JP2009277785A - 半導体製造装置及びこの装置を用いた半導体製造方法 - Google Patents

半導体製造装置及びこの装置を用いた半導体製造方法 Download PDF

Info

Publication number
JP2009277785A
JP2009277785A JP2008126088A JP2008126088A JP2009277785A JP 2009277785 A JP2009277785 A JP 2009277785A JP 2008126088 A JP2008126088 A JP 2008126088A JP 2008126088 A JP2008126088 A JP 2008126088A JP 2009277785 A JP2009277785 A JP 2009277785A
Authority
JP
Japan
Prior art keywords
susceptor
window portion
internal space
reaction vessel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008126088A
Other languages
English (en)
Inventor
Tomonori Yamaoka
智則 山岡
Seiichi Nakamura
誠一 中村
Shoji Nogami
彰二 野上
Takayuki Shingyouchi
隆之 新行内
Takumi Shibata
巧 柴田
Takeshi Yamamoto
剛 山本
Nobuhiro Tsuji
信博 辻
Yoshinobu Yanagisawa
好伸 柳沢
Akira Okabe
晃 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EPICREW Inc
Sumco Corp
Denso Corp
Original Assignee
EPICREW Inc
Sumco Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EPICREW Inc, Sumco Corp, Denso Corp filed Critical EPICREW Inc
Priority to JP2008126088A priority Critical patent/JP2009277785A/ja
Publication of JP2009277785A publication Critical patent/JP2009277785A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

【課題】減圧下でウォールデポを生じさせることなくサセプタを大径化できる半導体製造装置を提供する。
【解決手段】水平な円板状のサセプタ11と、サセプタ11を内部空間13aに収容する反応容器13と、内部空間13aにガス流を形成するガス給排手段と、サセプタ11に載置された半導体ウェーハ12を加熱する加熱手段17と、反応容器13を外部から空冷する冷却手段とを備え、反応容器13は中央が上方に膨出してサセプタ11を覆う窓部14aを有する。サセプタ11の外径Wが490mm以上700mm以下であり、窓部14aの厚みtが4mm以上7mm以下であり、窓部14aの曲率半径Rが580mm以上620mm以下であり、サセプタ11の上面から窓部14a内面までの高さの最大値Hが200mmである。
【選択図】図2

Description

本発明は、反応容器内のサセプタに載置された半導体ウェーハを加熱するとともにその周囲にガス流を形成してその半導体ウェーハの上にシリコン単結晶をエピタキシャル成長させる半導体製造装置及びこの装置を用いた半導体製造方法に関するものである。
従来、サセプタに載置された半導体ウェーハを反応容器の外部から加熱するような半導体製造装置として、そのような半導体ウェーハを枚葉処理する装置(例えば、特許文献1参照。)が知られている。この装置は、水平な円板状のサセプタと、サセプタを内部空間に収容して内部空間を減圧可能に構成された反応容器と、その反応容器の一端に形成されたガス供給部から内部空間にガスを供給し反応容器の他端に形成されたガス排出部から内部空間のガスを吸引して内部空間にガス流を形成するガス給排手段と、サセプタに載置された半導体ウェーハを反応容器の外部から加熱する加熱手段とを備える。そして、その反応容器には加熱手段であるハロゲンランプ等の光を透過させる石英製の窓部がサセプタを覆うように設けられる。この石英製の窓部の外側は空冷されている。
このような構成の従来の半導体製造装置では、まずサセプタ上に半導体ウェーハを載置し、その後、加熱手段である例えばハロゲンランプを点灯してその半導体ウェーハを加熱する。同時に、ガス排出部から排気を行いながら、例えばトリクロロシラン(SiHCl3)ガスやジクロロシラン(SiH2Cl2)ガス等を処理ガスとしてガス供給部から反応容器の内部に導入する。すると、所定温度に加熱された半導体ウェーハの表面に沿って処理ガスが層流状態で流れ、半導体ウェーハの上にシリコンの単結晶がエピタキシャル成長する。このような装置では、ウェーハを載置しているサセプタとそれに対向する反応容器の間を流れるガスが層流となり、エピ膜厚分布等を制御しやすいといわれている。
従来の半導体製造装置の中には、反応容器の内部を減圧させた状態でその内部空間における半導体ウェーハの上にシリコンの単結晶をエピタキシャル成長させることが必要な場合もある。このような減圧下においてエピタキシャル成長させる場合の成長速度は一般的に遅い。そのため、その生産性の観点から、例えば外径が200mmの一般的な半導体ウェーハであれば、複数枚の半導体ウェーハをサセプタ上に載置してそれら複数枚の半導体ウェーハを同時に処理すること、或いは、多くの素子を取ることのできる比較的外径の大きな、例えば450mmウェーハのような単一の大口径のウェーハを処理できるようなことが望ましい。
このような観点から上記特許文献1における半導体製造装置では、半導体ウェーハを載置するサセプタの外径を拡大するとともに、そのサセプタを収容する反応容器自体を大型化させている。しかし、その反応容器を大型化させると、その反応容器の構成部材である石英製の窓部が平板であると強度的に減圧に耐えられない。よって、上記特許文献1では、その窓部の形状をドーム状にすることにより反応容器を大型化させたことに起因する窓部の強度を確保するようにしている。
特開平4−245420号公報(図1) 特開2005−317905号公報(特許請求の範囲)
しかし、反応容器の窓部の形状をドーム状にした上記従来の半導体製造装置では、その窓部の内側にシリコンが堆積するいわゆるウォールデポ(Wall deposition)が生じる不具合があった。即ち、反応容器の石英からなる窓部を湾曲させてドーム状にすると、サセプタと窓部中央との距離が大きくなって対流を発生しやすくなる。対流が発生すると高温サセプタ近傍の分解されたSiソースガスが上空の窓部まで運ばれ、石英からなる窓部の内壁に付着して堆積する(以下、「ウォールデポ」という。)。このウォールデポは石英からなる窓部の外に配置されている加熱手段であるランプからの光を遮断したり、剥がれてシリコンウェーハにパーティクルを発生させたりする不具合がある。
この対流に起因したウォールデポを解消させるために、窓部を平板状にしてサセプタと窓部中央との距離を短縮することによりその間の対流を抑制することが考えられる。しかしその場合には、その窓部を構成する石英の厚を十分に厚くして、反応容器内を減圧にしても強度的に耐える窓部としなければならない。また、石英からなる窓部を厚くすると、その窓部から外部への放熱が低下し、例え窓部の外側を空冷したとしても、石英からなる窓部の内面温度がシリコンソースガスの分解促進温度(例えば、ジクロルシランの場合約700℃)以上となり、その内面にシリコン膜が付着して堆積するウォールデポが同様に生じる。このため、窓部を平板状にして対流の発生を無くしたとしても、窓部を構成する石英の厚さを厚くするとウォールデポが生じてしまうので、現実的な解決策とはならない。
本発明の目的は、減圧下でウォールデポを生じさせることなくサセプタを大径化し得る半導体製造装置並びにこの装置を用いた半導体製造方法を提供することにある。
請求項1に係る発明は、図2に示すように、水平な円板状のサセプタ11と、サセプタ11を内部空間13aに収容して内部空間13aを減圧可能に構成された反応容器13と、反応容器13の一端に形成されたガス供給部13bから内部空間13aにガスを供給し反応容器13の他端に形成されたガス排出部13cから内部空間13aのガスを吸引して内部空間13aにガス流を形成するガス給排手段と、サセプタ11に載置された半導体ウェーハ12を反応容器13の外部から加熱する加熱手段17と、反応容器13を外部から空冷する冷却手段とを備え、反応容器13はサセプタ11の外径Wより大きな外径Dを有し中央が上方に膨出するように湾曲して形成されてサセプタ11を上方から覆う窓部14aを有する半導体製造装置の改良である。
その特徴ある構成は、図1に示すように、サセプタ11の外径Wが490mm以上700mm以下であり、窓部14aの厚みtが4mm以上7mm以下であり、窓部14aの曲率半径Rが580mm以上620mm以下であり、サセプタ11の上面から窓部14a内面までの高さの最大値Hが200mmであるところにある。
この請求項1に記載された半導体製造装置では、サセプタ11の外径Wを比較的大型の490mm以上700mm以下とするので、複数の半導体ウェーハ12を同時に処理することができ、又は比較的大型の半導体ウェーハ12であってもその処理が可能となる。また、窓部14aのそれぞれの中央を上方及び下方に膨出するように湾曲していわゆるドーム状に形成したので、その耐圧性能を確保できる。更に、窓部14aの厚みを4mm以上7mm以下とするので、冷却手段により空冷することにより石英からなる窓部14aの内面が加熱されずに、その加熱に起因する窓部14a内面にシリコンが付着するような事態(ウォールデポ)を回避することができる。
一方、窓部14aの曲率半径を580mm以上620mm以下としてサセプタ11を大型化させたことに伴う窓部14aの強度を確保するとともに、サセプタの上面から窓部内面までの高さの最大値を200mmに制限するので、この間に対流が発生することを防止することができ、その対流に起因するウォールデポを回避することができる。
また請求項2に係る発明は、請求項1記載の装置を用いた半導体製造方法であって、反応容器の内部空間を減圧状態にして、この内部空間に収容された水平な円板状のサセプタに載置された半導体ウェーハを加熱するとともにガス給排手段によりサセプタ上に0.1m/秒以上3.0m/秒以下の平均流速でガスを供給して半導体ウェーハ上にシリコン単結晶をエピタキシャル成長させることを特徴とする。
エピタキシャル成長時には、ガス給排手段により内部空間13aのサセプタ11上に0.1m/秒以上3.0m/秒以下の平均流速でガスを供給するので、この内部空間13aに生じる横方向のガス流により、サセプタ11の上面から窓部内面までの間に対流が生じることを確実に防止し、いわゆるウォールデポを生じさせることなくサセプタ11を大径化させて、その大径のサセプタ11上に載置された複数の半導体ウェーハ12上に又は単一ではあるけれども比較的大型の半導体ウェーハ12上にシリコン単結晶をエピタキシャル成長させることができる。
本発明の半導体製造装置では、サセプタの外径が490mm以上700mm以下であり、窓部の厚みが4mm以上7mm以下であり、窓部の曲率半径が580mm以上620mm以下であり、サセプタの上面から窓部内面までの高さの最大値が200mmであるので、反応容器の内部空間におけるサセプタの上面から窓部内面までの間に対流が生じることを確実に防止し、いわゆるウォールデポを生じさせることなくサセプタを大径化させて、その大径のサセプタ上に載置された複数の半導体ウェーハ上に又は単一ではあるけれども比較的大型の半導体ウェーハ上にシリコン単結晶をエピタキシャル成長させることができる。
また本発明の半導体製造方法では、上記装置において、ガス給排手段によりサセプタ上に0.1m/秒以上3.0m/秒以下の平均流速でガスを供給して半導体ウェーハ上にシリコン単結晶をエピタキシャル成長させるので、ウォールデポを生じさせることなくサセプタを大径化できる。
次に本発明を実施するための最良の形態を図面に基づいて説明する。
図2に示すように、本発明の半導体製造装置10は、処理対象である半導体ウェーハ12をその上面に載置可能な水平な円板状のサセプタ11と、そのサセプタ11を内部空間に収容する反応容器13とを備える。反応容器13は、サセプタ11の上方に設けられたカバー部材14とサセプタ11の下方に設けられたアクセス部材16とを備え、このカバー部材14及びアクセス部材16は透明な石英からなり、これらの両者の間に形成される内部空間13aを減圧可能に構成される。
また、この半導体製造装置10は、サセプタ11に載置された半導体ウェーハ12を反応容器13の外部から加熱する加熱手段17を備える。この加熱手段17は反応容器13の上方及び下方に設けられたハロゲンランプ17であり、反応容器13の上方に設けられたハロゲンランプ17の更に上方にはその赤外線輻射熱を反応容器13側に反射する上部反射板18aが設けられ、反応容器13の下方に設けられたハロゲンランプ17の更に下方にはその赤外線輻射熱を反応容器13側に反射する下部反射板18bが設けられる。そして、加熱手段であるハロゲンランプ17から放射される熱源は透明なカバー部材14及びアクセス部材16を介して、赤外線輻射熱を反応容器13の内部空間13aに付与して半導体ウェーハ12を加熱するように構成される。
カバー部材14は、サセプタ11を上方から覆いハロゲンランプ17からの加熱輻射線を透過する上部窓部14aと、この上部窓部14aの周縁に設けられてこの上部窓部14aを支持する上部周縁フランジ部14bとを有し、この上部周縁フランジ部14bが上部固定具14cにより固定されるように構成される。一方、アクセス部材16は、サセプタ11を下方から覆いハロゲンランプ17からの加熱輻射線を透過する下部窓部16aと、この下部窓部16aの中央に下方に延びて形成された筒部16bと、その下部窓部16aの周縁に設けられてこの下部窓部16aを支持する下部周縁フランジ部16cとを有し、この下部周縁フランジ部16cが下部固定具16dにより固定されるように構成される。
反応容器13の水平方向のサセプタ11を挟む一端及び他端には、その一端にガス供給部13bが形成され、他端にガス排出部13cが形成される。このガス供給部13b及びガス排出部13cにはガス給排手段(図示せず)が連結され、そのガス給排手段はガス供給部13bから反応容器13の内部空間13aにガスを供給し、ガス排出部13cからその内部空間13aのガスを吸引してその内部空間13aにガス流(図1に実線矢印で示す。)を形成するように構成される。即ち、処理ガスは、矢印Sで示したようにガス供給部13bから反応容器13の内部空間13aに入り、矢印Eで示したようにガス排出部13cから排出される。内部空間13aにおける気体の低圧力は、ガス供給部13bと排気ポンプ(図示せず)の間に設置されているコンダクタバルブ(図示せず)により自動的に制御され維持される。
アクセス部材16における筒部16bには駆動軸21が鉛直方向に貫通して設けられ、内部空間13aにおけるサセプタ11は駆動軸21の上端部に固定される。駆動軸21の下端は、反応容器13の外部に設けられた駆動モータ22に接続される。この駆動軸21は、磁気シール23aにより筒部16bに対して封止される。また筒部16bの下端はOリング23bで封止される。そして、半導体ウェーハ12は、内部空間13a内のサセプタ11の上面に配設され、反応処理ガスの流れに晒される。このとき駆動モータ22を駆動させることにより駆動軸21を介してサセプタ11を回転させ、そのサセプタ11とともに半導体ウェーハ12を処理中に回転させて、より均一な加熱とエピタキシャル成長を行うように構成される。
反応容器13の外部には、その反応容器13を外部から空冷する冷却手段が設けられる。この実施の形態における冷却手段は、冷却エアを図2の実線矢印で示すようにカバー部材14及びアクセス部材16の外側中央部分に吹き付けるブロア(図示せず)であって、そのブロアにより吹き付けられた冷却エアはカバー部材14及びアクセス部材16の外表面全体に中央から外側に向かって流れ、図2の実線矢印により示された冷却エアの対流により反応容器13を外部から空冷するように構成される。
カバー部材14のサセプタ11を上方から覆う上部窓部14aはサセプタ11の外径Wより大きな外径Dを有し(図1))、その中央が上方に膨出するように湾曲して形成される。一方、サセプタ11を下方から覆う下部窓部16aにあってもサセプタ11の外径Wより大きな外径を有し、その中央が下方に膨出するように湾曲して形成される。このように、上部窓部14a及び下部窓部16aの形状をドーム状にすることにより反応容器13を大型化させたことに起因するそれぞれの窓部14a,16aの強度を確保するようにしている。
図1に示すように、本発明の特徴ある構成は、サセプタ11の外径Wが490mm以上700mm以下であり、窓部の厚みが4mm以上7mm以下であり、窓部の曲率半径が580mm以上620mm以下であり、サセプタ11の上面から窓部内面までの高さの最大値が200mmであるところにある。またエピタキシャル成長時にはガス給排手段は内部空間13aのサセプタ11上に0.1m/秒以上3.0m/秒以下の平均流速でガスを供給することを特徴とする。
このように構成された半導体製造装置では、サセプタ11を比較的大径化したので、複数の半導体ウェーハ12を同時に処理することができ、又は比較的大型の半導体ウェーハ12であってもその処理が可能となる。即ち、サセプタ11の外径Wを490mm以上700mm以下とするので、直径が450mmの半導体ウェーハ12であれば1枚、直径が200mmの半導体ウェーハ12であれば3枚以上サセプタ11上に載置することができる。また、このサセプタ11には、直径が150mmの半導体ウェーハ12であれば5枚以上載置して同時にそれら複数枚の半導体ウェーハ12を処理することができる。ここで、サセプタ11の外径Wを490mm以上とするのは、その外径が490mm未満であると、上記のような複数の半導体ウェーハ12又は比較的大型の半導体ウェーハ12をその上に載置することが困難になり、その外径を700mm以下とするのは、窓部の厚みが4mm以上7mm以下、窓部の曲率半径が580mm以上620mm以下という制約下で、最大1気圧の差圧における耐性を持たせるためである。
また、反応容器13の上部及び下部窓部14a,16aはサセプタ11の外径Wより大きな外径Dを有するので、サセプタ11やその上に載置された半導体ウェーハ12を反応容器13の外に設けられたランプ17によって加熱する場合、そのランプ17から発せられた光を透過させて、サセプタ11領域全体を均一に加熱することができる。
ここで、反応容器13内を減圧にしてウェーハ12を処理する場合、この石英からなる窓部は最大1気圧の差圧に耐える必要があるけれども、本発明の半導体製造装置10では、サセプタ11を上方及び下方から覆う窓部14a,16aのそれぞれの中央を上方及び下方に膨出するように湾曲していわゆるドーム状に形成したので、内部空間13aを減圧した場合に生じる最大1気圧の差圧に窓部14a、16aが耐えることが可能となる。そして、その上部及び下部窓部14a,16aの厚みtを4mm以上7mm以下とするので、それらの窓部14a,16aの外面を冷却手段により空冷することにより、石英からなる窓部14a、16aの冷却効果によりそれらの内面が加熱されるようなことを防止して、石英からなる窓部14a,16a内面でシリコンが分解して付着するような事態を回避することができる。即ち、石英からなる窓部14a、16aの厚みtが7mmを越えると、冷却手段における冷却効果が著しく低下して窓部14a、16aの内面は加熱され、ジクロルシランなどのシリコンソースガスを内部空間13aに流すと加熱された石英からなる窓部14a,16aの内面で分解して付着するいわゆるウォールデポを生じる不具合がある。一方、石英からなる窓部14a、16aの厚みtが4mm未満であると、最大1気圧の差圧に窓部14a、16aが耐えることが困難になる。ここで、石英からなる窓部14a、16aの厚みtの好ましい範囲は5mm〜6mmである。
一方、石英からなる窓部14a,16aをドーム状に湾曲させると、サセプタ11から石英からなる窓部下面までの高さHが高くなり、別の問題、即ち、サセプタ11上での対流が引き起こされていわゆるウォールデポが生じることが考えられるけれども、本発明の半導体製造装置10では、それらの窓部14a,16aの曲率半径Rを580mm以上620mm以下とし、サセプタ11の上面から窓部14a内面までの高さHの最大値Hを200mmに制限した。このため、サセプタ11の上面から窓部14a内面までの高さHの著しい増加は回避され、この間における対流の発生を防止することができる。サセプタ11近傍において分解されたガスが対流により窓部14a近傍に輸送され、その窓部14aの内壁へ付着するようなことを有効に回避することができる。
ここで、窓部14aの曲率半径Rが580mm未満であると、サセプタ11の上面から窓部14a内面までの高さHの最大値Hを200mmに制限することが困難となり、窓部14aの曲率半径が620mmを越えると、窓部14aが平坦に近づいてその窓部14aが最大1気圧の差圧に耐えることが困難になる。
また、サセプタ11の上面から窓部14a内面までの高さの最大値Hが200mmを越えると、サセプタ11の上面から窓部14a内面までの間における対流の発生を防止することが困難になる。そして、この最大高さHの好ましい範囲は100mm以上180mm以下である。
そして、エピタキシャル成長時には、ガス給排手段により内部空間13aのサセプタ11上に平均流速が0.1m/秒以上3.0m/秒以下のガス流を形成するので、この内部空間13aに生じる横方向のガス流により、サセプタ11の上面から窓部内面までの間に対流が生じることを確実に防止し、いわゆるウォールデポを生じさせることなくサセプタ11を大径化させて、その大径のサセプタ11上に載置された複数の半導体ウェーハ12上に又は単一ではあるけれども比較的大型の半導体ウェーハ12上にシリコン単結晶をエピタキシャル成長させることができる。エピタキシャル成長時には、サセプタ11上に平均流速が0.1m/秒未満であるか、或いはその平均流速が3.0m/秒を越えると、サセプタ11の上面から窓部14a内面までの間における対流の発生を防止することが困難になる。
次に、本発明の実施例を比較例とともに説明する。
<実施例1>
サセプタ11の外径Wが490mm、窓部14aの外径Dが530mmであって、その窓部14aの厚みtが4mmであり、その窓部14aの曲率半径Rが580mmであり、サセプタ11の上面から窓部14a内面までの高さの最大値Hが180mmである半導体製造装置を準備した。そして、加熱手段17によりサセプタ11に載置された半導体ウェーハ12を反応容器13の外部から加熱して1000℃に昇温させるとともに、冷却手段により窓部14a,16aの外部中央に34℃のエアを22m3/分の流量で吹き付けてその窓部14a,16aを空冷した。その後、ガス給排手段により内部空間13aのサセプタ11上に平均流速が0.1m/秒のガス流を形成した。このときの、窓部14aにおける耐圧性能の有無、窓部14a内面における温度、及びサセプタの上面から窓部内面までの間における対流の発生の有無を調査した。
ここで、窓部14a内面における温度はパイロメータにより測定した。また、エピタキシャル成長後の石英製の窓部14aを目視することにより、ウォールデポの有無を確認した。その結果、窓部14a内面における温度はウォールデポを生じさせることのない300℃であった。また、石英製の窓部の内面にはウォールデポは見られなかった。
<実施例2>
サセプタ11の外径Wが490mm、窓部14aの外径Dが530mmであって、その窓部14aの厚みが7mmであり、その窓部14aの曲率半径が620mmであり、サセプタ11の上面から窓部14a内面までの高さの最大値Hが200mmである半導体製造装置を準備した。そして、加熱手段17によりサセプタ11に載置された半導体ウェーハ12を反応容器13の外部から加熱して1000℃に昇温させるとともに、冷却手段により窓部14a,16aの外部中央に34℃のエアを22m3/分の流量で吹き付けてその窓部14a,16aを空冷した。その後、ガス給排手段により内部空間13aのサセプタ11上に平均流速が0.1m/秒のガス流を形成した。実施例1と同様に、エピタキシャル成長後に石英製の窓部内面におけるウォールデポの有無を目視により確認した。その結果、石英製の窓部の内面にはウォールデポは見られなかった。
<実施例3>
サセプタの外径Wを700mmにし、窓部14aの外径Dを740mmにしたことを除いて、実施例1と同じ条件で実施例1と同様に、窓部14a内面における温度を測定し、更にエピタキシャル成長後に石英製の窓部内面におけるウォールデポの有無を目視により確認した。その結果、窓部14aは十分な耐圧性能を有することが判り、窓部14a内面における温度はウォールデポを生じさせることのない360℃であった。また、石英製の窓部の内面にはウォールデポは見られなかった。
<実施例4>
サセプタの外径をその上限値である700mmにし、窓部14aの外径Dを740mmにしたことを除いて、実施例2と同じ条件で実施例2と同様に、エピタキシャル成長後に石英製の窓部内面におけるウォールデポの有無を目視により確認した。その結果、石英製の窓部の内面にはウォールデポは見られなかった。
<比較例1>
サセプタ11の上面から窓部14a内面までの高さの最大値Hを250mmにしたことを除いて、実施例1と同じ条件で実施例1と同様に、エピタキシャル成長後に石英製の窓部内面におけるウォールデポの有無を目視により確認した。その結果、石英製の窓部の内面にはウォールデポが見られた。
<比較例2>
サセプタ11の上面から窓部14a内面までの高さの最大値Hを220mmにし、サセプタ11上のガス流の平均流速を0.05m/秒にしたことを除いて、実施例1と同じ条件で実施例1と同様に、エピタキシャル成長後に石英製の窓部内面におけるウォールデポの有無を目視により確認した。その結果、石英製の窓部の内面にはウォールデポが見られた。
<比較例3>
サセプタ11の上面から窓部14a内面までの高さの最大値Hを250mmにしたことを除いて、実施例4と同じ条件で実施例4と同様に、エピタキシャル成長後に石英製の窓部内面におけるウォールデポの有無を目視により確認した。その結果、石英製の窓部の内面にはウォールデポが見られた。
<比較例4>
サセプタ11の上面から窓部14a内面までの高さの最大値Hを220mmにし、サセプタ11上のガス流の平均流速を0.05m/秒にしたことを除いて、実施例4と同じ条件で実施例4と同様に、エピタキシャル成長後に石英製の窓部内面におけるウォールデポの有無を目視により確認した。その結果、石英製の窓部の内面にはウォールデポが見られた。
実施例1〜4及び比較例1〜4の条件及び結果を表1に示す。
Figure 2009277785
───
表1から明らかなように、本発明における条件の範囲内では、窓部14aは十分な耐圧性能を有し、窓部14a内面における温度上昇を回避することができ、サセプタの上面から窓部内面までの間における対流の発生を抑制できることが判る。この結果、本発明の半導体製造装置では、ウォールデポを生じさせることなくサセプタを大径化させることができ、そのサセプタの外径を比較的大きな490mm以上700mm以下とすることにより、その大径のサセプタ11上に載置された複数の半導体ウェーハ12上に又は単一ではあるけれども比較的大型の半導体ウェーハ12上にシリコン単結晶をエピタキシャル成長させることが可能となることが判る。
本発明実施形態の半導体製造装置におけるサセプタと窓部との関係を示す概念図である。 その半導体製造装置の構造を示す概念図である。
符号の説明
11 サセプタ
12 半導体ウェーハ
13 反応容器
13a 内部空間
13b ガス供給部
13c ガス排出部
14a 窓部
17 ハロゲンランプ(加熱手段)
W サセプタの外径
D 窓部の外径
t 窓部の厚み
R 窓部の曲率半径
H サセプタの上面から窓部内面までの高さ

Claims (2)

  1. 水平な円板状のサセプタと、前記サセプタを内部空間に収容して前記内部空間を減圧可能に構成された反応容器と、前記反応容器の一端に形成されたガス供給部から前記内部空間にガスを供給し前記反応容器の他端に形成されたガス排出部から前記内部空間のガスを吸引して前記内部空間にガス流を形成するガス給排手段と、前記サセプタに載置された半導体ウェーハを前記反応容器の外部から加熱する加熱手段と、前記反応容器を外部から空冷する冷却手段とを備え、前記反応容器は前記サセプタの外径(W)より大きな外径(D)を有し中央が上方に膨出するように湾曲して形成されて前記サセプタを上方から覆う窓部を有する半導体製造装置において、
    前記サセプタの外径(W)が490mm以上700mm以下であり、
    前記窓部の厚み(t)が4mm以上7mm以下であり、
    前記窓部の曲率半径(R)が580mm以上620mm以下であり、
    前記サセプタの上面から前記窓部内面までの高さの最大値(H)が200mmである
    ことを特徴とする半導体製造装置。
  2. 請求項1記載の装置を用いた半導体製造方法であって、
    反応容器の内部空間を減圧状態にして、前記内部空間に収容された水平な円板状のサセプタに載置された半導体ウェーハを加熱するとともにガス給排手段により前記サセプタ上に0.1m/秒以上3.0m/秒以下の平均流速でガスを供給して前記半導体ウェーハ上にシリコン単結晶をエピタキシャル成長させることを特徴とする半導体製造方法。
JP2008126088A 2008-05-13 2008-05-13 半導体製造装置及びこの装置を用いた半導体製造方法 Pending JP2009277785A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008126088A JP2009277785A (ja) 2008-05-13 2008-05-13 半導体製造装置及びこの装置を用いた半導体製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008126088A JP2009277785A (ja) 2008-05-13 2008-05-13 半導体製造装置及びこの装置を用いた半導体製造方法

Publications (1)

Publication Number Publication Date
JP2009277785A true JP2009277785A (ja) 2009-11-26

Family

ID=41442961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008126088A Pending JP2009277785A (ja) 2008-05-13 2008-05-13 半導体製造装置及びこの装置を用いた半導体製造方法

Country Status (1)

Country Link
JP (1) JP2009277785A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165948A (ja) * 2010-02-10 2011-08-25 Fuji Electric Co Ltd 気相成長方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04245420A (ja) * 1990-09-07 1992-09-02 Applied Materials Inc 圧力−熱補償機能を備えたウエハ反応容器窓
JP2004200603A (ja) * 2002-12-20 2004-07-15 Shin Etsu Handotai Co Ltd 気相成長装置およびエピタキシャルウェーハの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04245420A (ja) * 1990-09-07 1992-09-02 Applied Materials Inc 圧力−熱補償機能を備えたウエハ反応容器窓
JP2004200603A (ja) * 2002-12-20 2004-07-15 Shin Etsu Handotai Co Ltd 気相成長装置およびエピタキシャルウェーハの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165948A (ja) * 2010-02-10 2011-08-25 Fuji Electric Co Ltd 気相成長方法

Similar Documents

Publication Publication Date Title
TWI513852B (zh) 化學氣相沉積設備
US9752253B2 (en) Epitaxial growth apparatus
EP1612854A1 (en) Loading table and heat treating apparatus having the loading table
US20110121503A1 (en) Cvd apparatus
JP2009135228A (ja) 気相成長装置および気相成長方法
US20110073037A1 (en) Epitaxial growth susceptor
JP6459801B2 (ja) エピタキシャルシリコンウェーハの製造方法
US11390949B2 (en) SiC chemical vapor deposition apparatus and method of manufacturing SiC epitaxial wafer
KR101441797B1 (ko) 성막장치와 성막방법
JP6562546B2 (ja) ウェハ支持台、ウェハ支持体、化学気相成長装置
JP2009071210A (ja) サセプタおよびエピタキシャル成長装置
JP5440589B2 (ja) 気相成長装置及びエピタキシャルウェーハの製造方法
JP2009277785A (ja) 半導体製造装置及びこの装置を用いた半導体製造方法
JP7190894B2 (ja) SiC化学気相成長装置
JP2009064850A (ja) エピタキシャル成長装置およびエピタキシャル成長方法
TWI679683B (zh) 氣相成長方法
JP6153489B2 (ja) 結晶成長装置
JP2010040574A (ja) エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
CN110429050B (zh) 一种外延生长基座
JP2008294217A (ja) 気相成長装置及び気相成長方法
JP2014207357A (ja) サセプタ及びそれを用いた気相成長装置
JP2010034337A (ja) 気相成長装置用のサセプタ
JP2009182009A (ja) 気相成長装置および気相成長方法
WO2012071302A2 (en) Interchangeable pumping rings to control path of process gas flow
US20210095374A1 (en) CVD Reactor Single Substrate Carrier and Rotating Tube for Stable Rotation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Effective date: 20120313

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120710

Free format text: JAPANESE INTERMEDIATE CODE: A02