JP2009275598A - Intake device of internal combustion engine - Google Patents

Intake device of internal combustion engine Download PDF

Info

Publication number
JP2009275598A
JP2009275598A JP2008127616A JP2008127616A JP2009275598A JP 2009275598 A JP2009275598 A JP 2009275598A JP 2008127616 A JP2008127616 A JP 2008127616A JP 2008127616 A JP2008127616 A JP 2008127616A JP 2009275598 A JP2009275598 A JP 2009275598A
Authority
JP
Japan
Prior art keywords
intake
intake passage
valve body
wall
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008127616A
Other languages
Japanese (ja)
Other versions
JP4971242B2 (en
Inventor
Fumiaki Aoki
文明 青木
Jun Yamada
潤 山田
Tadashi Komiyama
正 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2008127616A priority Critical patent/JP4971242B2/en
Publication of JP2009275598A publication Critical patent/JP2009275598A/en
Application granted granted Critical
Publication of JP4971242B2 publication Critical patent/JP4971242B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake device of an internal combustion engine capable of controlling the strength of a tumble flow formed in a combustion chamber in a wide range by reducing intake resistance within an intake passage. <P>SOLUTION: An intake pipe 30 forms the intake passage 31 having a rectangular shape in cross section to lead air to the combustion chamber of the internal combustion engine. As for longitudinally cross sectional shapes of a pipe shaft direction of the intake pipe 30, a first inner wall 33 has a circular-arc recessed part 330 recessed in a circular-arc surface shape from the viewpoint of the intake passage 31 side, and a second inner wall 34 opposite to the first inner wall 33 has a low and planar step recessed part 340 from the viewpoint of the intake passage 31 side. A valve shaft 12 of an air current control valve 10 is provided on a pipe shaft direction upstream side of the step recessed part 340. The air current control valve 10 is fixed by the valve shaft 12, has a valve element 11 extending in a longitudinally cross sectional fan shape toward a distal end 13, and is rotated and driven. The valve element 11 sections an opening of the valve element intake passage 31 between the valve element 11 and the first inner wall 33 to lead air from a cut-out groove 15 formed at the distal end 13 to the combustion chamber side in an opening from a full closed position to a half-opened position. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の吸気装置に関する。   The present invention relates to an intake device for an internal combustion engine.

従来、内燃機関の燃焼室に空気を導入する吸気管内に制御弁を配置し、制御弁の回転角度の調節によって吸気通路の開口断面積を変化させ、燃焼室にタンブル流を形成する吸気装置が知られている。
例えば、特許文献1に開示された吸気装置では、制御弁の先端部に切欠きを設けて吸気通路の開口を絞ることで、全閉状態のときに当該切欠きから燃焼室内に空気を誘導して強いタンブル流を形成するものとしている。しかしながら、先端を切欠かれた制御弁で吸気通路を開閉すると、閉弁状態においては切欠きのみから空気が流れ効果的にタンブル流が形成されるものの、制御弁の半開時には制御弁の先端部と吸気管内壁との間で切欠き以外の部分からも空気が流れるため、強いタンブル流を形成できないおそれがある。
このため、特許文献1に開示された吸気装置によると、制御弁の半開状態でタンブル流を形成するよう吸気管内に仕切り板を設け、吸気通路を分割して空気を案内している。ところが、吸気管内に仕切り板がある場合、全開状態では当該仕切り板が吸気抵抗となり、吸入空気を減少させる要因となる。
Conventionally, an intake device that arranges a control valve in an intake pipe that introduces air into a combustion chamber of an internal combustion engine, changes the opening cross-sectional area of the intake passage by adjusting the rotation angle of the control valve, and forms a tumble flow in the combustion chamber. Are known.
For example, in the intake device disclosed in Patent Document 1, air is guided from the notch into the combustion chamber when the valve is fully closed by providing a notch at the tip of the control valve to narrow the opening of the intake passage. A strong tumble flow. However, when the intake passage is opened and closed by a control valve with a notch at the tip, in the closed state, air flows only from the notch and an effective tumble flow is formed, but when the control valve is half open, the tip of the control valve and the intake air Since air also flows from the portion other than the notch between the inner wall of the tube, a strong tumble flow may not be formed.
For this reason, according to the intake device disclosed in Patent Document 1, a partition plate is provided in the intake pipe so as to form a tumble flow in a half-open state of the control valve, and the intake passage is divided to guide the air. However, when there is a partition plate in the intake pipe, in the fully opened state, the partition plate becomes an intake resistance, which causes a reduction in intake air.

特開2006−283567号公報JP 2006-283567 A

本発明の目的は、吸気通路内の吸気抵抗を低減し燃焼室内に形成するタンブル流の強弱を広範囲で制御可能な内燃機関の吸気装置を提供することにある。   An object of the present invention is to provide an intake device for an internal combustion engine that can reduce the intake resistance in the intake passage and control the strength of the tumble flow formed in the combustion chamber over a wide range.

請求項1に記載の発明によると、吸気管は、内燃機関の燃焼室に空気を導く横断面形状が矩形状の吸気通路を形成する。この吸気管の内壁は、吸気通路の管軸方向の縦断面の形状について、一辺側を吸気通路側から見て凹状に概ね円弧面に形成しており、この一辺と対向する側の他の一辺側を吸気通路側から見て凹状の段差面に形成している。この段差面の吸気通路側から見て低い位置に、管軸方向に垂直かつ段差面に平行な弁軸を設け、弁軸に固定した弁体を、アクチュエータによって回転駆動するものとしている。
この弁体の管軸方向に沿う横断面の形状は、弁軸から遠い位置の先端に向かい拡がる扇形状である。さらに、この弁体の先端は切欠き溝を有しており、弁体が全閉位置から所定の開度までの範囲で回動する間は、この切欠き溝と吸気管の円弧面とによって隙間が形成される。
According to the first aspect of the present invention, the intake pipe forms an intake passage having a rectangular cross section that guides air to the combustion chamber of the internal combustion engine. The inner wall of the intake pipe is formed in a generally arcuate surface in a concave shape when viewed from the intake passage side with respect to the shape of the longitudinal section of the intake passage in the tube axis direction, and the other side on the side opposite to the one side. The side is formed in a concave step surface when viewed from the intake passage side. A valve shaft perpendicular to the pipe axis direction and parallel to the step surface is provided at a low position when viewed from the intake passage side of the step surface, and a valve body fixed to the valve shaft is rotationally driven by an actuator.
The shape of the cross section along the tube axis direction of the valve body is a fan shape that extends toward the tip at a position far from the valve shaft. Furthermore, the tip of the valve body has a notch groove. While the valve body rotates in the range from the fully closed position to a predetermined opening, the notch groove and the arc surface of the intake pipe A gap is formed.

このように先端が扇形状に厚みがあり切欠き溝を有する弁体を回動駆動して吸気通路の開口面積を調節する場合、弁体が吸気通路を塞ぐ全閉位置から所定の開度までを回動する間は、弁体の切欠き以外の先端部分を吸気管の円弧面部分との間で摺動させ、切欠きによる開口以外からの空気の漏れを防いで当該開口のみに空気を流すことができる。このため、吸気通路内の吸気抵抗を増大させることなく、吸気管内の吸入空気の流れを広範囲で効率よく燃焼室側へ誘導し、燃焼室内に強弱のタンブル流を形成できる。   In this way, when adjusting the opening area of the intake passage by rotationally driving the valve body having a fan-shaped tip and having a notch groove, from the fully closed position where the valve body closes the intake passage to a predetermined opening degree. While rotating the valve body, slide the tip of the valve body other than the notch against the arcuate surface of the intake pipe to prevent air leakage from other than the opening due to the notch, and allow air to enter only the opening. It can flow. For this reason, without increasing the intake resistance in the intake passage, the flow of the intake air in the intake pipe can be efficiently guided over a wide range to the combustion chamber side, and a strong and weak tumble flow can be formed in the combustion chamber.

請求項2に記載の発明によると、弁体は開度が全閉角度から大きな揺動角度に至るまで切欠き溝を通してタンブル流を持続できるよう構成されている。このため、吸気通路内に別構成を設けることなく、広い開度範囲にわたって燃焼室内に形成するタンブル流の強弱を制御することができる。   According to the second aspect of the present invention, the valve body is configured so that the tumble flow can be continued through the notch groove until the opening degree reaches from the fully closed angle to a large swing angle. For this reason, the strength of the tumble flow formed in the combustion chamber over a wide opening range can be controlled without providing another configuration in the intake passage.

請求項3に記載の発明によると、弁体の切欠き溝は弁体先端の中央側を切欠いて形成されるため、全閉状態から所定の回動角度まで、吸気通路の中心部に開口を持たせることができる。これにより、吸入空気の流れを効率よく強めて燃焼室側へ吸入空気を導入するので、絞りによる圧力損失の増大を抑えて燃焼室内のタンブル流の強化を図ることができる。   According to the third aspect of the present invention, the notch groove of the valve body is formed by notching the center side of the valve body tip, so that an opening is formed at the center of the intake passage from the fully closed state to a predetermined rotation angle. You can have it. As a result, the flow of intake air is efficiently strengthened and the intake air is introduced into the combustion chamber, so that an increase in pressure loss due to throttling can be suppressed and the tumble flow in the combustion chamber can be enhanced.

請求項4に記載の発明によると、吸気通路を形成する内壁に段差面の吸気通路側から見て低い位置の吸気流れ方向上流側に弁軸を設けて弁体を設置するため、吸気通路上流側の空気は、弁体の立ち上がった状態で上流側に面する側面を伝って、効率よく切欠き溝へ導かれる。したがって、吸気抵抗をより小さくして燃焼室内に形成するタンブル流の強弱を制御することができる。   According to the fourth aspect of the present invention, the valve body is provided on the inner wall forming the intake passage on the upstream side in the intake flow direction at a low position when viewed from the intake passage side of the stepped surface, so that the valve body is installed upstream of the intake passage. The side air is efficiently guided to the notch groove through the side surface facing the upstream side with the valve body standing up. Therefore, the strength of the tumble flow formed in the combustion chamber can be controlled by reducing the intake resistance.

請求項5に記載の発明によると、弁体は弁軸に一辺を固定された矩形の平板状の支持部を有し、支持部の対向する一辺で折れ曲がってV字状に延びる本体部が請求項1〜3の弁体に相当する構成を有している。すなわち、本体部は支持部の上流側の一辺から延び断面扇形状に形成され、切欠きを有している。また、当該支持部の上流側の一辺は、閉弁状態で段差面の上流側に位置するよう設けられている。このようなV字形状に屈曲した弁体は、全閉時に吸気通路下流側へ傾いた状態であるため、空気の流れを絞ることによる摩擦損失を減らし、切欠き溝への空気の案内がより容易になる。また、切欠きを形成可能な開度範囲が大きくなり、より広範囲で、吸気通路内の吸気抵抗を低減し燃焼室内に形成するタンブル流の強弱を制御することができる。   According to the fifth aspect of the present invention, the valve body has a rectangular flat plate-like support portion whose one side is fixed to the valve shaft, and a main body portion that is bent at one side facing the support portion and extends in a V shape is claimed. It has the structure equivalent to the valve body of the terms 1-3. That is, the main body portion extends from one side on the upstream side of the support portion, is formed in a sectional fan shape, and has a notch. In addition, one side on the upstream side of the support portion is provided so as to be located on the upstream side of the step surface in the valve-closed state. Since the valve body bent in such a V shape is inclined to the downstream side of the intake passage when fully closed, the friction loss due to the restriction of the air flow is reduced, and the air is more guided to the notch groove. It becomes easy. Further, the opening range within which the notch can be formed is increased, and the strength of the tumble flow formed in the combustion chamber can be controlled over a wider range by reducing the intake resistance in the intake passage.

以下、本発明の実施形態を図面に基づき説明する。
(第1実施形態)
本発明の第1実施形態による内燃機関の吸気装置を図1〜図5に示す。
まず、内燃機関1の全体構成を図2に基づき説明する。内燃機関1は、エンジン本体2、吸気装置3、排ガス装置4、高圧排ガス再循環装置(高圧EGR装置)5、低圧排ガス再循環装置(低圧EGR装置)6および電子制御装置(ECU)7等を備える。
エンジン本体2は、シリンダ21およびピストン22を有する。シリンダ21とピストン22との間には燃焼室23が形成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
An intake device for an internal combustion engine according to a first embodiment of the present invention is shown in FIGS.
First, the overall configuration of the internal combustion engine 1 will be described with reference to FIG. The internal combustion engine 1 includes an engine body 2, an intake device 3, an exhaust gas device 4, a high pressure exhaust gas recirculation device (high pressure EGR device) 5, a low pressure exhaust gas recirculation device (low pressure EGR device) 6, an electronic control device (ECU) 7, and the like. Prepare.
The engine body 2 includes a cylinder 21 and a piston 22. A combustion chamber 23 is formed between the cylinder 21 and the piston 22.

吸気装置3は、吸気通路31を形成する吸気管30を有する。吸気装置3は、吸気管30の吸入口32から吸気通路31を通してエンジン本体2の燃焼室23へ吸入空気を導入する。吸気管30は、吸気ポートおよびインテークマニホールドを含んで構成される。吸気装置3には、過給機70、インタークーラ71、スロットル72、サージタンク73、気流制御弁10および燃料噴射装置(インジェクタ)74等が設けられる。
排ガス装置4は、排ガス通路41を形成する排ガス管40を有する。排ガス装置4は、エンジン本体2から排出される排ガスを排ガス通路41を通して排ガス管40の排出口42へ導く。排ガス装置4には、過給機70および排ガス浄化部43等が設けられる。
The intake device 3 has an intake pipe 30 that forms an intake passage 31. The intake device 3 introduces intake air from the intake port 32 of the intake pipe 30 through the intake passage 31 to the combustion chamber 23 of the engine body 2. The intake pipe 30 includes an intake port and an intake manifold. The intake device 3 is provided with a supercharger 70, an intercooler 71, a throttle 72, a surge tank 73, an airflow control valve 10, a fuel injection device (injector) 74, and the like.
The exhaust gas device 4 has an exhaust gas pipe 40 that forms an exhaust gas passage 41. The exhaust gas device 4 guides the exhaust gas discharged from the engine body 2 to the exhaust port 42 of the exhaust gas pipe 40 through the exhaust gas passage 41. The exhaust gas device 4 is provided with a supercharger 70, an exhaust gas purification unit 43, and the like.

高圧EGR装置5は、高圧EGR通路51を形成する高圧EGR通路部材50と、高圧EGR弁52とを有する。高圧EGR通路部材50は過給機70の上流側の排ガス管40とスロットル72の下流側の吸気管30とを接続し、排ガス通路41と吸気通路31とを高圧EGR通路51が連通する。高圧EGR弁52は、高圧EGR通路51を開閉し、排ガス通路41から吸気通路31へ還流する高圧EGRガスの流量を制御する。   The high pressure EGR device 5 includes a high pressure EGR passage member 50 that forms a high pressure EGR passage 51, and a high pressure EGR valve 52. The high pressure EGR passage member 50 connects the exhaust gas pipe 40 upstream of the supercharger 70 and the intake pipe 30 downstream of the throttle 72, and the high pressure EGR passage 51 communicates the exhaust gas passage 41 and the intake passage 31. The high pressure EGR valve 52 opens and closes the high pressure EGR passage 51 and controls the flow rate of the high pressure EGR gas that recirculates from the exhaust gas passage 41 to the intake passage 31.

低圧EGR装置6は、低圧EGR通路61を形成する低圧EGR通路部材60と、低圧EGR弁62とを有する。低圧EGR通路部材60は排ガス浄化部43の下流側の排ガス管40と過給機70の上流側の吸気管30とを接続し、排ガス通路41と吸気通路31とを低圧EGR通路61が連通する。低圧EGR弁62は、低圧EGR通路61を開閉し、排ガス通路41から吸気通路31へ還流する低圧EGRガスの流量を制御する。
ECU7は、図示しないアクセルセンサ、吸気圧センサ、速度センサ、エンジン回転数センサ、冷却水水温センサ等から出力される情報に基づき車両の運転状態を検出し、車両の各部を制御する。
The low pressure EGR device 6 includes a low pressure EGR passage member 60 that forms a low pressure EGR passage 61 and a low pressure EGR valve 62. The low pressure EGR passage member 60 connects the exhaust gas pipe 40 on the downstream side of the exhaust gas purification unit 43 and the intake pipe 30 on the upstream side of the supercharger 70, and the low pressure EGR passage 61 communicates the exhaust gas passage 41 and the intake passage 31. . The low pressure EGR valve 62 opens and closes the low pressure EGR passage 61, and controls the flow rate of the low pressure EGR gas that recirculates from the exhaust gas passage 41 to the intake passage 31.
ECU7 detects the driving | running state of a vehicle based on the information output from the accelerator sensor which is not shown in figure, an intake pressure sensor, a speed sensor, an engine speed sensor, a cooling water temperature sensor, etc., and controls each part of a vehicle.

次に、本実施形態の要部である吸気管30および気流制御弁10の構成について、図1を用いて詳細に説明する。吸気装置3において、吸気管30は横断面形状が矩形状の吸気通路31を内部に形成し、吸気通路31内に気流制御弁10を備えている。気流制御弁10は、吸気管30内に管軸方向に直交して設けられる弁軸12と、この弁軸12に固定される弁体11とを含んで構成される。
吸気管30は、図1および図3〜5の左側でエンジン本体2と接続し、吸気通路31は燃焼室23と連通する。吸気通路31を通り燃焼室23へ導入される吸入空気は、吸気通路31の右側から左側へ流れる。以下、図1、図3および図4の右側を吸入空気の上流側、左側を下流側と称する。
Next, the structure of the intake pipe 30 and the airflow control valve 10, which are the main parts of the present embodiment, will be described in detail with reference to FIG. In the intake device 3, the intake pipe 30 includes an intake passage 31 having a rectangular cross-sectional shape inside, and the airflow control valve 10 is provided in the intake passage 31. The airflow control valve 10 includes a valve shaft 12 provided in the intake pipe 30 so as to be orthogonal to the pipe axis direction, and a valve body 11 fixed to the valve shaft 12.
The intake pipe 30 is connected to the engine body 2 on the left side of FIGS. 1 and 3 to 5, and the intake passage 31 communicates with the combustion chamber 23. The intake air introduced into the combustion chamber 23 through the intake passage 31 flows from the right side to the left side of the intake passage 31. Hereinafter, the right side of FIGS. 1, 3 and 4 is referred to as the upstream side of the intake air, and the left side is referred to as the downstream side.

本実施形態においては、吸気通路31の横断面矩形の一辺を構成する内壁と、この内壁に対向する他方の内壁は、当該一辺側を第1内壁33、第1内壁33に対向する他方側を第2内壁34として、以下のように構成される。第1内壁33は、図1の上流側から第1内壁入り口部331、円弧凹部330、および第1内壁出口部332を含む。第2内壁34は、図1の上流側から第2内壁入口部341、段差凹部35、および第2内壁出口部342を含む。   In the present embodiment, the inner wall constituting one side of the rectangular cross section of the intake passage 31 and the other inner wall facing the inner wall are the first inner wall 33 on the one side and the other side facing the first inner wall 33 on the other side. The second inner wall 34 is configured as follows. The first inner wall 33 includes a first inner wall inlet 331, an arc recess 330, and a first inner wall outlet 332 from the upstream side of FIG. The second inner wall 34 includes a second inner wall inlet 341, a step recess 35, and a second inner wall outlet 342 from the upstream side of FIG.

円弧凹部330は、第1内壁33に、吸気通路側から見て凹状に管軸方向縦断面が概ね円弧面であるように形成される。すなわち、円弧凹部330は、管軸方向に直交する仮想円筒内壁面状に第1内壁33を切欠き、当該第1内壁33を上流側の第1内壁入口部331と下流側の第1内壁出口部332とに分けている。以下、円弧凹部330の第1内壁入口部331側の端部を円弧凹部入口端333、第1内壁出口部332側の端部を円弧凹部出口端334とする。   The arc recess 330 is formed in the first inner wall 33 in a concave shape when viewed from the intake passage side so that the longitudinal section in the tube axis direction is substantially an arc surface. That is, the circular arc recess 330 is formed by notching the first inner wall 33 in a virtual cylindrical inner wall surface perpendicular to the tube axis direction, and the first inner wall 33 is upstream of the first inner wall inlet 331 and the downstream first inner wall outlet. It is divided into a part 332. Hereinafter, the end of the arc recess 330 on the first inner wall inlet portion 331 side is referred to as an arc recess inlet end 333, and the end of the first inner wall outlet portion 332 side is referred to as an arc recess outlet end 334.

段差凹部35は、第2内壁34に、管軸方向縦断面が吸気通路側から見て凹状に低くなる段差面として形成される。図1において、段差凹部35は、第2内壁34と平行かつ第2内壁34より一段低い平面状の段差底面340を有する。以下、第2内壁34の段差凹部35より上流側を第2内壁入口部341とし、第2内壁34の段差凹部35より下流側を第2内壁出口部342とする。段差凹部35の管軸方向両端側の壁面については、上流側を段差上端側面343、下流側を段差下端側面344とする。段差上端側面343と段差下端側面344とは、互いに対向し段差底面340に垂直な平面である。   The step concave portion 35 is formed in the second inner wall 34 as a step surface whose longitudinal section in the tube axis direction becomes a concave shape when viewed from the intake passage side. In FIG. 1, the step recess 35 has a flat step bottom surface 340 that is parallel to the second inner wall 34 and one step lower than the second inner wall 34. Hereinafter, the upstream side of the stepped recess 35 of the second inner wall 34 is referred to as a second inner wall inlet 341, and the downstream side of the stepped recess 35 of the second inner wall 34 is referred to as a second inner wall outlet 342. With respect to the wall surfaces on both ends in the tube axis direction of the step recess 35, the upstream side is the step upper end side surface 343 and the downstream side is the step lower end side surface 344. The step upper side surface 343 and the step lower end side surface 344 are flat surfaces that face each other and are perpendicular to the step bottom surface 340.

気流制御弁10の弁軸12は、段差凹部35内の段差上端側面343近傍に、吸気管30の第1内壁33と第2内壁34とに隣接し互いに対向する図示しない吸気管内壁側面(以下、第3内壁および第4内壁という)に両端を取付けられ回動自在に設置される。図3に示すとおり、弁体11の一端部は弁軸12と一体で揺動するように固定された軸端部14であり、他端部すなわち弁先側の先端13は、中央部分に切欠き溝15が形成され、切欠き溝15の両側は先端円弧面131、132に形成されている。先端円弧面131および132の形状は、吸気管30の円弧凹部330と略同一の曲率を有する円弧形状である。   The valve shaft 12 of the air flow control valve 10 is adjacent to the first inner wall 33 and the second inner wall 34 of the intake pipe 30 adjacent to each other in the vicinity of the step upper end side surface 343 in the step recess 35, and an intake pipe inner wall side surface (not shown) that faces each other. Both ends are attached to the third inner wall and the fourth inner wall) and are rotatably installed. As shown in FIG. 3, one end of the valve body 11 is a shaft end 14 fixed so as to swing integrally with the valve shaft 12, and the other end, that is, the tip 13 on the valve tip side is cut into the central portion. A notch groove 15 is formed, and both sides of the notch groove 15 are formed in tip circular arc surfaces 131 and 132. The shapes of the tip arc surfaces 131 and 132 are arc shapes having substantially the same curvature as the arc concave portion 330 of the intake pipe 30.

弁体11の吸気通路31管軸方向縦断面の形状、すなわち弁軸12に垂直な横断面の形状は、軸端部14から先端13に向かい拡がる略扇形状である。また、図1に示す弁体11の吸気通路31上流側の側面を弁体上側面113、下流側の側面を弁体下側面114とすると、弁体11の先端13を切欠き溝15が切欠く当該管軸方向縦断面の形状は、軸端部14から切欠き底面150までの弁体上側面113側の長さが、弁体下側面114側の長さよりも短い三角形状である。切欠き溝15は、先端13の中央部分において、弁体上側面113側を深く弁体下側面114側を浅く切欠き、傾斜した平面の切欠き底面150を有する長溝状に形成する。切欠き底面150の傾斜する方向は、図1に示すように、弁体11の弁体上側面113が円弧凹部出口端334の位置に略一致する開度(請求項1記載の「所定の開度」に相当する開度)において、切欠き底面150が吸気管30の管軸方向に略平行となるように設定する。   The shape of the longitudinal cross section of the valve body 11 in the direction of the pipe axis of the intake passage 31, that is, the shape of the cross section perpendicular to the valve shaft 12 is a substantially fan shape extending from the shaft end portion 14 toward the tip end 13. Further, when the upstream side surface of the intake passage 31 of the valve body 11 shown in FIG. The shape of the longitudinal section in the pipe axis direction lacking is a triangular shape in which the length on the valve body upper side surface 113 side from the shaft end portion 14 to the notch bottom surface 150 is shorter than the length on the valve body lower side surface 114 side. The notch groove 15 is formed in a long groove shape having a notch bottom surface 150 having an inclined flat surface in which the valve body upper side surface 113 side is deepened and the valve body lower side surface 114 side is shallowly formed in the center portion of the tip end 13. As shown in FIG. 1, the direction in which the notched bottom surface 150 is inclined is such that the valve body upper side surface 113 of the valve body 11 substantially coincides with the position of the arc recess outlet end 334 (“predetermined opening of claim 1”). At the opening degree corresponding to “degree”, the notch bottom surface 150 is set to be substantially parallel to the pipe axis direction of the intake pipe 30.

弁体11の回転軸方向両端側の側面は、側面111が吸気管30の第3内壁に沿い、側面112が第4内壁に沿って吸気管30内で摺動可能な平面状に形成する。また、切欠き底面150の両端側の溝壁面151および152は、第3内壁および第4内壁に平行に、先端13の中心から左右対称の位置に形成する。以上のように弁体11の形状を設定し、弁体11が図1の開度のとき、吸気管30の円弧凹部330と、切欠き溝15の溝側面151、152、および切欠き底面150とによって吸気通路31の開口を形成する。   The side surfaces of the valve body 11 at both ends in the rotational axis direction are formed in a planar shape in which the side surface 111 is slidable along the third inner wall of the intake pipe 30 and the side surface 112 is slidable along the fourth inner wall in the intake pipe 30. Further, the groove wall surfaces 151 and 152 on both end sides of the notch bottom surface 150 are formed in parallel to the third inner wall and the fourth inner wall at positions symmetrical to the left and right from the center of the tip end 13. When the shape of the valve body 11 is set as described above and the valve body 11 has the opening degree of FIG. 1, the arc recess 330 of the intake pipe 30, the groove side surfaces 151 and 152 of the notch groove 15, and the notch bottom surface 150. And the opening of the intake passage 31 is formed.

図4に示す全開状態の図によると、弁体11の弁体下側面114の軸端部14から先端13の先端円弧面131、132までの管軸方向縦断面に沿った長さは、段差底面340の管軸方向の長さよりもやや短く、全開時に先端円弧面131、132が段差下端側面344近傍に位置するよう設定されている。また、弁体11の先端13側の厚みは、段差凹部35内に弁体11が格納される程度に設定されている。このように、本実施形態では、弁体11の全開状態において、弁体11を吸気管30の段差凹部35側に格納し全開時の吸気通路31内の凹凸を極力減らすような構成としている。   According to the fully opened state shown in FIG. 4, the length along the longitudinal direction of the tube axis from the shaft end portion 14 of the valve body lower side surface 114 of the valve body 11 to the tip arc surfaces 131 and 132 of the tip 13 is a step. It is set to be slightly shorter than the length of the bottom surface 340 in the tube axis direction so that the tip arc surfaces 131 and 132 are positioned in the vicinity of the step bottom side surface 344 when fully open. Further, the thickness of the valve body 11 on the tip 13 side is set such that the valve body 11 is stored in the stepped recess 35. Thus, in this embodiment, when the valve body 11 is in the fully opened state, the valve body 11 is stored in the stepped recess 35 side of the intake pipe 30 so that the unevenness in the intake passage 31 when fully opened is reduced as much as possible.

続いて、本実施形態による内燃機関の吸気装置3における気流制御弁10の作動について、図2、および図1、4、5に基づき説明する。
図5は、気流制御弁10が吸気通路31を閉塞する全閉状態を示す。気流制御弁10の弁軸12には、図2に示すアクチュエータ8が接続されている。ECU7が内燃機関の回転数および負荷等の条件により気流制御弁10の最適な回転角度を判断し、アクチュエータ8に制御信号を伝送すると、アクチュエータ8はこの制御信号に基づき弁軸12を介して気流制御弁10を回転駆動する。
Next, the operation of the airflow control valve 10 in the intake device 3 of the internal combustion engine according to the present embodiment will be described based on FIG. 2 and FIGS.
FIG. 5 shows a fully closed state where the airflow control valve 10 closes the intake passage 31. An actuator 8 shown in FIG. 2 is connected to the valve shaft 12 of the airflow control valve 10. When the ECU 7 determines the optimum rotation angle of the airflow control valve 10 based on conditions such as the rotational speed and load of the internal combustion engine, and transmits a control signal to the actuator 8, the actuator 8 transmits the airflow via the valve shaft 12 based on this control signal. The control valve 10 is driven to rotate.

図5および図1に示すように、弁体11と吸気管30の第1内壁33との間に開口が形成されると、吸気通路31の吸入空気の流れは、この開口を通過して流速の早い流れとなる。図5から図1までの開度範囲においては、吸入空気は弁体11の切欠き溝15から吸気通路31下流側へ導かれ、図2の吸気管30と吸気バルブ26との開口においてシリンダ21の軸中心近傍から燃焼室23へ流入する。燃焼室23へ流入した吸入空気の流れは、シリンダ21およびピストン22の壁面に沿って燃焼室23内で強いタンブル流を形成する。   As shown in FIGS. 5 and 1, when an opening is formed between the valve body 11 and the first inner wall 33 of the intake pipe 30, the flow of the intake air in the intake passage 31 passes through this opening and the flow velocity It becomes a fast flow of. In the opening range from FIG. 5 to FIG. 1, the intake air is guided to the downstream side of the intake passage 31 from the notch groove 15 of the valve body 11, and the cylinder 21 is opened at the opening of the intake pipe 30 and the intake valve 26 of FIG. Flows into the combustion chamber 23 from the vicinity of the axial center. The flow of the intake air that has flowed into the combustion chamber 23 forms a strong tumble flow in the combustion chamber 23 along the wall surfaces of the cylinder 21 and the piston 22.

気流制御弁10は、図5の全閉位置から図1に示す開度(以下、半開位置とする)に至るまでの回動角度の範囲で、切欠き溝15を吸気通路31の開口として上述したタンブル流を燃焼室23内に形成することができる。ここで、第1実施形態の図1の半開状態と、切欠きのない弁体の先端と吸気管内壁とで隙間を開口する第1比較例の半開状態とを比較すると、吸気通路の開口断面の形状は図6に示すように異なる。すなわち、第1実施形態によると、半開状態での切欠き開口断面の高さHを大きくし、吸入空気が開口を通過する際の内壁面での摩擦損失を低減できる。また、切欠き溝15の幅で空気の流れを中心側に絞ることによって、燃焼室23内でタンブル流の形成を阻害する流れが発生するのを防ぐことができる。この結果、図7に示すとおり、第1比較例の半開状態の場合と比較すると強いタンブル流を形成することができる。   The airflow control valve 10 has the notch groove 15 as the opening of the intake passage 31 in the range of the rotation angle from the fully closed position in FIG. 5 to the opening degree (hereinafter referred to as a half-open position) shown in FIG. The tumble flow thus formed can be formed in the combustion chamber 23. Here, comparing the half-open state of FIG. 1 of the first embodiment with the half-open state of the first comparative example in which a gap is opened between the tip of the valve body without a notch and the inner wall of the intake pipe, the opening cross section of the intake passage The shapes are different as shown in FIG. That is, according to the first embodiment, the height H of the notch opening cross section in the half-open state can be increased, and the friction loss on the inner wall surface when the intake air passes through the opening can be reduced. Further, by restricting the air flow to the center side by the width of the notch groove 15, it is possible to prevent the occurrence of a flow that hinders the formation of the tumble flow in the combustion chamber 23. As a result, as shown in FIG. 7, a stronger tumble flow can be formed as compared with the case of the half-open state of the first comparative example.

また、第1実施形態では、気流制御弁10が図5の全閉位置と図1の半開位置との間の大きな揺動角度の範囲で、図6に示す切欠きの開口高さHを変化させ、内燃機関の運転条件に応じてタンブル流の強弱を適切に調節することができる。ここで、本実施形態での弁体11と第1内壁33との間に開口する管軸方向横断面形状における、切欠き底面150と第1内壁33との距離を開口高さH1とし、弁体11の軸端部14から先端13へ向かう向きと管軸方向下流の向きとの間の角度を立ち上がり角度θとし、図8を用いて具体的に説明する。   Further, in the first embodiment, the air flow control valve 10 changes the opening height H of the notch shown in FIG. 6 within a large swing angle range between the fully closed position in FIG. 5 and the half-open position in FIG. Thus, the strength of the tumble flow can be appropriately adjusted according to the operating conditions of the internal combustion engine. Here, the distance between the notch bottom surface 150 and the first inner wall 33 in the cross-sectional shape in the tube axis direction that opens between the valve element 11 and the first inner wall 33 in the present embodiment is the opening height H1, and the valve The angle between the direction from the axial end portion 14 of the body 11 toward the distal end 13 and the downstream direction in the tube axis direction is defined as a rising angle θ, and will be specifically described with reference to FIG.

図8は、弁体11の立ち上がり角度θに対する開口高さH1の変化を実線のグラフで示したものである。また、図12に示す第2比較例と比較して、第1実施形態の弁体の形状による作用効果を説明する。第2比較例は、第1実施形態の吸気管と同一形状に形成された吸気管90の吸気通路に、先端に切欠きを有する平板状の弁体91を設けたものである。図8の一点鎖線のグラフは、第2比較例の弁体91の立ち上がり角度θに対する吸気通路の開口高さH2の変化を示している。   FIG. 8 shows a change in the opening height H1 with respect to the rising angle θ of the valve body 11 by a solid line graph. Moreover, the effect by the shape of the valve body of 1st Embodiment is demonstrated compared with the 2nd comparative example shown in FIG. In the second comparative example, a flat valve body 91 having a notch at the tip is provided in the intake passage of the intake pipe 90 formed in the same shape as the intake pipe of the first embodiment. 8 shows a change in the intake passage opening height H2 with respect to the rising angle θ of the valve body 91 of the second comparative example.

第1実施形態の弁体11の半開状態の立ち上がり角度θをθ1、第2参考例の弁体91の半開状態の立ち上がり角度θをθ2とすると、弁体11、91の中心部分すなわち切欠き部分のみに開口が形成される立ち上がり角度θの範囲は、それぞれ「弁体の中心のみ吸気流入」としてa1およびa2に示す範囲である。第1実施形態の弁体11が半開状態からさらに開弁方向に回動すると、先端13の先端円弧面131および先端円弧面132が第1内壁33から離れることで、切欠き溝15による開口の周囲に、さらに第1内壁33側との間で隙間が形成される。このとき、吸気通路31の開口面積は大きくなるが、切欠き溝15以外の隙間を通過する吸入空気の流量が相対的に大きくなるためタンブル流の形成は阻害される。この状態を形成する弁体11、91の立ち上がり角度θの範囲は、図8に「弁体の中心以外からも吸気流入」として示す範囲b1およびb2である。   When the rising angle θ in the half-open state of the valve body 11 of the first embodiment is θ1, and the rising angle θ in the half-open state of the valve body 91 of the second reference example is θ2, the central portion of the valve bodies 11, 91, that is, the notch portion. The range of the rising angle θ in which only the opening is formed is a range indicated by a1 and a2 as “intake inflow only at the center of the valve body”. When the valve body 11 of the first embodiment is further rotated in the valve opening direction from the half-open state, the tip arc surface 131 and the tip arc surface 132 of the tip 13 are separated from the first inner wall 33, thereby opening the opening by the notch groove 15. A gap is further formed around the first inner wall 33 side. At this time, although the opening area of the intake passage 31 is increased, the flow rate of the intake air passing through the gap other than the notch groove 15 is relatively increased, so that the formation of the tumble flow is inhibited. The range of the rising angle θ of the valve bodies 11 and 91 forming this state is a range b1 and b2 shown as “intake inflow from other than the center of the valve body” in FIG.

図8によると、第1実施形態では、弁体11の切欠き溝15のみに吸気が流入する開度範囲a1で、弁体11の立ち上がり角度θに応じて開口高さH1を広範囲に変化させることができる。一方、第2比較例では弁体91の切欠きのみに吸気が流入する開度範囲a2で開口高さH2はほとんど変化しないので、タンブル流を形成する吸気の流れを調節することはできない。このように、本実施形態によると、気流制御弁10の開度が全閉から半開までの広範囲にわたって、切欠き溝15部分のみに空気の流れを集中させて下流側へ導入することができる。   According to FIG. 8, in the first embodiment, the opening height H1 is varied in a wide range according to the rising angle θ of the valve body 11 in the opening range a1 where the intake air flows only into the notch groove 15 of the valve body 11. be able to. On the other hand, in the second comparative example, since the opening height H2 hardly changes in the opening range a2 in which the intake air flows only into the notch of the valve body 91, the flow of the intake air forming the tumble flow cannot be adjusted. As described above, according to the present embodiment, the air flow can be introduced downstream by concentrating the air flow only in the notch groove 15 portion over a wide range from the fully closed position to the half open position of the airflow control valve 10.

また、本実施形態の気流制御弁10によると、内燃機関の運転条件に応じて吸気通路31内の吸入空気の流れは以下のように調節可能である。
内燃機関の全負荷時には、気流制御弁10は図4に示す全開状態となり、段差凹部340の位置に格納される。これにより、吸気通路31の第2内壁34側の凹凸をなくし吸気抵抗を低減させることができる。
Further, according to the airflow control valve 10 of the present embodiment, the flow of intake air in the intake passage 31 can be adjusted as follows according to the operating conditions of the internal combustion engine.
When the internal combustion engine is fully loaded, the airflow control valve 10 is fully opened as shown in FIG. 4 and stored in the position of the step recess 340. Thereby, the unevenness | corrugation by the side of the 2nd inner wall 34 of the intake passage 31 can be eliminated, and intake resistance can be reduced.

内燃機関の部分負荷時には、気流制御弁10は図1に示す半開状態となり、切欠き溝15を形成する切欠き底面150が吸気管30の第1内壁出口部332と平行になり、切欠き溝15による開口面積が最大となる。したがって、気流制御弁10の絞りによる圧力損失を小さくし、かつ吸気通路31下流側に形成するタンブル流を強くすることができる。   When the internal combustion engine is partially loaded, the airflow control valve 10 is in a half-open state shown in FIG. 1, and a notch bottom surface 150 forming the notch groove 15 is parallel to the first inner wall outlet 332 of the intake pipe 30. The opening area by 15 is maximized. Therefore, the pressure loss due to the restriction of the airflow control valve 10 can be reduced, and the tumble flow formed on the downstream side of the intake passage 31 can be strengthened.

また、内燃機関の始動時には、気流制御弁10は図5に示す全閉状態となり、切欠き溝15によってできる開口が小さくなる。この開口を通じて吸気通路31下流側へ導入される吸入空気の流速を強め、特に強いタンブル流を形成可能である。これにより、吸気管30の内壁に付着した燃料の気化促進を図りエミッションの低減および内燃機関の燃費向上を図ることができる。   Further, when the internal combustion engine is started, the airflow control valve 10 is fully closed as shown in FIG. 5, and the opening formed by the notch groove 15 is reduced. The flow rate of the intake air introduced to the downstream side of the intake passage 31 through this opening can be increased, and a particularly strong tumble flow can be formed. Thereby, vaporization promotion of the fuel adhering to the inner wall of the intake pipe 30 can be promoted, emission can be reduced, and fuel consumption of the internal combustion engine can be improved.

(第2実施形態)
本発明の第2実施形態による内燃機関の吸気装置を図9および図10に示す。第1実施形態と実質的に同一の構成には同一の符号を付して説明を省略する。
図9に示すとおり、第2実施形態による気流制御弁の弁体80は、本体部81が矩形平板状の支持部84の折曲部841から立ち上がるV字状に形成されている。吸気通路31を全閉したとき、支持部84は段差底面340に当接する。支持部84の折曲部841と対向する一辺は弁軸82に固定される。図9の全閉状態では、折曲部841は段差凹部35の段差上端側面343近傍に位置している。本体部81は、折曲部841から吸気通路31を閉塞するように立ち上がり、その先端83を吸気管30の円弧凹部330に摺動可能に当接させている。本体部81の管軸方向縦断面の形状は、折曲部841から先端83に向かい拡がる扇形状であり、先端83は円弧凹部330に沿った曲率に形成されその中央部分に切欠き溝85を有する。切欠き溝85の切欠き底面850は、図10に示す弁体80の半開状態において、吸気管30の管軸方向に平行となる。このとき、先端83の弁体上側面813側が円弧凹部出口端334に位置する。
(Second Embodiment)
An intake device for an internal combustion engine according to a second embodiment of the present invention is shown in FIGS. Components substantially the same as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
As shown in FIG. 9, the valve body 80 of the airflow control valve according to the second embodiment is formed in a V shape in which the main body portion 81 rises from the bent portion 841 of the support portion 84 having a rectangular flat plate shape. When the intake passage 31 is fully closed, the support portion 84 contacts the step bottom surface 340. One side of the support portion 84 facing the bent portion 841 is fixed to the valve shaft 82. In the fully closed state of FIG. 9, the bent portion 841 is located in the vicinity of the step upper end side surface 343 of the step recess 35. The main body 81 rises from the bent portion 841 so as to close the intake passage 31, and its tip 83 is slidably brought into contact with the circular arc recess 330 of the intake pipe 30. The shape of the longitudinal section in the tube axis direction of the main body 81 is a fan shape that extends from the bent portion 841 toward the tip 83, and the tip 83 is formed with a curvature along the arc recess 330, and a notch groove 85 is formed at the center thereof. Have. The notch bottom surface 850 of the notch groove 85 is parallel to the pipe axis direction of the intake pipe 30 when the valve body 80 shown in FIG. At this time, the valve body upper side 813 side of the tip 83 is positioned at the arc recess outlet end 334.

第2実施形態によると、弁体80の本体部81を傾斜させた状態で図9の全閉状態から図10の半開状態まで切欠き溝85により吸気通路31の開口を区画することができる。この傾斜により、図10に示す吸気通路31の開口の高さH3の弁体80の開度に応じた変化は緩やかなものとなり、急激な開口断面積変化を緩和することができる。このため、吸気通路31下流での渦形成を防止し、吸気抵抗を低減して効率よく吸入空気を燃焼室側へ導くことができる。また、弁体80の全閉位置と半開位置との間での回動角度範囲が大きくなり、切欠き溝85の開口の高さH3をより精密に調整できる。   According to the second embodiment, the opening of the intake passage 31 can be partitioned by the notch groove 85 from the fully closed state of FIG. 9 to the half-opened state of FIG. 10 with the main body 81 of the valve body 80 inclined. By this inclination, the change according to the opening degree of the valve body 80 of the opening height H3 of the intake passage 31 shown in FIG. 10 becomes gentle, and a sudden change in the opening cross-sectional area can be mitigated. Therefore, vortex formation downstream of the intake passage 31 can be prevented, intake resistance can be reduced, and intake air can be efficiently guided to the combustion chamber side. Further, the rotation angle range between the fully closed position and the half open position of the valve body 80 is increased, and the opening height H3 of the notch groove 85 can be adjusted more precisely.

(他の実施形態)
以上説明した第1および第2実施形態における弁体11および本体部81の形状は、弁体上側面113、813が平面状であり、切欠き溝15、85による開口断面の形状が矩形状であったが、本発明の弁体は、吸気通路上流側の側面および切欠き溝を他の形状に形成してもよい。例えば、図11に示すように弁体の側面に吸気通路上流側から見て切欠き溝に向かい狭まる凹状の円弧面を設け、切欠き溝の開口を先端に向かい狭まる略台形状に形成し、弁体先端の中心部分から吸入空気をより誘導しやすい形状としてもよい。
(Other embodiments)
The shape of the valve body 11 and the main body 81 in the first and second embodiments described above is such that the valve body upper side surfaces 113 and 813 are planar, and the shape of the opening cross section by the notch grooves 15 and 85 is rectangular. However, in the valve body of the present invention, the side surface on the upstream side of the intake passage and the notch groove may be formed in other shapes. For example, as shown in FIG. 11, a concave arcuate surface that narrows toward the notch groove when viewed from the upstream side of the intake passage is provided on the side surface of the valve body, and the opening of the notch groove is formed in a substantially trapezoidal shape that narrows toward the tip, The shape may be such that the intake air is more easily guided from the central portion of the valve body tip.

上述した第1および第2実施形態は、吸気管内で燃料噴射するポート噴射式の内燃機関に適用したが、本発明は、燃焼室内で燃料噴射する直噴式の内燃機関に適用してもよい。
また、上記第1実施形態において、低圧EGR装置6および過給機70、インタークーラ71等がない内燃機関であってもよい。
以上説明したように、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。
Although the first and second embodiments described above are applied to a port injection type internal combustion engine that injects fuel in an intake pipe, the present invention may be applied to a direct injection type internal combustion engine that injects fuel in a combustion chamber.
Moreover, in the said 1st Embodiment, the internal combustion engine which does not have the low voltage | pressure EGR apparatus 6, the supercharger 70, the intercooler 71, etc. may be sufficient.
As described above, the present invention is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.

本発明の第1実施形態による内燃機関の吸気装置を示す要部断面図。1 is a cross-sectional view of a main part showing an intake device for an internal combustion engine according to a first embodiment of the present invention. 本発明の第1実施形態による内燃機関の全体構成図。1 is an overall configuration diagram of an internal combustion engine according to a first embodiment of the present invention. 本発明の第1実施形態による気流制御弁を示す斜視図。The perspective view which shows the airflow control valve by 1st Embodiment of this invention. 本発明の第1実施形態による内燃機関の吸気装置を示す要部断面図。1 is a cross-sectional view of a main part showing an intake device for an internal combustion engine according to a first embodiment of the present invention. 本発明の第1実施形態による内燃機関の吸気装置を示す要部断面図。1 is a cross-sectional view of a main part showing an intake device for an internal combustion engine according to a first embodiment of the present invention. 弁体の開度が全閉位置から全開位置までの中間の半開位置にある時、本発明の第1実施形態および第1比較例の吸気通路の開口形状を示す比較図。The comparison figure which shows the opening shape of the intake passage of 1st Embodiment of this invention, and a 1st comparative example, when the opening degree of a valve body exists in the middle half-open position from a fully closed position to a fully open position. 図6の第1実施形態および第1比較例による吸気装置の下流側で形成されるタンブル流の強さを示す比較図。The comparison figure which shows the strength of the tumble flow formed in the downstream of the intake device by 1st Embodiment of FIG. 6, and a 1st comparative example. 本発明の第1実施形態および図12に示す第2比較例による気流制御弁の吸気管軸からの角度を変化させたときの開口の高さ変化を示す比較図。The comparison figure which shows the height change of an opening when the angle from the intake pipe axis of the airflow control valve by 1st Embodiment of this invention and the 2nd comparative example shown in FIG. 12 is changed. 内燃機関の吸気装置の吸入空気の流れを示す比較図。The comparison figure which shows the flow of the intake air of the intake device of an internal combustion engine. 本発明の第2実施形態による内燃機関の吸気装置を示す要部断面図。The principal part sectional view showing the intake device of the internal-combustion engine by a 2nd embodiment of the present invention. 本発明の第2実施形態による内燃機関の吸気装置を示す要部断面図。The principal part sectional view showing the intake device of the internal-combustion engine by a 2nd embodiment of the present invention. 第2比較例の吸気通路および弁体を示す断面図。Sectional drawing which shows the intake passage and valve body of a 2nd comparative example.

符号の説明Explanation of symbols

1:内燃機関、2:エンジン本体、3:吸気装置、10:気流制御弁、11:弁体、12:弁軸、13:先端、131、132:先端円弧面、14:軸端部、15:切欠き溝、150:切欠き底面、30:吸気管、31:吸気通路、32:吸入口、33:第1内壁(内壁の一辺)、330:円弧凹部(円弧面)、34:第2内壁(内壁の一辺に対向する側の一辺)、35:段差凹部(段差面)   1: internal combustion engine, 2: engine body, 3: intake device, 10: air flow control valve, 11: valve body, 12: valve shaft, 13: tip, 131, 132: tip arc surface, 14: shaft end, 15 : Notch groove, 150: Notch bottom surface, 30: Intake pipe, 31: Intake passage, 32: Intake port, 33: First inner wall (one side of inner wall), 330: Arc recess (arc surface), 34: Second Inner wall (one side facing one side of the inner wall), 35: step recess (step surface)

Claims (5)

内燃機関の燃焼室に空気を導く横断面の開口形状が矩形状の吸気通路を形成する吸気管と、
前記吸気管に管軸方向に直交して設けられる弁軸と、
前記弁軸を回転駆動するアクチュエータと、
前記弁軸に固定され、回動角度に応じて前記吸気通路の開口面積を調節可能な弁体と、
を備え、
前記吸気通路を形成する内壁の一辺側に、管軸方向に吸気通路縦断面形状が吸気通路側から見て凹状の概ね円弧面を形成し、
前記吸気通路を形成する内壁の前記一辺に対向する側の一辺側に、管軸方向に吸気通路縦断面形状が吸気通路側から見て凹状の段差面を形成し、
前記段差面の吸気通路側から見て低い位置に前記弁軸を当該段差面と平行に設け、
前記弁体は、前記管軸方向に沿う横断面形状が前記弁軸から前記弁体の遠い位置の先端に向けて拡がる扇形状であり、前記先端に切欠き溝を有し、
前記弁体の全閉位置から所定の開度までは、前記先端が前記円弧面に沿って摺動するとともに前記切欠き溝と前記円弧面とによって隙間を形成して回動可能であることを特徴とする内燃機関の吸気装置。
An intake pipe that forms an intake passage having a rectangular opening with a transverse cross section that guides air to the combustion chamber of the internal combustion engine;
A valve shaft provided in the intake pipe perpendicular to the pipe axis direction;
An actuator for rotationally driving the valve shaft;
A valve body fixed to the valve shaft and capable of adjusting an opening area of the intake passage according to a rotation angle;
With
On one side of the inner wall that forms the intake passage, an intake passage longitudinal cross-sectional shape in the tube axis direction forms a generally arcuate surface that is concave when viewed from the intake passage side,
On one side of the inner wall that forms the intake passage, the one side of the inner wall that faces the one side forms a stepped surface that is concave when viewed from the intake passage side in the pipe axis direction.
The valve shaft is provided parallel to the step surface at a low position when viewed from the intake passage side of the step surface,
The valve body has a fan shape in which a cross-sectional shape along the tube axis direction extends from the valve shaft toward the distal end of the valve body, and has a notch groove at the distal end.
From the fully closed position of the valve body to a predetermined opening, the tip slides along the arc surface and can be rotated with a gap formed by the notch groove and the arc surface. An internal combustion engine intake device.
前記弁体は、開度が全閉角度から大きな揺動角度に至るまで前記切欠き溝を通してタンブル流を持続可能に構成されていることを特徴とする請求項1記載の内燃機関の吸気制御装置。   2. The intake control apparatus for an internal combustion engine according to claim 1, wherein the valve body is configured to be able to maintain a tumble flow through the notch groove until the opening degree reaches a large swing angle from a fully closed angle. . 前記弁体は、その先端の中央側に前記切欠き溝を有することを特徴とする請求項1または2記載の内燃機関の吸気装置。   The intake device for an internal combustion engine according to claim 1 or 2, wherein the valve body has the notch groove at a center side of a tip thereof. 前記弁軸は、前記段差面の吸気通路側から見て低い位置の吸気流れ方向上流側に設けられていることを特徴とする請求項1から3のいずれか1項記載の内燃機関の吸気装置。   4. The intake device for an internal combustion engine according to claim 1, wherein the valve shaft is provided on the upstream side in the intake flow direction at a low position when viewed from the intake passage side of the stepped surface. 5. . 内燃機関の燃焼室に空気を導く横断面の開口形状が矩形状の吸気通路を形成する吸気管と、
前記吸気管に管軸方向に直交して設けられる弁軸と、
前記弁軸を回転駆動するアクチュエータと、
前記弁軸に固定され、回動角度に応じて前記吸気通路の開口面積を調節可能な弁体と、
を備え、
前記吸気通路を形成する内壁の一辺側に、管軸方向に吸気通路縦断面形状が吸気通路側から見て凹状の概ね円弧面を形成し、
前記吸気通路を形成する内壁の前記一辺に対向する側の一辺側に、管軸方向に吸気通路縦断面形状が吸気通路側から見て凹状の段差面を形成し、
前記段差面の吸気通路側から見て低い位置に前記弁軸を当該段差面と平行に設け、
前記弁体は、前記弁軸に一辺を固定される矩形平板状の支持部と、前記支持部の前記弁軸と対向する一辺に一体で設けられる本体部とからなり、
前記支持部の対向する一辺は、前記段差面の吸気通路側から見て低い位置の前記上流側に設けられ、
前記弁体の前記吸気通路の管軸方向に沿う横断面形状において、前記支持部と前記本体部とは前記支持部の対向する一辺で折曲がるV字状を呈し、前記本体部は前記管軸方向に沿う横断面形状が前記支持部の対向する一辺から前記弁体の遠い位置の先端に向けて拡がる扇形状であり、前記先端に切欠き溝を有し、
前記弁体の全閉位置から所定の開度までは、前記先端が前記円弧面に沿って摺動するとともに前記切欠き溝と前記円弧面とによって隙間を形成して回動可能であることを特徴とする内燃機関の吸気装置。
An intake pipe that forms an intake passage having a rectangular opening with a transverse cross section that guides air to the combustion chamber of the internal combustion engine;
A valve shaft provided in the intake pipe perpendicular to the pipe axis direction;
An actuator for rotationally driving the valve shaft;
A valve body fixed to the valve shaft and capable of adjusting an opening area of the intake passage according to a rotation angle;
With
On one side of the inner wall that forms the intake passage, an intake passage longitudinal cross-sectional shape in the tube axis direction forms a generally arcuate surface that is concave when viewed from the intake passage side,
On one side of the inner wall that forms the intake passage, the one side of the inner wall that faces the one side forms a stepped surface that is concave when viewed from the intake passage side in the pipe axis direction.
The valve shaft is provided parallel to the step surface at a low position when viewed from the intake passage side of the step surface,
The valve body is composed of a rectangular flat plate-like support portion fixed on one side to the valve shaft, and a main body portion provided integrally on one side of the support portion facing the valve shaft.
The opposing sides of the support portion are provided on the upstream side at a low position when viewed from the intake passage side of the step surface,
In the cross-sectional shape along the tube axis direction of the intake passage of the valve body, the support portion and the main body portion have a V shape that is bent at one side facing the support portion, and the main body portion is the tube shaft. The cross-sectional shape along the direction is a fan shape that extends from one side of the support portion facing toward the distal end of the valve body, and has a notch groove at the distal end.
From the fully closed position of the valve body to a predetermined opening, the tip slides along the arc surface and can be rotated with a gap formed by the notch groove and the arc surface. An internal combustion engine intake device.
JP2008127616A 2008-05-14 2008-05-14 Intake device for internal combustion engine Expired - Fee Related JP4971242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008127616A JP4971242B2 (en) 2008-05-14 2008-05-14 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008127616A JP4971242B2 (en) 2008-05-14 2008-05-14 Intake device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009275598A true JP2009275598A (en) 2009-11-26
JP4971242B2 JP4971242B2 (en) 2012-07-11

Family

ID=41441264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008127616A Expired - Fee Related JP4971242B2 (en) 2008-05-14 2008-05-14 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4971242B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110134073A (en) * 2010-06-08 2011-12-14 현대자동차주식회사 Butterfly valve device for vehicle engines
JP2012036758A (en) * 2010-08-04 2012-02-23 Denso Corp Air-intake device for internal combustion engine
CN106089467A (en) * 2015-04-30 2016-11-09 丰田自动车株式会社 Multicylinder engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283567A (en) * 2005-03-31 2006-10-19 Kubota Corp Manufacturing method of engine
JP2006316736A (en) * 2005-05-13 2006-11-24 Toyota Motor Corp Intake device for internal combustion engine
JP2007170279A (en) * 2005-12-22 2007-07-05 Aisin Seiki Co Ltd Intake device of internal combustion engine
JP2007218198A (en) * 2006-02-17 2007-08-30 Toyota Motor Corp Intake port structure of internal combustion engine
JP2007291929A (en) * 2006-04-25 2007-11-08 Denso Corp Intake device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283567A (en) * 2005-03-31 2006-10-19 Kubota Corp Manufacturing method of engine
JP2006316736A (en) * 2005-05-13 2006-11-24 Toyota Motor Corp Intake device for internal combustion engine
JP2007170279A (en) * 2005-12-22 2007-07-05 Aisin Seiki Co Ltd Intake device of internal combustion engine
JP2007218198A (en) * 2006-02-17 2007-08-30 Toyota Motor Corp Intake port structure of internal combustion engine
JP2007291929A (en) * 2006-04-25 2007-11-08 Denso Corp Intake device for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110134073A (en) * 2010-06-08 2011-12-14 현대자동차주식회사 Butterfly valve device for vehicle engines
KR101628387B1 (en) * 2010-06-08 2016-06-08 현대자동차주식회사 Butterfly valve device for vehicle engines
JP2012036758A (en) * 2010-08-04 2012-02-23 Denso Corp Air-intake device for internal combustion engine
CN106089467A (en) * 2015-04-30 2016-11-09 丰田自动车株式会社 Multicylinder engine
JP2016211394A (en) * 2015-04-30 2016-12-15 トヨタ自動車株式会社 Multi-cylinder engine
US10072602B2 (en) 2015-04-30 2018-09-11 Toyota Jidosha Kabushiki Kaisha Multicylinder engine

Also Published As

Publication number Publication date
JP4971242B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4419095B2 (en) Intake device for internal combustion engine
EP2330278B1 (en) Air intake manifold
US7455044B2 (en) Intake device of internal combustion engine
US7409944B2 (en) Intake structure for internal combustion engine
JP4592108B2 (en) Intake device for internal combustion engine
JP2007113482A (en) Resin intake manifold
JP4840445B2 (en) Intake device for internal combustion engine
JP2008014265A (en) Spark ignition type multiple cylinder engine
JPH02176116A (en) Combustion chamber for internal combustion engine
US10260404B2 (en) Engine supercharger
JP5369045B2 (en) Intake device for internal combustion engine
JP4971242B2 (en) Intake device for internal combustion engine
JP2006077760A (en) Intake method and intake structure of internal combustion engine
JP4840248B2 (en) Intake control device for internal combustion engine
US9657697B2 (en) Intake duct
JP2005351235A (en) Suction device for engine
BR112019004637B1 (en) CONTROL METHOD AND CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2007016657A (en) Intake device for internal combustion engine
JP5360012B2 (en) Intake device for internal combustion engine
JP2006299910A (en) Variable intake device
JP2006291797A (en) Inlet flow valve system
JP4375060B2 (en) Intake device for internal combustion engine
JPH0415939Y2 (en)
JP4447593B2 (en) Throttle valve device
JP2005256779A (en) Variable intake device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees