JP6693901B2 - Optical amplifier, wavelength division multiplexer, and optical splitter - Google Patents

Optical amplifier, wavelength division multiplexer, and optical splitter Download PDF

Info

Publication number
JP6693901B2
JP6693901B2 JP2017052297A JP2017052297A JP6693901B2 JP 6693901 B2 JP6693901 B2 JP 6693901B2 JP 2017052297 A JP2017052297 A JP 2017052297A JP 2017052297 A JP2017052297 A JP 2017052297A JP 6693901 B2 JP6693901 B2 JP 6693901B2
Authority
JP
Japan
Prior art keywords
optical
wavelength
optical signal
signal
amplification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017052297A
Other languages
Japanese (ja)
Other versions
JP2018157362A (en
Inventor
優 川口
優 川口
釣谷 剛宏
剛宏 釣谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2017052297A priority Critical patent/JP6693901B2/en
Publication of JP2018157362A publication Critical patent/JP2018157362A/en
Application granted granted Critical
Publication of JP6693901B2 publication Critical patent/JP6693901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、波長多重光通信システムに関する。   The present invention relates to a wavelength division multiplexing optical communication system.

波長多重光通信システムでは、通常、需要に応じて波長パス(波長の光信号)を設定する。つまり、波長多重光通信システムにおいては、設定可能な波長パスの最大数と、実際に設定されている波長パスの数(設定数)とが一致しない期間がある。これは、需要見合いに応じて装置を増設することで初期投資を抑えるためである。一方、光増幅装置は、波長パスの最大数に基づき設計されている。例えば、光海底ケーブルシステムで使用されている様な、総利得が一定の光増幅装置では、最大数の波長パスに基づき総利得が設定されているため、設定数が最大数より小さいと、各波長パスの利得が増加し、これにより各波長パスは必要以上に増幅され、却って波長パスの品質が劣化し得る。このため、特許文献1及び2は、波長多重装置にダミー光源を設けることを開示している。設定されていない波長パスの波長の光信号をダミー光源が送信することで、設定されている波長パスに与えられる利得は、波長パスの設定数に拘らず一定となり、波長パスの品質劣化を防止することができる。   In a wavelength division multiplexing optical communication system, a wavelength path (optical signal of wavelength) is usually set according to demand. That is, in the wavelength division multiplexing optical communication system, there is a period in which the maximum number of wavelength paths that can be set and the number of wavelength paths that are actually set (set number) do not match. This is because the initial investment can be suppressed by increasing the number of devices according to the demand balance. On the other hand, the optical amplifier is designed based on the maximum number of wavelength paths. For example, in an optical amplifier device with a constant total gain, such as used in an optical submarine cable system, the total gain is set based on the maximum number of wavelength paths. The gain of the wavelength path increases, which causes each wavelength path to be amplified more than necessary, which may rather deteriorate the quality of the wavelength path. Therefore, Patent Documents 1 and 2 disclose that a dummy light source is provided in the wavelength division multiplexer. The dummy light source transmits the optical signal of the wavelength of the wavelength path that is not set, and the gain given to the set wavelength path becomes constant regardless of the number of wavelength paths set, preventing the quality deterioration of the wavelength path. can do.

特許第5076660号公報Japanese Patent No. 5076660 特許第5648429号公報Japanese Patent No. 564829

しかしながら、必要なダミー光源の数は、波長パスの設定数が増加するに伴い減少し、波長パスの設定数が最大数に達すると総てのダミー光源は不要になる。したがって、ダミー光源を要しない構成が望まれる。   However, the number of required dummy light sources decreases as the set number of wavelength paths increases, and when the set number of wavelength paths reaches the maximum number, all dummy light sources are no longer needed. Therefore, a configuration that does not require a dummy light source is desired.

本発明は、ダミー光源を使用することなく、各波長パスの品質劣化を防止する技術を提供するものである。   The present invention provides a technique for preventing quality deterioration of each wavelength path without using a dummy light source.

本発明の一態様によると、光増幅装置は、入力される第1光信号を増幅して第2光信号を出力する第1増幅手段と、前記第2光信号を1つ以上の第1波長の光信号を含む第3光信号と、所定の波長のうちの前記1つ以上の第1波長以外の第2波長の光信号を含む第4光信号に分離して出力する分離手段と、前記第4光信号を増幅して第5光信号を出力する第2増幅手段と、前記第3光信号と前記第5光信号を合波して出力する合波手段と、を備え、前記1つ以上の第1波長の光信号は、前記第1光信号に含まれる信号光であることを特徴とする。 According to an aspect of the present invention, an optical amplification device includes a first amplification unit that amplifies an input first optical signal and outputs a second optical signal, and the second optical signal with one or more first wavelengths. A third optical signal including the optical signal and a demultiplexing unit that demultiplexes into a fourth optical signal including an optical signal of a second wavelength other than the one or more first wavelengths of a predetermined wavelength, and outputting the fourth optical signal. The second amplifying means for amplifying the fourth optical signal and outputting the fifth optical signal, and the multiplexing means for multiplexing and outputting the third optical signal and the fifth optical signal are provided . The above-mentioned optical signal of the first wavelength is a signal light included in the first optical signal .

本発明によると、ダミー光源を使用することなく、各波長パスの品質劣化を防止することができる。   According to the present invention, it is possible to prevent quality deterioration of each wavelength path without using a dummy light source.

一実施形態による波長多重光通信システムの一部を示す図。The figure which shows a part of wavelength division multiplexing optical communication system by one Embodiment. 一実施形態による光増幅装置の構成図。1 is a configuration diagram of an optical amplification device according to an embodiment. 一実施形態による光増幅装置の構成図。1 is a configuration diagram of an optical amplification device according to an embodiment. 一実施形態による波長多重光通信システムの一部を示す図。The figure which shows a part of wavelength division multiplexing optical communication system by one Embodiment. 一実施形態による光分岐装置の構成図。The block diagram of the optical branching device by one embodiment. 一実施形態による光増幅装置の構成図。1 is a configuration diagram of an optical amplification device according to an embodiment. 一実施形態による波長多重装置の構成図。1 is a configuration diagram of a wavelength division multiplexer according to an embodiment.

以下、本発明の例示的な実施形態について図面を参照して説明する。なお、以下の実施形態は例示であり、本発明を実施形態の内容に限定するものではない。また、以下の各図においては、実施形態の説明に必要ではない構成要素については図から省略する。   Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. The following embodiments are exemplifications, and the present invention is not limited to the contents of the embodiments. Further, in each of the following drawings, components that are not necessary for explaining the embodiment are omitted from the drawings.

<第一実施形態>
図1は、波長多重光通信システムの一部、より詳しくは、波長多重装置1と、波長多重装置1に接続し、波長多重装置1が送信する波長多重光信号を増幅する光増幅装置2を示している。波長多重装置1には、最大で光源#1から#6の6つの光源10が実装される。なお、光源#1〜#6は、それぞれ波長#1〜#6の連続光を生成するものとする。また、各光源10は、射出する連続光を図示しない入力電気信号で変調する変調部を有している。よって、各光源10は、対応する波長の変調光を波長多重部11に出力する。波長多重部11は、各光源10からの変調光を波長多重して波長多重光信号を出力する。図1においては、光源#1〜光源#3の計3つの光源10が波長多重装置1に実装され、光源#4〜光源#6は波長多重装置1に実装されていない。つまり、波長多重装置1が出力する波長多重光信号には、図1の参照符号51で示す様に、波長#1〜#3の3つの波長の光信号(実線で表示)が含まれるが、光源#4〜#6に対応する波長#4〜#6(点線で表示)の光信号は含まれない。
<First embodiment>
FIG. 1 shows a part of a wavelength division multiplexing optical communication system, more specifically, a wavelength division multiplexer 1 and an optical amplifier 2 connected to the wavelength division multiplexer 1 for amplifying a wavelength division optical signal transmitted by the wavelength division multiplexer 1. Shows. The wavelength division multiplexer 1 is equipped with a maximum of six light sources 10 of light sources # 1 to # 6. The light sources # 1 to # 6 are assumed to generate continuous light of wavelengths # 1 to # 6, respectively. In addition, each light source 10 has a modulator that modulates the emitted continuous light with an input electric signal (not shown). Therefore, each light source 10 outputs the modulated light of the corresponding wavelength to the wavelength multiplexing unit 11. The wavelength multiplexer 11 wavelength-multiplexes the modulated light from each light source 10 and outputs a wavelength-multiplexed optical signal. In FIG. 1, a total of three light sources 10, light sources # 1 to # 3, are mounted in the wavelength multiplexing device 1, and light sources # 4 to # 6 are not mounted in the wavelength multiplexing device 1. That is, the wavelength-multiplexed optical signal output from the wavelength-multiplexing apparatus 1 includes optical signals of three wavelengths # 1 to # 3 (indicated by solid lines), as indicated by reference numeral 51 in FIG. Optical signals of wavelengths # 4 to # 6 (indicated by dotted lines) corresponding to the light sources # 4 to # 6 are not included.

本実施形態による光増幅装置2は、参照符号51で示す波長多重光信号を受信し、波長#1〜#3の3つの波長の光信号を増幅するとともに、波長#4〜#6のダミー光信号を加えた波長多重光信号を出力する。より詳しくは、本実施形態による光増幅装置2は、波長多重光通信システムにおいて使用中である波長の光信号を含む波長多重光信号を受信し、当該使用中である波長の光信号と、波長多重光通信システムにおいて未使用である波長の光信号とを含む波長多重光信号を出力する。したがって、波長多重光通信システムにおいて、光増幅装置2の下流側に接続される各光増幅装置には、常に、波長多重光通信システムにおいて使用する総ての波長の光信号を含む波長多重光信号が入力され、実際に使用している光信号の波長数に拘らず、各波長の光信号の利得を一定にし、光信号の品質を保つことができる。   The optical amplifier device 2 according to the present embodiment receives a wavelength-multiplexed optical signal indicated by reference numeral 51, amplifies optical signals of three wavelengths of wavelengths # 1 to # 3, and also outputs dummy light of wavelengths # 4 to # 6. The wavelength-multiplexed optical signal with the signal added is output. More specifically, the optical amplification device 2 according to the present embodiment receives a wavelength-multiplexed optical signal including an optical signal of a wavelength being used in a wavelength-multiplexed optical communication system, A wavelength-multiplexed optical signal including an optical signal of a wavelength that is unused in the multiplex optical communication system is output. Therefore, in the wavelength-multiplexed optical communication system, each optical amplifier connected to the downstream side of the optical amplifier 2 always has a wavelength-multiplexed optical signal including optical signals of all wavelengths used in the wavelength-multiplexed optical communication system. Is input, the gain of the optical signal of each wavelength can be made constant regardless of the number of wavelengths of the optical signal actually used, and the quality of the optical signal can be maintained.

図2は、本実施形態による光増幅装置2の構成図である。増幅部20は、例えば、エルビウム添加光ファイバ(EDF)であり、図示しない励起光源からの励起光により、入力される波長多重光信号51(図1)を増幅する。EDFでは、自然放出光(ASE光)と呼ばれる広帯域な雑音成分が生じる。よって、参照符号52で示す様に、増幅部20が出力する波長多重光信号は、入力される波長多重光信号51に含まれる波長#1〜#3の光信号にASE光が加わったものとなる。波長選択スイッチ21は、図示しない制御部、或いは、外部の制御装置から制御され、入力される波長多重光信号を波長毎に分離して増幅部22と合波部23のいずれかに出力する。ここでは、入力される波長多重光信号51に含まれる波長#1〜#3の光信号(以下、信号光とも呼ぶ。)については合波部23に出力し、入力される波長多重光信号51に含まれない波長#4〜#6については増幅部22に出力する様に、波長選択スイッチ21は設定される。したがって、波長選択スイッチ21が合波部23に出力する光信号は参照符号53に示す様になる。なお、波長選択スイッチ21が合波部23に出力する光信号は、信号光#1〜#3(網掛けで表示)と、信号光#1〜#3と同じ帯域のASE光が加わったものであるが、ASE光のレベルは、信号光#1〜#3に比べて小さいため、図では信号光#1〜#3のみを記載している。一方、波長選択スイッチ21が増幅部22に出力する信号は、参照符号54で示す様に、波長#4〜#6のASE光(以下、ASE光#4〜#6とも呼び、白抜きで表示する。)になる。なお、波長選択スイッチ21は、各波長の光信号の帯域通過フィルタとしても機能するため、図2に示す様に、ASE光#4〜#6は帯域制限される。   FIG. 2 is a configuration diagram of the optical amplification device 2 according to the present embodiment. The amplification unit 20 is, for example, an erbium-doped optical fiber (EDF), and amplifies the wavelength-division-multiplexed optical signal 51 (FIG. 1) input by pumping light from a pumping light source (not shown). In the EDF, a broadband noise component called spontaneous emission light (ASE light) is generated. Therefore, as indicated by reference numeral 52, the wavelength-multiplexed optical signal output from the amplification unit 20 is obtained by adding the ASE light to the optical signals of wavelengths # 1 to # 3 included in the input wavelength-multiplexed optical signal 51. Become. The wavelength selective switch 21, which is controlled by a control unit (not shown) or an external control device, separates the input wavelength-multiplexed optical signal for each wavelength and outputs it to either the amplification unit 22 or the multiplexing unit 23. Here, the optical signals of wavelengths # 1 to # 3 (hereinafter, also referred to as signal light) included in the input wavelength-multiplexed optical signal 51 are output to the multiplexing unit 23, and the input wavelength-multiplexed optical signal 51. The wavelength selective switch 21 is set so that the wavelengths # 4 to # 6 not included in # 1 are output to the amplification unit 22. Therefore, the optical signal output from the wavelength selective switch 21 to the multiplexing unit 23 is as indicated by reference numeral 53. The optical signal output from the wavelength selective switch 21 to the multiplexing unit 23 is a combination of the signal lights # 1 to # 3 (shown by shading) and the ASE light in the same band as the signal lights # 1 to # 3. However, since the level of the ASE light is smaller than that of the signal lights # 1 to # 3, only the signal lights # 1 to # 3 are shown in the figure. On the other hand, the signal output from the wavelength selective switch 21 to the amplification unit 22 is, as indicated by reference numeral 54, the ASE light of wavelengths # 4 to # 6 (hereinafter, also referred to as ASE light # 4 to # 6, and displayed in white. Yes.) Since the wavelength selective switch 21 also functions as a bandpass filter for optical signals of respective wavelengths, the ASE lights # 4 to # 6 are band-limited as shown in FIG.

増幅部22は、例えば、エルビウム添加光ファイバ(EDF)であり、図示しない励起光源からの励起光により、入力されるASE光#4〜#6光を増幅する。増幅部22でもASE光が生じるため、増幅部22が出力する光信号は、参照符号55で示す様に、増幅されたASE光#4〜#6と、増幅部22で生じたASE光を含むものとなる。なお、増幅部22が増幅に与えるパワーは、入力された光信号に優先的に与えられるため、増幅部22が出力する信号に含まれるASE光#4〜#6のレベルは、増幅部22が出力する信号に含まれるASE光のレベルより強くなる。合波部23は、波長選択スイッチ21からの信号と増幅部22からの信号を合波し、参照符号56で示す波長多重光信号を出力する。なお、信号光#1から#3やASE光#4〜#6と比較して、増幅部22で生じるASE光や、増幅部20で生じる波長#1〜#3のASE光のレベルは小さいため、波長多重光信号56においてもASE光は省略している。   The amplification unit 22 is, for example, an erbium-doped optical fiber (EDF), and amplifies the input ASE light # 4 to # 6 light by pumping light from a pumping light source (not shown). Since the ASE light is also generated in the amplifier 22, the optical signal output by the amplifier 22 includes the amplified ASE light # 4 to # 6 and the ASE light generated in the amplifier 22, as indicated by reference numeral 55. Will be things. Since the power given to the amplification by the amplification section 22 is given to the inputted optical signal with priority, the levels of the ASE lights # 4 to # 6 included in the signal outputted by the amplification section 22 are determined by the amplification section 22. It becomes stronger than the level of the ASE light included in the output signal. The multiplexing unit 23 multiplexes the signal from the wavelength selective switch 21 and the signal from the amplification unit 22, and outputs a wavelength multiplexed optical signal indicated by reference numeral 56. Note that the levels of the ASE light generated in the amplification unit 22 and the ASE light of wavelengths # 1 to # 3 generated in the amplification unit 20 are lower than those of the signal lights # 1 to # 3 and the ASE lights # 4 to # 6. The ASE light is omitted also in the wavelength division multiplexed optical signal 56.

以上、本実施形態では、EDF等の光増幅部で生じるASE光をダミー光として使用する。よって、ダミー光を出力するためのダミー光源を必要とせず、常に、一定数の波長の光信号を含む波長多重光信号を出力することができる。したがって、光増幅装置2の下流側に接続する各光増幅装置は、従来と同様の光増幅装置であっても、各波長の光信号に与えられる増幅のためのパワーの変動が抑えられ、利得が偏ることで、設定されている波長パスの品質が劣化することを抑えることができる。なお、光増幅装置2は、波長多重光通信システムの最上流側で使用する。よって、図1の波長多重装置1と光増幅装置2とを1つの波長多重装置として構成することもできる。また、本実施形態では、波長選択スイッチ21が出力する光信号と増幅部22が出力する光信号を合波部23で合波したが、合波部23に代えて、波長選択スイッチを使用することもできる。波長選択スイッチを合波部23に代えて使用することで、例えば、増幅部22が増幅を行うASE光(図2の例では波長#4〜6)とは異なる波長の、増幅部22で生成されるASE光(図2の例では波長#1〜3)が、波長多重光信号56に含まれない様にすることができる。   As described above, in this embodiment, the ASE light generated in the optical amplification section such as the EDF is used as the dummy light. Therefore, a dummy light source for outputting dummy light is not required, and a wavelength-multiplexed optical signal including optical signals of a fixed number of wavelengths can always be output. Therefore, even if the optical amplifiers connected to the downstream side of the optical amplifier 2 are the same optical amplifiers as the conventional ones, the fluctuation of the power for amplification given to the optical signal of each wavelength is suppressed and the gain is increased. Can be suppressed from deteriorating the quality of the set wavelength path. The optical amplifier 2 is used on the most upstream side of the wavelength division multiplexing optical communication system. Therefore, the wavelength multiplexer 1 and the optical amplifier 2 of FIG. 1 can be configured as one wavelength multiplexer. Further, in the present embodiment, the optical signal output by the wavelength selective switch 21 and the optical signal output by the amplifier 22 are multiplexed by the multiplexer 23, but a wavelength selective switch is used instead of the multiplexer 23. You can also By using the wavelength selective switch instead of the multiplexing unit 23, for example, the amplification unit 22 generates a wavelength different from the ASE light (wavelengths # 4 to 6 in the example of FIG. 2) that the amplification unit 22 amplifies. The ASE light (wavelengths # 1 to # 3 in the example of FIG. 2) to be generated can be prevented from being included in the wavelength multiplexed optical signal 56.

<第二実施形態>
図1の波長多重装置1は、光源10を設け、波長多重装置1において変調を行うものであった。ここで、光源10が障害となると、当該光源10が射出する光信号は波長多重光信号に含まれなくなる。また、波長多重装置としては、外部の装置から入力される光信号を、そのまま、或いは、波長の変換のみを行って波長多重を行うものもある。このような、場合、波長多重装置を通過する波長パスは、ネットワーク内の他の装置の障害により断となり得る。この場合も、当該波長多重装置が出力する波長多重光信号のある波長の光信号がネットワーク内の他の装置の障害により当該波長多重光信号に含まれなくなる。つまり、波長多重装置が出力する波長多重光信号に含まれる光信号の数は、需要に応じて変化するのみならず、障害によっても変化する。したがって、本実施形態において、光増幅装置2は、入力される波長多重光信号を監視し、使用され得る各波長の光信号のうち、どの波長の光信号が含まれていないかを判定し、判定結果に基づき波長選択スイッチ21を動的に制御する。
<Second embodiment>
The wavelength division multiplexer 1 of FIG. 1 is provided with a light source 10 and performs modulation in the wavelength division multiplexer 1. Here, if the light source 10 becomes an obstacle, the optical signal emitted by the light source 10 is not included in the wavelength-multiplexed optical signal. Further, as the wavelength multiplexing device, there is also a device that performs wavelength multiplexing by directly converting an optical signal input from an external device or by converting the wavelength. In such a case, the wavelength path passing through the wavelength division multiplexer may be disconnected due to a failure of another device in the network. Also in this case, the optical signal of a certain wavelength of the wavelength-multiplexed optical signal output by the wavelength-multiplexed device is not included in the wavelength-multiplexed optical signal due to a failure of another device in the network. That is, the number of optical signals included in the wavelength-multiplexed optical signal output by the wavelength-multiplexing device changes not only according to demand but also due to a failure. Therefore, in the present embodiment, the optical amplifying device 2 monitors the input wavelength-multiplexed optical signal and determines which wavelength of the optical signals of each wavelength that can be used does not include the optical signal of The wavelength selective switch 21 is dynamically controlled based on the determination result.

図3は、本実施形態による光増幅装置2の構成図である。なお、既に説明したものと同様の構成要素には同じ参照符号を付与してその説明は省略する。監視制御部24は、増幅部20の出力を監視し、光増幅装置2に入力される波長多重光信号に、どの波長の光信号が実際に含まれているかを判定する。より詳しくは、監視制御部24は、閾値以上の信号レベルがある波長を、光増幅装置2に入力される波長多重光信号に含まれている光信号の波長であると判定し、入力される波長多重光信号に含まれ得る各波長の光信号のうち、レベルが閾値未満の波長の光信号が、含まれていないと判定する。そして、実際に含まれている波長の光信号が合波部23に出力され、含まれていない波長の光信号が増幅部22に出力される様に波長選択スイッチ21を制御する。   FIG. 3 is a configuration diagram of the optical amplification device 2 according to the present embodiment. The same components as those already described are designated by the same reference numerals, and the description thereof will be omitted. The monitoring controller 24 monitors the output of the amplifier 20 and determines which wavelength of the optical signal is actually included in the wavelength-multiplexed optical signal input to the optical amplifier 2. More specifically, the monitoring controller 24 determines that a wavelength having a signal level equal to or higher than the threshold value is the wavelength of the optical signal included in the wavelength-multiplexed optical signal input to the optical amplification device 2, and inputs the wavelength. Of the optical signals of each wavelength that can be included in the wavelength-multiplexed optical signal, it is determined that the optical signal of the wavelength whose level is less than the threshold value is not included. Then, the wavelength selective switch 21 is controlled so that the optical signal of the wavelength actually included is output to the multiplexer 23 and the optical signal of the wavelength not included is output to the amplifier 22.

以上の構成により、障害が発生し、これにより、波長多重光信号に含まれる光信号の数が変化しても、光増幅装置2が出力する波長多重光信号は、一定数の波長の光信号を含むものとなり、波長多重光信号に含まれる各光信号の品質が劣化することを防ぐことができる。また、監視制御部24は、入力される波長多重光信号に含まれ得る総ての波長の光信号のレベルが閾値以上である場合、つまり、含まれていない波長の光信号が無い場合、増幅部22の動作を停止させることができる。これにより、不要なASE光のみが増幅部22で生成されて、合波部23で合波されることを防ぐことができる。なお、監視制御部24は、増幅部20の出力ではなく、増幅部20の入力を監視する構成であっても良い。   With the above configuration, even if the number of optical signals included in the wavelength-multiplexed optical signal changes due to a failure, the wavelength-multiplexed optical signal output from the optical amplifier 2 is an optical signal with a fixed number of wavelengths. And the quality of each optical signal included in the wavelength division multiplexed optical signal can be prevented from deteriorating. Further, the monitoring controller 24 amplifies when the levels of the optical signals of all the wavelengths that can be included in the input wavelength-multiplexed optical signal are equal to or higher than the threshold value, that is, when there is no optical signal of the wavelength that is not included. The operation of the unit 22 can be stopped. As a result, it is possible to prevent only unnecessary ASE light from being generated by the amplification unit 22 and being multiplexed by the multiplexing unit 23. The monitoring controller 24 may monitor the input of the amplifier 20 instead of the output of the amplifier 20.

<第三実施形態>
以下では、図2又は図3の光増幅装置2を備えた光分岐装置3について説明する。図4は、例えば、光海底ケーブルシステム等で使用される光分岐装置3の説明図である。光分岐装置3は、所謂、上り方向において、波長多重装置A及び波長多重装置Bから波長多重光信号をそれぞれ受信し、それらを合波して波長多重装置Cに送信する。図4の例において、波長多重装置Aは、信号光#1〜#3を波長多重した波長多重光信号を送信する。一方、波長多重装置Bは、信号光#4〜#6を波長多重した波長多重光信号を送信する。そして、光分岐装置3は、これらを合波して信号光#1〜#6を含む波長多重光信号を送信する。なお、下り方向において、光分岐装置3は、波長多重装置Cから信号光#1〜#6の波長多重光信号を受信し、信号光#1〜#3を含む波長多重光信号を波長多重装置Aに送信し、信号光#4〜#6を含む波長多重光信号を波長多重装置Bに送信する。
<Third embodiment>
The optical branching device 3 including the optical amplifying device 2 of FIG. 2 or 3 will be described below. FIG. 4 is an explanatory diagram of the optical branching device 3 used in, for example, an optical submarine cable system. The optical branching device 3 respectively receives wavelength-multiplexed optical signals from the wavelength-multiplexing device A and the wavelength-multiplexing device B in the so-called upstream direction, multiplexes them, and transmits them to the wavelength-multiplexing device C. In the example of FIG. 4, the wavelength division multiplexer A transmits a wavelength division multiplexed optical signal obtained by wavelength multiplexing the signal lights # 1 to # 3. On the other hand, the wavelength division multiplexer B transmits a wavelength division multiplexing optical signal obtained by wavelength multiplexing the signal lights # 4 to # 6. Then, the optical branching device 3 multiplexes these and transmits a wavelength division multiplexed optical signal including the signal lights # 1 to # 6. In the downstream direction, the optical branching device 3 receives the wavelength-multiplexed optical signals of the signal lights # 1 to # 6 from the wavelength-multiplexer C and outputs the wavelength-multiplexed optical signals including the signal lights # 1 to # 3. A wavelength division multiplexing optical signal including the signal lights # 4 to # 6 is transmitted to the wavelength multiplexing apparatus B.

図5は、本実施形態による光分岐装置3の構成図である。光増幅装置2−1及び2−2は、例えば、図3の光増幅装置2と同じであり、入力される波長多重光信号を監視する。なお、光増幅装置2−1は波長多重装置Aからの波長多重光信号を受信し、光増幅装置2−2は波長多重装置Bからの波長多重光信号を受信する。図5は、例えば、波長多重装置Bと光分岐装置3との間の区間の障害により、波長多重装置Bからの波長多重光信号が光増幅装置2−2に入力されなくなったときの各信号を示している。光増幅装置2−2に光信号が入力されなくなったため、光増幅装置2−2の監視制御部24は、波長#4〜#6の総てを増幅部22に出力する様に波長選択スイッチ21を制御する。よって、光増幅装置2−2は、ASE光#4〜#6を含む光信号を出力する。合波装置31は、光増幅装置2−1及び2−2が出力する光信号を合波する。したがって、光分岐装置3は、波長多重装置A又はBと光分岐装置3との間の区間の障害に拘らず、常に、波長#1〜#6の光信号を含む波長多重光信号を送信する。よって、光分岐装置3から波長多重装置Cまでの区間にある光増幅装置が各波長の信号光に与える利得の変動を抑え、利得の変動による品質の劣化を抑えることができる。   FIG. 5 is a configuration diagram of the optical branching device 3 according to the present embodiment. The optical amplifiers 2-1 and 2-2 are, for example, the same as the optical amplifier 2 of FIG. 3, and monitor the input wavelength-multiplexed optical signal. The optical amplifier 2-1 receives the wavelength multiplexed optical signal from the wavelength multiplexer A, and the optical amplifier 2-2 receives the wavelength multiplexed optical signal from the wavelength multiplexer B. FIG. 5 shows each signal when the wavelength-multiplexed optical signal from the wavelength-multiplexed device B is no longer input to the optical amplifier 2-2 due to a failure in the section between the wavelength-multiplexed device B and the optical branching device 3. Is shown. Since the optical signal is no longer input to the optical amplification device 2-2, the monitoring control unit 24 of the optical amplification device 2-2 outputs the wavelengths # 4 to # 6 to the amplification unit 22 so as to output the wavelength selective switch 21. To control. Therefore, the optical amplification device 2-2 outputs an optical signal including the ASE lights # 4 to # 6. The multiplexer 31 multiplexes the optical signals output by the optical amplifiers 2-1 and 2-2. Therefore, the optical branching device 3 always transmits the wavelength multiplexing optical signal including the optical signals of wavelengths # 1 to # 6, regardless of the failure in the section between the wavelength multiplexing device A or B and the optical branching device 3. . Therefore, it is possible to suppress the variation in the gain applied to the signal light of each wavelength by the optical amplifying device in the section from the optical branching device 3 to the wavelength multiplexing device C, and to suppress the deterioration of the quality due to the variation in the gain.

<その他の形態>
例えば、図4及び図5で説明した光分岐装置3は、上り方向において、通常時には、波長多重装置Aから受信する信号光#1〜#3を含む第1波長多重光信号と、波長多重装置Bから受信する信号光#4〜#6を含む第2波長多重光信号と、を合波して出力し、障害時には、入力断となった第1波長多重光信号及び/又は第2波長多重光信号の代わりに、ASE光を使用するものであった。このような場合、光分岐装置3には、図2、3に示す光増幅装置2に代えて、図6に示す光増幅装置4を使用することができる。
<Other forms>
For example, the optical branching device 3 described with reference to FIGS. 4 and 5 includes the first wavelength-multiplexed optical signal including the signal lights # 1 to # 3 received from the wavelength-multiplexing device A in the upstream direction, and the wavelength-multiplexing device. The second wavelength-multiplexed optical signal including the signal lights # 4 to # 6 received from B is multiplexed and output, and at the time of failure, the input of the first wavelength-multiplexed optical signal and / or the second wavelength-multiplexed optical signal is interrupted. Instead of optical signals, ASE light was used. In such a case, as the optical branching device 3, the optical amplifying device 4 shown in FIG. 6 can be used instead of the optical amplifying device 2 shown in FIGS.

図6において、例えば、増幅部20には、波長多重装置Aからの信号光#1〜#3を含む第1波長多重光信号が入力される。帯域通過フィルタ25は、信号光#1〜#3の帯域を通過させる帯域通過フィルタであり、通常時には、増幅部20で増幅された信号光#1〜#3を含む第1波長多重光信号を出力する。監視制御部24は、帯域通過フィルタ25の出力を監視し、信号レベルが閾値以下になると、第1波長多重光信号が断になったと判定し、増幅部20の利得を増加させる。これにより、増幅部20は、参照符号57で示す様に、所定レベルのASE光を出力する。帯域通過フィルタ25は、入力されるASE光の各波長の帯域制限を行い、よって、参照符号58で示す様に、ASE光#1〜#3を含む光信号を出力する。なお、監視制御部24は、帯域通過フィルタ25の出力レベルに基づき増幅部20の利得を制御する。より詳しくは、監視制御部24は、増幅部20に第1波長多重光信号が入力されているか否かに拘らず、帯域通過フィルタ25の出力レベルが一定となる様に増幅部20の利得を制御する。よって、図5の光増幅装置2−1及び2−2に代えて、図6に示す光増幅装置4を使用することで、図4及び図5にて説明した光分岐装置3と同様の動作をする光分岐装置を実現できる。   In FIG. 6, for example, the first wavelength-multiplexed optical signal including the signal lights # 1 to # 3 from the wavelength-multiplexing apparatus A is input to the amplification unit 20. The bandpass filter 25 is a bandpass filter that passes the bands of the signal lights # 1 to # 3, and normally, outputs the first wavelength-multiplexed optical signal including the signal lights # 1 to # 3 amplified by the amplification unit 20. Output. The monitoring controller 24 monitors the output of the bandpass filter 25, determines that the first wavelength-multiplexed optical signal is disconnected when the signal level becomes equal to or lower than the threshold value, and increases the gain of the amplifier 20. As a result, the amplification unit 20 outputs the ASE light of a predetermined level, as indicated by reference numeral 57. The bandpass filter 25 limits the band of each wavelength of the input ASE light, and thus outputs an optical signal including the ASE light # 1 to # 3, as indicated by reference numeral 58. The monitoring controller 24 controls the gain of the amplifier 20 based on the output level of the bandpass filter 25. More specifically, the monitoring control unit 24 adjusts the gain of the amplification unit 20 so that the output level of the bandpass filter 25 becomes constant regardless of whether the first wavelength-multiplexed optical signal is input to the amplification unit 20. Control. Therefore, by using the optical amplifying device 4 shown in FIG. 6 instead of the optical amplifying devices 2-1 and 2-2 of FIG. 5, the same operation as that of the optical branching device 3 described with reference to FIGS. 4 and 5 is performed. It is possible to realize an optical branching device that

さらに、図6に示す光増幅装置4は、光分岐装置のみならず、波長多重装置にも使用できる。図7は、図6の光増幅装置4を使用した波長多重装置の構成を示している。図6の波長多重装置は、1つの基板に3つの光源(変調機能を含む)と、3つの光源が出力する光変調信号を波長多重する波長多重部が実装されている。図7において、基板61−1は実装されているが、基板61−2及び61−3は未実装である。また、図6の光増幅装置4は、各基板それぞれに対応して実装され、図7では、光増幅装置4−1〜4−3として示されている。光増幅装置4−1に対応する基板61−1は実装されているため、光増幅装置4−1は、信号光#1〜#3を含む波長多重光信号を増幅して出力する。一方、光増幅装置4−2及び4−3に対応する基板61−2及び61−3は実装されていないため、光増幅装置4−2及び4−3は、ASE光#4〜#6と、ASE光#7〜#9を出力する。したがって、波長多重部11は、基板の実装状態に拘らず、常に、波長#1〜#9の光信号を出力する。   Further, the optical amplifying device 4 shown in FIG. 6 can be used not only for the optical branching device but also for the wavelength multiplexing device. FIG. 7 shows the configuration of a wavelength division multiplexer using the optical amplifier 4 of FIG. The wavelength multiplexer of FIG. 6 has three light sources (including a modulation function) and a wavelength multiplexer that wavelength-multiplexes the optical modulation signals output from the three light sources on one substrate. In FIG. 7, the board 61-1 is mounted, but the boards 61-2 and 61-3 are not mounted. Further, the optical amplification device 4 of FIG. 6 is mounted corresponding to each substrate, and is shown as optical amplification devices 4-1 to 4-3 in FIG. 7. Since the substrate 61-1 corresponding to the optical amplifier 4-1 is mounted, the optical amplifier 4-1 amplifies and outputs the wavelength-multiplexed optical signal including the signal lights # 1 to # 3. On the other hand, since the substrates 61-2 and 61-3 corresponding to the optical amplifiers 4-2 and 4-3 are not mounted, the optical amplifiers 4-2 and 4-3 are the ASE lights # 4 to # 6. , ASE lights # 7 to # 9 are output. Therefore, the wavelength multiplexing unit 11 always outputs the optical signals of wavelengths # 1 to # 9 regardless of the mounting state of the board.

20、22:増幅部、21:波長選択スイッチ、23:合波部   20, 22: Amplifying unit, 21: Wavelength selective switch, 23: Multiplexing unit

Claims (9)

入力される第1光信号を増幅して第2光信号を出力する第1増幅手段と、
前記第2光信号を1つ以上の第1波長の光信号を含む第3光信号と、所定の波長のうちの前記1つ以上の第1波長以外の第2波長の光信号を含む第4光信号に分離して出力する分離手段と、
前記第4光信号を増幅して第5光信号を出力する第2増幅手段と、
前記第3光信号と前記第5光信号を合波して出力する合波手段と、
を備え
前記1つ以上の第1波長の光信号は、前記第1光信号に含まれる信号光であることを特徴とする光増幅装置。
First amplification means for amplifying the input first optical signal and outputting a second optical signal;
A third optical signal including the second optical signal including one or more first wavelength optical signals, and a fourth including a second optical signal including a second wavelength other than the one or more first wavelengths of a predetermined wavelength. Separation means for separating and outputting to an optical signal,
Second amplifying means for amplifying the fourth optical signal and outputting a fifth optical signal;
Multiplexing means for multiplexing and outputting the third optical signal and the fifth optical signal,
Equipped with
The optical amplification device , wherein the one or more optical signals of the first wavelength are signal lights included in the first optical signal .
入力される第1光信号を増幅して第2光信号を出力する第1増幅手段と、
前記第2光信号を1つ以上の第1波長の光信号を含む第3光信号と、所定の波長のうちの前記1つ以上の第1波長以外の第2波長の光信号を含む第4光信号に分離して出力する分離手段と、
前記第4光信号を増幅して第5光信号を出力する第2増幅手段と、
前記第3光信号に含まれる前記1つ以上の第1波長の光信号と前記第5光信号に含まれる前記第2波長の光信号を合波して出力する合波手段と、
を備え
前記1つ以上の第1波長の光信号は、前記第1光信号に含まれる信号光であることを特徴とする光増幅装置。
First amplification means for amplifying the input first optical signal and outputting a second optical signal;
A third optical signal including the second optical signal including one or more first wavelength optical signals, and a fourth including a second optical signal including a second wavelength other than the one or more first wavelengths of a predetermined wavelength. Separation means for separating and outputting to an optical signal,
Second amplifying means for amplifying the fourth optical signal and outputting a fifth optical signal;
Multiplexing means for multiplexing and outputting the one or more optical signals of the first wavelength contained in the third optical signal and the optical signal of the second wavelength contained in the fifth optical signal;
Equipped with
The optical amplification device , wherein the one or more optical signals of the first wavelength are signal lights included in the first optical signal .
前記第1光信号又は前記第2光信号を監視することで前記第2波長の光信号を判定して前記分離手段を制御する制御手段をさらに備えていることを特徴とする請求項1又は2に記載の光増幅装置。 Claim 1 or 2, characterized by further comprising control means for controlling said separating means to determine the optical signal of the second wavelength by monitoring the first optical signal or the second optical signal The optical amplification device according to. 前記制御手段は、前記第2波長の光信号がないと、前記第2増幅手段の動作を停止させることを特徴とする請求項に記載の光増幅装置。 The optical amplifying device according to claim 3 , wherein the control means stops the operation of the second amplifying means when there is no optical signal of the second wavelength. 請求項1からのいずれか1項に記載の光増幅装置を含むことを特徴とする波長多重装置。 A wavelength division multiplexer comprising the optical amplifier according to any one of claims 1 to 4 . 第1光増幅装置と、
第2光増幅装置と、
前記第1光増幅装置と前記第2光増幅装置の出力を合波して出力する合波装置と、
を備えている光分岐装置であって、
前記第1光増幅装置は、請求項1からのいずれか1項に記載の光増幅装置であり、
前記第2光増幅装置は、請求項1からのいずれか1項に記載の光増幅装置であることを特徴とする光分岐装置。
A first optical amplifier,
A second optical amplifier,
A multiplexing device that multiplexes and outputs the outputs of the first optical amplification device and the second optical amplification device;
An optical branching device comprising:
The first optical amplification device is the optical amplification device according to any one of claims 1 to 4 ,
An optical branching device, wherein the second optical amplifying device is the optical amplifying device according to any one of claims 1 to 4 .
複数の波長の光信号を含む第1光信号を増幅して第2光信号を出力する増幅手段と、
前記第2光信号が入力され、前記複数の波長の光信号それぞれを通過させる帯域通過フィルタと、
前記帯域通過フィルタの出力を監視し、監視結果に基づき前記増幅手段の利得を制御する制御手段と、
を備え
前記制御手段は、前記増幅手段に前記第1光信号が入力されているか否かに拘らず前記帯域通過フィルタの出力が一定となる様に前記増幅手段の利得を制御することを特徴とする光増幅装置。
Amplification means for amplifying a first optical signal including optical signals of a plurality of wavelengths and outputting a second optical signal;
A band-pass filter to which the second optical signal is input and which passes each of the optical signals of the plurality of wavelengths;
Control means for monitoring the output of the bandpass filter, and controlling the gain of the amplification means based on the monitoring result,
Equipped with
The control means controls the gain of the amplification means such that the output of the bandpass filter becomes constant regardless of whether or not the first optical signal is input to the amplification means. Amplification device.
請求項に記載の光増幅装置を含むことを特徴とする波長多重装置。 A wavelength division multiplexer comprising the optical amplifier according to claim 7 . 第1光増幅装置と、
第2光増幅装置と、
前記第1光増幅装置と前記第2光増幅装置の出力を合波して出力する合波装置と、
を備えている光分岐装置であって、
前記第1光増幅装置は、請求項に記載の光増幅装置であり、
前記第2光増幅装置は、請求項に記載の光増幅装置であることを特徴とする光分岐装置。
A first optical amplifier,
A second optical amplifier,
A multiplexing device that multiplexes and outputs the outputs of the first optical amplification device and the second optical amplification device;
An optical branching device comprising:
The first optical amplification device is the optical amplification device according to claim 7 ,
The optical branching device, wherein the second optical amplifying device is the optical amplifying device according to claim 7 .
JP2017052297A 2017-03-17 2017-03-17 Optical amplifier, wavelength division multiplexer, and optical splitter Active JP6693901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017052297A JP6693901B2 (en) 2017-03-17 2017-03-17 Optical amplifier, wavelength division multiplexer, and optical splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017052297A JP6693901B2 (en) 2017-03-17 2017-03-17 Optical amplifier, wavelength division multiplexer, and optical splitter

Publications (2)

Publication Number Publication Date
JP2018157362A JP2018157362A (en) 2018-10-04
JP6693901B2 true JP6693901B2 (en) 2020-05-13

Family

ID=63718144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017052297A Active JP6693901B2 (en) 2017-03-17 2017-03-17 Optical amplifier, wavelength division multiplexer, and optical splitter

Country Status (1)

Country Link
JP (1) JP6693901B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3920440A4 (en) * 2019-01-31 2022-03-30 NEC Corporation Optical transmission device, terminal device, optical communication system, and optical communication method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286492A (en) * 1999-01-28 2000-10-13 Nec Corp Light source
ITMI20010695A1 (en) * 2001-03-30 2002-09-30 Marconi Comm Spa METHOD AND DEVICE FOR SURVIVAL OF TRAFFIC IN DWDM SYSTEMS WITH ADD / DROP IN THE EVENT OF INTERRUPTION OF THE OPTICAL FIBER CONNECTION
JP2002353939A (en) * 2001-05-25 2002-12-06 Kddi Submarine Cable Systems Inc Optical transmission device
JP4792365B2 (en) * 2006-09-29 2011-10-12 富士通株式会社 Optical transmission apparatus and control method thereof
US9020353B2 (en) * 2009-10-16 2015-04-28 Nec Corporation Optical branching unit, optical communication system, and optical multiplexing method

Also Published As

Publication number Publication date
JP2018157362A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP3860278B2 (en) Remote pumping wavelength division multiplexing optical transmission system
US20200059313A1 (en) Transmission device and transmission method
JP5494669B2 (en) Optical branching device, optical communication system, and optical multiplexing method
EP2701316A1 (en) Diverging device with oadm function and wavelength division multiplexing optical network system and method therefor
JP6642583B2 (en) Optical repeater and control method of optical repeater
US8824045B2 (en) Optical amplifier control apparatus
JPH11218790A (en) Optical branching/inserting device using wavelength selecting filter and optical branching device
JP5767147B2 (en) Optical amplifier system and optical amplification method
JPH11275026A (en) Method and system for controlling optical amplification in wavelength division multiplex optical transmission
JP5887698B2 (en) Optical coupling / branching device and optical coupling / branching method
JP2001144692A (en) Device and method for controlling wavelength multiplex optical amplifier
JP2012109653A (en) Wavelength multiplex transmission device
JP6455297B2 (en) Optical amplifier, optical transmission device, and optical repeater
JP2002198599A (en) Optical amplifier and optical amplifying method
JP2002353939A (en) Optical transmission device
JP6693901B2 (en) Optical amplifier, wavelength division multiplexer, and optical splitter
JP2001024262A (en) Wavelength gain characteristics shift filter, optical transmitter and optical transmission method
JP4806640B2 (en) Optical transmission equipment
JP2022002402A (en) Repeater and repeating method
JP2002208893A (en) Optical filter and wavelength multiplex optical transmission system using the same
JP2003174412A (en) Optical multiplexer/demultiplexer system
JP2004147122A (en) Optical wavelength multiplexing network and remote node thereof
JPH0537472A (en) Optical amplifier
JP2004320483A (en) Wavelength multiplex optical transmission device and wavelength multiplex optical communication system
JP4266040B2 (en) Remote pumping wavelength division multiplexing optical transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200416

R150 Certificate of patent or registration of utility model

Ref document number: 6693901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150