JP2009275956A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2009275956A
JP2009275956A JP2008126305A JP2008126305A JP2009275956A JP 2009275956 A JP2009275956 A JP 2009275956A JP 2008126305 A JP2008126305 A JP 2008126305A JP 2008126305 A JP2008126305 A JP 2008126305A JP 2009275956 A JP2009275956 A JP 2009275956A
Authority
JP
Japan
Prior art keywords
layer material
intermediate layer
curvature
radius
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008126305A
Other languages
Japanese (ja)
Inventor
Akio Matsuoka
彰夫 松岡
Takeshi Okinoya
剛 沖ノ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008126305A priority Critical patent/JP2009275956A/en
Publication of JP2009275956A publication Critical patent/JP2009275956A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0229Double end plates; Single end plates with hollow spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger can improve compression strength at brazing sections of a header tank. <P>SOLUTION: In this heat exchanger in which the header tank 20 is constituted by integrally brazing a plate member 50 connected with a tube 11, a tank member 30 and an intermediate layer material 40, and the tank member 30 is provided with bulging sections 31 constituted as fluid circulating pathways 35 inside and bulging from brazing planes 32, 42 to a side opposite to the intermediate layer material 40, and first curved sections 33 disposed at elementary parts of the bulging sections 31 and having the curved shape, the intermediate layer material 40 is provided with projecting sections 41 formed on positions corresponding to the bulging sections 31 and projecting from the brazing planes 32, 42 to a tank member 30 side, and second curved sections 43 disposed at elementary parts of the projecting sections 41 and having the curved shape, wherein the second curved sections 43 are formed roughly along the curved shape of the first curved sections 33. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱交換器に関するものであり、例えば、CO給湯器の蒸発器に適用して好適である。 The present invention relates to a heat exchanger, and is suitable for application to an evaporator of a CO 2 water heater, for example.

従来、特許文献1に記載されるように、熱交換器において冷媒の集合および分配を行うヘッダタンクは、内部が冷媒の流通路として機能する膨出部がプレス成形されるタンク部材と、複数のチューブが接続されるプレート部材と、タンク部材とプレート部材との間に介在される中間層材とを有して構成されているものが知られている。これらの3部材は、積層した状態でろう付けにより一体に接合される。
特開2003−314987号公報(図12)
Conventionally, as described in Patent Document 1, a header tank that collects and distributes refrigerant in a heat exchanger includes a tank member in which a bulging portion whose inside functions as a refrigerant flow path is press-molded, and a plurality of 2. Description of the Related Art There is known a plate member that includes a plate member to which a tube is connected and an intermediate layer material interposed between a tank member and a plate member. These three members are joined together by brazing in a laminated state.
Japanese Patent Laying-Open No. 2003-314987 (FIG. 12)

ところで、こうしたヘッダタンクでは、例えばCO冷媒等で流通路(膨出部)内が高圧力となると、タンク部材と中間層材とのろう付け面において、特に膨出部の根元部位に両部材を引き剥がす方向へ応力が作用してしまい、ろう付け部が破損しやすいという問題が生じていた。 Incidentally, in such header tanks, for example, the flow passage in a CO 2 refrigerant, etc. (bulged portion) inside has a higher pressure, the brazing surface between the tank member and the intermediate layer member, both members in particular the root portion of the bulging portion As a result, the stress acts in the direction of peeling off the brazing part, and the brazed part is easily damaged.

上記問題に鑑み、本発明は、ヘッダタンクのろう付け部における耐圧強度を向上させることができる熱交換器を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a heat exchanger that can improve the pressure resistance in the brazed portion of the header tank.

本発明は上記目的を達成するために、以下の技術的手段を採用する。   In order to achieve the above object, the present invention employs the following technical means.

請求項1に記載の発明では、流体が通過する複数のチューブ(11)と、複数のチューブ(11)の端部(111)に配置されるヘッダタンク(20)とを備え、ヘッダタンク(20)は、チューブ(11)が接続されるプレート部材(50)と、プレート部材(50)に組み合わされるタンク部材(30)と、タンク部材(30)とプレート部材(50)との間に介在される中間層材(40)とを有し、これらの各部材(30,40,50)が一体にろう付けされて構成され、タンク部材(30)には、内部が流体の流通路(35)として構成されるとともにタンク部材(30)と中間層材(40)とのろう付け平面(32,42)から中間層材(40)とは反対側に膨らんだ膨出部(31)と、膨出部(31)の根元部位にあって湾曲形状をなす第1湾曲部(33)とが形成された熱交換器において、中間層材(40)には、膨出部(31)に対応する位置に形成されてろう付け平面(32,42)からタンク部材(30)側に突出した突出部(41)と、突出部(41)の根元部位にあって湾曲形状をなす第2湾曲部(43)とが形成され、第2湾曲部(43)は第1湾曲部(33)の湾曲形状に略沿うように形成されていることを特徴とする。   The invention according to claim 1 includes a plurality of tubes (11) through which a fluid passes and a header tank (20) disposed at an end (111) of the plurality of tubes (11). ) Is interposed between the plate member (50) to which the tube (11) is connected, the tank member (30) combined with the plate member (50), and between the tank member (30) and the plate member (50). The intermediate layer material (40) and the respective members (30, 40, 50) are integrally brazed, and the tank member (30) has a fluid flow passage (35) inside. And a bulging portion (31) swelled from the brazing plane (32, 42) between the tank member (30) and the intermediate layer material (40) to the opposite side of the intermediate layer material (40), Curved shape at the root of the protrusion (31) In the heat exchanger formed with the first curved portion (33) forming the intermediate layer material (40), the intermediate layer material (40) is formed at a position corresponding to the bulging portion (31) and brazed planes (32, 42). And a second curved portion (43) having a curved shape at the root portion of the projected portion (41) is formed, and the second curved portion (43) is formed. ) Is formed so as to substantially follow the curved shape of the first curved portion (33).

タンク部材(30)(膨出部(31))は、一般的に、アルミニウムやアルミニウム合金等の金属をプレス成形(曲げ加工)することによって形成されており、膨出部(31)の根元部位には、金属が膨り出し方向に引っ張られるように湾曲した第1湾曲部(R部(33))が形成される。本構成によれば、タンク部材(30)の膨出部(31)の第1湾曲部(R部33)に対して、中間層材(40)の突出部(41)の第2湾曲部(R部43)が沿うため、中間層材(40)が平坦な場合と比較して、湾曲部(R部33,34)におけるタンク部材(30)と中間層材(40)とのクリアランスを狭めることができる。   The tank member (30) (the bulging portion (31)) is generally formed by press forming (bending) a metal such as aluminum or an aluminum alloy, and the root portion of the bulging portion (31). Is formed with a first curved portion (R portion (33)) that is curved so that the metal is pulled in the bulging direction. According to this structure, with respect to the 1st curved part (R part 33) of the bulging part (31) of a tank member (30), the 2nd curved part (41) of the protrusion part (41) of an intermediate | middle layer material (40) ( Since the R portion 43) follows, the clearance between the tank member (30) and the intermediate layer material (40) in the curved portion (R portions 33, 34) is narrower than in the case where the intermediate layer material (40) is flat. be able to.

そして、ろう付け時には、第2湾曲部(R部43)が第1湾曲部(R部33)に沿う部分にろう材が回り、膨出部(31)の根元部位においても各湾曲部(R部33,43)に沿ってろう付けされるため、中間層材(40)が平坦な場合と比較して、ろう付け領域を拡大することができる。   At the time of brazing, the brazing material turns around the portion along which the second bending portion (R portion 43) extends along the first bending portion (R portion 33), and each bending portion (R) also at the root portion of the bulging portion (31). Since brazing is performed along the portions 33 and 43), the brazing region can be enlarged as compared with the case where the intermediate layer material (40) is flat.

また、平坦な中間層材(40)とタンク部材(30)とのろう付けにおいては、一般に、流通路(35)内の圧力により、ろう付け平面(32,42)には、タンク部材(30)と中間層材(40)とを引き剥がす方向(ろう付け平面(接合面)と垂直な方向)の力が作用する。このため、流通路(35)内の圧力が高くなる場合には特にろう付け部が破損しやすかった。しかし、本構成によれば、ろう付けされた各湾曲部(R部33,43)には、流通路(35)内の圧力によって、接合面と垂直な方向ではなく各湾曲部(R部33,43)の面方向(せん断方向)への力として作用するため、タンク部材(30)と中間層材(40)とが引き剥がされにくい構造とすることができる。   In brazing the flat intermediate layer material (40) and the tank member (30), the tank member (30) is generally placed on the brazing plane (32, 42) by the pressure in the flow passage (35). ) And the intermediate layer material (40) are peeled off (force perpendicular to the brazing plane (joint surface)). For this reason, especially when the pressure in the flow passage (35) becomes high, the brazed portion was easily damaged. However, according to the present configuration, each curved portion (R portion 33, 43) brazed to each curved portion (R portion 33) is not in a direction perpendicular to the joint surface due to the pressure in the flow passage (35). , 43) acts as a force in the plane direction (shear direction), so that the tank member (30) and the intermediate layer material (40) are not easily peeled off.

すなわち、本構成によれば、ろう付け領域を拡大するとともに、その拡大されたろう付け領域である各湾曲部(R部33,43)に作用する力を、引き剥がし方向ではなく接合面のせん断方向とすることで、ヘッダタンク(20)のろう付け部における耐圧強度を向上させることができる。   That is, according to this configuration, the brazing region is expanded, and the force acting on each curved portion (R portion 33, 43), which is the expanded brazing region, is applied to the shearing direction of the joint surface instead of the peeling direction. By doing, the pressure-resistant intensity | strength in the brazing part of a header tank (20) can be improved.

請求項2に記載の発明では、第2湾曲部(43)のタンク部材(30)と対向する側の面における曲率半径である第2曲率半径(Ra)は、第1湾曲部(33)の中間層材(40)と対向する側の面における曲率半径である第1曲率半径(Rt)の1倍以上かつ1.5倍以下であることを特徴とする。   In the second aspect of the present invention, the second curvature radius (Ra), which is the curvature radius of the surface of the second curved portion (43) facing the tank member (30), is equal to that of the first curved portion (33). It is 1 time or more and 1.5 times or less of the 1st curvature radius (Rt) which is a curvature radius in the surface on the side facing an intermediate | middle layer material (40).

本構成によれば、第2湾曲部(43)の曲率半径である第2曲率半径(Ra)を第1湾曲部(33)の曲率半径である第1曲率半径(Rt)以上とすることで、第1湾曲部(33)と第2湾曲部(43)とがぶつかり合う(接触する)ことなく、突出部(41)が膨出部(31)内に収容されて組み付け性を向上させることができる。また、第1湾曲部(33)の第1曲率半径(Rt)の1.5倍以下とすることで、第2湾曲部(43)をなるべく第1湾曲部(33)の湾曲形状に沿わす形状とすることができる。これにより、タンク部材(30)と中間層材(40)との隙間を狭めて、ろう付け平面(32,42)から湾曲部(33,43)へ向けて効率的にろう材が回るようにすることができる。結果的に、ろう付け領域が拡大されて、ろう付け部における耐圧強度を向上させて破損を抑制することができる。   According to this configuration, the second radius of curvature (Ra) that is the radius of curvature of the second curved portion (43) is set to be equal to or greater than the first radius of curvature (Rt) that is the radius of curvature of the first curved portion (33). The projecting portion (41) is accommodated in the bulging portion (31) without the first bending portion (33) and the second bending portion (43) colliding (contacting) to improve the assembling property. Can do. In addition, by setting the first bending portion (33) to 1.5 times or less the first curvature radius (Rt), the second bending portion (43) follows the curved shape of the first bending portion (33) as much as possible. It can be a shape. Thereby, the clearance gap between a tank member (30) and an intermediate | middle layer material (40) is narrowed, and brazing material can rotate efficiently toward a curved part (33, 43) from a brazing plane (32, 42). can do. As a result, the brazing region is enlarged, and the pressure resistance strength at the brazed portion can be improved to suppress breakage.

請求項3に記載の発明では、第2曲率半径(Ra)は、第1曲率半径(Rt)と同じ大きさであることを特徴とする。   The invention according to claim 3 is characterized in that the second radius of curvature (Ra) is the same size as the first radius of curvature (Rt).

本構成によれば、中間層材(40)の第2湾曲部(43)がタンク部材(30)の第1湾曲部(33)の湾曲形状に滑らかに沿うため、さらに、ろう付け平面(32,42)から湾曲部(33,43)へ向けて効率的にろう材が回るように構成することができる。   According to this configuration, the second curved portion (43) of the intermediate layer material (40) smoothly follows the curved shape of the first curved portion (33) of the tank member (30). , 42) to the curved portions (33, 43) so that the brazing material can be efficiently rotated.

請求項4に記載の発明では、突出部(41)のろう付け平面(32,42)からの突出量(h1)は、第1湾曲部(33)の中間層材(40)と対向する側の面における曲率半径である第1曲率半径(Rt)の0.1倍以上かつ1.0倍以下の範囲であることを特徴とする。   In the invention according to claim 4, the protrusion amount (h1) of the protrusion portion (41) from the brazing plane (32, 42) is the side of the first bending portion (33) facing the intermediate layer material (40). The first curvature radius (Rt), which is the curvature radius of the surface, is in the range of 0.1 to 1.0 times.

突出部(41)の突出量(h1)が大きいと、加工も難しく膨出部(31)への嵌り込み量も大きくなり流体の流通路(35)を狭めることとなる。また、あまりに突出量(h1)が小さいと十分なろう付け領域の拡大を図ることができない。本構成によれば、突出量(h1)を上記範囲内に設定することによって、流体の流通路(35)を狭めることなく適度にろう付け領域を拡大し、また、加工が容易なことから成形性の面においても好適な実施態様とすることができる。   If the protruding amount (h1) of the protruding portion (41) is large, processing is difficult and the amount of fitting into the bulging portion (31) is increased, and the fluid flow path (35) is narrowed. Further, if the protrusion amount (h1) is too small, it is not possible to sufficiently enlarge the brazing region. According to this configuration, by setting the protrusion amount (h1) within the above range, the brazing region can be appropriately expanded without narrowing the fluid flow path (35), and the molding is easy because the processing is easy. It can be set as a suitable embodiment also in terms of sex.

請求項5に記載の発明では、中間層材(40)において流通路(35)を流体が流通する方向である長手方向の端部は、突出部(41)が形成されない平面部(47)として形成されており、平面部(47)には、流通路(35)の長手方向端部の開口を閉塞する仕切板(60a)が設けられていることを特徴とする。   In the invention according to claim 5, the end in the longitudinal direction, which is the direction in which the fluid flows through the flow passage (35) in the intermediate layer material (40), is a flat portion (47) in which no protrusion (41) is formed. The partition part (60a) which closes the opening of the longitudinal direction edge part of the flow path (35) is provided in the planar part (47) formed.

流通路(35)は、気密性確保のため長手方向(流体の流通方向)端部(開口)を仕切板(60a)によって閉塞される。本構成によれば、突出部(41)を中間層材(40)の長手方向の全域に亘って形成するのではなくその一部に形成するため、中間層材(40)の長手方向端部を平坦に形成することができる。そして、平坦に形成された中間層材(40)の長手方向端部に仕切板(60a)を設けることで、仕切板(60a)と中間層材(40)との接合面を平面同士にできるため、気密性を向上させることができる。仕切板(60a)は、その外周縁が隣接する部材、例えば中間層材(40)とタンク部材(30)とにろう付けにより接合され、これら隣接する部材に気密を維持して固定される。   The flow passage (35) is closed at the end (opening) in the longitudinal direction (fluid flow direction) by the partition plate (60a) in order to ensure airtightness. According to this configuration, the projecting portion (41) is not formed over the entire area in the longitudinal direction of the intermediate layer material (40) but is formed in a part thereof, so that the longitudinal end portion of the intermediate layer material (40) is formed. Can be formed flat. And the joining surface of a partition plate (60a) and an intermediate | middle layer material (40) can be made into a plane by providing a partition plate (60a) in the longitudinal direction edge part of the intermediate | middle layer material (40) formed flat. Therefore, airtightness can be improved. The partition plate (60a) is joined to adjacent members such as the intermediate layer material (40) and the tank member (30) by brazing, and is fixed to these adjacent members while maintaining airtightness.

なお、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment description later mentioned.

(第1実施形態)
本発明の第1実施形態について、図1〜図4を参照しつつ説明する。本実施形態は、熱交換器として、CO給湯器に用いられる蒸発器に適用したものとしており、まず図1を用いてその全体構成について説明する。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the heat exchanger is applied to an evaporator used in a CO 2 water heater, and the overall configuration will be described first with reference to FIG.

図1は、第1実施形態における蒸発器1を示す全体斜視図である。以下、図1において矢印で示す上下左右方向を、便宜上基準として説明するものとする。本実施形態の蒸発器1(空気熱交換器)は、外気ファン(図示略)による送風を受けて、膨張弁(図示略)で減圧された冷媒を外気との熱交換によって蒸発させる吸熱用熱交換器である。図1に示すように、蒸発器1は、2列のコア部10と、各コア部10の上下に位置するヘッダタンク20とから構成され、これらを構成する各部材(以下説明)は、アルミニウムあるいはアルミニウム合金から成り、嵌合、かしめ、治具固定等により組み付けられ、各部材表面の必要部位に予め設けられたろう材により一体でろう付けされている。   FIG. 1 is an overall perspective view showing an evaporator 1 in the first embodiment. Hereinafter, the vertical and horizontal directions indicated by arrows in FIG. The evaporator 1 (air heat exchanger) of the present embodiment receives heat from an outside air fan (not shown) and heats heat absorbed by the refrigerant decompressed by an expansion valve (not shown) by heat exchange with the outside air. It is an exchanger. As shown in FIG. 1, the evaporator 1 is composed of two rows of core portions 10 and header tanks 20 positioned above and below each core portion 10, and each member (hereinafter described) constituting these is made of aluminum. Or it consists of an aluminum alloy, it is assembled | attached by fitting, caulking, jig | tool fixing, etc., and it brazes integrally by the brazing material previously provided in the required site | part of each member surface.

コア部10は、内部を冷媒が流通する複数のチューブ11および波形に形成された複数のフィン12が交互に積層され、左右の最外方フィン12の更に外方には、チューブ11と平行に延びてコア部10を補強するサイドプレート13が配置されたものであり、これらが一体でろう付けされている。そして、本実施形態では、このコア部10がヘッダタンク20の長手方向(左右方向)に並列に2列積層されている。以下、ヘッダタンク20の長手方向(左右方向、チューブ11の積層方向)と垂直な奥行き方向を幅方向(チューブ11の並列方向)と言う。   The core portion 10 includes a plurality of tubes 11 through which refrigerant flows and a plurality of corrugated fins 12 that are alternately stacked, and the outermost fins 12 on the left and right sides are parallel to the tubes 11. Side plates 13 that extend and reinforce the core portion 10 are arranged, and these are integrally brazed. In this embodiment, the core portion 10 is stacked in two rows in parallel in the longitudinal direction (left-right direction) of the header tank 20. Hereinafter, the depth direction perpendicular to the longitudinal direction of the header tank 20 (left and right direction, stacking direction of the tubes 11) is referred to as the width direction (parallel direction of the tubes 11).

なお、それぞれのチューブ11は、扁平な断面を有する多穴の管になっており、複数のチューブ11はそれらの扁平面が平行となるように、互いに所定間隔を設けて平行に配列されている。また、冷媒と熱交換する外気(空気)は、図1に矢印Aで示すようにチューブ11の並列方向(幅方向)に流れるようになっている。   Each tube 11 is a multi-hole tube having a flat cross section, and the plurality of tubes 11 are arranged in parallel at predetermined intervals so that their flat surfaces are parallel to each other. . Further, the outside air (air) that exchanges heat with the refrigerant flows in the parallel direction (width direction) of the tubes 11 as indicated by an arrow A in FIG.

コア部10の図1における上下部、即ち、複数のチューブ11の長手方向におけるチューブ端部111(図2参照)には、チューブ11の積層方向に延びる一対のヘッダタンク20が設けられている。   A pair of header tanks 20 extending in the stacking direction of the tubes 11 are provided at the upper and lower portions of the core portion 10 in FIG. 1, that is, the tube end portions 111 (see FIG. 2) in the longitudinal direction of the plurality of tubes 11.

次に、図2〜図4を用いて本発明の要部であるヘッダタンク20の構成について詳述する。図2は、ヘッダタンク20およびチューブ11を示す分解斜視図である。図3は、タンク部材30と中間層材40との接合部を示す断面図であり、図4は、図3に破線で囲んだ部位を示す拡大図である。   Next, the structure of the header tank 20 which is the principal part of this invention is explained in full detail using FIGS. FIG. 2 is an exploded perspective view showing the header tank 20 and the tube 11. FIG. 3 is a cross-sectional view showing a joint portion between the tank member 30 and the intermediate layer material 40, and FIG. 4 is an enlarged view showing a portion surrounded by a broken line in FIG.

まず、ヘッダタンク20の構成から説明する。ヘッダタンク20は、図2に示すように、タンク部材30、中間層材40、プレート部材50を有し、各部材30,40,50がこの順序で上下方向に積層されて成る3層構造に形成されている。   First, the configuration of the header tank 20 will be described. As shown in FIG. 2, the header tank 20 includes a tank member 30, an intermediate layer material 40, and a plate member 50. The header tank 20 has a three-layer structure in which the members 30, 40, and 50 are stacked in this order. Is formed.

まず、タンク部材30は、ろう材がクラッドされた細長板状のアルミニウム合金をプレス加工したもので、断面略U字形状に変形させて構成した2列の膨出部31と、中間層材40と対向する平面として形成される平面部32とを有している。平面部32は膨出部31の幅方向両脇に形成され、全体として対称の形状となっている。膨出部31は、中間層材40とは反対側に膨らんでおり、その内側空間においてヘッダタンク20の長手方向に冷媒を流通させるものである。   First, the tank member 30 is obtained by press-working an elongated plate-like aluminum alloy clad with a brazing material. The tank member 30 has two rows of bulged portions 31 formed by deforming into a substantially U-shaped cross section, and an intermediate layer material 40. And a flat surface portion 32 formed as a flat surface facing each other. The flat portion 32 is formed on both sides in the width direction of the bulging portion 31 and has a symmetrical shape as a whole. The bulging portion 31 swells on the opposite side to the intermediate layer material 40, and causes the refrigerant to flow in the longitudinal direction of the header tank 20 in the inner space.

なお、図3、図4に示すように、膨出部31と平面部32との境界部(U字形状の膨出部31の根元)には、プレス加工による曲げR部33(以下、単に「R部33」と言う。)が形成されている。このR部33の中間層材40と対向する側の面における曲率半径である第1曲率半径Rtは、約1mm〜2mm程度である。また、R部33は「第1湾曲部」の一実施形態に相当する。   As shown in FIGS. 3 and 4, a bend R portion 33 (hereinafter simply referred to as “pressed”) is formed at the boundary between the bulging portion 31 and the flat portion 32 (the root of the U-shaped bulging portion 31). "R portion 33") is formed. The first radius of curvature Rt, which is the radius of curvature of the surface of the R portion 33 on the side facing the intermediate layer material 40, is about 1 mm to 2 mm. The R portion 33 corresponds to an embodiment of a “first bending portion”.

次に、中間層材40は、タンク部材30に沿うように細長板状のベア材をプレス加工したもので、断面略等脚台形形状に変形させて構成した2列の突出部41と、タンク部材30と対向する平面部42とを有している。各突出部41は、タンク部材30の膨出部31に対応した位置にタンク部材30側に段状に突出形成されており、長手(左右)方向の全体に亘って形成されている。そして、平面部42は、突出部41の幅方向両脇に形成され、中間層材40は全体として幅方向の中心を軸に対称の形状となっている。   Next, the intermediate layer material 40 is formed by pressing an elongated plate-shaped bare material along the tank member 30, and is formed by deforming the cross-sectionally isosceles trapezoidal shape into two rows of protrusions 41, a tank It has a flat portion 42 facing the member 30. Each protrusion 41 protrudes in a stepped manner toward the tank member 30 at a position corresponding to the bulging portion 31 of the tank member 30, and is formed over the entire length (left and right) direction. The flat portion 42 is formed on both sides of the protruding portion 41 in the width direction, and the intermediate layer material 40 as a whole has a symmetrical shape about the center in the width direction.

なお、図3、図4に示すように、突出部41の根元であって、等脚台形形状の側辺部には、プレス加工による曲げR部43(以下、単に「R部43」と言う。)が形成されている。このR部43のタンク部材30と対向する側の面における曲率半径である第2曲率半径Ra(図4参照)は、約1mm〜2mm程度であって、タンク部材30のR部33の第1曲率半径Rtと略同じ大きさに形成されている。また、突出部41の突出量h1(図4参照)は、第1曲率半径Rtの約半分程度(h1=Rt×0.5)に設定されている。R部43は、「第2湾曲部」の一実施形態に相当する。そして、組み付け時には、タンク部材30の平面部32と中間層材40の平面部42とが当接して、膨出部31内に突出部41が突出量h1分だけ嵌り込むようになっている。なお、両平面部32,42が「ろう付け平面」に相当する。   As shown in FIGS. 3 and 4, the side of the isosceles trapezoidal shape at the base of the protrusion 41 is a bent R portion 43 (hereinafter simply referred to as “R portion 43”) by press working. .) Is formed. The second radius of curvature Ra (see FIG. 4), which is the radius of curvature of the surface of the R portion 43 facing the tank member 30, is about 1 mm to 2 mm, and the first radius of the R portion 33 of the tank member 30 is about 1 mm to 2 mm. It is formed to have approximately the same size as the curvature radius Rt. Further, the protruding amount h1 (see FIG. 4) of the protruding portion 41 is set to about half of the first radius of curvature Rt (h1 = Rt × 0.5). The R portion 43 corresponds to an embodiment of a “second bending portion”. At the time of assembly, the flat surface portion 32 of the tank member 30 and the flat surface portion 42 of the intermediate layer material 40 come into contact with each other, and the protruding portion 41 is fitted into the bulging portion 31 by the protruding amount h1. In addition, both the plane parts 32 and 42 correspond to a “brazing plane”.

第1曲率半径Rtに対する突出量h1を規定する係数K(h1=Rt×K)は、0.1以上かつ1.0以下に設定することができる。ひとつの望ましい態様では、係数Kは、0.1以上かつ0.5以下の範囲に設定される。さらに、係数Kは、各部材の加工度を抑えることに配慮して、比較的小さい値を選択することができ、例えば、0.1以上かつ0.3以下の範囲を選択できる。一方で、タンク部材30と中間層材40との間、並びに中間層材40とプレート部材50との間に、内部圧力に対する強度に配慮したろう付けを形成することに配慮して、比較的大きい値を選択することができ、例えば、0.5以上かつ1.0以下の範囲を選択できる。   A coefficient K (h1 = Rt × K) that defines the protrusion amount h1 with respect to the first curvature radius Rt can be set to 0.1 or more and 1.0 or less. In one desirable mode, coefficient K is set in the range of 0.1 or more and 0.5 or less. Further, the coefficient K can be selected as a relatively small value in consideration of suppressing the degree of processing of each member. For example, a range of 0.1 or more and 0.3 or less can be selected. On the other hand, in consideration of forming brazing between the tank member 30 and the intermediate layer material 40 and between the intermediate layer material 40 and the plate member 50 in consideration of the strength against the internal pressure, it is relatively large. A value can be selected, for example, a range of 0.5 or more and 1.0 or less can be selected.

さらに、中間層材40には、図2に示すように、チューブ端部111に対応する位置にプレート孔44が設けられている。そして、プレート孔44の幅方向端部には板厚の途中でチューブ端部111の挿入位置を規制する段部45が設けられている。さらに、プレート孔44は、チューブ端部111の断面形状よりも大きくなるようにしている。   Further, as shown in FIG. 2, the intermediate layer material 40 is provided with a plate hole 44 at a position corresponding to the tube end portion 111. And the step part 45 which regulates the insertion position of the tube end part 111 in the middle of plate | board thickness is provided in the width direction edge part of the plate hole 44. As shown in FIG. Further, the plate hole 44 is made larger than the cross-sectional shape of the tube end portion 111.

次に、プレート部材50は、ろう材がクラッドされた細長板状のアルミニウム合金をプレス加工したもので、断面略等脚台形形状に変形させて構成した2列の凸部51と、中間層材40と対向する平面部52とを有している。各凸部51は、中間層材40側に突出しており、組み付け時に中間層材40の突出部41に沿うように位置および形状が対応するように形成されている。そして、平面部52は突出部41の幅方向両脇に形成されている。さらに、幅方向の両端部には、プレス加工により中間層材側に延びる爪部53が形成されている。さらに、チューブ端部111に対応する位置にはチューブ挿入孔54が貫通形成されている。このチューブ挿入孔54は、チューブ端部111より僅かに大きくなるように形成されている。   Next, the plate member 50 is formed by pressing an elongated plate-like aluminum alloy clad with a brazing material, and is formed by deforming the cross section into a substantially isosceles trapezoidal shape, with two rows of convex portions 51, and an intermediate layer material. 40 and a flat surface portion 52 facing each other. Each convex part 51 protrudes to the intermediate layer material 40 side, and is formed so as to correspond in position and shape along the protruding part 41 of the intermediate layer material 40 when assembled. The flat portion 52 is formed on both sides of the protruding portion 41 in the width direction. Further, claw portions 53 extending to the intermediate layer material side are formed by pressing at both ends in the width direction. Further, a tube insertion hole 54 is formed through at a position corresponding to the tube end 111. The tube insertion hole 54 is formed to be slightly larger than the tube end portion 111.

なお、上記タンク部材30、中間層材40、プレート部50の長手(左右)方向の全体長さおよび幅方向の全体長さは略同等である。   The overall length in the longitudinal (left and right) direction and the overall length in the width direction of the tank member 30, the intermediate layer material 40, and the plate portion 50 are substantially equal.

以上詳述した各部材の組み付けについて説明する。まず、タンク部材30に中間層材40を介在させてプレート部材50を当接させる。このとき、タンク部材30の平面部32、中間層材40の平面部42、プレート部材50の平面部52とが組み付け方向に重なり、プレート部材50の凸部51が中間層材40の突出部41に沿うように重なる。また、中間層材40のプレート孔44とプレート部材50のチューブ挿入孔54とが同軸上に配置される。そして、これらの3部材(タンク部材30、中間層材40、プレート部材50)が積層された状態でプレート部材50の爪部53でタンク部材30をかしめてヘッダタンク20を形成する。その後、チューブ端部111をチューブ挿入孔54およびプレート孔44に挿入して、タンク部材30、中間層材40、プレート部材50、チューブ11が一体にろう付けされる。そして、タンク部材30の膨出部31と中間層材40の突出部41との間には、ヘッダタンク20内を長手(左右)方向に冷媒が流通する流通路35(図3参照)が形成される。この流通路35は、チューブ11の内部と互いに連通している。   The assembly of each member detailed above will be described. First, the plate member 50 is brought into contact with the tank member 30 with the intermediate layer material 40 interposed therebetween. At this time, the flat surface portion 32 of the tank member 30, the flat surface portion 42 of the intermediate layer material 40, and the flat surface portion 52 of the plate member 50 overlap in the assembly direction, and the convex portion 51 of the plate member 50 is the protruding portion 41 of the intermediate layer material 40. Overlapping along Further, the plate hole 44 of the intermediate layer material 40 and the tube insertion hole 54 of the plate member 50 are arranged coaxially. Then, the header member 20 is formed by caulking the tank member 30 with the claw portion 53 of the plate member 50 in a state where these three members (the tank member 30, the intermediate layer member 40, and the plate member 50) are laminated. Thereafter, the tube end portion 111 is inserted into the tube insertion hole 54 and the plate hole 44, and the tank member 30, the intermediate layer material 40, the plate member 50, and the tube 11 are brazed together. And between the bulging part 31 of the tank member 30 and the protrusion part 41 of the intermediate | middle layer material 40, the flow path 35 (refer FIG. 3) through which a refrigerant | coolant flows through the inside of the header tank 20 in a longitudinal (left-right) direction is formed. Is done. The flow passage 35 communicates with the inside of the tube 11.

さらに、流通路35の長手(左右)方向両端部には、気密性確保のため略半円形状のサイド仕切板60aがろう付けされ、膨出部31によって形成される開口部(図示略)を閉塞するようにしている。さらに、流通路35の内部であって長手方向の略中間位置には同様の形状の中央仕切板60bが配設されており、流通路35は長手方向に2分割されている。   Furthermore, substantially semicircular side partition plates 60a are brazed to both ends in the longitudinal (left and right) direction of the flow passage 35 to ensure airtightness, and openings (not shown) formed by the bulging portions 31 are formed. It is trying to block. Further, a central partition plate 60b having a similar shape is disposed in the middle of the flow path 35 in the longitudinal direction, and the flow path 35 is divided into two in the longitudinal direction.

なお、本実施形態では、上側のヘッダタンク20の風流れ方向に対して右端部には、2つの膨出部31(流通路)に対応するそれぞれの冷媒入口(図示略)が形成されているとともに、左端部には、同じく2つの流通路35に対応するそれぞれの冷媒出口(図示略)が形成されている。したがって、冷媒入口から流入した冷媒は中央仕切板60bの右側の膨出部31(流通路35)に流入し、中央仕切板60bの右側のチューブ11群、下側のヘッダタンク20の膨出部31(流通路35)に流入し、Uターンして、中央仕切板60bの左側のチューブ11群、中央仕切板60bの左側の膨出部31(流通路)を流れ、冷媒出口から流出する。この間に、冷媒は、コア部10において外部空気と熱交換されて冷却される。   In the present embodiment, respective refrigerant inlets (not shown) corresponding to the two bulging portions 31 (flow passages) are formed at the right end with respect to the wind flow direction of the upper header tank 20. At the left end, respective refrigerant outlets (not shown) corresponding to the two flow passages 35 are formed. Therefore, the refrigerant flowing in from the refrigerant inlet flows into the right bulging portion 31 (flow passage 35) of the central partition plate 60b, and the right side tube 11 group of the central partition plate 60b and the bulging portion of the lower header tank 20 are connected. 31 (flow passage 35), U-turns, flows through the tube 11 group on the left side of the central partition plate 60b and the bulge 31 (flow passage) on the left side of the central partition plate 60b, and flows out from the refrigerant outlet. During this time, the refrigerant is cooled by exchanging heat with external air in the core portion 10.

次に、本発明の特徴部における作用について図4を参照して説明する。タンク部材30、中間層材40、プレート部材50、チューブ11が一体にろう付けされると、タンク部材30とプレート部材50とにクラッドされたろう材によって、平面部32と平面部42および、R部33とR部43が接合される。そして、接合部の端部(R部33とR部43とによって形成される隅部)には、ろう材によってフィレット70が形成される。   Next, the operation of the characterizing portion of the present invention will be described with reference to FIG. When the tank member 30, the intermediate layer material 40, the plate member 50, and the tube 11 are brazed together, the plane portion 32, the plane portion 42, and the R portion are brazed by the brazing material clad between the tank member 30 and the plate member 50. 33 and the R portion 43 are joined. A fillet 70 is formed of brazing material at the end of the joint (the corner formed by the R portion 33 and the R portion 43).

本実施形態では、プレス成形時に形成される膨出部31のR部33に対して、中間層材40側の突出部41のR部43が沿うようにしているため、中間層材40が平坦な場合と比較して、膨出部31のR部33におけるタンク部材30と中間層材40との隙間(クリアランス)を小さくすることができる。そして、ろう付け時には、中間層材40のR部43が膨出部31のR部33に沿う部分において、ろう材が回り、膨出部31のR部33においてもこのR部33に沿ってろう付けされる。すなわち、本実施形態でのろう付け領域は、平面部32,42とR部33.43の領域であって、中間層材40が平坦な場合(突出部41を有さない場合)と比較して、ろう付け領域を拡大することができる。 また、平坦な中間層材40とタンク部材30とのろう付けにおいては、一般に、ろう付け平面(本実施形態では平面部32,42に相当する。)には、図4において黒矢印で示すように作用する流通路35内の圧力によりタンク部材30と中間層材40とを引き剥がす方向(図4において白抜き矢印で示す、ろう付け平面(接合面)と垂直な方向)の力が作用する。このため、ろう付け部が破損しやすかった。しかし、本実施形態では、ろう付けされたR部33,43には、接合面と垂直な方向ではなくR部33,43の面方向(接線方向、せん断方向)への力として作用するため、タンク部材30と中間層材40とが引き剥がされにくい。   In this embodiment, since the R portion 43 of the protruding portion 41 on the intermediate layer material 40 side is along the R portion 33 of the bulging portion 31 formed during press molding, the intermediate layer material 40 is flat. Compared to the case, the gap (clearance) between the tank member 30 and the intermediate layer material 40 in the R portion 33 of the bulging portion 31 can be reduced. At the time of brazing, the brazing material rotates at the portion where the R portion 43 of the intermediate layer material 40 is along the R portion 33 of the bulging portion 31, and the R portion 33 of the bulging portion 31 is also along the R portion 33. It is brazed. That is, the brazing region in this embodiment is a region of the flat portions 32 and 42 and the R portion 33.43, and is compared with the case where the intermediate layer material 40 is flat (the case where the protruding portion 41 is not provided). Thus, the brazing area can be enlarged. In the brazing between the flat intermediate layer material 40 and the tank member 30, generally, the brazing plane (corresponding to the plane portions 32 and 42 in this embodiment) is indicated by a black arrow in FIG. The force in the direction in which the tank member 30 and the intermediate layer material 40 are peeled off (the direction perpendicular to the brazing plane (joint surface) shown in FIG. . For this reason, the brazed part was easily damaged. However, in the present embodiment, the brazed R portions 33 and 43 act as forces in the surface direction (tangential direction and shear direction) of the R portions 33 and 43 rather than in the direction perpendicular to the joint surface. The tank member 30 and the intermediate layer material 40 are not easily peeled off.

すなわち、本実施形態によれば、ろう付け領域を拡大できるとともに、その拡大されたろう付け領域であるR部33,43に作用する力が、引き剥がし方向ではなくせん断方向に作用することで、ヘッダタンク20のろう付け部における耐圧強度を向上させることができる。   That is, according to the present embodiment, the brazing area can be enlarged, and the force acting on the R portions 33 and 43 that are the enlarged brazing areas acts in the shearing direction, not in the peeling direction, so that the header The pressure strength at the brazed portion of the tank 20 can be improved.

特に、本実施形態では、冷媒としてCOを用いており、給湯器のヒートポンプユニットにおける冷媒圧力が高くなる。このように、内圧が高くなる場合には、特にろう付け部の破損がおこりやすく、本発明を適用することで効果を奏することができる。また、本実施形態では、中間層材40の突出部41は、プレス成形により容易に形成することができる。 In particular, in this embodiment, CO 2 is used as the refrigerant, and the refrigerant pressure in the heat pump unit of the water heater becomes high. As described above, when the internal pressure becomes high, the brazed portion is particularly easily damaged, and an effect can be obtained by applying the present invention. Moreover, in this embodiment, the protrusion part 41 of the intermediate | middle layer material 40 can be easily formed by press molding.

さらに、突出部41の突出量h1は、R部33の第1曲率半径Rtの約半分程度(h1=Rt×0.5)に設定されているため、突出量が小さく成形しやすいというメリットがある。なお、成形性および隙間を小さくするという観点から、概ね、突出部41の突出量h1がR部33の第1曲率半径Rtの0.1倍以上0.5倍以下の範囲に設定されることが望ましい。また、この範囲に設定することで、冷媒の流通路(35)を狭めることなく適度にろう付け領域を拡大することができる。   Furthermore, since the protrusion amount h1 of the protrusion 41 is set to about half of the first curvature radius Rt of the R portion 33 (h1 = Rt × 0.5), there is an advantage that the protrusion amount is small and it is easy to mold. is there. Note that, from the viewpoint of reducing the moldability and the gap, the protruding amount h1 of the protruding portion 41 is generally set in a range of 0.1 to 0.5 times the first radius of curvature Rt of the R portion 33. Is desirable. In addition, by setting within this range, the brazing region can be appropriately expanded without narrowing the refrigerant flow passage (35).

(第2実施形態)
次に、本発明の第2実施形態について図5を参照して説明する。図5は、第2実施形態におけるタンク部材と中間層材との接合部を示す拡大図である。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5 is an enlarged view showing a joint portion between the tank member and the intermediate layer material in the second embodiment.

なお、本実施形態では、第1実施形態と共通する構成部材には第1実施形態と同様の符号を付しており、以下、第1実施形態との相違部分に着目して説明することとする。本実施形態では、中間層材40側のR部43の第2曲率半径Raが、タンク部材30側のR部33の第1曲率半径Rtよりも大きく形成されているとともに(Ra>Rt)、突出部41の突出量h2がR部33の第1曲率半径Rtと略同じ(h2≒Rt)に形成されている点が上記第1実施形態とは異なっている。   In the present embodiment, the same reference numerals as those in the first embodiment are assigned to the constituent members common to the first embodiment, and the description below will focus on differences from the first embodiment. To do. In the present embodiment, the second curvature radius Ra of the R portion 43 on the intermediate layer material 40 side is formed larger than the first curvature radius Rt of the R portion 33 on the tank member 30 side (Ra> Rt), The difference from the first embodiment is that the protrusion amount h2 of the protrusion 41 is formed to be substantially the same (h2≈Rt) as the first curvature radius Rt of the R portion 33.

本実施形態の場合、中間層材40側のR部43が、タンク部材30側のR部33にぴったりとは沿わず、両R部33,43同士の間に若干の隙間が形成されているものの、ろう付け時には、この隙間にろう材が回り、フィレット70が形成される。   In the case of the present embodiment, the R portion 43 on the intermediate layer material 40 side does not fit closely with the R portion 33 on the tank member 30 side, and a slight gap is formed between the R portions 33 and 43. However, at the time of brazing, the brazing material rotates around this gap, and the fillet 70 is formed.

R部43の第2曲率半径RaがR部33の第1曲率半径Rtの1倍以上かつ1.5倍以下の寸法であれば、本実施形態のように両R部33,43間に若干の隙間が形成されつつも、概ね、R部43をR部33に沿うように組み付けすることができ、上記第1実施形態と同様にR部33,43においてもろう付けすることができる。したがって、中間層材40に突出部41が形成されない場合と比較して、耐圧強度を向上させることができる。   If the second curvature radius Ra of the R portion 43 is not less than 1 and not more than 1.5 times the first curvature radius Rt of the R portion 33, the R portion 43 is slightly between the R portions 33 and 43 as in the present embodiment. In general, the R portion 43 can be assembled along the R portion 33 while the gap is formed, and the R portions 33 and 43 can be brazed as in the first embodiment. Accordingly, the pressure strength can be improved as compared with the case where the protruding portion 41 is not formed on the intermediate layer material 40.

なお、R部43の第2曲率半径Raの設定においては、最も望ましいのは、第1実施形態で説明したように両R部33,43の曲率半径Rt、Raが同一である場合である。しかし、成形性においては、本実施形態のように、寸法誤差および精度の観点から、R部43の第2曲率半径Raの基本設計における寸法をR部33の第1曲率半径Rtより僅かに大きい寸法に設定しておくのが良い。仮に、R部43の第2曲率半径RaがR部33の第1曲率半径Rtより小さくなると、組み付け性が悪くなるためである。   In setting the second curvature radius Ra of the R portion 43, the most desirable case is when the curvature radii Rt and Ra of both the R portions 33 and 43 are the same as described in the first embodiment. However, in terms of formability, the dimensions in the basic design of the second curvature radius Ra of the R portion 43 are slightly larger than the first curvature radius Rt of the R portion 33 from the viewpoint of dimensional error and accuracy, as in this embodiment. It is better to set the dimensions. This is because if the second radius of curvature Ra of the R portion 43 is smaller than the first radius of curvature Rt of the R portion 33, the assemblability is deteriorated.

(その他の実施形態)
上記第1実施形態において、突出部41の突出量h1はR部33の第1曲率半径Rtの約半分程度としたが、第2実施形態のようにR部33の第1曲率半径Rtと略同じに形成しても良い。このように、突出部41の突出量h1がR部33の第1曲率半径Rtと同じであって、かつR部43の第2曲率半径RaがR部33の第1曲率半径Rtと同じであれば、中間層材40のR部43がタンク部材30のR部33に完全に沿うこととなり、ろう付け領域を拡大できるとともに両部材間の隙間を極力狭くでき理想の形態とすることができる。
(Other embodiments)
In the first embodiment, the protrusion amount h1 of the protrusion 41 is about half of the first curvature radius Rt of the R portion 33. However, as in the second embodiment, the protrusion amount h1 is substantially the same as the first curvature radius Rt of the R portion 33. The same may be formed. Thus, the protrusion amount h1 of the protrusion 41 is the same as the first curvature radius Rt of the R portion 33, and the second curvature radius Ra of the R portion 43 is the same as the first curvature radius Rt of the R portion 33. If there is, the R portion 43 of the intermediate layer material 40 is completely along the R portion 33 of the tank member 30, so that the brazing region can be enlarged and the gap between the two members can be made as narrow as possible to obtain an ideal form. .

また、突出部41の突出量h1は、成形性の観点からは、上記第1実施形態で説明したようにR部33の第1曲率半径Rtの0.1倍以上0.5倍以下に設定するのが好ましいが、それ以外の範囲に設定しても良い。   Further, the protrusion amount h1 of the protrusion 41 is set to be not less than 0.1 times and not more than 0.5 times the first radius of curvature Rt of the R portion 33 as described in the first embodiment from the viewpoint of formability. However, it may be set in other ranges.

上記各実施形態では、突出部41をプレス成形により形成することで、プレート部材50側には凹部が形成される構成としたが、例えば、図6に示される中間層材40Bのように、中間層材40Bのプレート部材50と対向する側の面が平坦(平面部46)となるようにしても良い。この場合、突出部41は、タンク部材30と対向する側の面からの鍛造(塑性変形)により両脇に凹部を作ることで形成することができる。このように、プレート部材50と対向する側の面を平坦(平面部46)に形成することで、プレート部材50には凸部51を形成する必要がなく平坦なままで良いため、製造工程を簡略化することができる。   In each of the above embodiments, the protrusion 41 is formed by press molding so that a recess is formed on the plate member 50 side. However, for example, an intermediate layer material 40B shown in FIG. The surface of the layer material 40B facing the plate member 50 may be flat (planar portion 46). In this case, the protrusion 41 can be formed by forming recesses on both sides by forging (plastic deformation) from the surface facing the tank member 30. In this way, by forming the surface on the side facing the plate member 50 flat (planar portion 46), it is not necessary to form the convex portion 51 on the plate member 50. It can be simplified.

上記実施形態では、中間層材40の長手(左右)方向全体に亘って、突出部41が形成されるようにしたが、例えば、図7に記載される中間層材40Cのように、長手(左右)方向端部に平面部47(図7において網掛けで示す部分)を残すように突出部41を形成しても良い。この構成によれば、平面部47にサイド仕切板60aを取り付けることにより、サイド仕切板60aと中間層材40Cとの接合面を平面同士にできるため、気密性を向上させることができる。   In the above-described embodiment, the projecting portion 41 is formed over the entire length (left and right) direction of the intermediate layer material 40. For example, as in the intermediate layer material 40C illustrated in FIG. You may form the protrusion part 41 so that the plane part 47 (part shown with a hatching in FIG. 7) may remain in the edge part of a horizontal direction. According to this configuration, by attaching the side partition plate 60a to the flat portion 47, the joint surfaces of the side partition plate 60a and the intermediate layer material 40C can be made flat, so that the airtightness can be improved.

上記実施形態では、チューブ11が2列形成されるタイプの蒸発器1として構成したが、チューブ11の数は、1列でも3列以上の複数でも良い。   In the said embodiment, although the tube 11 was comprised as the type of evaporator 1 in which two rows are formed, the number of the tubes 11 may be one row or a plurality of three or more rows.

上記実施形態では、並列に並ぶ2つの流通路35がそれぞれ独立した形状として構成したが、冷媒流れについては限定されるものではなく、各流通路35を順に冷媒が流れるように構成しても良い。この場合、コア部10を2列設けるタイプとすることで、風上側のコア部10と風下側のコア部10において効率よく蒸発させることができ蒸発器1全体の熱交換性能を向上させることができる。   In the above embodiment, the two flow paths 35 arranged in parallel are configured as independent shapes, but the refrigerant flow is not limited, and the flow paths 35 may be configured so that the refrigerant flows in order. . In this case, by adopting a type in which the core portions 10 are provided in two rows, the core portion 10 on the windward side and the core portion 10 on the leeward side can be efficiently evaporated, and the heat exchange performance of the entire evaporator 1 can be improved. it can.

上記実施形態では、CO給湯器を構成する蒸発器1として構成したが、冷媒はCOに限定されるものではない。また、給湯器ではなく、車両用空調装置の超臨界冷凍サイクル装置を構成する蒸発器や放熱器のヘッダタンクに本発明を適用しても良い。すなわち、タンク部材、中間層材、プレート部材とでヘッダタンクが構成されるものであれば本発明を適用することができる。 In the above embodiment, the configuration as an evaporator 1 constituting the CO 2 water heater, the refrigerant is not limited to CO 2. Moreover, you may apply this invention not to a water heater but to the header tank of the evaporator and heat radiator which comprise the supercritical refrigeration cycle apparatus of a vehicle air conditioner. That is, the present invention can be applied as long as the header tank is constituted by the tank member, the intermediate layer material, and the plate member.

第1実施形態における蒸発器を示す全体斜視図である。It is a whole perspective view which shows the evaporator in 1st Embodiment. ヘッダタンクおよびチューブを示す分解斜視図である。It is a disassembled perspective view which shows a header tank and a tube. タンク部材と中間層材との接合部を示す断面図である。It is sectional drawing which shows the junction part of a tank member and an intermediate | middle layer material. 図3において破線で囲んだ部位を示す拡大図である。It is an enlarged view which shows the site | part enclosed with the broken line in FIG. 第2実施形態におけるタンク部材と中間層材との接合部を示す拡大図である。It is an enlarged view which shows the junction part of the tank member and intermediate | middle layer material in 2nd Embodiment. 別の実施形態における中間層材を示す側面図。The side view which shows the intermediate | middle layer material in another embodiment. 別の実施形態における中間層材を示す斜視図。The perspective view which shows the intermediate | middle layer material in another embodiment.

符号の説明Explanation of symbols

1 蒸発器(熱交換器)
10 コア部
11 チューブ
20 ヘッダタンク
30 タンク部材
31 膨出部
32 平面部(ろう付け平面)
33 曲げR部(第1湾曲部)
35 流通路
40 中間層材
41 突出部
42 平面部(ろう付け平面)
43 曲げR部(第2湾曲部)
47 平面部(中間層材40Cの長手方向の端部)
50 プレート部材
60a サイド仕切板(仕切板)
111 チューブ11の端部
h1,h2 突出部41の突出量
Rt 第1曲率半径(曲げR部33の中間層材と対向する側の面における曲率半径)
Ra 第2曲率半径(曲げR部43のタンク部材と対向する側の面における曲率半径)
1 Evaporator (heat exchanger)
DESCRIPTION OF SYMBOLS 10 Core part 11 Tube 20 Header tank 30 Tank member 31 Expansion part 32 Plane part (brazing plane)
33 Bending R part (first bending part)
35 Flow path 40 Intermediate layer material 41 Projection part 42 Plane part (brazing plane)
43 Bent R part (second bending part)
47 plane part (end part of longitudinal direction of intermediate | middle layer material 40C)
50 Plate member 60a Side partition plate (partition plate)
111 Ends of the tube 11 h1, h2 Projection amount of the projection 41 Rt First curvature radius (curvature radius on the surface of the bending R portion 33 facing the intermediate layer material)
Ra second curvature radius (curvature radius on the surface of the bending R portion 43 facing the tank member)

Claims (5)

流体が通過する複数のチューブ(11)と、当該複数のチューブ(11)の端部(111)に配置されるヘッダタンク(20)とを備え、
当該ヘッダタンク(20)は、前記チューブ(11)が接続されるプレート部材(50)と、当該プレート部材(50)に組み合わされるタンク部材(30)と、当該タンク部材(30)と前記プレート部材(50)との間に介在される中間層材(40)とを有し、これらの各部材(30,40,50)が一体にろう付けされて構成され、前記タンク部材(30)には、内部が前記流体の流通路(35)として構成されるとともに前記タンク部材(30)と前記中間層材(40)とのろう付け平面(32,42)から前記中間層材(40)とは反対側に膨らんだ膨出部(31)と、当該膨出部(31)の根元部位にあって湾曲形状をなす第1湾曲部(33)とが形成された熱交換器において、
前記中間層材(40)には、前記膨出部(31)に対応する位置に形成されて前記ろう付け平面(32,42)から前記タンク部材(30)側に突出した突出部(41)と、当該突出部(41)の根元部位にあって湾曲形状をなす第2湾曲部(43)とが形成され、当該第2湾曲部(43)は前記第1湾曲部(33)の湾曲形状に略沿うように形成されていることを特徴とする熱交換器。
A plurality of tubes (11) through which the fluid passes, and a header tank (20) disposed at an end (111) of the plurality of tubes (11),
The header tank (20) includes a plate member (50) to which the tube (11) is connected, a tank member (30) combined with the plate member (50), the tank member (30), and the plate member. (50) and an intermediate layer material (40) interposed therebetween, and these members (30, 40, 50) are integrally brazed, and the tank member (30) The intermediate layer material (40) is configured from the brazing plane (32, 42) between the tank member (30) and the intermediate layer material (40) while the inside is configured as the fluid flow path (35). In the heat exchanger in which the bulging portion (31) swelled on the opposite side and the first bending portion (33) having a curved shape at the root portion of the bulging portion (31) are formed,
The intermediate layer material (40) has a protrusion (41) formed at a position corresponding to the bulging portion (31) and protruding from the brazing plane (32, 42) toward the tank member (30). And a second bending portion (43) having a curved shape at the base portion of the protruding portion (41) is formed, and the second bending portion (43) is a curved shape of the first bending portion (33). The heat exchanger is formed so as to substantially follow the above.
前記第2湾曲部(43)の前記タンク部材(30)と対向する側の面における曲率半径である第2曲率半径(Ra)は、前記第1湾曲部(33)の前記中間層材(40)と対向する側の面における曲率半径である第1曲率半径(Rt)の1倍以上かつ1.5倍以下であることを特徴とする請求項1に記載の熱交換器。   The second radius of curvature (Ra), which is the radius of curvature of the surface of the second curved portion (43) facing the tank member (30), is the intermediate layer material (40) of the first curved portion (33). 2. The heat exchanger according to claim 1, which is not less than 1 and not more than 1.5 times the first radius of curvature (Rt), which is the radius of curvature of the surface on the opposite side. 前記第2曲率半径(Ra)は、前記第1曲率半径(Rt)と同じ大きさであることを特徴とする請求項2に記載の熱交換器。   The heat exchanger according to claim 2, wherein the second radius of curvature (Ra) is the same size as the first radius of curvature (Rt). 前記突出部(41)の前記ろう付け平面(32,42)からの突出量(h1)は、前記第1湾曲部(33)の前記中間層材(40)と対向する側の面における曲率半径である第1曲率半径(Rt)の0.1倍以上かつ1.0倍以下の範囲であることを特徴とする請求項1〜請求項3のうちいずれか一項に記載の熱交換器。   The protruding amount (h1) of the protruding portion (41) from the brazing plane (32, 42) is the radius of curvature of the surface of the first curved portion (33) on the side facing the intermediate layer material (40). The heat exchanger according to any one of claims 1 to 3, wherein the first curvature radius (Rt) is in a range of 0.1 to 1.0 times. 前記中間層材(40)において前記流通路(35)を前記流体が流通する方向である長手方向の端部は、前記突出部(41)が形成されない平面部(47)として形成されており、当該平面部(47)には、前記流通路(35)の長手方向端部の開口を閉塞する仕切板(60a)が設けられていることを特徴とする請求項1〜請求項4のうちいずれか一項に記載の熱交換器。   In the intermediate layer material (40), the end in the longitudinal direction, which is the direction in which the fluid flows through the flow passage (35), is formed as a flat portion (47) where the protrusion (41) is not formed, The flat surface portion (47) is provided with a partition plate (60a) for closing an opening at a longitudinal end portion of the flow passage (35). A heat exchanger according to claim 1.
JP2008126305A 2008-05-13 2008-05-13 Heat exchanger Pending JP2009275956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008126305A JP2009275956A (en) 2008-05-13 2008-05-13 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008126305A JP2009275956A (en) 2008-05-13 2008-05-13 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2009275956A true JP2009275956A (en) 2009-11-26

Family

ID=41441561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008126305A Pending JP2009275956A (en) 2008-05-13 2008-05-13 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2009275956A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214827A (en) * 2010-03-31 2011-10-27 Modine Manufacturing Co Heat exchanger
JP2014502335A (en) * 2010-12-07 2014-01-30 ヴァレオ システム テルミク Heat exchanger header box and corresponding heat exchanger
WO2016152127A1 (en) * 2015-03-20 2016-09-29 株式会社デンソー Tank and heat exchanger
JP2016176686A (en) * 2015-03-20 2016-10-06 株式会社デンソー Tank and heat exchanger
WO2018207556A1 (en) * 2017-05-10 2018-11-15 株式会社デンソー Refrigerant evaporator and method for manufacturing same
WO2019243416A1 (en) * 2018-06-22 2019-12-26 Valeo Vymeniky Tepla S. R. O. Header box for heat exchanger with thermal decoupling

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214827A (en) * 2010-03-31 2011-10-27 Modine Manufacturing Co Heat exchanger
JP2014502335A (en) * 2010-12-07 2014-01-30 ヴァレオ システム テルミク Heat exchanger header box and corresponding heat exchanger
WO2016152127A1 (en) * 2015-03-20 2016-09-29 株式会社デンソー Tank and heat exchanger
JP2016176686A (en) * 2015-03-20 2016-10-06 株式会社デンソー Tank and heat exchanger
WO2018207556A1 (en) * 2017-05-10 2018-11-15 株式会社デンソー Refrigerant evaporator and method for manufacturing same
JP2018189337A (en) * 2017-05-10 2018-11-29 株式会社デンソー Refrigerant evaporator and its manufacturing method
US11346584B2 (en) 2017-05-10 2022-05-31 Denso Corporation Refrigerant evaporator and method for manufacturing same
WO2019243416A1 (en) * 2018-06-22 2019-12-26 Valeo Vymeniky Tepla S. R. O. Header box for heat exchanger with thermal decoupling
EP3587990A1 (en) * 2018-06-22 2020-01-01 Valeo Vyminiky Tepla, s.r.o. Header box for heat exchanger with thermal decoupling

Similar Documents

Publication Publication Date Title
JP4724433B2 (en) Heat exchanger
JP6547576B2 (en) Heat exchanger
JP2006189206A (en) Heat exchanger
JP2007147172A (en) Heat exchanger
JP5029166B2 (en) Heat exchanger
JP2009275956A (en) Heat exchanger
JP2007163040A (en) Header tank for heat exchanger and method of manufacturing outer plate for use therein
JP2007163004A (en) Heat exchanger
JP2006322636A (en) Heat exchanger
JP4122670B2 (en) Heat exchanger
JP3812487B2 (en) Heat exchanger
JP6583071B2 (en) Tank and heat exchanger
JP2001215095A (en) Heat exchanger
JP4972488B2 (en) Heat exchanger
JP2007032952A (en) Header tank for heat exchanger, and heat exchanger using the same
JP2007147173A (en) Heat exchanger and its manufacturing method
US20070267185A1 (en) Header for high pressure heat exchanger
JP2006162194A (en) Heat exchanger
JP4852304B2 (en) Heat exchanger
JP5107603B2 (en) Heat exchanger
JP2004108644A (en) Heat exchanger
JP2009150587A (en) Heat exchanger
JP2008008603A (en) Heat exchanger
JP2003097890A (en) Oil cooler
JP2001194088A (en) Heat exchanger