JP2009277618A - Magnetic domain structural image acquisition method and scanning transmission electron microscope - Google Patents

Magnetic domain structural image acquisition method and scanning transmission electron microscope Download PDF

Info

Publication number
JP2009277618A
JP2009277618A JP2008130570A JP2008130570A JP2009277618A JP 2009277618 A JP2009277618 A JP 2009277618A JP 2008130570 A JP2008130570 A JP 2008130570A JP 2008130570 A JP2008130570 A JP 2008130570A JP 2009277618 A JP2009277618 A JP 2009277618A
Authority
JP
Japan
Prior art keywords
image
domain structure
magnetic domain
electron diffraction
diffraction pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008130570A
Other languages
Japanese (ja)
Inventor
Satoshi Yasuhara
原 聡 安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2008130570A priority Critical patent/JP2009277618A/en
Publication of JP2009277618A publication Critical patent/JP2009277618A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a magnetic domain structural image without using a division detector. <P>SOLUTION: An electron diffraction figure D<SB>xy</SB>is photographed by a CCD camera at each observation point on a sample. One magnetic domain structural image data M<SB>xy</SB>against one electron diffraction figure D<SB>xy</SB>is calculated by performing the following (a)-(c) processing on each obtained electron diffraction figure D<SB>xy</SB>. (a) An image in a designated zone on the electron diffraction figure is divided into a plurality of partial images S<SB>1</SB>-S<SB>4</SB>. (b) One image strength signal is calculated by adding a strength signal of each pixel forming the partial image on every partial images S<SB>1</SB>-S<SB>4</SB>. (c) One magnetic domain structural image datum M<SB>xy</SB>is calculated on the basis of the image strength signal I<SB>1</SB>-I<SB>4</SB>calculated for every partial image S<SB>1</SB>-S<SB>4</SB>. Thus, the magnetic domain structural image is obtained on the basis of the magnetic domain structural image data M<SB>xy</SB>calculated at each electron diffraction figure D<SB>xy</SB>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、走査透過電子顕微鏡を用いた磁性体試料の磁区構造画像取得方法、および、その走査透過電子顕微鏡に関する。   The present invention relates to a method for acquiring a magnetic domain structure image of a magnetic material sample using a scanning transmission electron microscope, and the scanning transmission electron microscope.

磁性体試料の磁区構造を観察する方法として、走査透過電子顕微鏡(STEM)を用いたDPC(Differential Phase Contrast)法がある。このDPC法による磁性体試料の磁区構造観察においては、細く集束された電子線を試料上の観察点に順次照射し、4分割または多分割された検出素子からなる分割検出器で電子回折図形を前記観察点毎に検出し、各検出素子の出力信号を演算処理して画像データを得、得られた観察点毎の画像データを表示手段に供給して磁性体試料の磁区構造画像を得ている。このようなDPC法について記載した特許文献として、特公平6−24109号公報(特許文献1)がある。   As a method for observing the magnetic domain structure of a magnetic sample, there is a DPC (Differential Phase Contrast) method using a scanning transmission electron microscope (STEM). When observing the magnetic domain structure of a magnetic material sample by this DPC method, an electron diffraction pattern is irradiated with a finely divided electron beam sequentially on the observation point on the sample, and the electron diffraction pattern is formed by a divided detector composed of four or multi-divided detection elements. Detection is performed for each observation point, and the output signal of each detection element is processed to obtain image data, and the obtained image data for each observation point is supplied to the display means to obtain a magnetic domain structure image of the magnetic sample. Yes. Japanese Patent Publication No. 6-24109 (Patent Document 1) is a patent document describing such a DPC method.

特公平6−24109号公報Japanese Patent Publication No. 6-24109

上述したように従来においては、磁性体試料の磁区構造画像を得るために、特殊な4分割等の分割検出器が別途必要となる。このような分割検出器は高価であり、また、それを配置するためのスペースを余計に設けなければならない。   As described above, conventionally, in order to obtain a magnetic domain structure image of a magnetic sample, a special division detector such as a quadrant is separately required. Such a split detector is expensive and requires extra space to place it.

本発明はこのような点に鑑みて成されたもので、その目的は、分割検出器を用いなくても磁区構造画像を得ることができる磁区構造画像取得方法および走査透過電子顕微鏡を提供することにある。   The present invention has been made in view of these points, and an object thereof is to provide a magnetic domain structure image acquisition method and a scanning transmission electron microscope capable of obtaining a magnetic domain structure image without using a split detector. It is in.

上記目的を達成する本発明の磁区構造画像取得方法は、次の(1)〜(4)の手順で磁性体試料の磁区構造画像を得る。
(1)集束した電子線を試料上の観察点Pxy(x=1,2,…,m、y=1,2,…,n)に順に照射し、
(2)前記電子線照射によって試料後段に形成される電子回折図形を、前記観察点Pxy毎に撮像し、
(3)撮像した電子回折図形Dxy(x=1,2,…,m、y=1,2,…,n)毎に以下の(a)〜(c)の処理を行って、1つの電子回折図形Dxyに対して1つの磁区構造画像データMxy(x=1,2,…,m、y=1,2,…,n)を求め、
(a)電子回折図形上の所定範囲の像を、複数の部分像S,S,…,Sに分割する
(b)部分像S,S,…,S毎に、その部分像を構成する各画素の強度信号に基づいて1つの画像強度信号を求める
(c)部分像S,S,…,S毎に求めた前記画像強度信号I,I,…,Iに基づいて1つの前記磁区構造画像データMxyを求める
(4)電子回折図形Dxy毎に求めた前記磁区構造画像データMxyに基づいて磁区構造画像を得る。
The magnetic domain structure image acquisition method of the present invention that achieves the above object obtains a magnetic domain structure image of a magnetic sample by the following procedures (1) to (4).
(1) Irradiate the focused electron beam to observation points P xy (x = 1, 2,..., M, y = 1, 2,..., N) on the sample in order,
(2) The electron diffraction pattern formed in the latter part of the sample by the electron beam irradiation is imaged for each observation point P xy ,
(3) The following processes (a) to (c) are performed for each captured electron diffraction pattern D xy (x = 1, 2,..., M, y = 1, 2,..., N). Obtain one magnetic domain structure image data M xy (x = 1, 2,..., M, y = 1, 2,..., N) for the electron diffraction pattern D xy ,
An image of a predetermined range on the (a) electron diffraction pattern, a plurality of partial images S 1, S 2, ..., is divided into S t (b) partial images S 1, S 2, ..., for each S t, the One image intensity signal is obtained based on the intensity signal of each pixel constituting the partial image. (C) The image intensity signals I 1 , I 2 ,... Obtained for each of the partial images S 1 , S 2 ,. to obtain a magnetic domain structure image based on one of said seek domain structure image data M xy (4) the domain structure image data M xy obtained in electron diffraction pattern D for each xy based on I t.

したがって本発明によれば、分割検出器を用いなくても磁区構造画像を得ることができる。   Therefore, according to the present invention, it is possible to obtain a magnetic domain structure image without using a split detector.

以下、図面を用いて本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の磁区構造画像取得方法を説明するために示したもので、その画像取得を行うためのSTEMを示したものである。   FIG. 1 shows a magnetic domain structure image acquisition method according to the present invention, and shows a STEM for performing the image acquisition.

図1において、1は顕微鏡の鏡筒であり、その内部は図示していない排気装置によって高真空に排気されている。そして、鏡筒1の内部には、上段側から順に、電子銃2、集束レンズ3、走査コイル4、対物レンズ5、中間レンズ6、投影レンズ7、CCDカメラ(2次元検出器)8が配置されている。   In FIG. 1, reference numeral 1 denotes a microscope barrel, the inside of which is evacuated to a high vacuum by an evacuation device not shown. An electron gun 2, a focusing lens 3, a scanning coil 4, an objective lens 5, an intermediate lens 6, a projection lens 7, and a CCD camera (two-dimensional detector) 8 are arranged inside the lens barrel 1 in this order from the upper side. Has been.

前記CCDカメラ8は、2次元に配列された多数の検出素子Cij(i=1,2,…,e、j=1,2,…,f)から構成される2次元検出器であり、従来のSTEMにおいて既に配置されているものである。本発明は、この既設のCCDカメラ8で電子回折図形を撮像することを特徴としており、前記分割検出器を使用しない。 The CCD camera 8 is a two-dimensional detector composed of a large number of detection elements C ij (i = 1, 2,..., E, j = 1, 2,..., F) arranged two-dimensionally. It is already arranged in the conventional STEM. The present invention is characterized in that an electron diffraction pattern is imaged by the existing CCD camera 8 and does not use the division detector.

9は磁性体試料で、試料9は、対物レンズ5の前方磁界5aと後方磁界5bの間に配置されている。   Reference numeral 9 denotes a magnetic sample, and the sample 9 is disposed between the front magnetic field 5 a and the rear magnetic field 5 b of the objective lens 5.

10は中央制御装置であり、前記CCDカメラ8の出力信号は中央制御装置10に供給されるように構成されている。そして、中央制御装置10は、その内部に、画像メモリ11と磁区構造画像データ取得手段12と画像メモリ13を備えている。また、中央制御装置10は、表示手段14と走査コイル駆動部15に電気的に接続されている。なお、図中、Oは光軸を示している。   Reference numeral 10 denotes a central controller, and an output signal of the CCD camera 8 is configured to be supplied to the central controller 10. The central controller 10 includes an image memory 11, a magnetic domain structure image data acquisition unit 12, and an image memory 13 therein. Further, the central control device 10 is electrically connected to the display means 14 and the scanning coil driving unit 15. In the figure, O indicates the optical axis.

以上、図1のSTEMの装置構成を説明した。以下、その動作説明を行う。   The apparatus configuration of the STEM in FIG. 1 has been described above. The operation will be described below.

磁性体試料9の磁区構造を観察する場合、中央制御装置10は、電子線を試料上でxy方向に面走査させるための偏向信号を走査コイル駆動部15に送る。この偏向信号を受けた走査コイル駆動部15は、走査コイル4に偏向電流を供給する。その結果、電子銃2から放出され、集束レンズ3と対物レンズ5の前方磁界5aによって試料9上に細く集束された電子線eは、走査コイル4によって偏向されて、試料9上をxy方向に面走査する。すなわち、電子線eは、図2に示すように、試料9上の観察点Pxy(x=1,2,…,m、y=1,2,…,n)を順に照射する。 When observing the magnetic domain structure of the magnetic sample 9, the central controller 10 sends a deflection signal for scanning the surface of the electron beam in the xy direction on the sample to the scanning coil driving unit 15. Upon receiving this deflection signal, the scanning coil driving unit 15 supplies a deflection current to the scanning coil 4. As a result, the electron beam e emitted from the electron gun 2 and finely focused on the sample 9 by the front magnetic field 5a of the focusing lens 3 and the objective lens 5 is deflected by the scanning coil 4, and the sample 9 is directed in the xy direction. Surface scan. That is, as shown in FIG. 2, the electron beam e sequentially irradiates observation points P xy (x = 1, 2,..., M, y = 1, 2,..., N) on the sample 9.

こうして磁性体試料9上の各観察点に入射した電子線eは、試料9を透過するとき、試料の磁化方向に依存するローレンツ力を受けてxy方向に偏向される。このため、対物レンズ5の後方磁界5bによって対物レンズ5の後焦点面Hに結像される各電子回折図形Dxy(x=1,2,…,m、y=1,2,…,n)は、各観察点Pxyにおける試料の磁化方向に応じてxy方向に移動する。これに伴い、中間レンズ6と投影レンズ7によってCCDカメラ8上に拡大投影される各電子回折図形Dxyは、各観察点Pxyにおける試料の磁化方向に応じてxy方向に移動する。 Thus, when the electron beam e incident on each observation point on the magnetic material sample 9 passes through the sample 9, it receives a Lorentz force depending on the magnetization direction of the sample and is deflected in the xy direction. Therefore, each electron diffraction pattern D xy (x = 1, 2,..., M, y = 1, 2,..., N) imaged on the rear focal plane H of the objective lens 5 by the back magnetic field 5b of the objective lens 5. ) Moves in the xy direction according to the magnetization direction of the sample at each observation point P xy . Accordingly, each electron diffraction pattern D xy enlarged and projected on the CCD camera 8 by the intermediate lens 6 and the projection lens 7 moves in the xy direction according to the magnetization direction of the sample at each observation point P xy .

前記CCDカメラ8は、このように移動する電子回折図形を観察点Pxy毎に撮像する。そして、この撮像されたm×n枚の電子回折図形Dxyは、観察点Pxyに対応して画像メモリ11の所定場所に記憶される。 The CCD camera 8 images the electron diffraction pattern moving in this way for each observation point P xy . The picked up m × n electron diffraction patterns D xy are stored in a predetermined location in the image memory 11 corresponding to the observation point P xy .

こうして電子回折図形Dxyが画像メモリ11に記憶されると、磁区構造画像データ取得手段12は、電子回折図形Dxy毎に磁区構造画像データMxy(x=1,2,…,m、y=1,2,…,n)を求める。すなわち、磁区構造画像データ取得手段12は、1つの電子回折図形Dxyに対して1つの磁区構造画像データMxyを求める。その求め方を、以下の(a)〜(c)の工程に分けて詳しく説明する。
(a)電子回折図形の分割
まず、磁区構造画像データ取得手段12は、電子回折図形D11の画像データを画像メモリ11から読み出す。そして、磁区構造画像データ取得手段12は、図3(a)に示すように、その電子回折図形D11から所定範囲の一部の画像K(すなわち画像Kの画像データ)を抽出する。この画像Kは、電子回折図形D11の中央部分の画像で、画像Kの中心Cは電子回折図形D11の中心C'と一致している。画像Kの中には、電子回折図形D11における透過スポットWが含まれている。
When the electron diffraction pattern D xy is stored in the image memory 11 in this way, the magnetic domain structure image data acquisition unit 12 performs the magnetic domain structure image data M xy (x = 1, 2,..., M, y) for each electron diffraction pattern D xy. = 1, 2, ..., n). That is, the magnetic domain structure image data acquisition unit 12 obtains one magnetic domain structure image data M xy for one electron diffraction pattern D xy . The method for obtaining it will be described in detail in the following steps (a) to (c).
(A) splitting of the electron diffraction pattern First, the magnetic domain structure image data acquisition means 12 reads the image data of the electron diffraction pattern D 11 from the image memory 11. Then, the magnetic domain structure image data acquisition means 12, as shown in FIG. 3 (a), extracts the (image data i.e. image K) a part of the image K in a predetermined range from the electron diffraction pattern D 11. This image K is the image of the central portion of the electron diffraction pattern D 11, the center C of the image K coincides with the center C 'of the electron diffraction pattern D 11. In the image K is included transmission spot W is the electron diffraction pattern D 11.

次に、磁区構造画像データ取得手段12は、図3(b)に示すように、直交した2つの直線で画像Kを4等分割して、部分像S〜S(すなわち部分像S〜Sの画像データ)を抽出する。この部分像S〜Sは、前記4分割検出器の各検出素子で検出される電子回折図形にそれぞれ対応している。すなわち本発明では、磁区構造画像データ取得手段12における部分像S〜Sの抽出機能を、4分割検出器の代わりに用いている。
(b)部分像S〜S毎に、1つの画像強度信号を求める
次に、磁区構造画像データ取得手段12は、電子回折図形D11から抽出した部分像S〜S毎に、その部分像を構成する各画素の信号強度に基づいて1つの画像強度信号を求める。すなわち、磁区構造画像データ取得手段12は、前記画像メモリ11から読み出した画像データに基づき、部分像Sを構成する各画素a,b,c,…(図3(b)参照)の強度信号を加算(積算)して画像強度信号Iを求める。同様にして、部分像Sに対して画像強度信号Iが、部分像Sに対して画像強度信号Iが、部分像Sに対して画像強度信号Iがそれぞれ求められる。
(c)I〜Iに基づいて1つの磁区構造画像データM11を求める
次に、磁区構造画像データ取得手段12は、電子回折図形D11の部分像S〜Sについて求めた前記画像強度信号I〜Iに基づき、電子回折図形D11に対して磁区構造画像データM11を求める。すなわち、試料上の観察点P11に対して磁区構造画像データM11を求める。その際、磁区構造画像データ取得手段12は、次式の演算を行って磁区構造画像データM11を求める。
Next, as shown in FIG. 3B, the magnetic domain structure image data acquisition unit 12 divides the image K into four equal parts by two orthogonal straight lines, and the partial images S 1 to S 4 (that is, the partial image S 1). It extracts image data) to S 4. The partial images S 1 to S 4 correspond to electron diffraction patterns detected by the detection elements of the quadrant detector. That is, in the present invention, the extraction function of the partial images S 1 to S 4 in the magnetic domain structure image data acquisition unit 12 is used instead of the quadrant detector.
(B) Obtain one image intensity signal for each of the partial images S 1 to S 4 Next, the magnetic domain structure image data acquisition unit 12 performs the following for each of the partial images S 1 to S 4 extracted from the electron diffraction pattern D 11 . One image intensity signal is obtained based on the signal intensity of each pixel constituting the partial image. That is, the magnetic domain structure image data acquiring unit 12, based on image data read from the image memory 11, each pixel a constituting part image S 1, b, c, ... intensity signal (see FIG. 3 (b)) the addition (integration) were determined image intensity signals I 1 and. Similarly, the image intensity signal I 2 to the portion image S 2 is the image intensity signal I 3 for the partial image S 3 is the image intensity signal I 4 is calculated respectively for the partial image S 4.
(C) Obtaining one magnetic domain structure image data M 11 based on I 1 to I 4 Next, the magnetic domain structure image data acquisition means 12 calculates the partial images S 1 to S 4 of the electron diffraction pattern D 11. Based on the image intensity signals I 1 to I 4 , magnetic domain structure image data M 11 is obtained for the electron diffraction pattern D 11 . That is, obtains the domain structure image data M 11 with respect to the observation point P 11 on the sample. At that time, the magnetic domain structure image data acquisition unit 12 obtains the domain structure image data M 11 performs the following calculation.

11=((I+I)−(I+I))/(I+I+I+I
この演算による求め方は、4分割検出器の各検出素子の出力信号を演算して磁区構造画像データを求める従来の方式に対応している。そして、こうして求められた磁区構造画像データM11は、観察点P11に対応して画像メモリ13の所定場所に記憶される。
M 11 = ((I 1 + I 2 ) − (I 3 + I 4 )) / (I 1 + I 2 + I 3 + I 4 )
This calculation method corresponds to the conventional method of calculating the magnetic domain structure image data by calculating the output signal of each detection element of the quadrant detector. Then, the magnetic domain structure image data M 11 obtained in this way is stored in a predetermined location of the image memory 13 corresponding to the observation point P 11.

以上、電子回折図形D11(観察点P11)に関する磁区構造画像データM11の求め方について説明したが、残りの電子回折図形D21〜Dmn(観察点P21〜Pmn)に対しても同様な処理が磁区構造画像データ取得手段12において行われ、磁区構造画像データM21〜Mmnが求められる。そして、それらの磁区構造画像データM21〜Mmnは、観察点P21〜Pmnに対応して画像メモリ13の所定場所に記憶される。 The method for obtaining the magnetic domain structure image data M 11 related to the electron diffraction pattern D 11 (observation point P 11 ) has been described above, but the remaining electron diffraction patterns D 21 to D mn (observation points P 21 to P mn ) are described. The magnetic domain structure image data acquisition unit 12 performs the same process, and the magnetic domain structure image data M 21 to M mn are obtained. And their domain structure image data M 21 ~M mn is stored in a predetermined location of the image memory 13 corresponding to the observation point P 21 to P mn.

なお、図4は、たとえば電子回折図形D15に対する部分像S〜Sの抽出処理を説明するために示したものであり、前記図3(b)に対応させて示したものである。図4における部分像S〜Sの大きさおよび位置は、図3(b)の状態と同じである。しかし、図4における透過スポットWの位置は、図3(b)の位置と異なっている。これは、試料の磁化の方向がその2つの観察点P15,P11で異なるためである。 FIG. 4 shows, for example, the extraction process of the partial images S 1 to S 4 with respect to the electron diffraction pattern D 15 , corresponding to FIG. 3B. The size and position of the partial image S 1 to S 4 in FIG. 4 is the same as the state of FIG. 3 (b). However, the position of the transmission spot W in FIG. 4 is different from the position of FIG. This is because the direction of magnetization of the sample is different between the two observation points P 15 and P 11 .

上記(a)〜(c)のようにして、電子回折図形Dxy(観察点Pxy)に対して磁区構造画像データMxyが求められると、中央制御装置10は、その求められた全ての磁区構造画像データM11,M21,…,Mmnを画像メモリ13から読み出して表示手段14に送る。その結果、表示手段14の画面上には、図5に示すような観察点P11,P21,…,Pmnに関する磁区構造画像が表示される。この画像上において、白黒のコントラストが磁区の違いを示しており、同じ磁区は同じ輝度で表示されている。 When the magnetic domain structure image data M xy is obtained for the electron diffraction pattern D xy (observation point P xy ) as in the above (a) to (c), the central controller 10 The magnetic domain structure image data M 11 , M 21 ,..., M mn are read from the image memory 13 and sent to the display means 14. As a result, a magnetic domain structure image related to the observation points P 11 , P 21 ,..., P mn as shown in FIG. On this image, the black and white contrast shows the difference between the magnetic domains, and the same magnetic domain is displayed with the same luminance.

以上、本発明の一例を図1〜図5を用いて説明した。本発明によれば、特殊な分割検出器を使用しなくても、試料の磁区構造画像を得ることができる。そして、本発明によれば、電子回折図形の画像データ取得後、いつでもその電子回折図形の精妙な解析行うことができる。   The example of the present invention has been described above with reference to FIGS. According to the present invention, a magnetic domain structure image of a sample can be obtained without using a special split detector. According to the present invention, after the acquisition of the image data of the electron diffraction pattern, the electron diffraction pattern can be analyzed at any time.

なお、本発明は上記例に限定されるものではない。上記例では、電子回折図形から抽出した画像Kを4等分割したが、1つの直線で画像Kを2等分割したり、その他の数に等分割するようにしてもよい。そして、その分割により抽出された各部分像に対しては、上記処理が行われる。   The present invention is not limited to the above example. In the above example, the image K extracted from the electron diffraction pattern is divided into four equal parts, but the image K may be divided into two equal parts by one straight line, or may be equally divided into other numbers. Then, the above processing is performed on each partial image extracted by the division.

また、上記例では、電子回折図形から抽出した画像Kを4等分割したが、電子回折図形から画像Kを抽出せずに、画像メモリ11から読み出した電子回折図形自身を4等分割したりして部分像を得るようにしてもよい。   In the above example, the image K extracted from the electron diffraction pattern is divided into four equal parts, but the electron diffraction pattern itself read from the image memory 11 is divided into four equal parts without extracting the image K from the electron diffraction pattern. A partial image may be obtained.

また、上記例では、磁区構造画像データを求めるのに演算式M11=((I+I)−(I+I))/(I+I+I+I)を用いたが、これに代えて、次の演算式を用いるようにしてもよい。 In the above example, the arithmetic expression M 11 = ((I 1 + I 2 ) − (I 3 + I 4 )) / (I 1 + I 2 + I 3 + I 4 ) is used to obtain the magnetic domain structure image data. Instead of this, the following arithmetic expression may be used.

11=(−(I+I)+(I+I))/(I+I+I+I
そして、その演算式は、上述した画像Kの分割数や目的に応じて、随時変更するようにしてもよい。
M 11 = (− (I 1 + I 2 ) + (I 3 + I 4 )) / (I 1 + I 2 + I 3 + I 4 )
The arithmetic expression may be changed as needed according to the number of divisions of the image K and the purpose.

本発明の走査透過電子顕微鏡の一例を示したものである。1 shows an example of a scanning transmission electron microscope of the present invention. 図1の装置の動作を説明するために示したものである。It is shown in order to demonstrate operation | movement of the apparatus of FIG. 図1の装置の動作を説明するために示したものである。It is shown in order to demonstrate operation | movement of the apparatus of FIG. 図1の装置の動作を説明するために示したものである。It is shown in order to demonstrate operation | movement of the apparatus of FIG. 磁区構造画像を示したものである。A magnetic domain structure image is shown.

符号の説明Explanation of symbols

1…鏡筒、2…電子銃、3…集束レンズ、4…走査コイル、5…対物レンズ、5a…前方磁界、5b…後方磁界、6…中間レンズ、7…投影レンズ、8…CCDカメラ、9…磁性体試料、10…中央制御装置、11…画像メモリ、12…磁区構造画像データ取得手段、13…画像メモリ、14…表示手段   DESCRIPTION OF SYMBOLS 1 ... Lens barrel, 2 ... Electron gun, 3 ... Focusing lens, 4 ... Scanning coil, 5 ... Objective lens, 5a ... Front magnetic field, 5b ... Back magnetic field, 6 ... Intermediate lens, 7 ... Projection lens, 8 ... CCD camera, DESCRIPTION OF SYMBOLS 9 ... Magnetic material sample, 10 ... Central control apparatus, 11 ... Image memory, 12 ... Magnetic domain structure image data acquisition means, 13 ... Image memory, 14 ... Display means

Claims (6)

次の(1)〜(4)の手順で磁性体試料の磁区構造画像を得る磁区構造画像取得方法
(1)集束した電子線を試料上の観察点Pxy(x=1,2,…,m、y=1,2,…,n)に順に照射し、
(2)前記電子線照射によって試料後段に形成される電子回折図形を、前記観察点Pxy毎に撮像し、
(3)撮像した電子回折図形Dxy(x=1,2,…,m、y=1,2,…,n)毎に以下の(a)〜(c)の処理を行って、1つの電子回折図形Dxyに対して1つの磁区構造画像データMxy(x=1,2,…,m、y=1,2,…,n)を求め、
(a)電子回折図形上の所定範囲の像を、複数の部分像S,S,…,Sに分割する
(b)部分像S,S,…,S毎に、その部分像を構成する各画素の強度信号に基づいて1つの画像強度信号を求める
(c)部分像S,S,…,S毎に求めた前記画像強度信号I,I,…,Iに基づいて1つの前記磁区構造画像データMxyを求める
(4)電子回折図形Dxy毎に求めた前記磁区構造画像データMxyに基づいて磁区構造画像を得る。
Magnetic domain structure image acquisition method for obtaining a magnetic domain structure image of a magnetic material sample by the following procedures (1) to (4) (1) A focused electron beam is observed on a sample at an observation point P xy (x = 1, 2,... m, y = 1, 2,..., n) in order,
(2) The electron diffraction pattern formed in the latter part of the sample by the electron beam irradiation is imaged for each observation point P xy ,
(3) The following processes (a) to (c) are performed for each captured electron diffraction pattern D xy (x = 1, 2,..., M, y = 1, 2,..., N). Obtain one magnetic domain structure image data M xy (x = 1, 2,..., M, y = 1, 2,..., N) for the electron diffraction pattern D xy ,
An image of a predetermined range on the (a) electron diffraction pattern, a plurality of partial images S 1, S 2, ..., is divided into S t (b) partial images S 1, S 2, ..., for each S t, the One image intensity signal is obtained based on the intensity signal of each pixel constituting the partial image. (C) The image intensity signals I 1 , I 2 ,... Obtained for each of the partial images S 1 , S 2 ,. to obtain a magnetic domain structure image based on one of said seek domain structure image data M xy (4) the domain structure image data M xy obtained in electron diffraction pattern D for each xy based on I t.
電子回折図形上の所定範囲の像を等分割して、複数の部分像S,S,…,Sを得ることを特徴とする請求項1記載の磁区構造画像取得方法。 By equally dividing the image of a predetermined range on the electron diffraction pattern, a plurality of partial images S 1, S 2, ..., the magnetic domain structure image acquisition method according to claim 1, wherein the obtaining the S t. 部分像を構成する各画素の強度信号を加算して前記画像強度信号を求めることを特徴とする請求項1記載の磁区構造画像取得方法。   2. The magnetic domain structure image acquisition method according to claim 1, wherein the image intensity signal is obtained by adding the intensity signals of the pixels constituting the partial image. 集束した電子線を試料上の観察点Pxy(x=1,2,…,m、y=1,2,…,n)に順に照射する機能を備えた走査透過電子顕微鏡において、
前記電子線照射によって試料後段に形成される電子回折図形を、前記観察点Pxy毎に撮像する2次元検出器と、
前記2次元検出器で撮像された電子回折図形Dxy(x=1,2,…,m、y=1,2,…,n)を記憶するメモリと、
前記メモリに記憶された電子回折図形Dxy毎に以下の(a)〜(c)の処理を行って、1つの電子回折図形Dxyに対して1つの磁区構造画像データMxy(x=1,2,…,m、y=1,2,…,n)を求める磁区構造画像データ取得手段と、
(a)電子回折図形上の所定範囲の像を、複数の部分像S,S,…,Sに分割する
(b)部分像S,S,…,S毎に、その部分像を構成する各画素の強度信号に基づいて1つの画像強度信号を求める
(c)部分像S,S,…,S毎に求めた前記画像強度信号I,I,…,Iに基づいて1つの前記磁区構造画像データMxyを求める
電子回折図形Dxy毎に求められた前記磁区構造画像データMxyに基づいて磁区構造画像を表示する表示手段
を備えたことを特徴とする走査透過電子顕微鏡。
In a scanning transmission electron microscope having a function of sequentially irradiating a focused electron beam to observation points P xy (x = 1, 2,..., M, y = 1, 2,..., N) on a sample,
A two-dimensional detector that images the electron diffraction pattern formed in the latter stage of the sample by the electron beam irradiation for each observation point P xy ;
A memory for storing electron diffraction patterns D xy (x = 1, 2,..., M, y = 1, 2,..., N) imaged by the two-dimensional detector;
The following processes (a) to (c) are performed for each electron diffraction pattern D xy stored in the memory, and one magnetic domain structure image data M xy (x = 1) for one electron diffraction pattern D xy . , 2,..., M, y = 1, 2,..., N), and magnetic domain structure image data acquisition means;
An image of a predetermined range on the (a) electron diffraction pattern, a plurality of partial images S 1, S 2, ..., is divided into S t (b) partial images S 1, S 2, ..., for each S t, the One image intensity signal is obtained based on the intensity signal of each pixel constituting the partial image. (C) The image intensity signals I 1 , I 2 ,... Obtained for each of the partial images S 1 , S 2 ,. , further comprising a display means for displaying the magnetic domain structure image based on the domain structure image data M xy found for the electron diffraction pattern D xy for obtaining a single magnetic domain structure image data M xy based on I t A scanning transmission electron microscope.
前記磁区構造画像データ取得手段は、電子回折図形上の所定範囲の像を等分割して、複数の部分像S,S,…,Sを得ることを特徴とする請求項4記載の走査透過電子顕微鏡。 The domain structure image data acquisition means, by equally dividing the image of the predetermined range on the electron diffraction pattern, a plurality of partial images S 1, S 2, ..., according to claim 4, wherein the obtaining the S t Scanning transmission electron microscope. 前記磁区構造画像データ取得手段は、部分像を構成する各画素の強度信号を加算して前記画像強度信号を求めることを特徴とする請求項4記載の走査透過電子顕微鏡。   5. The scanning transmission electron microscope according to claim 4, wherein the magnetic domain structure image data acquisition means obtains the image intensity signal by adding the intensity signals of the pixels constituting the partial image.
JP2008130570A 2008-05-19 2008-05-19 Magnetic domain structural image acquisition method and scanning transmission electron microscope Pending JP2009277618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130570A JP2009277618A (en) 2008-05-19 2008-05-19 Magnetic domain structural image acquisition method and scanning transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130570A JP2009277618A (en) 2008-05-19 2008-05-19 Magnetic domain structural image acquisition method and scanning transmission electron microscope

Publications (1)

Publication Number Publication Date
JP2009277618A true JP2009277618A (en) 2009-11-26

Family

ID=41442841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130570A Pending JP2009277618A (en) 2008-05-19 2008-05-19 Magnetic domain structural image acquisition method and scanning transmission electron microscope

Country Status (1)

Country Link
JP (1) JP2009277618A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113972A (en) * 2008-11-07 2010-05-20 Jeol Ltd Scanning transmission electron microscope
EP3093868A1 (en) 2015-05-14 2016-11-16 JEOL Ltd. Electron microscope and measurement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193041A (en) * 1987-10-03 1989-04-12 Jeol Ltd Phase difference electron microscope for magnetic domain observation
JPH02197050A (en) * 1989-01-25 1990-08-03 Jeol Ltd Scan permeation type phase difference electron microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193041A (en) * 1987-10-03 1989-04-12 Jeol Ltd Phase difference electron microscope for magnetic domain observation
JPH02197050A (en) * 1989-01-25 1990-08-03 Jeol Ltd Scan permeation type phase difference electron microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113972A (en) * 2008-11-07 2010-05-20 Jeol Ltd Scanning transmission electron microscope
EP3093868A1 (en) 2015-05-14 2016-11-16 JEOL Ltd. Electron microscope and measurement method
US9859095B2 (en) 2015-05-14 2018-01-02 The University Of Tokyo Electron microscope and measurement method

Similar Documents

Publication Publication Date Title
JP5499282B2 (en) Aberration correction method and aberration correction apparatus in scanning transmission electron microscope
CN110235045A (en) For carrying out the microscope and method of micrography to sample
TW201721224A (en) Method and system for focus adjustment of a multi-beam scanning electron microscopy system
JP2010062106A (en) Scanning charged particle microscope device, and method of processing image acquired by the same
JP5603421B2 (en) Charged particle beam equipment with automatic aberration correction method
JP2017203822A (en) Illumination setting method, sheet illumination microscopic device, and program
JPH05299048A (en) Electron beam device and scanning electron microscope
JP2010286565A (en) Fluorescence observation apparatus
JP6029293B2 (en) Scanning electron microscope image processing apparatus and scanning method
JP2018017969A (en) Microscope system, information presentation method, and program
JP6702807B2 (en) Electron microscope and image acquisition method
JP2009277618A (en) Magnetic domain structural image acquisition method and scanning transmission electron microscope
JP6563517B2 (en) Microscope observation system, microscope observation method, and microscope observation program
JP5019279B2 (en) Confocal microscope and method for generating focused color image
JP2007250220A (en) Sample observation method, image processing device, and charged particle beam device
JP4197898B2 (en) Microscope, three-dimensional image generation method, program for causing computer to control generation of three-dimensional image, and recording medium recording the program
JP2009277619A (en) Sample analysis method using scanning transmission electron microscope
CN111146062B (en) Electron microscope and image processing method
JP2010164635A (en) Confocal microscope
JP2008181778A (en) Automatic axis matching method of charged particle beam device and charged particle beam device
JP5892424B2 (en) Image acquisition method, image acquisition device, and scanning microscope
JP4011455B2 (en) Sample observation method using transmission electron microscope
JP2007287561A (en) Charged particle beam device
JP6796609B2 (en) Aberration measurement method and electron microscope
JP4275786B2 (en) electronic microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514