JP2009278595A - Optical wavelength multiplexed transmission system and optical amplifier control method - Google Patents

Optical wavelength multiplexed transmission system and optical amplifier control method Download PDF

Info

Publication number
JP2009278595A
JP2009278595A JP2008130725A JP2008130725A JP2009278595A JP 2009278595 A JP2009278595 A JP 2009278595A JP 2008130725 A JP2008130725 A JP 2008130725A JP 2008130725 A JP2008130725 A JP 2008130725A JP 2009278595 A JP2009278595 A JP 2009278595A
Authority
JP
Japan
Prior art keywords
optical
wavelength
control signal
fiber transmission
multiplexed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008130725A
Other languages
Japanese (ja)
Inventor
Makoto Murakami
誠 村上
Tsuyoshi Seki
剛志 関
Kazuhiro Oda
一弘 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008130725A priority Critical patent/JP2009278595A/en
Publication of JP2009278595A publication Critical patent/JP2009278595A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce optical signal quality deterioration caused by a transient response of an optical amplifier due to optical signal switching while transmitting a supervisory and control signal, in an optical wavelength multiplexed transmission system which connects an optical cross-connect device to an optical fiber transmission line including the optical amplifier and switches a transmission destination of optical signal. <P>SOLUTION: A supervisory and control signal transmitter is provided which generates a supervisory and control signal to be wavelength-multiplexed on a wavelength multiplex optical signal to be sent from an output port of an optical switch to an optical fiber transmission line. When the number of wavelength multiplexing of the wavelength multiplex optical signal to be sent to the optical fiber transmission line is increased/decreased, the supervisory and control signal transmitter switches a wavelength of the supervisory and control signal so as to switch between the increased/decreased wavelength and a wavelength other than an optical amplification band of the optical amplifier, and suppresses variation in the total optical power in the optical amplification band to be input to the optical amplifier of the optical fiber transmission line. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光クロスコネクト装置および光増幅器を含む光波長多重伝送システムにおいて、光クロスコネクト装置のスイッチングに伴う波長多重数の変動による光増幅器の過渡応答を監視制御信号を用いて緩和する光波長多重伝送システムおよび光増幅器制御方法に関する。   The present invention relates to an optical wavelength multiplex transmission system including an optical cross-connect device and an optical amplifier, and an optical wavelength for mitigating a transient response of the optical amplifier due to a variation in the number of multiplexed wavelengths accompanying switching of the optical cross-connect device using a supervisory control signal. The present invention relates to a multiplex transmission system and an optical amplifier control method.

光波長多重伝送システムでは、波長多重された主信号を伝送する手段に加えて、光増幅中継装置の状態を監視するための監視制御信号伝送手段を備えることが一般的である。   In general, an optical wavelength division multiplexing transmission system includes monitoring control signal transmission means for monitoring the state of the optical amplification repeater in addition to means for transmitting the wavelength-multiplexed main signal.

図10は、監視制御信号伝送手段を含む光波長多重伝送システムの構成例を示す。ここでは、光ファイバ伝送路および光増幅中継装置を介して接続される端局装置間で波長多重主信号および監視制御信号を伝送する構成例を示す。   FIG. 10 shows a configuration example of an optical wavelength division multiplex transmission system including a supervisory control signal transmission means. Here, a configuration example is shown in which a wavelength division multiplexed main signal and a supervisory control signal are transmitted between terminal devices connected via an optical fiber transmission line and an optical amplification repeater.

図において、一方の端局装置100は、複数の主信号送信器101から出力される主信号を合波器102で波長多重し、その波長多重主信号に光カプラ103で監視制御信号送信器104から出力される監視制御信号を波長多重し、光ファイバ伝送路105に送出する。光ファイバ伝送路105には光増幅器106を含む光増幅中継装置107が挿入される。光増幅中継装置107は、光増幅器106で波長多重主信号を増幅して次段に送信するとともに、光カプラ108を介して分岐した波長多重光信号を監視制御信号受信器109に入力して監視制御信号を検出し、監視制御回路110に通知する。監視制御回路110は、前段からの監視制御信号を処理するとともに、次段に伝達する光増幅中継装置107の状態等の情報を生成し、監視制御信号送信器111から監視制御信号を送信する。監視制御信号送信器111から出力される監視制御信号は、光カプラ112で光増幅器106で増幅された波長多重主信号に波長多重され、光ファイバ伝送路105を介して次段に送信される。他方の端局装置113は、分波器114で波長多重主信号を各波長の主信号に分波して主信号受信器115に受信されるとともに、光カプラ116を介して分岐した波長多重光信号を監視制御信号受信器117に入力して監視制御信号を検出する。他方の端局装置113から光増幅中継装置107を介して一方の端局装置100への伝送経路においても同様である。   In the figure, one terminal apparatus 100 wavelength-multiplexes the main signal output from a plurality of main signal transmitters 101 by a multiplexer 102, and supervises the control signal transmitter 104 by an optical coupler 103 to the wavelength multiplexed main signal. The monitoring control signal output from the signal is wavelength-multiplexed and sent to the optical fiber transmission line 105. An optical amplification repeater 107 including an optical amplifier 106 is inserted into the optical fiber transmission line 105. The optical amplification repeater 107 amplifies the wavelength multiplexed main signal by the optical amplifier 106 and transmits it to the next stage, and inputs the wavelength multiplexed optical signal branched via the optical coupler 108 to the monitoring control signal receiver 109 for monitoring. A control signal is detected and notified to the monitoring control circuit 110. The supervisory control circuit 110 processes the supervisory control signal from the previous stage, generates information such as the state of the optical amplification repeater 107 transmitted to the subsequent stage, and transmits the supervisory control signal from the supervisory control signal transmitter 111. The supervisory control signal output from the supervisory control signal transmitter 111 is wavelength-multiplexed with the wavelength-multiplexed main signal amplified by the optical amplifier 106 by the optical coupler 112 and transmitted to the next stage via the optical fiber transmission line 105. The other terminal device 113 demultiplexes the wavelength-multiplexed main signal into main signals of each wavelength by the branching filter 114 and receives it by the main signal receiver 115, and the wavelength-multiplexed light branched via the optical coupler 116. A signal is input to the supervisory control signal receiver 117 to detect the supervisory control signal. The same applies to the transmission path from the other terminal device 113 to the one terminal device 100 via the optical amplification repeater 107.

ここで、監視制御信号送信器104,111は、主信号とは異なる波長の光源と光変調器を備え、波長多重主信号に波長多重される監視制御信号を送信する構成である。この監視制御信号の波長λosc は、図11に示すように、主信号の波長帯域(λ1〜λ4)とは異なる波長帯域で、かつ光増幅器の光増幅帯域外に設定することが一般的である。   Here, the supervisory control signal transmitters 104 and 111 are configured to include a light source and an optical modulator having a wavelength different from that of the main signal, and to transmit a supervisory control signal that is wavelength-multiplexed to the wavelength-multiplexed main signal. As shown in FIG. 11, the wavelength λosc of the supervisory control signal is generally set in a wavelength band different from the wavelength band (λ1 to λ4) of the main signal and outside the optical amplification band of the optical amplifier. .

一方、光波長多重伝送システムでは、複数の光信号の経路を自在に設定し、切り替えを行うために光クロスコネクト装置が用いられる。光クロスコネクト装置は、複数の光信号入力部および光信号出力部と、これらの入出力部間を接続するスイッチ部を基本構成とし、スイッチ部の制御によって任意の光信号入力部と光信号出力部を一意に接続し、さらに要求に応じてこれらの接続組み合わせの変更を可能とする(特許文献1)。この光クロスコネクト装置のスイッチ部には、構成の簡易さ、コスト、信頼性の観点から光信号を電気信号に変換せずにそのまま切り替えを行う光スイッチを用いることが多い。   On the other hand, in an optical wavelength division multiplexing transmission system, an optical cross-connect device is used to freely set and switch a plurality of optical signal paths. The optical cross-connect device is basically composed of a plurality of optical signal input units and optical signal output units, and a switch unit that connects these input / output units, and an arbitrary optical signal input unit and optical signal output are controlled by the switch unit. The units are uniquely connected, and these connection combinations can be changed as required (Patent Document 1). In many cases, an optical switch that performs switching without converting an optical signal into an electrical signal is often used as the switch unit of the optical cross-connect device from the viewpoint of simplicity of configuration, cost, and reliability.

図12は、光クロスコネクト装置を含む光波長多重伝送システムの構成例を示す。ここでは、簡単のために光クロスコネクト装置10−1〜10−4のそれぞれの入出力方路数を2本とし、光クロスコネクト装置10−1と光クロスコネクト装置10−2,10−3がそれぞれ光ファイバ伝送路1,2を介して接続され、光クロスコネクト装置10−2,10−3と光クロスコネクト装置10−4がそれぞれ光ファイバ伝送路3,4を介して接続される構成を示す。   FIG. 12 shows a configuration example of an optical wavelength division multiplexing transmission system including an optical cross-connect device. Here, for the sake of simplicity, the number of input / output paths of each of the optical cross-connect devices 10-1 to 10-4 is two, and the optical cross-connect device 10-1 and the optical cross-connect devices 10-2 and 10-3 are used. Are connected via optical fiber transmission lines 1 and 2, respectively, and optical cross-connect devices 10-2 and 10-3 and optical cross-connect device 10-4 are connected via optical fiber transmission lines 3 and 4, respectively. Indicates.

一般に方路数をMとすると(Mは2以上の整数)、1つの光クロスコネクト装置10には入出力方路それぞれにM本の光ファイバ伝送路が接続される。また、波長多重伝送を行う場合に波長多重数をNとすると(Nは2以上の整数)、M本の光ファイバ伝送路の光信号は、分波器11を介してそれぞれN本の光信号に分離され、光スイッチ12の(N×M)本の入力ポートに接続される。さらに、光クロスコネクト装置10でクライアント信号が入出力される場合、K本のAddポートから入力するクライアント信号が光スイッチ12のK本の入力ポートに接続される(Kは1以上の整数)。光スイッチ12は、これら(N×M+K)本の光信号をクロスコネクトして(N×M+K)本の出力ポートに出力する。このうち、(N×M)本の光信号は合波器13でそれぞれN本の光信号が波長多重され、M本の光ファイバ伝送路にそれぞれ出力されるとともに、K本のクライアント信号はDropポートに出力される。   In general, when the number of routes is M (M is an integer of 2 or more), one optical cross-connect device 10 is connected to M optical fiber transmission lines in each input / output route. Further, in the case of performing wavelength division multiplexing transmission, assuming that the number of wavelength multiplexing is N (N is an integer of 2 or more), the optical signals of the M optical fiber transmission lines are respectively N optical signals via the duplexer 11. And are connected to (N × M) input ports of the optical switch 12. Further, when client signals are input / output in the optical cross-connect device 10, client signals input from K Add ports are connected to K input ports of the optical switch 12 (K is an integer of 1 or more). The optical switch 12 cross-connects these (N × M + K) optical signals and outputs them to (N × M + K) output ports. Among these, (N × M) optical signals are wavelength-multiplexed by N optical signals by the multiplexer 13 and output to M optical fiber transmission lines, respectively, and K client signals are dropped. Output to the port.

なお、合波器13で波長多重する光信号は、互いに波長が異なっている必要がある一方、各光ファイバ伝送路で波長多重伝送に用いられる波長帯は共通の場合が一般的である。そのため、合波器13に異なる光ファイバ伝送路から入力した同じ波長の光信号が入力される場合もある。このような場合には、合波器13の入力部の一部または全部に波長変換器を備え、波長競合が起こった場合にいずれかの波長を変換してから合波器13に入力する構成をとる。
特開平06−292246号公報
The optical signals that are wavelength-multiplexed by the multiplexer 13 need to have different wavelengths, while the wavelength bands used for wavelength-multiplexed transmission in each optical fiber transmission line are generally common. For this reason, optical signals having the same wavelength input from different optical fiber transmission lines may be input to the multiplexer 13. In such a case, a wavelength converter is provided in a part or all of the input section of the multiplexer 13, and when wavelength competition occurs, any wavelength is converted and then input to the multiplexer 13. Take.
Japanese Patent Laid-Open No. 06-292246

ところで、光増幅器を含む光ファイバ伝送路に光クロスコネクト装置を接続し、光信号の送出先を切り替える場合に、光ファイバ伝送路中の総和光電力は波長多重数に応じて変化することになるが、光ファイバ伝送路中を伝搬する各波長の光信号レベルは一定に保たれる必要がある。それは、光信号レベルの低下は光信号対雑音比の低下を招く一方で、光信号レベルの増加は光ファイバの非線形光学効果による劣化を招く可能性があるためである。したがって、光波長多重伝送システムの光ファイバ伝送路に用いられる光増幅器は、各波長の光信号レベルを一定に保つための自動利得制御回路を備えることが一般的である。   By the way, when the optical cross-connect device is connected to the optical fiber transmission line including the optical amplifier and the transmission destination of the optical signal is switched, the total optical power in the optical fiber transmission line changes according to the number of wavelength multiplexing. However, the optical signal level of each wavelength propagating in the optical fiber transmission line needs to be kept constant. This is because a decrease in the optical signal level causes a decrease in the optical signal-to-noise ratio, while an increase in the optical signal level may cause a deterioration due to the nonlinear optical effect of the optical fiber. Therefore, an optical amplifier used in an optical fiber transmission line of an optical wavelength division multiplex transmission system generally includes an automatic gain control circuit for keeping the optical signal level of each wavelength constant.

しかし、このような自動利得制御回路を備えた光増幅器は、入力光信号が急速に変動した場合に過渡的利得変動を生ずる場合があることが知られている。この過渡応答は、入力光信号電力の変動速度が光増幅器の利得緩和時間に近いほど顕著になる。なお、利得緩和時間は、例えば一般に用いられるエルビウム添加光ファイバ増幅器の場合は数ミリ秒程度であり、光増幅器の種類や飽和強度等の動作条件によって変わる。一方、一般に用いられる光スイッチの切り替え速度は数ミリ秒程度あるいはそれ以下の場合もあるため、この過渡応答の影響が重大な問題になる。   However, it is known that an optical amplifier provided with such an automatic gain control circuit may cause a transient gain fluctuation when an input optical signal fluctuates rapidly. This transient response becomes more prominent as the fluctuation speed of the input optical signal power is closer to the gain relaxation time of the optical amplifier. The gain relaxation time is, for example, about several milliseconds in the case of a commonly used erbium-doped optical fiber amplifier, and varies depending on the operating conditions such as the type of optical amplifier and the saturation intensity. On the other hand, since the switching speed of a commonly used optical switch may be several milliseconds or less, the influence of this transient response becomes a serious problem.

さらに、光ファイバ伝送路に光信号がないときに光信号が入力された場合には、光増幅器の過渡応答が最も顕著に現れるため、通常は光増幅器の励起光源を零あるいは低下させることによりこれを防ぐ方法がとられる。しかし、この方法は光信号を切り替えて光波長パスを設定したり削除する場合に、迅速な動作を実現する上で問題となる。   In addition, when an optical signal is input when there is no optical signal in the optical fiber transmission line, the transient response of the optical amplifier appears most prominently. A way to prevent it is taken. However, this method poses a problem in realizing a quick operation when an optical wavelength path is set or deleted by switching optical signals.

本発明は、光増幅器を含む光ファイバ伝送路に光クロスコネクト装置を接続し、光信号の送出先を切り替える光波長多重伝送システムにおいて、監視制御信号の伝送を行いながら光信号切り替えに伴う光増幅器の過渡応答による光信号品質劣化を低減することができる光波長多重伝送システムおよび光増幅器制御方法を提供することを目的とする。   The present invention relates to an optical amplifier for switching optical signals while transmitting a supervisory control signal in an optical wavelength multiplexing transmission system in which an optical cross-connect device is connected to an optical fiber transmission line including an optical amplifier to switch an optical signal transmission destination. It is an object of the present invention to provide an optical wavelength multiplex transmission system and an optical amplifier control method capable of reducing optical signal quality degradation due to the transient response of the optical signal.

第1の発明は、複数の入力ポートと出力ポート間の接続を切り替える光スイッチを備え、光増幅器を含む複数の光ファイバ伝送路を介して伝送された複数の波長多重光信号をそれぞれ各波長の光信号に分波して光スイッチの複数の入力ポートに入力し、光スイッチの複数の出力ポートから出力された各波長の光信号をそれぞれ合波して複数の波長多重光信号を生成し、光増幅器を含む複数の光ファイバ伝送路にそれぞれ出力する光クロスコネクト装置を含む光波長多重伝送システムにおいて、光スイッチの出力ポートから光ファイバ伝送路に送出する波長多重光信号に波長多重する監視制御信号を生成する監視制御信号送信器を備え、監視制御信号送信器は、光ファイバ伝送路に送出する波長多重光信号の波長多重数に増減があるときに、当該増減する波長と光増幅器の光増幅帯域外の波長との間で入れ代わるように監視制御信号の波長を切り替え、光ファイバ伝送路の光増幅器に入力する光増幅帯域の総和光電力の変動を抑圧する構成である。   A first invention includes an optical switch that switches connections between a plurality of input ports and output ports, and each of a plurality of wavelength multiplexed optical signals transmitted through a plurality of optical fiber transmission lines including an optical amplifier, for each wavelength. Demultiplexing into optical signals, input to a plurality of input ports of the optical switch, and combining each optical signal of each wavelength output from the plurality of output ports of the optical switch to generate a plurality of wavelength multiplexed optical signals, Supervisory control for wavelength multiplexing to wavelength-multiplexed optical signal sent from optical switch output port to optical fiber transmission line in optical wavelength division multiplexing transmission system including optical cross-connect device that outputs to multiple optical fiber transmission lines each including optical amplifier A supervisory control signal transmitter for generating a signal, and the supervisory control signal transmitter is configured to detect when the wavelength multiplexing number of the wavelength multiplexed optical signal transmitted to the optical fiber transmission line is increased or decreased. Switch the wavelength of the supervisory control signal so that it is switched between the increasing and decreasing wavelength and the wavelength outside the optical amplification band of the optical amplifier, and suppress the fluctuation of the total optical power in the optical amplification band input to the optical amplifier in the optical fiber transmission line It is a configuration.

また、監視制御信号送信器は、光スイッチの入力ポート側に配置し、光クロスコネクト装置から各光ファイバ伝送路に送出する波長多重光信号の波長多重数の増減に応じた波長の監視制御信号を出力し、光スイッチを介して当該光ファイバ伝送路に送出する構成としてもよい。   The monitor control signal transmitter is arranged on the input port side of the optical switch, and the monitor control signal of the wavelength according to the increase / decrease of the wavelength multiplexing number of the wavelength multiplexed optical signal transmitted from the optical cross-connect device to each optical fiber transmission line May be output to the optical fiber transmission line via an optical switch.

また、第1の発明の光波長多重伝送システムは、光ファイバ伝送路から光クロスコネクト装置に入力する波長多重光信号を分岐して入力し、波長多重光信号に波長多重して伝送された監視制御信号を受信する監視制御信号受信器を備える。   The optical wavelength division multiplexing transmission system according to the first aspect of the present invention is a monitoring system in which a wavelength division multiplexed optical signal inputted from an optical fiber transmission line to an optical cross-connect device is branched and inputted and wavelength multiplexed to a wavelength division multiplexed optical signal and transmitted. A monitoring control signal receiver for receiving the control signal is provided.

また、第1の発明の光波長多重伝送システムは、光ファイバ伝送路から光クロスコネクト装置に入力する波長多重光信号を光スイッチを介して入力し、波長多重光信号に波長多重して伝送された監視制御信号を受信する監視制御信号受信器を備える。   The optical wavelength division multiplexing transmission system according to the first aspect of the invention receives a wavelength division multiplexed optical signal input from an optical fiber transmission line to an optical cross-connect device via an optical switch, and transmits the wavelength multiplexed optical signal after wavelength division multiplexing. A monitoring control signal receiver for receiving the monitoring control signal.

第2の発明は、複数の入力ポートと出力ポート間の接続を切り替える光スイッチを備え、光増幅器を含む複数の光ファイバ伝送路を介して伝送された複数の波長多重光信号をそれぞれ各波長の光信号に分波して光スイッチの複数の入力ポートに入力し、光スイッチの複数の出力ポートから出力された各波長の光信号をそれぞれ合波して複数の波長多重光信号を生成し、光増幅器を含む複数の光ファイバ伝送路にそれぞれ出力する光クロスコネクト装置を含む光波長多重伝送システムの光増幅器制御方法において、光スイッチの出力ポートから光ファイバ伝送路に送出する波長多重光信号に波長多重する監視制御信号を生成する監視制御信号送信器を用い、光ファイバ伝送路に送出する波長多重光信号の波長多重数に増減があるときに、当該増減する波長と光増幅器の光増幅帯域外の波長との間で入れ代わるように監視制御信号の波長を切り替え、光ファイバ伝送路の光増幅器に入力する光増幅帯域の総和光電力の変動を抑圧する。   A second invention includes an optical switch that switches connections between a plurality of input ports and output ports, and each of a plurality of wavelength-multiplexed optical signals transmitted through a plurality of optical fiber transmission lines including an optical amplifier, for each wavelength. Demultiplexing into optical signals, input to a plurality of input ports of the optical switch, and combining each optical signal of each wavelength output from the plurality of output ports of the optical switch to generate a plurality of wavelength multiplexed optical signals, In an optical amplifier control method of an optical wavelength multiplexing transmission system including an optical cross-connect device that outputs to each of a plurality of optical fiber transmission lines including an optical amplifier, the wavelength multiplexed optical signal transmitted from the output port of the optical switch to the optical fiber transmission line When a supervisory control signal transmitter that generates a wavelength division multiplexed supervisory control signal is used and the wavelength multiplexing number of the wavelength multiplexed optical signal transmitted to the optical fiber transmission line is increased or decreased, the increase is performed. Switching the wavelength of the supervisory control signal as change places with the wavelengths outside the optical amplification band of wavelength and an optical amplifier which suppresses a total Wako power variation of the input to the optical amplification band optical amplifier of the optical fiber transmission line.

また、監視制御信号送信器は、光スイッチの入力ポート側に配置し、光クロスコネクト装置から各光ファイバ伝送路に送出する波長多重光信号の波長多重数の増減に応じた波長の監視制御信号を出力し、光スイッチを介して当該光ファイバ伝送路に送出するようにしてもよい。   The monitor control signal transmitter is arranged on the input port side of the optical switch, and the monitor control signal of the wavelength according to the increase / decrease of the wavelength multiplexing number of the wavelength multiplexed optical signal transmitted from the optical cross-connect device to each optical fiber transmission line May be output to the optical fiber transmission line via an optical switch.

本発明は、光スイッチの制御に応じて光ファイバ伝送路に送出される波長多重光信号の波長多重数に変動が生じるときに監視制御信号の波長を切り替え、光ファイバ伝送路の光増幅器の光増幅帯域内の総和光電力が一定になるように制御することにより、光増幅器の過渡応答による光信号電力変動を回避することができる。   The present invention switches the wavelength of the supervisory control signal when the wavelength multiplexing number of the wavelength multiplexed optical signal transmitted to the optical fiber transmission line varies according to the control of the optical switch, and the optical amplifier of the optical fiber transmission line By controlling the total optical power in the amplification band to be constant, fluctuations in the optical signal power due to the transient response of the optical amplifier can be avoided.

これにより、光クロスコネクト装置および光増幅器を含む光波長多重伝送システムにおいて、光クロスコネクト装置のスイッチングに伴う光信号品質劣化を低減し、光波長多重伝送システムの高性能化および高信頼性を確保し、運用性の向上を図ることができる。   As a result, optical wavelength multiplex transmission systems including optical cross-connect devices and optical amplifiers reduce optical signal quality degradation due to switching of optical cross-connect devices, ensuring high performance and high reliability of optical wavelength multiplex transmission systems. Therefore, operability can be improved.

(第1の実施形態)
図1は、本発明の光波長多重伝送システムの第1の実施形態を示す。
図において、光クロスコネクト装置10には、光ファイバ伝送路1,2を介して光増幅中継装置20が接続される。光ファイバ伝送路1から光クロスコネクト装置10に入力する波長多重光信号は、分波器11で各波長の光信号に分離され、光スイッチ12の複数の入力ポートに入力する。さらに、端局装置30から光クロスコネクト装置10の Addポートに入力するクライアント信号は、光スイッチ12の対応する入力ポートに入力する。光スイッチ12は、これら複数の光信号をクロスコネクトして複数の出力ポートに出力する。このうち、光ファイバ伝送路2に送出する各波長の光信号は合波器13で波長多重されるとともに、端局装置30に送出するクライアント信号はDropポートから出力される。
(First embodiment)
FIG. 1 shows a first embodiment of the optical wavelength division multiplexing transmission system of the present invention.
In the figure, an optical amplification repeater 20 is connected to the optical cross-connect device 10 via optical fiber transmission lines 1 and 2. Wavelength multiplexed optical signals input from the optical fiber transmission line 1 to the optical cross-connect device 10 are separated into optical signals of respective wavelengths by the demultiplexer 11 and input to a plurality of input ports of the optical switch 12. Further, the client signal input from the terminal device 30 to the Add port of the optical cross-connect device 10 is input to the corresponding input port of the optical switch 12. The optical switch 12 cross connects the plurality of optical signals and outputs them to a plurality of output ports. Among these, the optical signal of each wavelength transmitted to the optical fiber transmission line 2 is wavelength-multiplexed by the multiplexer 13, and the client signal transmitted to the terminal device 30 is output from the Drop port.

以上の構成は、図12に示す従来の光波長多重伝送システムの光クロスコネクト装置と同様である。また、光増幅中継装置20も図10に示す光増幅中継装置107と同様の構成であるが、ここでは光増幅器のみを記載している。   The above configuration is the same as that of the optical cross-connect device of the conventional optical wavelength division multiplexing system shown in FIG. The optical amplification repeater 20 has the same configuration as the optical amplification repeater 107 shown in FIG. 10, but only the optical amplifier is shown here.

本実施形態では、さらに光クロスコネクト装置10において監視制御信号を送受信する監視制御信号受信器14および監視制御信号送信器15を備える。すなわち、監視制御信号受信器14は、光クロスコネクト装置10の入力ポートに挿入する光カプラ16で分岐した波長多重光信号から監視制御信号を分離して受信する。また、監視制御信号送信器15は監視制御信号を出力し、光クロスコネクト装置10の出力ポートに挿入する光カプラ17で波長多重光信号に波長多重して光ファイバ伝送路2に送出する。ここで、監視制御信号の波長として、図11に示すように主信号とは異なる波長帯域で、かつ光増幅器の光増幅帯域外に設定することにより、従来の光波長多重伝送システムと同様の監視制御動作が可能である。   In the present embodiment, the optical cross-connect device 10 further includes a supervisory control signal receiver 14 and a supervisory control signal transmitter 15 that transmit and receive supervisory control signals. That is, the supervisory control signal receiver 14 separates and receives the supervisory control signal from the wavelength multiplexed optical signal branched by the optical coupler 16 inserted into the input port of the optical cross-connect device 10. The supervisory control signal transmitter 15 outputs a supervisory control signal, and multiplexes the wavelength multiplexed optical signal with the optical coupler 17 inserted in the output port of the optical cross-connect device 10 and sends it to the optical fiber transmission line 2. Here, by setting the wavelength of the supervisory control signal in a wavelength band different from that of the main signal as shown in FIG. 11 and outside the optical amplification band of the optical amplifier, the same monitoring as in the conventional optical wavelength multiplex transmission system is performed. Control action is possible.

本実施形態の特徴は、光クロスコネクト装置10から光ファイバ伝送路2にクロスコネクトされる主信号の増減があったときに、当該増減する主信号波長に入れ代わるように監視制御信号の波長を切り替えることにより、光ファイバ伝送路2に送出される総和光電力は増減するものの、光増幅中継装置20の光増幅器に入力する光増幅帯域の総和光電力が一定になるように制御するところにある。   The feature of this embodiment is that when the main signal cross-connected from the optical cross-connect device 10 to the optical fiber transmission line 2 is increased or decreased, the wavelength of the supervisory control signal is switched so as to replace the increased or decreased main signal wavelength. As a result, the total optical power transmitted to the optical fiber transmission line 2 increases or decreases, but the total optical power in the optical amplification band input to the optical amplifier of the optical amplification repeater 20 is controlled to be constant.

図2〜図6は、第1の実施形態における監視制御信号の波長制御例を示す。ここでは、主信号波長は図11に示すように光増幅帯域に一致するλ1〜λ4とする。   2 to 6 show examples of wavelength control of the monitoring control signal in the first embodiment. Here, it is assumed that the main signal wavelengths are λ1 to λ4 that match the optical amplification band as shown in FIG.

図2(a) 〜(d) は、波長λ1,λ2,λ3の主信号が波長多重されて光ファイバ伝送路2に送出されているときに、時間t1で光スイッチの切り替えにより波長λ4の主信号が加わる状況を示す。波長λ4の主信号が時間t1から立ち上がり時間Δtで切り替わると、光増幅中継装置20の光増幅器に入力する総和光電力は時間t1以降に増加する。このとき、波長λ4の主信号の立ち上がり時間Δtが光増幅器の利得緩和時間に比べて短い場合には、光増幅器の過渡応答によって、波長λ1〜λ3の光信号電力が変動して劣化を招くことになる。   2 (a) to 2 (d) show that the main signal of wavelength λ4 is switched by switching the optical switch at time t1 when the main signals of wavelengths λ1, λ2 and λ3 are wavelength-multiplexed and transmitted to the optical fiber transmission line 2. FIG. Indicates the situation where a signal is applied. When the main signal of wavelength λ4 is switched from the time t1 at the rising time Δt, the total optical power input to the optical amplifier of the optical amplification repeater 20 increases after the time t1. At this time, when the rise time Δt of the main signal of the wavelength λ4 is shorter than the gain relaxation time of the optical amplifier, the optical signal power of the wavelengths λ1 to λ3 fluctuates due to the transient response of the optical amplifier, leading to deterioration. become.

そこで、波長λ4の主信号が抜けている時間t1までは、図2(e) に示すように、監視制御信号の波長をλ4に設定し、波長λ4の主信号が加わるときに入れ代わりに監視制御信号の波長をλ4から光増幅帯域外の波長λosc に切り替える。これにより、光増幅中継装置20の光増幅器に入力する総和光電力は図2(f) の破線のように増加するが、光増幅帯域内の総和光電力は図2(f) の実線のように一定になり、光増幅器の過渡応答による光信号電力変動を回避することができる。波長λ1〜λ4の主信号のうち、波長λ4の主信号が加わるときに監視制御信号の波長がλ4からλosc に変化する例を図3(a),(b) に示す。   Therefore, until the time t1 when the main signal of wavelength λ4 is missing, as shown in FIG. 2 (e), the wavelength of the monitor control signal is set to λ4, and when the main signal of wavelength λ4 is added, the monitor control is substituted. The wavelength of the signal is switched from λ4 to a wavelength λosc outside the optical amplification band. As a result, the total optical power input to the optical amplifier of the optical amplification repeater 20 increases as indicated by the broken line in FIG. 2 (f), but the total optical power within the optical amplification band is indicated by the solid line in FIG. 2 (f). Thus, fluctuations in the optical signal power due to the transient response of the optical amplifier can be avoided. FIGS. 3A and 3B show an example in which the wavelength of the supervisory control signal changes from λ4 to λosc when the main signal of wavelength λ4 is added among the main signals of wavelengths λ1 to λ4.

このような監視制御信号の波長制御は、図1に示す光クロスコネクト装置10の光スイッチ12の制御に応じて、光ファイバ伝送路2に送出される波長多重光信号から抜けている波長に、監視制御信号送信器15から出力する監視制御信号の波長を設定し、その波長の主信号が加わるときに監視制御信号の波長を光増幅帯域外の波長λosc に切り替えることにより対応可能である。すなわち、光スイッチ12の制御に応じて波長多重光信号の波長多重数に変動が生じるときに、監視制御信号送信器15の波長を切り替える制御を行う。なお、監視制御信号受信器14は、受信する監視制御信号の波長が図3に示すように切り替わる構成であっても、受信帯域が広い光受信器を用いることにより監視制御信号の受信は可能である。   The wavelength control of such a supervisory control signal is performed in accordance with the control of the optical switch 12 of the optical cross-connect device 10 shown in FIG. This can be handled by setting the wavelength of the supervisory control signal output from the supervisory control signal transmitter 15 and switching the wavelength of the supervisory control signal to the wavelength λosc outside the optical amplification band when the main signal of that wavelength is added. That is, when the wavelength multiplexing number of the wavelength multiplexed optical signal varies according to the control of the optical switch 12, control is performed to switch the wavelength of the supervisory control signal transmitter 15. Note that the supervisory control signal receiver 14 can receive the supervisory control signal by using an optical receiver having a wide reception band even if the wavelength of the supervisory control signal to be received is switched as shown in FIG. is there.

また、光クロスコネクト装置10において抜けている主信号波長が複数の場合には、図4(a),(b) に示すように、監視制御信号としてその複数の主信号の加算電力に相当する大きな光強度に設定すればよい。ここでは、波長λ3,λ4の主信号が抜けている場合に、例えば波長λ4の監視制御信号の光強度を大きく設定し、波長λ3,λ4の主信号が加わった後は光増幅帯域外の波長λosc に切り替える。   Also, when there are a plurality of main signal wavelengths missing in the optical cross-connect device 10, as shown in FIGS. 4A and 4B, it corresponds to the added power of the plurality of main signals as a supervisory control signal. What is necessary is just to set it as a big light intensity. Here, when the main signal of the wavelengths λ3 and λ4 is missing, for example, the light intensity of the monitoring control signal of the wavelength λ4 is set large, and after the main signal of the wavelengths λ3 and λ4 is added, the wavelength outside the optical amplification band Switch to λosc.

図5は、光クロスコネクト装置10に接続される光ファイバ伝送路2で主信号が伝送されていないときに、光スイッチ12の切り替えにより波長λ1〜λ4の主信号が加わる状況を示す。光ファイバ伝送路2に主信号がないときは監視制御信号の波長を光増幅帯域内(ここではλ4)に設定しておき、光信号の立ち上がり時間Δtに応じて監視制御信号電力を減らし、切替終了時に光増幅帯域外の波長λosc に切り替える。これにより、光ファイバ伝送路2の光増幅器に入力する光増幅帯域内の総和光電力は一定になり、光増幅器の過渡応答による光信号電力変動を回避することができる。   FIG. 5 shows a situation in which main signals of wavelengths λ1 to λ4 are added by switching the optical switch 12 when the main signal is not transmitted on the optical fiber transmission line 2 connected to the optical cross-connect device 10. When there is no main signal in the optical fiber transmission line 2, the wavelength of the supervisory control signal is set within the optical amplification band (here, λ4), and the supervisory control signal power is reduced and switched according to the rise time Δt of the optical signal. At the end, the wavelength is switched to the wavelength λosc outside the optical amplification band. As a result, the total optical power within the optical amplification band input to the optical amplifier of the optical fiber transmission line 2 becomes constant, and fluctuations in the optical signal power due to the transient response of the optical amplifier can be avoided.

なお、図3および図4において、(a) から(b) は光ファイバ伝送路2に送出される主信号が増加する場合であるが、減少する場合には(b) から(a) のように監視制御信号の波長を光増幅帯域外から光増幅帯域内に入れ替えればよい。図5において、光ファイバ伝送路2の主信号がすべてなくなるときも同様である。   In FIGS. 3 and 4, (a) to (b) are cases where the main signal transmitted to the optical fiber transmission line 2 increases, but in the case where the main signal decreases, as shown in (b) to (a) In addition, the wavelength of the monitoring control signal may be switched from outside the optical amplification band to within the optical amplification band. In FIG. 5, the same applies when all the main signals of the optical fiber transmission line 2 disappear.

図6は、光クロスコネクト装置10において入出力ポートまたは光スイッチ12に故障が生じ、予備系に切り替えるときに主信号が一時的に断になる状況を示す。光クロスコネクト装置10の故障によって主信号電力が零になるが、予備系への切替動作が開始すると主信号電力が元の値に戻る。通常、故障による予備系切替処理は、光信号断時間を最小に留めるために迅速に行われる必要があるが、このときの光電力変化は光ファイバ伝送路2に主信号がない場合と同様に光増幅器の過渡応答による過大な光出力を生じさせることがある。そこで、図6に破線で示すように、故障発生と同時に監視制御信号の波長を光増幅帯域内(ここではλ4)に設定し、予備系切替による光増幅器入力光電力の変化が小さくなるように監視制御信号電力を変化させる。そして、予備系切替終了時には光増幅帯域外の波長λosc に切り替える。これにより、光ファイバ伝送路2の光増幅器に入力する光増幅帯域内の総和光電力は一定になり、光増幅器の過渡応答による光信号電力変動を回避することができる。   FIG. 6 shows a situation in which a failure occurs in the input / output port or the optical switch 12 in the optical cross-connect device 10 and the main signal is temporarily disconnected when switching to the standby system. Although the main signal power becomes zero due to the failure of the optical cross-connect device 10, the main signal power returns to the original value when the switching operation to the standby system is started. Usually, the standby system switching process due to a failure needs to be performed quickly in order to keep the optical signal interruption time to a minimum. An excessive optical output may be generated due to the transient response of the optical amplifier. Therefore, as indicated by a broken line in FIG. 6, the wavelength of the supervisory control signal is set within the optical amplification band (here, λ4) at the same time as the failure occurs, so that the change in the optical amplifier input optical power due to the standby system switching becomes small. Change the supervisory control signal power. At the end of the standby system switching, the wavelength is switched to the wavelength λosc outside the optical amplification band. As a result, the total optical power within the optical amplification band input to the optical amplifier of the optical fiber transmission line 2 becomes constant, and fluctuations in the optical signal power due to the transient response of the optical amplifier can be avoided.

(第2の実施形態)
図7は、本発明の光波長多重伝送システムの第2の実施形態を示す。
図1に示す第1の実施形態では、光ファイバ伝送路2が接続される光クロスコネクト装置10の出力ポートごとに監視制御信号送信器15を配置し、それぞれの出力ポートの波長多重数に応じた監視制御信号の波長制御を行う構成であった。本実施形態では、光スイッチ12の入力ポートに少なくとも1つの監視制御信号送信器15を接続し、光クロスコネクト装置10の各出力ポートにそれぞれ対応する波長の監視制御信号を光スイッチ12を介して出力し、各出力ポートの光カプラ17を介して波長多重光信号に監視制御信号を波長多重する構成とする。
(Second Embodiment)
FIG. 7 shows a second embodiment of the optical wavelength division multiplexing transmission system of the present invention.
In the first embodiment shown in FIG. 1, a supervisory control signal transmitter 15 is arranged for each output port of the optical cross-connect device 10 to which the optical fiber transmission line 2 is connected, and according to the wavelength multiplexing number of each output port. The wavelength control of the monitoring control signal was performed. In this embodiment, at least one supervisory control signal transmitter 15 is connected to the input port of the optical switch 12, and supervisory control signals of wavelengths corresponding to the respective output ports of the optical cross-connect device 10 are sent via the optical switch 12. The monitoring control signal is wavelength-multiplexed with the wavelength multiplexed optical signal via the optical coupler 17 of each output port.

(第3の実施形態)
図8は、本発明の光波長多重伝送システムの第3の実施形態を示す。
図1に示す第1の実施形態では、光ファイバ伝送路1が接続される光クロスコネクト装置10の入力ポートごとに監視制御信号受信器14を配置する構成であった。本実施形態では、光スイッチ12の出力ポートに少なくとも1つの監視制御信号受信器14を接続し、光クロスコネクト装置10の各入力ポートの光カプラ16で分岐した波長多重光信号を光スイッチ12を介して監視制御信号受信器14に入力し、監視制御信号を検出する構成とする。
(Third embodiment)
FIG. 8 shows a third embodiment of the optical wavelength division multiplexing transmission system of the present invention.
In the first embodiment shown in FIG. 1, the monitoring control signal receiver 14 is arranged for each input port of the optical cross-connect device 10 to which the optical fiber transmission line 1 is connected. In this embodiment, at least one supervisory control signal receiver 14 is connected to the output port of the optical switch 12, and the wavelength multiplexed optical signal branched by the optical coupler 16 of each input port of the optical cross-connect device 10 is passed through the optical switch 12. The monitoring control signal receiver 14 is configured to detect the monitoring control signal.

(第4の実施形態)
図9は、本発明の光波長多重伝送システムの第4の実施形態を示す。本実施形態では、端局装置30で送受信するクライアント信号に監視制御信号を波長多重して伝送する場合を想定する。
(Fourth embodiment)
FIG. 9 shows a fourth embodiment of the optical wavelength division multiplexing transmission system of the present invention. In the present embodiment, a case is assumed in which the monitoring control signal is wavelength-multiplexed and transmitted to the client signal transmitted and received by the terminal station device 30.

図において、端局装置30は、監視制御信号受信器14、監視制御信号送信器15および光カプラ16,17を備える。端局装置30から光クロスコネクト装置10の Addポートに入力するクライアント信号には、監視制御信号送信器15から出力される監視制御信号が光カプラ17で波長多重され、光スイッチ12を介して出力ポートにルーチングする。監視制御信号の波長は、出力ポートにルーチングされる主信号波長に応じて第1の実施形態と同様に制御される。   In the figure, the terminal device 30 includes a supervisory control signal receiver 14, a supervisory control signal transmitter 15, and optical couplers 16 and 17. The monitoring control signal output from the monitoring control signal transmitter 15 is wavelength-multiplexed by the optical coupler 17 and output via the optical switch 12 to the client signal input from the terminal station device 30 to the Add port of the optical cross-connect device 10. Route to the port. The wavelength of the monitoring control signal is controlled in the same manner as in the first embodiment according to the main signal wavelength routed to the output port.

また、光クロスコネクト装置10のDropポートから端局装置30に送出するクライアント信号は、光カプラ16で分岐して監視制御信号受信器14に入力し、監視制御信号が検出される。   The client signal sent from the drop port of the optical cross-connect device 10 to the terminal station device 30 is branched by the optical coupler 16 and input to the supervisory control signal receiver 14 to detect the supervisory control signal.

また、光クロスコネクト装置10が波長多重光信号のまま波長群としてルーチングする構成では、端局装置30から光クロスコネクト装置10の Addポートに入力するクライアント信号、光クロスコネクト装置10のDropポートから端局装置30に送出するクライアント信号も波長多重光信号となる。ここで、端局装置30から光クロスコネクト装置10の Addポートに入力するクライアント信号の波長多重数に変動があれば、上記の実施形態と同様に監視制御信号の波長を制御してクライアント信号に波長多重するようにすればよい。   Further, in the configuration in which the optical cross-connect device 10 is routed as a wavelength group as a wavelength multiplexed optical signal, the client signal input from the terminal device 30 to the Add port of the optical cross-connect device 10 and the Drop port of the optical cross-connect device 10 are used. The client signal transmitted to the terminal device 30 is also a wavelength multiplexed optical signal. Here, if there is a change in the wavelength multiplexing number of the client signal input from the terminal station device 30 to the Add port of the optical cross-connect device 10, the wavelength of the supervisory control signal is controlled to be the client signal as in the above embodiment. Wavelength multiplexing may be performed.

また、図10に示すような光増幅中継装置20の監視制御信号送信器111でも、監視制御信号の波長可変機能を備え、光増幅中継装置20に入力する波長多重光信号の波長多重数に変動があれば、上記の実施形態と同様に監視制御信号の波長を制御することにより、次段の光増幅器における過渡応答を緩和させるようにしてもよい。   Also, the supervisory control signal transmitter 111 of the optical amplifying repeater 20 as shown in FIG. 10 has a function of changing the wavelength of the supervisory control signal, and the wavelength multiplexing number of the wavelength multiplexed optical signal input to the optical amplifying repeater 20 varies. If there is, the transient response in the optical amplifier at the next stage may be alleviated by controlling the wavelength of the supervisory control signal as in the above embodiment.

本発明の光波長多重伝送システムの第1の実施形態を示す図。The figure which shows 1st Embodiment of the optical wavelength division multiplexing transmission system of this invention. 第1の実施形態における監視制御信号の波長制御例を示す図。The figure which shows the wavelength control example of the monitoring control signal in 1st Embodiment. 第1の実施形態における監視制御信号の波長制御例を示す図。The figure which shows the wavelength control example of the monitoring control signal in 1st Embodiment. 第1の実施形態における監視制御信号の波長制御例を示す図。The figure which shows the wavelength control example of the monitoring control signal in 1st Embodiment. 第1の実施形態における監視制御信号の波長制御例を示す図。The figure which shows the wavelength control example of the monitoring control signal in 1st Embodiment. 第1の実施形態における監視制御信号の波長制御例を示す図。The figure which shows the wavelength control example of the monitoring control signal in 1st Embodiment. 本発明の光波長多重伝送システムの第2の実施形態を示す図。The figure which shows 2nd Embodiment of the optical wavelength division multiplex transmission system of this invention. 本発明の光波長多重伝送システムの第3の実施形態を示す図。The figure which shows 3rd Embodiment of the optical wavelength division multiplex transmission system of this invention. 本発明の光波長多重伝送システムの第4の実施形態を示す図。The figure which shows 4th Embodiment of the optical wavelength division multiplex transmission system of this invention. 監視制御信号伝送手段を含む光波長多重伝送システムの構成例を示す図。The figure which shows the structural example of the optical wavelength multiplexing transmission system containing a supervisory control signal transmission means. 主信号と監視制御信号の波長関係を示す図。The figure which shows the wavelength relationship of a main signal and a supervisory control signal. 光クロスコネクト装置を含む光波長多重伝送システムの構成例を示す図。The figure which shows the structural example of the optical wavelength division multiplex transmission system containing an optical cross-connect apparatus.

符号の説明Explanation of symbols

1,2,3,4 光ファイバ伝送路
10 光クロスコネクト装置
11 分波器
12 光スイッチ
13 合波器
14 監視制御信号受信器
15 監視制御信号送信器
16,17 光カプラ
20,107 光増幅中継装置
30,100,113 端局装置
1, 2, 3, 4 Optical fiber transmission line 10 Optical cross-connect device 11 Demultiplexer 12 Optical switch 13 Multiplexer 14 Supervisory control signal receiver 15 Supervisory control signal transmitter 16, 17 Optical coupler 20, 107 Optical amplification repeater Equipment 30, 100, 113 Terminal equipment

Claims (6)

複数の入力ポートと出力ポート間の接続を切り替える光スイッチを備え、光増幅器を含む複数の光ファイバ伝送路を介して伝送された複数の波長多重光信号をそれぞれ各波長の光信号に分波して前記光スイッチの複数の入力ポートに入力し、前記光スイッチの複数の出力ポートから出力された各波長の光信号をそれぞれ合波して複数の波長多重光信号を生成し、光増幅器を含む複数の光ファイバ伝送路にそれぞれ出力する光クロスコネクト装置を含む光波長多重伝送システムにおいて、
前記光スイッチの出力ポートから前記光ファイバ伝送路に送出する前記波長多重光信号に波長多重する監視制御信号を生成する監視制御信号送信器を備え、
前記監視制御信号送信器は、前記光ファイバ伝送路に送出する前記波長多重光信号の波長多重数に増減があるときに、当該増減する波長と前記光増幅器の光増幅帯域外の波長との間で入れ代わるように前記監視制御信号の波長を切り替え、前記光ファイバ伝送路の光増幅器に入力する光増幅帯域の総和光電力の変動を抑圧する構成である
ことを特徴とする光波長多重伝送システム。
An optical switch that switches connections between multiple input ports and output ports, and demultiplexes multiple wavelength multiplexed optical signals transmitted via multiple optical fiber transmission lines including optical amplifiers into optical signals of each wavelength. A plurality of wavelength multiplexed optical signals that are input to a plurality of input ports of the optical switch and combined with optical signals of respective wavelengths output from the plurality of output ports of the optical switch, and includes an optical amplifier. In an optical wavelength division multiplexing transmission system including an optical cross-connect device that outputs to a plurality of optical fiber transmission lines,
A supervisory control signal transmitter for generating a supervisory control signal to be wavelength-multiplexed with the wavelength-multiplexed optical signal sent from the output port of the optical switch to the optical fiber transmission line;
The supervisory control signal transmitter, when there is an increase or decrease in the number of wavelength multiplexing of the wavelength multiplexed optical signal transmitted to the optical fiber transmission line, between the wavelength to increase and decrease and a wavelength outside the optical amplification band of the optical amplifier The optical wavelength division multiplexing transmission system is characterized in that the wavelength of the supervisory control signal is switched so as to be replaced by an optical amplifier, and the fluctuation of the total optical power in the optical amplification band input to the optical amplifier of the optical fiber transmission line is suppressed.
請求項1に記載の光波長多重伝送システムにおいて、
前記監視制御信号送信器は、前記光スイッチの入力ポート側に配置し、前記光クロスコネクト装置から各光ファイバ伝送路に送出する前記波長多重光信号の波長多重数の増減に応じた波長の監視制御信号を出力し、前記光スイッチを介して当該光ファイバ伝送路に送出する構成である
ことを特徴とする光波長多重伝送システム。
In the optical wavelength division multiplexing transmission system according to claim 1,
The monitoring control signal transmitter is disposed on the input port side of the optical switch, and monitors the wavelength according to the increase / decrease of the wavelength multiplexing number of the wavelength multiplexed optical signal transmitted from the optical cross-connect device to each optical fiber transmission line. An optical wavelength division multiplexing transmission system characterized in that a control signal is output and sent to the optical fiber transmission line via the optical switch.
請求項1に記載の光波長多重伝送システムにおいて、
前記光ファイバ伝送路から前記光クロスコネクト装置に入力する前記波長多重光信号を分岐して入力し、前記波長多重光信号に波長多重して伝送された前記監視制御信号を受信する監視制御信号受信器を備えた
ことを特徴とする光波長多重伝送システム。
In the optical wavelength division multiplexing transmission system according to claim 1,
A supervisory control signal reception for branching and inputting the wavelength-division multiplexed optical signal inputted to the optical cross-connect device from the optical fiber transmission line and receiving the supervisory control signal transmitted by wavelength multiplexing to the wavelength-multiplexed optical signal An optical wavelength division multiplexing transmission system characterized by comprising an optical device.
請求項1に記載の光波長多重伝送システムにおいて、
前記光ファイバ伝送路から前記光クロスコネクト装置に入力する前記波長多重光信号を前記光スイッチを介して入力し、前記波長多重光信号に波長多重して伝送された前記監視制御信号を受信する監視制御信号受信器を備えた
ことを特徴とする光波長多重伝送システム。
In the optical wavelength division multiplexing transmission system according to claim 1,
Monitoring that receives the wavelength-division multiplexed optical signal input from the optical fiber transmission line to the optical cross-connect device via the optical switch and receives the supervisory control signal transmitted by wavelength multiplexing to the wavelength-multiplexed optical signal An optical wavelength division multiplexing transmission system comprising a control signal receiver.
複数の入力ポートと出力ポート間の接続を切り替える光スイッチを備え、光増幅器を含む複数の光ファイバ伝送路を介して伝送された複数の波長多重光信号をそれぞれ各波長の光信号に分波して前記光スイッチの複数の入力ポートに入力し、前記光スイッチの複数の出力ポートから出力された各波長の光信号をそれぞれ合波して複数の波長多重光信号を生成し、光増幅器を含む複数の光ファイバ伝送路にそれぞれ出力する光クロスコネクト装置を含む光波長多重伝送システムの光増幅器制御方法において、
前記光スイッチの出力ポートから前記光ファイバ伝送路に送出する前記波長多重光信号に波長多重する監視制御信号を生成する監視制御信号送信器を用い、前記光ファイバ伝送路に送出する前記波長多重光信号の波長多重数に増減があるときに、当該増減する波長と前記光増幅器の光増幅帯域外の波長との間で入れ代わるように前記監視制御信号の波長を切り替え、前記光ファイバ伝送路の光増幅器に入力する光増幅帯域の総和光電力の変動を抑圧する
ことを特徴とする光増幅器制御方法。
An optical switch that switches connections between multiple input ports and output ports, and demultiplexes multiple wavelength multiplexed optical signals transmitted via multiple optical fiber transmission lines including optical amplifiers into optical signals of each wavelength. A plurality of wavelength multiplexed optical signals that are input to a plurality of input ports of the optical switch and combined with optical signals of respective wavelengths output from the plurality of output ports of the optical switch, and includes an optical amplifier. In an optical amplifier control method of an optical wavelength division multiplexing transmission system including an optical cross-connect device that outputs to a plurality of optical fiber transmission lines,
The wavelength multiplexed light transmitted to the optical fiber transmission line by using a supervisory control signal transmitter for generating a supervisory control signal to be wavelength multiplexed to the wavelength multiplexed optical signal transmitted from the output port of the optical switch to the optical fiber transmission line. When there is an increase / decrease in the number of multiplexed signals, the wavelength of the monitoring control signal is switched so that the increased / decreased wavelength and the wavelength outside the optical amplification band of the optical amplifier are switched, and the light of the optical fiber transmission line is changed. A method for controlling an optical amplifier, characterized by suppressing fluctuations in the total optical power of an optical amplification band input to the amplifier.
請求項5に記載の光増幅器制御方法において、
前記監視制御信号送信器は、前記光スイッチの入力ポート側に配置し、前記光クロスコネクト装置から各光ファイバ伝送路に送出する前記波長多重光信号の波長多重数の増減に応じた波長の監視制御信号を出力し、前記光スイッチを介して当該光ファイバ伝送路に送出する
ことを特徴とする光増幅器制御方法。
The optical amplifier control method according to claim 5,
The monitoring control signal transmitter is disposed on the input port side of the optical switch, and monitors the wavelength according to the increase / decrease of the wavelength multiplexing number of the wavelength multiplexed optical signal transmitted from the optical cross-connect device to each optical fiber transmission line. A control signal is output and sent to the optical fiber transmission line via the optical switch.
JP2008130725A 2008-05-19 2008-05-19 Optical wavelength multiplexed transmission system and optical amplifier control method Withdrawn JP2009278595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130725A JP2009278595A (en) 2008-05-19 2008-05-19 Optical wavelength multiplexed transmission system and optical amplifier control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130725A JP2009278595A (en) 2008-05-19 2008-05-19 Optical wavelength multiplexed transmission system and optical amplifier control method

Publications (1)

Publication Number Publication Date
JP2009278595A true JP2009278595A (en) 2009-11-26

Family

ID=41443561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130725A Withdrawn JP2009278595A (en) 2008-05-19 2008-05-19 Optical wavelength multiplexed transmission system and optical amplifier control method

Country Status (1)

Country Link
JP (1) JP2009278595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119434A1 (en) * 2021-12-21 2023-06-29 日本電信電話株式会社 Network device and data exchange method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119434A1 (en) * 2021-12-21 2023-06-29 日本電信電話株式会社 Network device and data exchange method

Similar Documents

Publication Publication Date Title
JP5708794B2 (en) Branching apparatus having OADM function, wavelength division multiplexing optical network system and method thereof
EP3334062B1 (en) Optical add/drop multiplexing device and optical add/drop multiplexing method
US9166679B2 (en) Optical amplification apparatus, method for controlling same, optical receiver station, and optical transmission system
JP4376263B2 (en) Optical wavelength multiplexing system
JP4826451B2 (en) Optical transmission device with optical amplifier
JP5887698B2 (en) Optical coupling / branching device and optical coupling / branching method
JP2008005302A (en) Optical transmission device and optical add-drop multiplexer
US11063684B2 (en) Optical transmission system, optical transmission apparatus and transmission method
CN111903074B (en) Submarine branching device, optical submarine cable system and optical communication method
WO2019065383A1 (en) Submarine branching unit, optical submarine cable system, optical communication method
US9742500B2 (en) Optical transmission apparatus and optical signal processing method
JP2006066946A (en) Optical add-drop multiplexer and optical add-drop multiplexing method
JP2007150636A (en) Transmission device
JP2019075654A (en) Transmission system and transmission method
JP2000174701A (en) Optical switching circuit
JP4850781B2 (en) Optical cross-connect device, optical cross-connect control method, wavelength division multiplexing transmission system, and optical amplifier control method
JP2009278595A (en) Optical wavelength multiplexed transmission system and optical amplifier control method
JP2001197010A (en) Optical amplifier, node device, and optical communication network system
JP6693901B2 (en) Optical amplifier, wavelength division multiplexer, and optical splitter
JP5752576B2 (en) Optical transmission system
US20230067932A1 (en) Wavelength cross connect device and wavelength cross connect method
JP2006186538A (en) Optical transmission apparatus and method of changing optical transmission line
WO2021229744A1 (en) Failure detection device, failure detection method, and failure-detection-program recording medium
JP5095646B2 (en) Optical transmission system and optical amplifier control method
JP2008294818A (en) Wavelength multiplex transmission system, and optical transmitter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802