , Reduce the driving wheel (rear wheel) braking force distribution ratio BTOr from the upper limit to the lower limit,
Since the regenerative braking force is limited based on the driving wheel (rear wheel) braking force distribution ratio BTOr, the following effects can be obtained.

つまり、駆動輪(後輪)制動スリップ量Slipが第1の設定スリップ量Slip1未満である時における駆動輪(後輪)制動力配分比BTOrの上限値を、図6にαで示すごとく実用域で、小スリップ時前後輪制動力理想配分に近似する一定の前後輪制動力配分比に対応した配分比としたことにより、
大減速度要求中の回生制動制限時は、図7に示すごとく回生制動力Aが回生制動力制限量A2だけ制限されて制限後回生制動力A1へと低下され、小減速度要求中の回生制動制限時は、同じ駆動輪(後輪)制動スリップ量Slipのもとでも、同図に示すとおり回生制動力Bが上記のA2と異なる回生制動力制限量B2だけ制限されて制限後回生制動力B1へと低下される。
That is, the upper limit value of the driving wheel (rear wheel) braking force distribution ratio BTOr when the driving wheel (rear wheel) braking slip amount Slip is less than the first set slip amount Slip1, as indicated by α in FIG. With a distribution ratio corresponding to a constant front / rear wheel braking force distribution ratio that approximates the front / rear wheel braking force ideal distribution at the time of small slip,
When regenerative braking is restricted while a large deceleration is requested, the regenerative braking force A is limited by the regenerative braking force limit A2 and reduced to the regenerative braking force A1 after the restriction as shown in FIG. When braking is limited, even with the same drive wheel (rear wheel) braking slip amount Slip, as shown in the figure, the regenerative braking force B is limited by the regenerative braking force limit amount B2, which is different from the above A2, and the regenerative braking after limiting Reduced to power B1.

図11と同じ条件での動作点移動を示す図6により付言すると、大減速度要求中の回生制動制限時は動作点がA3点から、前後輪制動力配分特性α上のA5点へと移動し、小減速度要求中の回生制動制限時は動作点がB3点から、同じ前後輪制動力配分特性α上のB5点へと移動する。
よって、大減速度要求中の回生制動制限時も、小減速度要求中の回生制動制限時も、動作点が小スリップ時前後輪制動力理想配分特性線に近似する一定の前後輪制動力配分線α上に位置して前後輪制動力配分が適切なものとなり、
従って、図7に示した大減速度要求中の回生制動制限時における制動力比A1:A2と、小減速度要求中の回生制動制限時における制動力比B1:B2とを同じに保ったスリップ時回生制動力制限制御が行われることとなる。
As shown in FIG. 6 showing the movement of the operating point under the same conditions as in FIG. 11, the operating point moves from point A3 to point A5 on the front and rear wheel braking force distribution characteristics α when regenerative braking is restricted during a large deceleration request. However, when regenerative braking is restricted during a small deceleration request, the operating point moves from point B3 to point B5 on the same front and rear wheel braking force distribution characteristic α.
Therefore, even when regenerative braking is restricted while requesting large deceleration and when regenerative braking is restricted while requesting small deceleration, the front and rear wheel braking force distribution that approximates the ideal distribution characteristic line for front and rear wheels when the small slip is applied Located on the line α, the front and rear wheel braking force distribution becomes appropriate,
Therefore, the slip force ratio A1: A2 at the time of regenerative braking restriction during a large deceleration request shown in FIG. 7 and the braking force ratio B1: B2 at the time of regenerative braking restriction at a small deceleration request are kept the same. The time regenerative braking force limit control is performed.

このため、大減速度要求中の回生制動制限時に後輪が前輪よりも先にタイヤ限界性能を超えて制動ロックを生じ、車両の挙動が不安定になるという前記の問題を生ずることがないし、
小減速度要求中の回生制動制限時に回生制動力制限量が不必要に多くなって、回生制動による燃費向上効果が低下するという前記の問題を生ずることもない。
For this reason, when regenerative braking is restricted during a large deceleration request, the rear wheel exceeds the tire limit performance before the front wheel, causing a braking lock, and the above problem that the behavior of the vehicle becomes unstable does not occur.
The regenerative braking force limit amount is unnecessarily increased when the regenerative braking is restricted during the small deceleration request, and the above-described problem that the fuel efficiency improvement effect due to the regenerative braking is reduced does not occur.

更に、駆動輪(後輪)制動スリップ量Slipが多くなるにつれ、駆動輪(後輪)制動力配分比BTOrを、図6の特性αに相当する上限値から、同図の特性βに相当する下限値へ向けて低下させるため、
駆動輪(後輪)制動スリップ量Slipの増大時にこれと同方向へ移動する前後輪制動力理想配分特性(図示せず)に対し、駆動輪(後輪)制動力配分比BTOrが追従して低下することとなり、
駆動輪(後輪)制動スリップ量Slipの大きさにかかわらず、回生制動制限の動作点がスリップ量対応の前後輪制動力理想配分特性線に近似する一定の前後輪制動力配分線上に位置して、前後輪制動力配分を絶えず適切なものにすることができ、駆動輪(後輪)制動スリップ量Slipの大きさにかかわらず上記の作用効果を達成することが可能である。
Further, as the driving wheel (rear wheel) braking slip amount Slip increases, the driving wheel (rear wheel) braking force distribution ratio BTOr corresponds to the characteristic β of FIG. 6 from the upper limit value corresponding to the characteristic α of FIG. To lower it towards the lower limit,
The driving wheel (rear wheel) braking force distribution ratio BTOr follows the front / rear wheel braking force ideal distribution characteristic (not shown) that moves in the same direction as the driving wheel (rear wheel) braking slip amount Slip increases. Will decline,
Regardless of the magnitude of the driving wheel (rear wheel) braking slip amount Slip, the regenerative braking limit operating point is located on a certain front and rear wheel braking force distribution line that approximates the slip front and rear wheel braking force ideal distribution characteristic line. Thus, the front and rear wheel braking force distribution can be constantly made appropriate, and the above-described operation and effect can be achieved regardless of the magnitude of the driving wheel (rear wheel) braking slip amount Slip.

また本実施例においては、図3につき前述したごとく、右従動輪速(右前輪速)から右駆動輪速(右後輪速)を差し引いて求めた右車輪速偏差と、左従動輪速(左前輪速)から左駆動輪速(左後輪速)を差し引いて求めた左車輪速偏差との大きい方を駆動輪(後輪)制動スリップ量Slipとするため、
駆動輪(後輪)制動スリップ量Slipが大きい左または右駆動輪(左または右後車輪)の制動スリップに基づいて、スリップ防止用の回生制動制限を行うこととなり、スリップ防止を一層確実なものとなし得る。
In this embodiment, as described above with reference to FIG. 3, the right wheel speed deviation obtained by subtracting the right driving wheel speed (right rear wheel speed) from the right driven wheel speed (right front wheel speed) and the left driven wheel speed ( The driving wheel (rear wheel) braking slip amount Slip is the larger of the left wheel speed deviation obtained by subtracting the left driving wheel speed (left rear wheel speed) from the left front wheel speed.
Drive wheel (rear wheel) braking slip amount Slip The left or right drive wheel (left or right rear wheel) with a large slip slip restricts regenerative braking for slip prevention, making slip prevention even more reliable You can do it.

なお、駆動輪(後輪)制動スリップ量Slipが第2の設定スリップ量Slip2(図4参照)以上である場合において設定する駆動輪(後輪)制動力配分比BTOrの下限値を前記したとおり、液圧式摩擦ブレーキの変更不能な前後輪摩擦制動力配分比RTOmechaに対応する値とする場合、
無用な駆動輪(後輪)制動力配分比BTOrの低下を回避することができ、回生制動力制限量が不必要に多くなって、回生制動による燃費向上効果が低下するのを防止することができる。
As described above, the lower limit value of the driving wheel (rear wheel) braking force distribution ratio BTOr to be set when the driving wheel (rear wheel) braking slip amount Slip is equal to or larger than the second set slip amount Slip2 (see FIG. 4). When the hydraulic friction brake has a value corresponding to the front and rear wheel friction braking force distribution ratio RTOmecha that cannot be changed,
A reduction in unnecessary driving wheel (rear wheel) braking force distribution ratio BTOr can be avoided, and the amount of regenerative braking force restriction can be increased unnecessarily, thereby preventing a reduction in fuel efficiency improvement effect due to regenerative braking. it can.

なお上記では、液圧式摩擦ブレーキが前後輪摩擦制動力配分比RTOmechaを変更不能なものである場合について説明したが、この場合は図8に示すように、前記したごとくに求めた回生制動力制限後の前後輪制動力比、つまり、前輪摩擦制動力Tbffそのものである前輪制動力Frと、後輪回生制動力Tbrmおよび後輪摩擦制動力Tbrfの和値である後輪制動力Rrとの前後輪制動力比Fr:Rrが、
液圧式摩擦ブレーキの前後輪摩擦制動力配分比RTOmecha(=Tbff/Tbrf)を変更不能なため、回生制動力制限前の前後輪制動力比C:Dからずれてしまい、駆動輪(後輪)制動力が大きくなり過ぎる懸念がある。
In the above description, the case where the hydraulic friction brake cannot change the front and rear wheel friction braking force distribution ratio RTOmecha has been described. In this case, as shown in FIG. 8, the regenerative braking force limit obtained as described above is used. The front and rear wheel braking force ratio, that is, the front wheel braking force Fr that is the front wheel friction braking force Tbff itself and the rear wheel braking force Rr that is the sum of the rear wheel regenerative braking force Tbrm and the rear wheel friction braking force Tbrf Wheel braking force ratio Fr: Rr
Since the front-rear wheel friction braking force distribution ratio RTOmecha (= Tbff / Tbrf) of the hydraulic friction brake cannot be changed, it deviates from the front-rear wheel braking force ratio C: D before the regenerative braking force limit, and the drive wheel (rear wheel) There is a concern that the braking force becomes too large.

この問題解決のためには、摩擦ブレーキとして前後輪摩擦制動力配分比RTOmechaを変更不能な摩擦ブレーキを用い、以下のように前輪摩擦制動力Tbff、後輪回生制動力Tbrmおよび後輪摩擦制動力Tbrfを求める。
先ず、駆動輪(後輪)スリップ量Slipが大きいほど小さくなる前記の駆動輪(後輪)制動力配分比RTOrに対応した目標前後輪制動力配分比(スリップ量Slipに応じ図6のαからβへと変化する)から、従動輪(前輪)の摩擦制動力Tbffおよび駆動輪(後輪)の制動力目標値Tbrを求める。
To solve this problem, a friction brake that cannot change the front and rear wheel friction braking force distribution ratio RTOmecha is used as a friction brake, and the front wheel friction braking force Tbff, the rear wheel regenerative braking force Tbrm, and the rear wheel friction braking force are as follows. Find Tbrf.
First, the target front and rear wheel braking force distribution ratio corresponding to the driving wheel (rear wheel) braking force distribution ratio RTOr, which becomes smaller as the driving wheel (rear wheel) slip amount Slip becomes larger, from α in FIG. 6 according to the slip amount Slip. The friction braking force Tbff of the driven wheel (front wheel) and the braking force target value Tbr of the driving wheel (rear wheel) are obtained from (changes to β).

次に、この駆動輪(後輪)制動力目標値Tbrを許容最大回生制動力Tmmax(ステップS15)で賄い得る場合は、駆動輪(後輪)回生制動力Tbrmを駆動輪制動力目標値Tbrと同じ値にすると共に、駆動輪(後輪)摩擦制動力Tbrfを零にし、
駆動輪(後輪)制動力目標値Tbrを許容最大回生制動力Tmmaxで賄い得ない場合は、駆動輪(後輪)回生制動力Tbrmを許容最大回生制動力Tmmaxと同じ値にすると共に、駆動輪(後輪)制動力の不足分(Tbr−Tmmax)を駆動輪(後輪)摩擦制動力Tbrfで補うように摩擦ブレーキの前後輪摩擦制動力配分比RTOmechaを変更する。
Next, when the driving wheel (rear wheel) braking force target value Tbr can be covered by the allowable maximum regenerative braking force Tmmax (step S15), the driving wheel (rear wheel) regenerative braking force Tbrm is used as the driving wheel braking force target value Tbr. And the drive wheel (rear wheel) friction braking force Tbrf to zero,
If the drive wheel (rear wheel) braking force target value Tbr cannot be covered by the allowable maximum regenerative braking force Tmmax, the drive wheel (rear wheel) regenerative braking force Tbrm is set to the same value as the allowable maximum regenerative braking force Tmmax. The front and rear wheel friction braking force distribution ratio RTOmecha of the friction brake is changed so that the deficiency (Tbr-Tmmax) of the wheel (rear wheel) braking force is compensated by the driving wheel (rear wheel) friction braking force Tbrf.

この場合は図9に示すように、前輪摩擦制動力Tbffそのものである前輪制動力Frと、後輪回生制動力Tbrmおよび後輪摩擦制動力Tbrfの和値である後輪制動力Rrとの前後輪制動力比Fr:Rrが、回生制動力制限前の前後輪制動力比C:Dからずれることがなくて、駆動輪(後輪)制動力が大きくなり過ぎる懸念を回避することができる。   In this case, as shown in FIG. 9, before and after the front wheel braking force Fr, which is the front wheel friction braking force Tbff itself, and the rear wheel braking force Rr, which is the sum of the rear wheel regenerative braking force Tbrm and the rear wheel friction braking force Tbrf. The wheel braking force ratio Fr: Rr does not deviate from the front and rear wheel braking force ratio C: D before the regenerative braking force limit, and the concern that the driving wheel (rear wheel) braking force becomes too large can be avoided.

本発明の一実施例になる回生制動制御装置を具えたフロントエンジン・リヤホイールドライブ式ハイブリッド車両のパワートレーンを、その制御システムとともに示す線図的平面図である。1 is a diagrammatic plan view showing a power train of a front engine / rear wheel drive hybrid vehicle including a regenerative braking control device according to an embodiment of the present invention, together with its control system. FIG. 図1における統合コントローラが実行する回生制動制御のメインルーチンを示すフローチャートである。3 is a flowchart showing a main routine of regenerative braking control executed by an integrated controller in FIG. 図2のメインルーチンにおいて求める駆動輪制動スリップ量の演算処理を示すブロック線図である。FIG. 3 is a block diagram showing a calculation process of a driving wheel braking slip amount obtained in the main routine of FIG. 図2のメインルーチンにおいて求める駆動輪制動力配分比の変化特性図である。FIG. 3 is a change characteristic diagram of a drive wheel braking force distribution ratio obtained in the main routine of FIG. 図2のメインルーチンにおいて求める前輪(従動輪)摩擦制動力、後輪(駆動輪)摩擦制動力、および後輪(駆動輪)回生制動力の演算処理を示すブロック線図である。FIG. 3 is a block diagram showing calculation processing of front wheel (driven wheel) friction braking force, rear wheel (driving wheel) friction braking force, and rear wheel (driving wheel) regenerative braking force obtained in the main routine of FIG. 図1〜5に示す実施例の回生制動制限制御を説明するのに用いた前後輪制動力配分線図である。FIG. 6 is a front / rear wheel braking force distribution diagram used to explain regenerative braking restriction control of the embodiment shown in FIGS. 図1〜5に示す実施例の回生制動制限制御を行った後における回生制動力と、摩擦制動力(回生制動力制限量)との関係を示す説明図である。FIG. 6 is an explanatory diagram showing a relationship between a regenerative braking force and a friction braking force (regenerative braking force limit amount) after performing the regenerative braking restriction control of the embodiment shown in FIGS. 液圧式摩擦ブレーキが前後輪摩擦制動力配分比を変更不能な場合において、図1〜5に示す実施例の回生制動制限制御を行ったときの後輪回生制動力と、後輪摩擦制動力と、前輪摩擦制動力との関係を示す説明図である。When the hydraulic friction brake cannot change the front-rear wheel friction braking force distribution ratio, the rear wheel regenerative braking force when the regenerative braking restriction control of the embodiment shown in FIGS. FIG. 5 is an explanatory diagram showing a relationship with front wheel friction braking force. 液圧式摩擦ブレーキの前後輪摩擦制動力配分比を変更しつつ、図1〜5に示す実施例の回生制動制限制御を行う場合の後輪回生制動力と、後輪摩擦制動力と、前輪摩擦制動力との関係を示す説明図である。Rear wheel regenerative braking force, rear wheel friction braking force, and front wheel friction when the regenerative braking restriction control of the embodiment shown in FIGS. 1 to 5 is performed while changing the front-rear wheel friction braking force distribution ratio of the hydraulic friction brake It is explanatory drawing which shows the relationship with braking force. 従来の回生制動制限制御を行った後における回生制動力と、摩擦制動力(回生制動力制限量)との関係を示す説明図である。It is explanatory drawing which shows the relationship between the regenerative braking force after performing the conventional regenerative braking limitation control, and friction braking force (regenerative braking force limitation amount). 従来の回生制動制限制御を説明するのに用いた前後輪制動力配分線図である。It is a front-rear wheel braking force distribution diagram used to explain conventional regenerative braking restriction control.

符号の説明Explanation of symbols

1 エンジン(原動機)
2FL,2FR 左右前輪(左右従動輪)
3RL,3RR 左右後輪(左右駆動輪)
4 自動変速機
6 モータ/ジェネレータ(原動機)
7 第1クラッチ
9 第2クラッチ
11 統合コントローラ
12 エンジン回転センサ
13 モータ/ジェネレータ回転センサ
14 変速機入力回転センサ
15 変速機出力回転センサ
16 アクセル開度センサ
17 蓄電状態センサ
18 マスターシリンダ液圧センサ
21 車輪速センサ群
31 バッテリ
32 エンジンコントローラ
33 モータ/ジェネレータコントローラ
34 インバータ
35 ブレーキコントローラ
36 第1クラッチコントローラ
37 第1クラッチ締結圧制御ユニット
38 変速機コントローラ
39 第2クラッチ締結圧制御ユニット
1 engine (motor)
2FL, 2FR Left and right front wheels (left and right driven wheels)
3RL, 3RR Left and right rear wheels (left and right drive wheels)
4 Automatic transmission
6 Motor / generator (motor)
7 First clutch
9 Second clutch
11 Integrated controller
12 Engine rotation sensor
13 Motor / generator rotation sensor
14 Transmission input rotation sensor
15 Transmission output rotation sensor
16 Accelerator position sensor
17 Storage state sensor
18 Master cylinder hydraulic pressure sensor
21 Wheel speed sensor group
31 battery
32 Engine controller
33 Motor / generator controller
34 Inverter
35 Brake controller
36 1st clutch controller
37 1st clutch engagement pressure control unit
38 Transmission controller
39 Second clutch engagement pressure control unit

Claims (6)

原動機として少なくともモータ/ジェネレータを搭載し、該モータ/ジェネレータにより駆動輪としての前輪または後輪を駆動したり回生制動し、回生制動力を、従動輪である後輪または前輪の車輪速に対する駆動輪の車輪速の偏差に応じ制限するようにした電動車両において、
駆動輪制動力配分比が、実用領域で前後輪制動力理想配分特性に近似する一定の前後輪制動力配分特性に対応したものとなるよう前記回生制動力の制限を行う構成としたことを特徴とする電動車両の回生制動制御装置。
At least a motor / generator is mounted as a prime mover, and the front wheel or rear wheel as a driving wheel is driven or regeneratively braked by the motor / generator, and the regenerative braking force is driven to the rear wheel or the front wheel speed that is the driven wheel. In an electric vehicle that is limited according to the wheel speed deviation of
The regenerative braking force is limited so that the driving wheel braking force distribution ratio corresponds to a constant front and rear wheel braking force distribution characteristic that approximates the front and rear wheel braking force ideal distribution characteristic in a practical range. A regenerative braking control device for an electric vehicle.
請求項1に記載の、電動車両の回生制動制御装置において、
前記従動輪速に対する駆動輪速の偏差として、右側従動輪速に対する右側駆動輪速の偏差、および、左側従動輪速に対する左側駆動輪速の偏差のうち大きい方を用いるよう構成したことを特徴とする電動車両の回生制動制御装置。
In the regenerative braking control device for an electric vehicle according to claim 1,
As the deviation of the driving wheel speed with respect to the driven wheel speed, the larger one of the deviation of the right driving wheel speed with respect to the right driven wheel speed and the deviation of the left driving wheel speed with respect to the left driven wheel speed is used. A regenerative braking control device for an electric vehicle.
請求項1または2に記載の、電動車両の回生制動制御装置において、
前記駆動輪制動力配分比を、前記従動輪速に対する駆動輪速の偏差が大きいほど小さな配分比としたことを特徴とする電動車両の回生制動制御装置。
In the regenerative braking control device for an electric vehicle according to claim 1 or 2,
The regenerative braking control device for an electric vehicle, wherein the driving wheel braking force distribution ratio is set to be smaller as the deviation of the driving wheel speed from the driven wheel speed is larger.
前記電動車両が、前後輪摩擦制動力配分比を変更不能な摩擦ブレーキと、前記モータ/ジェネレータによる回生ブレーキとの複合ブレーキにより減速度要求を実現するものである、請求項1〜3のいずれか1項に記載の、電動車両の回生制動制御装置において、
前記駆動輪制動力配分比の下限値を、前記摩擦ブレーキの変更不能な前後輪摩擦制動力配分比に対応する配分比としたことを特徴とする電動車両の回生制動制御装置。
4. The electric vehicle according to any one of claims 1 to 3, wherein the electric vehicle realizes a deceleration request by a combined brake of a friction brake whose front and rear wheel friction braking force distribution ratio cannot be changed and a regenerative brake by the motor / generator. In the regenerative braking control device for an electric vehicle according to item 1,
A regenerative braking control device for an electric vehicle, wherein a lower limit value of the driving wheel braking force distribution ratio is a distribution ratio corresponding to a front and rear wheel friction braking force distribution ratio that cannot be changed.
前記電動車両が、前後輪摩擦制動力配分比を変更不能な摩擦ブレーキと、前記モータ/ジェネレータによる回生ブレーキとの複合ブレーキにより減速度要求を実現するものである、請求項1〜4のいずれか1項に記載の、電動車両の回生制動制御装置において、
前記駆動輪制動力配分比から求めた駆動輪制動力目標値より、前記変更不能な前後輪摩擦制動力配分比から求めた駆動輪摩擦制動力を差し引いて求めた差値を、駆動輪回生制動力として定めるよう構成したことを特徴とする電動車両の回生制動制御装置。
5. The electric vehicle according to any one of claims 1 to 4, wherein the electric vehicle realizes a deceleration request by a combined brake of a friction brake whose front and rear wheel friction braking force distribution ratio cannot be changed and a regenerative brake by the motor / generator. In the regenerative braking control device for an electric vehicle according to item 1,
A difference value obtained by subtracting the driving wheel friction braking force obtained from the unchangable front and rear wheel friction braking force distribution ratio from the driving wheel braking force target value obtained from the driving wheel braking force distribution ratio is obtained as a driving wheel regeneration control. A regenerative braking control device for an electric vehicle, characterized in that it is configured to be determined as power.
前記電動車両が、前後輪摩擦制動力配分比を変更可能な摩擦ブレーキと、前記モータ/ジェネレータによる回生ブレーキとの複合ブレーキにより減速度要求を実現するものである、請求項1〜4のいずれか1項に記載の、電動車両の回生制動制御装置において、
前記駆動輪制動力配分比に対応した目標前後輪制動力配分比から、従動輪の摩擦制動力および駆動輪の制動力目標値を求め、
この駆動輪制動力目標値を許容最大回生制動力で賄い得る場合は、駆動輪回生制動力を駆動輪制動力目標値と同じ値にし、駆動輪制動力目標値を許容最大回生制動力で賄い得ない場合は、駆動輪回生制動力を許容最大回生制動力と同じ値にすると共に、駆動輪制動力の不足分を駆動輪摩擦制動力で補うべく摩擦ブレーキの前後輪摩擦制動力配分比を変更するよう構成したことを特徴とする電動車両の回生制動制御装置。
5. The electric vehicle according to any one of claims 1 to 4, wherein the electric vehicle realizes a deceleration request by a combined brake of a friction brake capable of changing a front and rear wheel friction braking force distribution ratio and a regenerative brake by the motor / generator. In the regenerative braking control device for an electric vehicle according to item 1,
From the target front and rear wheel braking force distribution ratio corresponding to the driving wheel braking force distribution ratio, the friction braking force of the driven wheel and the braking force target value of the driving wheel are obtained,
If this driving wheel braking force target value can be covered by the allowable maximum regenerative braking force, the driving wheel regenerative braking force is set to the same value as the driving wheel braking force target value, and the driving wheel braking force target value is covered by the allowable maximum regenerative braking force. If not, the driving wheel regenerative braking force is set to the same value as the allowable maximum regenerative braking force, and the front and rear wheel friction braking force distribution ratio of the friction brake is set to compensate for the deficiency of the driving wheel braking force with the driving wheel friction braking force. A regenerative braking control device for an electric vehicle characterized by being configured to change.
JP2008130333A 2008-05-19 2008-05-19 Regenerative braking control unit of electric vehicle Pending JP2009278840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130333A JP2009278840A (en) 2008-05-19 2008-05-19 Regenerative braking control unit of electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130333A JP2009278840A (en) 2008-05-19 2008-05-19 Regenerative braking control unit of electric vehicle

Publications (1)

Publication Number Publication Date
JP2009278840A true JP2009278840A (en) 2009-11-26

Family

ID=41443730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130333A Pending JP2009278840A (en) 2008-05-19 2008-05-19 Regenerative braking control unit of electric vehicle

Country Status (1)

Country Link
JP (1) JP2009278840A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296751A (en) * 2008-06-04 2009-12-17 Nissan Motor Co Ltd Collaboration control device of air-over-hydraulic braking system
WO2011114557A1 (en) * 2010-03-16 2011-09-22 株式会社ユニバンス Electric vehicle, braking program, and method for controlling and device for controlling electric vehicle
WO2013077376A1 (en) * 2011-11-22 2013-05-30 Ntn株式会社 Electric vehicle
FR3009524A1 (en) * 2013-08-06 2015-02-13 Renault Sa CONTROL OF REGENERATIVE BRAKING IN AN ELECTRIC OR HYBRID VEHICLE
US8977465B2 (en) 2011-04-18 2015-03-10 Mando Corporation Vehicle braking system and control method thereof
CN104859612A (en) * 2014-07-04 2015-08-26 北汽福田汽车股份有限公司 Vehicle brake control method and system
JP2015223077A (en) * 2015-08-27 2015-12-10 Ntn株式会社 Electric vehicle
EP2823985A4 (en) * 2012-03-07 2016-04-27 Nissan Motor Brake control device
JP2016111891A (en) * 2014-12-10 2016-06-20 トヨタ自動車株式会社 Vehicular braking force controller
US9931942B2 (en) 2015-09-07 2018-04-03 Hyundai Motor Company Method and system for controlling braking force in regenerative brake cooperative control
CN107921937A (en) * 2015-06-18 2018-04-17 E-Aam 传动系统公司 The system and method for defining regenerative braking
KR20180097899A (en) * 2017-02-24 2018-09-03 현대자동차주식회사 System and method for regenerative braking of vehicle
CN109367395A (en) * 2018-11-14 2019-02-22 南京航空航天大学 A kind of Electro-hydraulic brake system and its control method
CN109941245A (en) * 2019-04-08 2019-06-28 哈尔滨理工大学 A kind of electric vehicle brake force distribution method
CN111319595A (en) * 2020-02-18 2020-06-23 宁波吉利汽车研究开发有限公司 Vehicle braking method, device and system and vehicle
CN112550269A (en) * 2019-09-09 2021-03-26 丰田自动车株式会社 Electric vehicle and control method of electric vehicle
WO2022054473A1 (en) * 2020-09-08 2022-03-17 日立Astemo株式会社 Vehicle control device, vehicle control method, and vehicle control system
US11407314B2 (en) * 2019-03-28 2022-08-09 Toyota Jidosha Kabushiki Kaisha Brake system
WO2022202763A1 (en) * 2021-03-22 2022-09-29 株式会社アドヴィックス Braking control device for vehicle
JP7468554B2 (en) 2022-01-26 2024-04-16 トヨタ自動車株式会社 Vehicle and vehicle control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281439A (en) * 1990-03-30 1991-12-12 Mazda Motor Corp Slip control device of vehicle
JPH05161211A (en) * 1991-12-05 1993-06-25 Honda Motor Co Ltd Brake system for motor vehicle
JP2000225932A (en) * 1999-02-04 2000-08-15 Toyota Motor Corp Brake control device of electric vehicle
JP2000344078A (en) * 1999-06-04 2000-12-12 Toyota Motor Corp Braking device
JP2003174703A (en) * 2001-09-27 2003-06-20 Nissan Motor Co Ltd Braking controlling device
JP2006246657A (en) * 2005-03-04 2006-09-14 Nissan Motor Co Ltd Regenerative braking controller for vehicle
JP2007030631A (en) * 2005-07-25 2007-02-08 Advics:Kk Brake control device for vehicle
JP2008265397A (en) * 2007-04-17 2008-11-06 Nissan Motor Co Ltd Vehicular braking control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281439A (en) * 1990-03-30 1991-12-12 Mazda Motor Corp Slip control device of vehicle
JPH05161211A (en) * 1991-12-05 1993-06-25 Honda Motor Co Ltd Brake system for motor vehicle
JP2000225932A (en) * 1999-02-04 2000-08-15 Toyota Motor Corp Brake control device of electric vehicle
JP2000344078A (en) * 1999-06-04 2000-12-12 Toyota Motor Corp Braking device
JP2003174703A (en) * 2001-09-27 2003-06-20 Nissan Motor Co Ltd Braking controlling device
JP2006246657A (en) * 2005-03-04 2006-09-14 Nissan Motor Co Ltd Regenerative braking controller for vehicle
JP2007030631A (en) * 2005-07-25 2007-02-08 Advics:Kk Brake control device for vehicle
JP2008265397A (en) * 2007-04-17 2008-11-06 Nissan Motor Co Ltd Vehicular braking control device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296751A (en) * 2008-06-04 2009-12-17 Nissan Motor Co Ltd Collaboration control device of air-over-hydraulic braking system
WO2011114557A1 (en) * 2010-03-16 2011-09-22 株式会社ユニバンス Electric vehicle, braking program, and method for controlling and device for controlling electric vehicle
US8977465B2 (en) 2011-04-18 2015-03-10 Mando Corporation Vehicle braking system and control method thereof
CN103946053B (en) * 2011-11-22 2016-04-20 Ntn株式会社 Electronlmobil
US9126501B2 (en) 2011-11-22 2015-09-08 Ntn Corporation Electric vehicle
WO2013077376A1 (en) * 2011-11-22 2013-05-30 Ntn株式会社 Electric vehicle
JP2013110875A (en) * 2011-11-22 2013-06-06 Ntn Corp Electric vehicle
CN103946053A (en) * 2011-11-22 2014-07-23 Ntn株式会社 Electric vehicle
EP2823985A4 (en) * 2012-03-07 2016-04-27 Nissan Motor Brake control device
WO2015018994A3 (en) * 2013-08-06 2015-04-16 Renault S.A.S Control of regenerative braking in an electric or hybrid vehicle
US10052957B2 (en) 2013-08-06 2018-08-21 Renault S.A.S. Control of regenerative braking in an electric or hybrid vehicle
KR20160040667A (en) * 2013-08-06 2016-04-14 르노 에스.아.에스. Control of regenerative braking in an electric or hybrid vehicle
CN105593052B (en) * 2013-08-06 2018-06-05 雷诺两合公司 The control of regenerative braking in electric vehicle or hybrid electric vehicle
CN105593052A (en) * 2013-08-06 2016-05-18 雷诺两合公司 Control of regenerative braking in an electric or hybrid vehicle
KR102030714B1 (en) * 2013-08-06 2019-10-10 르노 에스.아.에스. Control of regenerative braking in an electric or hybrid vehicle
JP2016527867A (en) * 2013-08-06 2016-09-08 ルノー エス.ア.エス. Control of regenerative braking in electric or hybrid vehicles
FR3009524A1 (en) * 2013-08-06 2015-02-13 Renault Sa CONTROL OF REGENERATIVE BRAKING IN AN ELECTRIC OR HYBRID VEHICLE
CN104859612A (en) * 2014-07-04 2015-08-26 北汽福田汽车股份有限公司 Vehicle brake control method and system
CN104859612B (en) * 2014-07-04 2018-01-19 北汽福田汽车股份有限公司 A kind of control method and system of vehicle braking
JP2016111891A (en) * 2014-12-10 2016-06-20 トヨタ自動車株式会社 Vehicular braking force controller
CN107921937A (en) * 2015-06-18 2018-04-17 E-Aam 传动系统公司 The system and method for defining regenerative braking
JP2015223077A (en) * 2015-08-27 2015-12-10 Ntn株式会社 Electric vehicle
US9931942B2 (en) 2015-09-07 2018-04-03 Hyundai Motor Company Method and system for controlling braking force in regenerative brake cooperative control
KR20180097899A (en) * 2017-02-24 2018-09-03 현대자동차주식회사 System and method for regenerative braking of vehicle
US11325573B2 (en) 2017-02-24 2022-05-10 Hyundai Motor Company Rear wheel regenerative braking control system for vehicle and method therefor
KR102224145B1 (en) * 2017-02-24 2021-03-05 현대자동차주식회사 System and method for regenerative braking of vehicle
CN109367395A (en) * 2018-11-14 2019-02-22 南京航空航天大学 A kind of Electro-hydraulic brake system and its control method
US11407314B2 (en) * 2019-03-28 2022-08-09 Toyota Jidosha Kabushiki Kaisha Brake system
CN109941245B (en) * 2019-04-08 2022-02-01 哈尔滨理工大学 Braking force distribution method for electric automobile
CN109941245A (en) * 2019-04-08 2019-06-28 哈尔滨理工大学 A kind of electric vehicle brake force distribution method
CN112550269A (en) * 2019-09-09 2021-03-26 丰田自动车株式会社 Electric vehicle and control method of electric vehicle
CN111319595A (en) * 2020-02-18 2020-06-23 宁波吉利汽车研究开发有限公司 Vehicle braking method, device and system and vehicle
WO2022054473A1 (en) * 2020-09-08 2022-03-17 日立Astemo株式会社 Vehicle control device, vehicle control method, and vehicle control system
JP7431989B2 (en) 2020-09-08 2024-02-15 日立Astemo株式会社 Vehicle control device, vehicle control method, and vehicle control system
WO2022202763A1 (en) * 2021-03-22 2022-09-29 株式会社アドヴィックス Braking control device for vehicle
JP7505427B2 (en) 2021-03-22 2024-06-25 株式会社アドヴィックス Vehicle brake control device
JP7468554B2 (en) 2022-01-26 2024-04-16 トヨタ自動車株式会社 Vehicle and vehicle control method

Similar Documents

Publication Publication Date Title
JP2009278840A (en) Regenerative braking control unit of electric vehicle
JP4325615B2 (en) Engine stop control device for hybrid vehicle
JP5832736B2 (en) Engine start control device for hybrid vehicle
EP2065243B1 (en) Control apparatus of a hybrid vehicle and method for controlling the same
US8727938B2 (en) Engine stop control system for hybrid electric vehicle
US9267481B2 (en) Hybrid vehicle engine start control system
US9050970B2 (en) Driving torque control device for hybrid vehicle
JP4949290B2 (en) Driving force control device for electric vehicle
JP5747525B2 (en) Vehicle control device
CN102563041A (en) Automatic transmission
JP2011088595A (en) Controller for hybrid electric automobile
JP5476721B2 (en) Control device for hybrid vehicle
JP5181847B2 (en) Combined brake coordination controller
JP2010269642A (en) Braking controller of hybrid vehicle
JP5151702B2 (en) Combined brake coordination controller
JP6365067B2 (en) Control device for electric four-wheel drive vehicle
JP2006205787A (en) Regenerative braking control device of vehicle
JP2012086705A (en) Control device of hybrid vehicle
JP5012190B2 (en) Hybrid car
JP2012092975A (en) Automatic transmission
JP5550524B2 (en) Automatic transmission
JP5309676B2 (en) Vehicle start control device
JP2012081819A (en) Hybrid vehicle control device
JP2012091620A (en) Engine start control device of hybrid vehicle
JP5223378B2 (en) Vehicle start control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702