JP2009275323A - Pitch-based graphitized staple fiber - Google Patents

Pitch-based graphitized staple fiber Download PDF

Info

Publication number
JP2009275323A
JP2009275323A JP2008129548A JP2008129548A JP2009275323A JP 2009275323 A JP2009275323 A JP 2009275323A JP 2008129548 A JP2008129548 A JP 2008129548A JP 2008129548 A JP2008129548 A JP 2008129548A JP 2009275323 A JP2009275323 A JP 2009275323A
Authority
JP
Japan
Prior art keywords
pitch
fiber
average
based graphitized
graphitized short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008129548A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakurai
博志 櫻井
Hiroshi Hara
寛 原
Shoichi Takagi
正一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2008129548A priority Critical patent/JP2009275323A/en
Publication of JP2009275323A publication Critical patent/JP2009275323A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pitch-based graphitized staple fiber slight in the possibility of causing the setting inhibition of a thermosetting resin even if kneaded with the resin. <P>SOLUTION: The pitch-based graphitized staple fiber has the following characteristics: (i) The average fiber diameter observed by optical microscope is larger than 2 μm but not larger than 20 μm, and the fiber diameter distribution percentage based on the average fiber diameter is 3-20%. (ii) The fiber surface observed by scanning electron microscope is substantially flat. (iii) When the five fibers' ends, whose graphene sheet edge faces have the whole length of longer than 50 nm but shorter than 300 nm, are observed by transmission electron microscope, the average value of the closure percentage represented by formula (1), closure percentage (%)=B/A×100 (A is the whole length (nm) of the graphene sheet edge face of the fiber end; and B is the length (nm) of portion where the edge face is curved U-shaped fashion), is greater than 80% but less than 100%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱伝導性に優れたピッチ系黒鉛化短繊維に関する。更に詳しくは、従来の炭素繊維よりも反応活性点が少なく、かつ熱伝導性に優れたピッチ系黒鉛化短繊維に関する。   The present invention relates to a pitch-based graphitized short fiber excellent in thermal conductivity. More specifically, the present invention relates to pitch-based graphitized short fibers that have fewer reactive sites than conventional carbon fibers and are excellent in thermal conductivity.

電気部品などの筐体の熱伝導性を向上させるため、少量の添加で優れた熱伝導性を発現する炭素繊維の利用が検討されている。炭素繊維にはPAN系炭素繊維とピッチ系炭素繊維がある。PAN系炭素繊維は難黒鉛化炭素であり、熱伝導を担う黒鉛性を高めることが非常に困難である。これに対し、ピッチ系炭素繊維は易黒鉛化炭素繊維と呼ばれ、黒鉛性を高くすることができるため、高い熱伝導率を達成しやすい。
しかしながら、繊維末端のグラファイト端面が露出しているピッチ系炭素繊維は、グラファイト端面の反応性が非常に高く、シリコーン樹脂やエポキシ樹脂などの熱硬化性樹脂と混練すると樹脂の硬化阻害を引き起こし、硬化に多大の時間を要するという欠点がある。このため、ピッチ系炭素繊維と熱硬化性樹脂から成形品を効率よく製造することは困難であった。
In order to improve the thermal conductivity of housings such as electrical parts, the use of carbon fibers that exhibit excellent thermal conductivity with a small amount of addition has been studied. Carbon fibers include PAN-based carbon fibers and pitch-based carbon fibers. PAN-based carbon fibers are non-graphitizable carbon, and it is very difficult to improve the graphitization property that bears heat conduction. On the other hand, pitch-based carbon fibers are called graphitizable carbon fibers, and can be made highly graphitizable, so that high thermal conductivity is easily achieved.
However, pitch-based carbon fibers with exposed graphite end faces at the end of the fiber have very high reactivity at the graphite end faces, and when kneaded with thermosetting resins such as silicone resins and epoxy resins, they cause resin hardening inhibition and hardening. Has the disadvantage of requiring a lot of time. For this reason, it has been difficult to efficiently produce a molded product from pitch-based carbon fibers and a thermosetting resin.

繊維末端のグラファイト端面の構造制御は、カーボンナノチューブに代表されるチューブ構造を有する炭素繊維で報告されている(特許文献1,2,3)。このようなチューブ構造を有する炭素繊維は、その繊維径が数〜数十nmサイズの極細炭素繊維であり、繊維断面はオニオン構造となっており、繊維末端のグラファイト端面の構造の制御は容易である。
しかしながら、通常の溶融紡糸で製造される炭素繊維は、その繊維径も数〜数十μmと非常に大きく、かつ繊維断面もカーボンナノチューブとは大きく異なる。このため、カーボンナノチューブのように、繊維末端のグラファイト端面の構造を制御することは非常に困難であったが、最近、繊維末端が閉じているピッチ系炭素繊維が提案されている(特許文献4)。この炭素繊維は、樹脂の硬化阻害を引き起こす恐れが少ないという利点を有する。
特開2000−327317号公報 特開2003−049329号公報 特開2002−146634号公報 特開2007−291576号公報
Structure control of the graphite end face at the fiber end has been reported for carbon fibers having a tube structure typified by carbon nanotubes (Patent Documents 1, 2, and 3). The carbon fiber having such a tube structure is an ultrafine carbon fiber having a fiber diameter of several to several tens of nanometers, the fiber cross section has an onion structure, and the control of the structure of the graphite end surface of the fiber end is easy. is there.
However, the carbon fiber produced by ordinary melt spinning has a very large fiber diameter of several to several tens of μm, and the fiber cross section is significantly different from that of the carbon nanotube. For this reason, it has been very difficult to control the structure of the graphite end face at the end of the fiber as in the case of carbon nanotubes, but recently, pitch-based carbon fibers in which the end of the fiber is closed have been proposed (Patent Document 4). ). This carbon fiber has the advantage that there is little possibility of causing the curing inhibition of the resin.
JP 2000-327317 A JP 2003-049329 A JP 2002-146634 A JP 2007-291576 A

そこで、本発明の目的は、グラフェンシート端面の閉鎖率が所定の範囲にあり、熱硬化性樹脂と混練しても樹脂の硬化阻害を引き起こす恐れの少ないピッチ系黒鉛化短繊維を提供することにある。また本発明の目的は、グラフェンシート端面の閉鎖率が所定の範囲にあり、いわゆる層間化合物を作ることが出来るピッチ系黒鉛化短繊維を提供することにある。また本発明の目的は、熱伝導性に優れたピッチ系炭素繊維を提供することにある。   Therefore, an object of the present invention is to provide a pitch-based graphitized short fiber having a closing rate of the graphene sheet end face in a predetermined range and less likely to cause inhibition of resin curing even when kneaded with a thermosetting resin. is there. Another object of the present invention is to provide a pitch-based graphitized short fiber having a closing rate of the end face of the graphene sheet in a predetermined range and capable of forming a so-called intercalation compound. Moreover, the objective of this invention is providing the pitch-type carbon fiber excellent in thermal conductivity.

また本発明は、該ピッチ系炭素繊維を含有する組成物を提供することにある。さらに本発明は、組成物からなる電子部品用放熱板、電波遮蔽板、熱交換器などの成形体を提供することにある。   Moreover, this invention is providing the composition containing this pitch-type carbon fiber. Furthermore, this invention is providing the molded object, such as a heat sink for electronic components, a radio wave shielding board, a heat exchanger, which consists of a composition.

本発明者らは、ピッチ系黒鉛化短繊維を製造する際に、紡糸ノズルを通過するピッチに所定の応力を加え、且つ黒鉛化した炭素繊維を粉砕するのではなく、炭素繊維を粉砕した後、黒鉛化すると、グラフェンシートの端面の閉鎖率が所定の範囲にある炭素繊維が得られることを見出した。また得られた炭素繊維は、熱硬化性樹脂と混練しても樹脂の硬化阻害を引き起こすことが無く、短時間にコンポジット成形品が得られることを見出し、本発明を完成した。   When the present inventors produce pitch-based graphitized short fibers, after applying a predetermined stress to the pitch passing through the spinning nozzle and pulverizing the carbon fibers instead of pulverizing the graphitized carbon fibers It has been found that, when graphitized, carbon fibers having a closing rate of the end face of the graphene sheet in a predetermined range can be obtained. Further, the obtained carbon fiber has been found that a composite molded product can be obtained in a short time without causing inhibition of resin curing even when kneaded with a thermosetting resin, thereby completing the present invention.

即ち、本発明は、(i)光学顕微鏡で観測した平均繊維径(D1)が2μmより大きく20μm以下であり、平均繊維径(D1)に対する繊維径分散(S1)の百分率が3〜20%の範囲であり、
(ii)走査型電子顕微鏡での観察表面が実質的に平坦であり、かつ
(iii)透過型電子顕微鏡による繊維末端のグラフェンシート端面の全長が50nmを超え300nm未満である5本の繊維末端を観察したときに、式(1)
閉鎖率(%)=B/A ×100 (1)
(Aは繊維末端のグラフェンシート端面の全長(nm)、Bは端面がU字状に湾曲している部分の長さ(nm)を表す)
で表される閉鎖率の平均値(平均閉鎖率)が80%を超え100%未満であるピッチ系黒鉛化短繊維である。
That is, according to the present invention, (i) the average fiber diameter (D1) observed with an optical microscope is greater than 2 μm and less than or equal to 20 μm, and the percentage of fiber diameter dispersion (S1) with respect to the average fiber diameter (D1) is 3 to 20%. Range,
(Ii) The surface of the observation with a scanning electron microscope is substantially flat, and (iii) The total length of the end surface of the graphene sheet at the end of the fiber by a transmission electron microscope is more than 50 nm and less than 300 nm. When observed, equation (1)
Closure rate (%) = B / A × 100 (1)
(A represents the total length (nm) of the end surface of the graphene sheet at the fiber end, and B represents the length (nm) of the portion where the end surface is curved in a U-shape)
Is a pitch-based graphitized short fiber having an average value (average closing rate) of more than 80% and less than 100%.

また本発明は、該ピッチ系黒鉛化短繊維とマトリクスとを含み、短繊維の含有率が3〜60体積%である組成物である。   Moreover, this invention is a composition which contains this pitch-type graphitized short fiber and a matrix, and the content rate of a short fiber is 3-60 volume%.

さらに本発明は、該組成物よりなる、平板、電子部品用放熱板、電波遮蔽板、熱交換器などの成形体を包含する。   Furthermore, this invention includes molded objects, such as a flat plate, the heat sink for electronic components, a radio wave shielding board, a heat exchanger, which consist of this composition.

本発明のピッチ系黒鉛化短繊維は、グラフェンシートの端面が閉じている割合が高いので反応活性点が少ない。そのため、本発明のピッチ系黒鉛化短繊維は、熱硬化性樹脂と混練しても樹脂の硬化阻害を引き起こすことが少なく、短時間にコンポジットが得られる。また本発明のピッチ系黒鉛化短繊維は、グラフェンシート端面の閉鎖率が所定の範囲にあり、いわゆる層間化合物を作ることが出来る。また、本発明のピッチ系黒鉛化短繊維は、熱伝導性が高く、樹脂に少量添加しても優れた熱伝導性を発現させることが出来る。   Since the pitch-based graphitized short fibers of the present invention have a high ratio of the end face of the graphene sheet being closed, there are few reactive sites. Therefore, the pitch-based graphitized short fibers of the present invention hardly cause inhibition of resin curing even when kneaded with a thermosetting resin, and a composite can be obtained in a short time. In addition, the pitch-based graphitized short fibers of the present invention have a graphene sheet end face closing rate in a predetermined range, and can produce so-called interlayer compounds. The pitch-based graphitized short fibers of the present invention have high thermal conductivity, and can exhibit excellent thermal conductivity even when added in a small amount to the resin.

〈ピッチ系黒鉛化短繊維〉
(平均繊維径:D1)
本発明のピッチ系黒鉛化短繊維の光学顕微鏡で観測した平均繊維径(D1)は、2μmより大きく20μm以下、好ましくは5〜15μmであり、より好ましくは7〜13μmである。D1が2μmを下回る場合、マトリクスと複合する際にフィラーの本数が多くなるため、マトリクス/フィラー混合物の粘度が高くなり、成形が困難になるため好ましくない。一方、D1が20μmを超えると、マトリクスと複合する際にフィラーの本数が少なくなるため、フィラー同士が接触しにくくなり、複合材とした時に効果的な熱伝導を発揮しにくくなる。
<Pitch-based graphitized short fibers>
(Average fiber diameter: D1)
The average fiber diameter (D1) observed with an optical microscope of the pitch-based graphitized short fibers of the present invention is greater than 2 μm and not greater than 20 μm, preferably 5 to 15 μm, more preferably 7 to 13 μm. When D1 is less than 2 μm, the number of fillers increases when they are combined with the matrix, so that the viscosity of the matrix / filler mixture becomes high and molding becomes difficult, which is not preferable. On the other hand, when D1 exceeds 20 μm, the number of fillers is reduced when they are combined with the matrix, so that the fillers are less likely to come into contact with each other, and effective heat conduction is less likely to occur when a composite material is obtained.

(CV値)
本発明のピッチ系黒鉛化短繊維の光学顕微鏡で観測した平均繊維径(D1)に対する繊維径分散(S1)の百分率(CV値)は、3〜20%、好ましくは5〜15%である。CV値は、繊維径のバラツキの指標であり、値が小さいほど工程安定性が高く、製品のバラツキが小さいことを意味している。CV値が3%より小さいとき、繊維径は極めて揃っている。このため、繊維の間隙に入る大きさの小さな繊維の量が少なくなり、マトリクスと複合する際により密な充填状態を形成するのが困難となり、結果として高性能の複合材を得にくくなることがあるため好ましくない。一方、CV値が20%より大きい場合、マトリクスと複合する際に、分散性が悪くなり、均一な性能を有する複合材を得ることが困難になることがあるため好ましくない。CV値は、紡糸時の溶融したメソフェーズピッチの粘度を制御することで調整することが出来る。
(CV value)
The percentage (CV value) of the fiber diameter dispersion (S1) to the average fiber diameter (D1) observed with an optical microscope of the pitch-based graphitized short fibers of the present invention is 3 to 20%, preferably 5 to 15%. The CV value is an index of fiber diameter variation, and the smaller the value, the higher the process stability and the smaller the product variation. When the CV value is less than 3%, the fiber diameters are very uniform. For this reason, the amount of small-sized fibers entering the gaps between the fibers is reduced, and it becomes difficult to form a denser packed state when compounding with the matrix, resulting in difficulty in obtaining a high-performance composite material. This is not preferable. On the other hand, when the CV value is larger than 20%, dispersibility deteriorates when it is combined with a matrix, and it may be difficult to obtain a composite material having uniform performance. The CV value can be adjusted by controlling the viscosity of the melted mesophase pitch during spinning.

(表面凹凸)
本発明のピッチ系黒鉛化短繊維は、走査型電子顕微鏡での側面の観察表面が実質的に平坦であることを特徴とする。ここで、実質的に平坦であるとは、フィブリル構造のような激しい凹凸を側面に有しないことを意味している。表面に激しい凹凸のような欠陥が存在する場合には、マトリクス樹脂との混練に際して表面積の増大に伴う粘度の増大を引き起こし、成形性を悪化させる。このため、表面凹凸のような欠陥は、出来るだけ小さい状態が望ましい。より具体的には、走査型電子顕微鏡において1000倍で観察した像での観察視野に、凹凸のような欠陥が10箇所以下であることが好ましい。この様なピッチ系黒鉛化短繊維は、例えば粉砕処理を行った後に黒鉛化処理を実施することによって得ることができる。
(Surface unevenness)
The pitch-based graphitized short fiber of the present invention is characterized in that the observation surface on the side surface with a scanning electron microscope is substantially flat. Here, “substantially flat” means that the side surface does not have severe unevenness like a fibril structure. In the case where defects such as severe irregularities are present on the surface, an increase in the viscosity accompanying an increase in the surface area is caused at the time of kneading with the matrix resin, and the moldability is deteriorated. For this reason, it is desirable that defects such as surface irregularities be as small as possible. More specifically, it is preferable that there are 10 or less defects such as irregularities in the observation field of view in an image observed at 1000 times with a scanning electron microscope. Such pitch-based graphitized short fibers can be obtained, for example, by performing a graphitization process after a pulverization process.

(グラフェンシートの端面)
本発明のピッチ系黒鉛化短繊維は、透過型電子顕微鏡による繊維末端のグラフェンシート端面の全長が50nmを超え300nm未満である5本の繊維末端を観察したときに、式(1)で表される閉鎖率の平均値(平均閉鎖率)が80%を超え100%未満である。
閉鎖率(%)=B/A ×100 (1)
(Aは繊維末端のグラフェンシート端面の全長(nm)、Bは端面がU字状に湾曲している部分の長さ(nm)を表す)
閉鎖率は、繊維末端のグラフェンシート端面の全長(nm)に対する、端面がU字状に湾曲している部分の長さ(nm)の比で表される。図1に黒鉛化短繊維末端の模式図を示す。Aが繊維末端のグラフェンシート端面の全長を示し、Bは端面がU字状に湾曲している部分の長さ、すなわち端面が開いていてU字に湾曲していない部分を除いた部分の長さを示す。
(End face of graphene sheet)
The pitch-based graphitized short fiber of the present invention is represented by the formula (1) when the total length of the end surface of the graphene sheet at the end of the fiber is more than 50 nm and less than 300 nm by a transmission electron microscope. The average closing rate (average closing rate) exceeds 80% and is less than 100%.
Closure rate (%) = B / A × 100 (1)
(A represents the total length (nm) of the end surface of the graphene sheet at the fiber end, and B represents the length (nm) of the portion where the end surface is curved in a U-shape)
The closing rate is represented by the ratio of the length (nm) of the portion where the end surface is curved in a U shape to the total length (nm) of the end surface of the graphene sheet at the fiber end. FIG. 1 shows a schematic diagram of the graphitized short fiber ends. A shows the total length of the end surface of the graphene sheet at the fiber end, and B shows the length of the portion where the end surface is curved in a U shape, that is, the length of the portion excluding the portion where the end surface is open and not curved in the U shape It shows.

グラフェンシートの端面の平均閉鎖率が80%を超える場合、余分な官能基の発生や、形状に起因する電子の局在化が起こり難い。このため、ピッチ系黒鉛化短繊維に活性点が生じず、シリコーン樹脂やエポキシ樹脂などの熱硬化性樹脂との混練で、触媒活性点の低下による硬化阻害の抑制が可能となる。また、水などの吸着も低減でき、例えばポリエステルのような加水分解を伴う樹脂との混練においても、著しい湿熱耐久性能向上をもたらすことが出来る。平均閉鎖率が80%以下であると余分な官能基の発生や、形状に起因する電子の局在化を引き起こし、他材料との反応を促進する可能性があるため好ましくない。グラフェンシート端面の平均閉鎖率は好ましくは90%以上100%未満、更に好ましくは95%以上100%未満である。
グラフェンシート端面の平均閉鎖率が100%の場合、例えばグラフェンシートの層間に化合物を入れることが出来なくなり、所謂層間化合物を作ることが出来ない。このため、例えばリチウムイオン電池や水素貯蔵材料としての仕様が困難となり、炭素繊維の用途を限定してしまうため好ましくない。
When the average closing rate of the end face of the graphene sheet exceeds 80%, generation of extra functional groups and localization of electrons due to the shape are difficult to occur. For this reason, active sites do not occur in the pitch-based graphitized short fibers, and inhibition of curing due to a decrease in the catalytic activity points can be suppressed by kneading with a thermosetting resin such as a silicone resin or an epoxy resin. Moreover, adsorption | suction of water etc. can also be reduced, for example, also in kneading | mixing with resin accompanying hydrolysis like polyester, the remarkable heat-and-heat durability performance improvement can be brought about. An average closing rate of 80% or less is not preferable because it may cause generation of extra functional groups and localization of electrons due to the shape and promote reaction with other materials. The average closing rate of the graphene sheet end face is preferably 90% or more and less than 100%, more preferably 95% or more and less than 100%.
When the average closing rate of the end face of the graphene sheet is 100%, for example, it becomes impossible to put a compound between the layers of the graphene sheet, and so-called an interlayer compound cannot be made. For this reason, for example, specification as a lithium ion battery or a hydrogen storage material becomes difficult, and the use of carbon fiber is limited, which is not preferable.

閉鎖率は繊維末端のグラフェンシート端面の全長が50nmを超え300nm未満のときに好適に求めることができる。端面の全長が50nm未満の場合、繊維末端のグラフェンシートの端面像を400万倍以上に拡大する必要があり、極一部のデータ解釈となり、全体像の把握が困難となるため好ましくない。一方、端面の全長が300nmを超えた場合は、グラフェンシート端面のU字状湾曲構造の視認が困難となり、グラフェンシート端面の閉鎖率を導き出すことが出来ず好ましくない。全長のより好ましい範囲は60nm以上200nm以下である。
グラフェンシート端面構造は、黒鉛化の前に粉砕を実施するか、黒鉛化の後に粉砕を実施するかにより、大きく異なる。すなわち、黒鉛化後に粉砕処理を行った場合、黒鉛化で成長したグラフェンシートが切断破断され、グラフェンシート端面が開いた状態になり易い。一方、黒鉛化前に粉砕処理を行った場合、黒鉛の成長過程でグラフェンシート端面がU字上に湾曲した構造になり易い。このため、グラフェンシート端面の平均閉鎖率が80%を超えるようなピッチ系黒鉛化短繊維を得るためには、粉砕を行った後に黒鉛化処理することが好ましい。
平均閉鎖率が80%を超え100%未満のピッチ系黒鉛化短繊維は、紡糸ノズルを通過するピッチに特定の応力を加えること、及び粉砕を行った後に黒鉛化処理することで、好ましく得ることが出来る。
The closing rate can be suitably obtained when the total length of the end face of the graphene sheet at the fiber end is more than 50 nm and less than 300 nm. If the total length of the end face is less than 50 nm, it is necessary to enlarge the end face image of the graphene sheet at the end of the fiber to 4 million times or more, which is not preferable because it becomes a partial data interpretation and makes it difficult to grasp the entire image. On the other hand, when the total length of the end face exceeds 300 nm, it is difficult to visually recognize the U-shaped curved structure on the end face of the graphene sheet, and it is not preferable because the closing rate of the end face of the graphene sheet cannot be derived. A more preferable range of the total length is 60 nm or more and 200 nm or less.
The graphene sheet end face structure varies greatly depending on whether pulverization is performed before graphitization or pulverization is performed after graphitization. That is, when a pulverization process is performed after graphitization, the graphene sheet grown by graphitization is cut and broken, and the graphene sheet end face tends to be open. On the other hand, when the pulverization treatment is performed before graphitization, the graphene sheet end face tends to be curved in a U shape during the growth process of graphite. For this reason, in order to obtain a pitch-based graphitized short fiber having an average closing rate of the graphene sheet end face exceeding 80%, it is preferable to perform graphitization after pulverization.
Pitch-based graphitized short fibers having an average closing rate of more than 80% and less than 100% can be preferably obtained by applying a specific stress to the pitch passing through the spinning nozzle and graphitizing after grinding. I can do it.

(平均繊維長:L1)
ピッチ系黒鉛化短繊維は、一般的には平均繊維長1mm未満からなるミルドファイバーと平均繊維長1mm以上10mm未満からなるカットファイバーの2種類がある。ミルドファイバーの外観は粉状のため分散性に優れ、カットファイバーの外観は繊維状に近いため、繊維同士の接触が得られやすい特徴がある。
本発明のピッチ系黒鉛化短繊維は、ミルドファイバーに該当し、その平均繊維長(L1)は、10μm以上700μm以下であることが好ましい。ここで、平均繊維長は、個数平均繊維長であり、光学顕微鏡下で測長器を用い、複数の視野において所定本数を測定し、その平均値から求めることができる。L1は目的によって適した値に制御することが好ましいが、当該短繊維を熱伝導性材料として用いる場合、L1は10〜700μmの範囲が好ましい。L1が10μmより小さい場合、当該短繊維同士が接触しにくくなり、効果的な熱伝導が期待しにくくなるため好ましくない。一方、700μmより大きくなると、マトリクスと混合する際にマトリクス/短繊維混合物の粘度が高くなり、成形性が著しく低下する傾向があるため好ましくない。より好ましい範囲は、20〜300μmであり、更に好ましくは20〜250μmの範囲である。
(Average fiber length: L1)
There are generally two types of pitch-based graphitized short fibers: milled fibers having an average fiber length of less than 1 mm and cut fibers having an average fiber length of 1 mm or more and less than 10 mm. Since the appearance of the milled fiber is powdery, it is excellent in dispersibility, and the appearance of the cut fiber is close to the fiber shape.
The pitch-based graphitized short fibers of the present invention correspond to milled fibers, and the average fiber length (L1) is preferably 10 μm or more and 700 μm or less. Here, the average fiber length is a number average fiber length, and can be obtained from an average value obtained by measuring a predetermined number in a plurality of fields of view using a length measuring device under an optical microscope. L1 is preferably controlled to a value suitable for the purpose, but when the short fiber is used as a heat conductive material, L1 is preferably in the range of 10 to 700 μm. When L1 is smaller than 10 μm, the short fibers are hardly brought into contact with each other, and it is difficult to expect effective heat conduction. On the other hand, if it exceeds 700 μm, the viscosity of the matrix / short fiber mixture increases when mixed with the matrix, and the moldability tends to be remarkably lowered, which is not preferable. A more preferable range is 20 to 300 μm, and a more preferable range is 20 to 250 μm.

この様なピッチ系黒鉛化短繊維を得る手法として特に制限はないが、粉砕の条件、すなわちカッター等で粉砕する際の、カッターの回転速度、ボールミルの回転数、ジェットミルの気流速度、クラッシャーの衝突回数、粉砕装置中の滞留時間等を調節することで平均繊維長を制御することができる。また、粉砕後のピッチ系炭素短繊維から、篩等の分級操作を行って、短い繊維長または、長い繊維長のピッチ系炭素短繊維を除去することにより調整することもできる。
平均繊維径(D1)に対する平均繊維長(L1)の比(L1/D1)は1〜50の範囲であることが好ましい。L1/D1は平均繊維長にも依存するが、L1/D1が1より小さいときには、繊維形状に由来する効果、即ち当該短繊維同士の接触しやすさに由来する熱伝導が期待し難くなるため好ましくない。一方、L1/D1が50を超えると、マトリクスと混合する際にマトリクス/短繊維混合物の粘度が著しく高くなり、成形が困難になるため好ましくない。より好ましくは平均繊維長が20〜150μmの場合には、1.5〜20であり、平均繊維長が150〜500μmの場合には、10〜50である。
There is no particular limitation on the method for obtaining such pitch-based graphitized short fibers, but when pulverizing, that is, when pulverizing with a cutter, the rotational speed of the cutter, the rotational speed of the ball mill, the air velocity of the jet mill, The average fiber length can be controlled by adjusting the number of collisions, the residence time in the pulverizer, and the like. Moreover, it can also adjust by performing classification operation, such as a sieve, from the pitch-based carbon short fibers after pulverization to remove pitch-based carbon short fibers having a short fiber length or a long fiber length.
The ratio (L1 / D1) of the average fiber length (L1) to the average fiber diameter (D1) is preferably in the range of 1-50. L1 / D1 also depends on the average fiber length, but when L1 / D1 is smaller than 1, it is difficult to expect an effect derived from the fiber shape, that is, heat conduction derived from the ease of contact between the short fibers. It is not preferable. On the other hand, if L1 / D1 exceeds 50, the viscosity of the matrix / short fiber mixture becomes remarkably high when mixed with the matrix, which makes it difficult to mold. More preferably, it is 1.5 to 20 when the average fiber length is 20 to 150 μm, and 10 to 50 when the average fiber length is 150 to 500 μm.

(真密度)
本発明のピッチ系黒鉛化短繊維の真密度は、2.15〜2.30g/ccの範囲であることが好ましい。ピッチ系黒鉛化短繊維の真密度は、黒鉛化度が上がるにつれて増加する。より好ましくは、2.18〜2.30g/ccである。
(True density)
The true density of the pitch-based graphitized short fibers of the present invention is preferably in the range of 2.15 to 2.30 g / cc. The true density of pitch-based graphitized short fibers increases as the degree of graphitization increases. More preferably, it is 2.18-2.30 g / cc.

(熱伝導率)
また、ピッチ系黒鉛化短繊維の繊維軸方向の熱伝導率は400W/(m・K)以上であることが好ましい。さらに好ましくは500W/(m・K)以上である。この様なピッチ系黒鉛化短繊維を得る手法として特に制限は無いが、具体的には黒鉛化温度を高めることや黒鉛化時間を長くとることにより達成できる。
(Thermal conductivity)
The thermal conductivity in the fiber axis direction of the pitch-based graphitized short fibers is preferably 400 W / (m · K) or more. More preferably, it is 500 W / (m · K) or more. The method for obtaining such pitch-based graphitized short fibers is not particularly limited, but specifically, it can be achieved by increasing the graphitization temperature or increasing the graphitization time.

(結晶の大きさ)
本発明のピッチ系黒鉛化短繊維は、黒鉛結晶からなり、六角網面の厚み方向に由来する結晶の大きさが30nm以上であり、六角網面の成長方向に由来する結晶の大きさが80nm以上であることが好ましい。結晶の大きさは、六角網面の厚み方向、六角網面の成長方向のいずれも、黒鉛化度に対応するものであり、熱物性を発現するためには、一定の大きさ以上が必要である。六角網面の厚み方向に由来する結晶の大きさ及び六角網面の成長方向の結晶の大きさは、X線回折法で求めることができる。測定手法は集中法とし、解析手法としては、学振法が好適に用いられる。六角網面の厚み方向の結晶の大きさは、(002)面からの回折線を用いて求め、六角網面の成長方向の結晶の大きさは、(110)面からの回折線を用いてそれぞれ求めることができる。この様なピッチ系黒鉛化短繊維を得る手法として特に制限は無いが、具体的には黒鉛化温度を高めることや黒鉛化時間を長くとることにより達成できる。
(Crystal size)
The pitch-based graphitized short fibers of the present invention are composed of graphite crystals, the crystal size derived from the thickness direction of the hexagonal network surface is 30 nm or more, and the crystal size derived from the growth direction of the hexagonal network surface is 80 nm. The above is preferable. The crystal size corresponds to the degree of graphitization in both the thickness direction of the hexagonal mesh surface and the growth direction of the hexagonal mesh surface, and a certain size or more is required to exhibit thermophysical properties. is there. The crystal size derived from the thickness direction of the hexagonal mesh surface and the crystal size in the growth direction of the hexagonal mesh surface can be determined by an X-ray diffraction method. The measurement method is a concentration method, and the Gakushin method is preferably used as an analysis method. The size of the crystal in the thickness direction of the hexagonal mesh plane is obtained using a diffraction line from the (002) plane, and the size of the crystal in the growth direction of the hexagonal mesh plane is obtained using a diffraction line from the (110) plane. Each can be requested. The method for obtaining such pitch-based graphitized short fibers is not particularly limited, but specifically, it can be achieved by increasing the graphitization temperature or increasing the graphitization time.

〈ピッチ系黒鉛化短繊維の製造〉
次に、本発明のピッチ系黒鉛化短繊維の製造方法について説明する。本発明で用いられるピッチ系黒鉛化短繊維の原料としては、例えば、ナフタレンやフェナントレンといった縮合多環炭化水素化合物、石油系ピッチや石炭系ピッチといった縮合複素環化合物等が挙げられる。その中でもナフタレンやフェナントレンといった縮合多環炭化水素化合物が好ましく、特にメソフェーズピッチが好ましい。メソフェーズピッチのメソフェーズ率としては少なくとも90%以上、より好ましくは95%以上、更に好ましくは99%以上である。なお、メソフェーズピッチのメソフェーズ率は、溶融状態にあるピッチを偏光顕微鏡で観察することで確認出来る。
<Manufacture of pitch-based graphitized short fibers>
Next, the manufacturing method of the pitch-based graphitized short fiber of the present invention will be described. Examples of the raw material for pitch-based graphitized short fibers used in the present invention include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, condensed heterocyclic compounds such as petroleum-based pitch and coal-based pitch, and the like. Among these, condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene are preferable, and mesophase pitch is particularly preferable. The mesophase ratio of the mesophase pitch is at least 90% or more, more preferably 95% or more, and further preferably 99% or more. The mesophase ratio of the mesophase pitch can be confirmed by observing the pitch in the molten state with a polarizing microscope.

原料ピッチの軟化点は230℃以上340℃以下が好ましい。不融化処理は、軟化点よりも低温で処理する必要がある。このため、軟化点が230℃より低いと、少なくとも軟化点未満の低い温度で不融化処理する必要があり、結果として不融化に長時間を要するため好ましくない。一方、軟化点が340℃を超えると、ピッチが熱分解を引き起こしやすくなり、発生したガスで糸に気泡が発生するなどの問題を生じるため好ましくない。軟化点のより好ましい範囲は250℃以上320℃以下、更に好ましくは260℃以上310℃以下である。原料ピッチの軟化点はメトラー法により求めることが出来る。原料ピッチは、二種以上を適宜組み合わせて用いてもよい。組み合わせる原料ピッチのメソフェーズ率は少なくとも90%以上であり、軟化点が230℃以上340℃以下であることが好ましい。   The softening point of the raw material pitch is preferably 230 ° C. or higher and 340 ° C. or lower. The infusibilization treatment needs to be performed at a temperature lower than the softening point. For this reason, when the softening point is lower than 230 ° C., it is necessary to perform the infusibilization treatment at a temperature at least lower than the softening point. On the other hand, if the softening point exceeds 340 ° C., the pitch is liable to cause thermal decomposition, and the generated gas causes problems such as generation of bubbles in the yarn. A more preferable range of the softening point is 250 ° C. or higher and 320 ° C. or lower, and more preferably 260 ° C. or higher and 310 ° C. or lower. The softening point of the raw material pitch can be obtained by the Mettler method. Two or more raw material pitches may be used in appropriate combination. The mesophase ratio of the raw material pitch to be combined is preferably at least 90% or more, and the softening point is preferably 230 ° C. or higher and 340 ° C. or lower.

メソフェーズピッチは溶融法により紡糸され、その後、不融化、炭化、粉砕、黒鉛化によってピッチ系黒鉛化短繊維となる。場合によっては、粉砕の後、分級工程を入れることもある。本発明のピッチ系黒鉛化短繊維は、透過型電子顕微鏡による繊維末端観察において、グラフェンシートの端面の閉鎖率が80%を超え100%未満であることを特徴とする。上述のとおり、このようなピッチ系黒鉛化短繊維は、紡糸ノズルを通過するピッチに特定の応力を加えること、及び粉砕を行った後に黒鉛化処理することで、好ましく得ることが出来る。紡糸ノズルを通過するピッチに特定の応力を加えることが出来なかった場合、あるいは黒鉛化後に粉砕処理を行うと、黒鉛化で成長したグラフェンシートが切断破断され、グラフェンシート端面が開いた状態になる。これに対して、黒鉛化前に粉砕処理を行うと、グラフェンシート端面がU字上に湾曲した部分が端面全長中の80%を超え100%未満である所望の黒鉛化短繊維となる。
以下各工程の好ましい態様について説明する。
The mesophase pitch is spun by a melting method, and then becomes a pitch-based graphitized short fiber by infusibilization, carbonization, pulverization, and graphitization. In some cases, a classification step may be added after the pulverization. The pitch-based graphitized short fibers of the present invention are characterized in that the closing rate of the end face of the graphene sheet is more than 80% and less than 100% in fiber end observation with a transmission electron microscope. As described above, such pitch-based graphitized short fibers can be preferably obtained by applying a specific stress to the pitch passing through the spinning nozzle and by performing graphitization after pulverization. If a specific stress cannot be applied to the pitch passing through the spinning nozzle, or if pulverization is performed after graphitization, the graphene sheet grown by graphitization is cut and broken, and the graphene sheet end face opens. . On the other hand, when the pulverization treatment is performed before graphitization, a desired graphitized short fiber in which the end face of the graphene sheet is curved in a U shape is more than 80% and less than 100% in the entire length of the end face.
Hereinafter, preferred embodiments of each step will be described.

(紡糸)
紡糸は、いわゆる溶融紡糸法で行なうことができる。具体的には、口金から吐出したメソフェーズピッチをワインダーで引き取る通常の紡糸延伸法、熱風をアトマイジング源として用いるメルトブロー法、遠心力を利用してメソフェーズピッチを引き取る遠心紡糸法などが挙げられる。中でも、生産性の高さなどの理由からメルトブロー法を用いることが望ましい。このため、以下、メルトブロー法について説明する。
(spinning)
Spinning can be performed by a so-called melt spinning method. Specific examples include a normal spinning drawing method in which a mesophase pitch discharged from a die is drawn with a winder, a melt blow method using hot air as an atomizing source, and a centrifugal spinning method in which a mesophase pitch is drawn using centrifugal force. Among them, it is desirable to use the melt blow method for reasons such as high productivity. For this reason, the melt blow method will be described below.

ピッチ系炭素繊維前駆体を形成する紡糸ノズルの形状はどのようなものであっても良い。通常、真円状のものが使用されるが、適時、楕円などの異型形状のノズルを用いても何ら問題ない。ノズル孔の長さ(LN)と孔径(DN)の比(LN/DN)としては、3.1〜20の範囲が好ましい。LN/DNが20を超えると、ノズルを通過するメソフェーズピッチに強いせん断力が付与され、繊維断面にラジアル構造が発現する。ラジアル構造の発現は、黒鉛化の過程で繊維断面に割れを生じさせることがあり、機械特性の低下を引き起こすことがあるため好ましくない。一方、LN/DNが3.1未満では、原料ピッチにせん断を付与することが出来ず、結果として黒鉛の配向が低いピッチ系炭素繊維前駆体となる。このため、黒鉛化しても黒鉛化度を十分に上げることが出来ず、熱伝導性を向上させ難く好ましくない。機械強度と熱伝導性の両立を達成するには、メソフェーズピッチに適度のせん断を付与する必要がある。このため、ノズル孔の長さ(LN)と孔径(DN)の比(LN/DN)は3.1〜20の範囲が好ましく、更には3.5〜12の範囲が特に好ましい。   The spinning nozzle for forming the pitch-based carbon fiber precursor may have any shape. Usually, a perfect circle is used, but there is no problem even if a nozzle having an irregular shape such as an ellipse is used at appropriate times. The ratio of the nozzle hole length (LN) to the hole diameter (DN) (LN / DN) is preferably in the range of 3.1 to 20. When LN / DN exceeds 20, a strong shearing force is imparted to the mesophase pitch passing through the nozzle, and a radial structure appears in the fiber cross section. The expression of the radial structure is not preferable because it may cause a crack in the fiber cross-section during the graphitization process and may cause a decrease in mechanical properties. On the other hand, if LN / DN is less than 3.1, shearing cannot be imparted to the raw material pitch, resulting in a pitch-based carbon fiber precursor with low graphite orientation. For this reason, even when graphitized, the degree of graphitization cannot be sufficiently increased, and it is difficult to improve the thermal conductivity. In order to achieve both mechanical strength and thermal conductivity, it is necessary to apply appropriate shear to the mesophase pitch. For this reason, the ratio (LN / DN) of the nozzle hole length (LN) to the hole diameter (DN) is preferably in the range of 3.1 to 20, and more preferably in the range of 3.5 to 12.

紡糸時のノズルの温度、メソフェーズピッチがノズルを通過する際のせん断速度、ノズルからブローされる風量、風の温度等についても特に制約はなく、安定した紡糸状態が維持できる条件、即ち、メソフェーズピッチのノズル孔での溶融粘度が2〜40Pa・sの範囲が好ましい。
ノズルを通過するメソフェーズピッチの溶融粘度が2Pa・s未満の場合、溶融粘度が低すぎて糸形状を維持することが出来ず好ましくない。一方、メソフェーズピッチの溶融粘度が40Pa・sを超える場合、メソフェーズピッチに強いせん断力が付与され、繊維断面にラジアル構造を形成するため好ましくない。メソフェーズピッチに付与するせん断力を適切な範囲にせしめ、かつ繊維形状を維持するためには、ノズルを通過するメソフェーズピッチの溶融粘度を制御する必要がある。このため、メソフェーズピッチの溶融粘度を2〜40Pa・sの範囲にするのが好ましく、更には3〜30Pa・sの範囲にすることが好ましく、5〜25Pa・sの範囲にすることが更に好ましい。
There are no particular restrictions on the temperature of the nozzle during spinning, the shear rate when the mesophase pitch passes through the nozzle, the amount of air blown from the nozzle, the temperature of the wind, etc., and the conditions under which a stable spinning state can be maintained, that is, the mesophase pitch The melt viscosity at the nozzle holes is preferably in the range of 2 to 40 Pa · s.
When the melt viscosity of the mesophase pitch passing through the nozzle is less than 2 Pa · s, the melt viscosity is too low to maintain the yarn shape, which is not preferable. On the other hand, when the melt viscosity of the mesophase pitch exceeds 40 Pa · s, a strong shearing force is applied to the mesophase pitch and a radial structure is formed in the fiber cross section, which is not preferable. In order to keep the shearing force applied to the mesophase pitch within an appropriate range and maintain the fiber shape, it is necessary to control the melt viscosity of the mesophase pitch passing through the nozzle. Therefore, the melt viscosity of the mesophase pitch is preferably in the range of 2 to 40 Pa · s, more preferably in the range of 3 to 30 Pa · s, and further preferably in the range of 5 to 25 Pa · s. .

紡糸ノズルを通過するピッチに加えられる応力は、紡糸ノズルを通過するピッチの溶融粘度とノズルを通過するピッチのせん断速度の積によって決定される。
紡糸ノズルを通過するピッチの溶融粘度は、例えばキャピラリーレオメータなどの粘度測定装置により決定することができる。
ピッチのせん断速度は、紡糸ノズルを通過するピッチの流速とノズル孔の孔径から以下の式により算出することが出来る。
γ=8×V/DN
(γ:せん断速度、V:キャピラリー内のピッチの流速(m/s)、DN:キャピラリーの孔径(m))
本発明の平均閉鎖率が80%を超え100%未満のピッチ系黒鉛化短繊維を得るには、前述のとおり紡糸ノズルを通過するピッチの応力を所定の値に制御する方法が好ましく挙げられる。応力の好ましい範囲は30〜200kPa、より好ましい範囲は50〜150kPaである。
The stress applied to the pitch passing through the spinning nozzle is determined by the product of the melt viscosity of the pitch passing through the spinning nozzle and the shear rate of the pitch passing through the nozzle.
The melt viscosity of the pitch passing through the spinning nozzle can be determined by a viscosity measuring device such as a capillary rheometer.
The pitch shear rate can be calculated by the following equation from the flow velocity of the pitch passing through the spinning nozzle and the hole diameter of the nozzle hole.
γ = 8 × V / DN
(Γ: shear rate, V: flow velocity of pitch in capillary (m / s), DN: pore diameter of capillary (m))
In order to obtain pitch-based graphitized short fibers having an average closing rate of more than 80% and less than 100% according to the present invention, a method of controlling the stress of the pitch passing through the spinning nozzle to a predetermined value as described above is preferable. A preferable range of stress is 30 to 200 kPa, and a more preferable range is 50 to 150 kPa.

紡糸ノズルを通過するピッチの応力を所定の値に制御する方法としては、紡糸ノズルを通過するピッチの溶融粘度が2〜40Pa・sの範囲であり、ノズルを通過するピッチのせん断速度が3000〜20000s−1の範囲とする条件を選択することが好ましく挙げられる。
ノズルを通過するピッチのせん断速度が3000s−1未満であると、紡糸ノズルを通過するピッチに十分応力を加えることが出来ず、配向の低いピッチ系炭素繊維前駆体となる。このため、黒鉛化しても黒鉛化度を十分に上げることが出来ず、熱伝導性を向上させ難く好ましくない。また、配向性の低いピッチ系炭素繊維前駆体からは、高い黒鉛化性を達成することが出来ず、繊維末端にグラフェンシートの発現が認められず、結果としてグラフェンシート端面を閉じることが困難となり、得られるピッチ系黒鉛化短繊維の平均閉鎖率は80%未満となる。
As a method for controlling the stress of the pitch passing through the spinning nozzle to a predetermined value, the melt viscosity of the pitch passing through the spinning nozzle is in the range of 2 to 40 Pa · s, and the shear rate of the pitch passing through the nozzle is 3000 to 3000 It is preferable to select conditions that are in the range of 20000 s −1 .
If the shear rate of the pitch passing through the nozzle is less than 3000 s −1 , sufficient stress cannot be applied to the pitch passing through the spinning nozzle, resulting in a pitch-based carbon fiber precursor with low orientation. For this reason, even when graphitized, the degree of graphitization cannot be sufficiently increased, and it is difficult to improve thermal conductivity, which is not preferable. In addition, pitch-based carbon fiber precursors with low orientation cannot achieve high graphitization, and no graphene sheet is observed at the fiber ends, resulting in difficulty in closing the graphene sheet end face. The average closing rate of the obtained pitch-based graphitized short fibers is less than 80%.

一方、せん断速度が20000s−1を超えると、ノズルを通過するメソフェーズピッチに強いせん断力が付与され、配向性の高いピッチ系炭素繊維前駆体が得られる。このため、繊維末端のグラフェンシート発現が顕著となり、結果としてグラフェンシート端面が閉じ易くなり、得られるピッチ系黒鉛化短繊維の平均閉鎖率は100%となる。せん断速度が20000s−1を超え配向性の高いピッチ系炭素繊維前駆体を経る場合は、繊維断面にラジアル構造が発現するため、黒鉛化の過程で繊維断面に割れを生じさせることがあり、機械特性の低下を引き起こすことがあるため好ましくない。ノズルを通過するピッチのせん断速度のより好ましい範囲は、5000〜13000s−1の範囲である。 On the other hand, when the shear rate exceeds 20000 s −1 , a strong shear force is applied to the mesophase pitch passing through the nozzle, and a pitch-based carbon fiber precursor with high orientation is obtained. For this reason, the graphene sheet expression at the end of the fiber becomes remarkable, and as a result, the end face of the graphene sheet becomes easy to close, and the average closing rate of the obtained pitch-based graphitized short fibers becomes 100%. When the shear rate exceeds 20000 s −1 and a highly oriented pitch-based carbon fiber precursor is used, a radial structure appears in the fiber cross section, which may cause cracks in the fiber cross section during the graphitization process. Since it may cause deterioration of characteristics, it is not preferable. A more preferable range of the shear rate of the pitch passing through the nozzle is a range of 5000 to 13000 s −1 .

本発明のピッチ系黒鉛化短繊維は、平均繊維径(D1)が2μmより大きく20μm以下であることを特徴とするが、ピッチ系黒鉛化短繊維の平均繊維径の制御は、ノズルの孔径を変更する、あるいはノズルからの原料ピッチの吐出量を変更する、あるいはドラフト比を変更することで調整可能である。ドラフト比の変更は、100〜400℃に加温された毎分100〜20000mの線速度のガスを細化点近傍に吹き付けることによって達成することができる。吹き付けるガスに特に制限は無いが、コストパフォーマンスと安全性の面から空気が望ましい。なお、ピッチ系炭素繊維前駆体は、金網ベルト上に捕集され連続的なマット状にされた後、さらにクロスラップされることで一定の目付のウェブとしても良い。その際、ベルト搬送速度により任意の目付量に調整できるが、必要に応じ、クロスラップ等の方法により積層させてもよい。ピッチ系炭素繊維前駆体ウェブの目付量は生産性及び工程安定性を考慮して、150〜1000g/mが好ましい。 The pitch-based graphitized short fibers of the present invention are characterized in that the average fiber diameter (D1) is greater than 2 μm and not more than 20 μm. Adjustment is possible by changing, changing the discharge amount of the raw material pitch from the nozzle, or changing the draft ratio. The draft ratio can be changed by blowing a gas having a linear velocity of 100 to 20000 m / minute heated to 100 to 400 ° C. in the vicinity of the refinement point. There is no particular restriction on the gas to be blown, but air is desirable from the viewpoint of cost performance and safety. The pitch-based carbon fiber precursor may be collected on a wire mesh belt, formed into a continuous mat, and then cross-wrapped to obtain a constant basis weight web. At that time, the weight per unit area can be adjusted according to the belt conveyance speed, but if necessary, it may be laminated by a method such as cross wrapping. The basis weight of the pitch-based carbon fiber precursor web is preferably 150 to 1000 g / m 2 in consideration of productivity and process stability.

(不融化)
上記の方法で得られたピッチ系炭素繊維前駆体ウェブは、公知の方法で不融化処理し、ピッチ系不融化繊維ウェブにする。不融化は、空気、或いはオゾン、二酸化窒素、窒素、酸素、ヨウ素、臭素を空気に添加したガスを用いた酸化性雰囲気下で実施できるが、安全性、利便性を考慮すると空気中で実施することが望ましい。また、バッチ処理、連続処理のどちらでも処理可能であるが、生産性を考慮すると連続処理が望ましい。不融化処理は150〜350℃の温度で、一定時間の熱処理を付与することで達成される。より好ましい温度範囲は、160〜340℃である。昇温速度は1〜10℃/分が好適に用いられ、連続処理の場合は任意の温度に設定した複数の反応室を順次通過させることで、上記昇温速度を達成できる。昇温速度のより好ましい範囲は、生産性及び工程安定性を考慮して、3〜9℃/分である。
(Infusibilization)
The pitch-based carbon fiber precursor web obtained by the above method is infusibilized by a known method to form a pitch-based infusible fiber web. Infusibilization can be performed in air or in an oxidizing atmosphere using a gas in which ozone, nitrogen dioxide, nitrogen, oxygen, iodine, or bromine is added to air, but in consideration of safety and convenience, it is performed in air. It is desirable. Further, both batch processing and continuous processing can be performed, but continuous processing is desirable in consideration of productivity. The infusibilization treatment is achieved by applying a heat treatment for a predetermined time at a temperature of 150 to 350 ° C. A more preferable temperature range is 160 to 340 ° C. A heating rate of 1 to 10 ° C./min is preferably used. In the case of continuous treatment, the above heating rate can be achieved by sequentially passing through a plurality of reaction chambers set at arbitrary temperatures. A more preferable range of the heating rate is 3 to 9 ° C./min in consideration of productivity and process stability.

(炭化処理)
上記方法で得られたピッチ系不融化繊維ウェブは、600〜2000℃の温度で、真空中、或いは窒素、アルゴン、クリプトン等の不活性ガスを用いた非酸化性雰囲気中で炭化処理され、ピッチ系炭素繊維ウェブになる。炭化処理は、コスト面を考慮して、常圧かつ窒素雰囲気下での処理が望ましい。また、バッチ処理、連続処理のどちらでも処理可能であるが、生産性を考慮すれば連続処理が望ましい。
(Carbonization treatment)
The pitch-based infusible fiber web obtained by the above method is carbonized at a temperature of 600 to 2000 ° C. in a vacuum or in a non-oxidizing atmosphere using an inert gas such as nitrogen, argon or krypton. Become a carbon fiber web. Carbonization treatment is preferably performed at normal pressure and in a nitrogen atmosphere in consideration of cost. Further, both batch processing and continuous processing can be performed, but continuous processing is desirable in consideration of productivity.

(粉砕)
ピッチ系黒鉛化短繊維の製造において、炭化処理が終わった後のピッチ系炭素繊維ウェブを粉砕することが最大のポイントとなる。炭化処理されたピッチ系炭素繊維ウェブは、所望の繊維長にするために、切断、破砕・粉砕等の処理が実施される。また、場合によっては、分級処理が実施される。処理方式は所望の繊維長に応じて選定されるが、切断にはギロチン式、1軸、2軸及び多軸回転式等のカッターが好適に使用される。破砕、粉砕には衝撃作用を利用したハンマ式、ピン式、ボール式、ビーズ式及びロッド式、粒子同士の衝突を利用した高速回転式、圧縮・引裂き作用を利用したロール式、コーン式及びスクリュー式等の破砕機・粉砕機等が好適に使用される。所望の繊維長を得るために、切断と破砕・粉砕を多種複数機で構成してもよい。処理雰囲気は湿式、乾式のどちらでもよい。分級処理には、振動篩い式、遠心分離式、慣性力式、濾過式等の分級装置等が好適に使用される。所望の繊維長は、機種選定のみならず、ロータ・回転刃等の回転数、供給量、刃間クリアランス、系内滞留時間等を制御することによっても得ることができる。また、分級処理を用いる場合には、所望の繊維長は篩い網孔径等を調整することによっても得ることができる。
(Pulverization)
In the production of pitch-based graphitized short fibers, the most important point is to pulverize the pitch-based carbon fiber web after carbonization. The carbonized pitch-based carbon fiber web is subjected to processing such as cutting, crushing and pulverization in order to obtain a desired fiber length. In some cases, classification processing is performed. The treatment method is selected according to the desired fiber length, but a guillotine type, uniaxial, biaxial, and multiaxial rotary type cutter is preferably used for cutting. Hammer type, pin type, ball type, bead type and rod type using impact action for crushing and crushing, high speed rotation type using collision between particles, roll type using compression / tearing action, cone type and screw A crusher, a pulverizer, or the like of a formula is preferably used. In order to obtain a desired fiber length, cutting, crushing and pulverization may be configured by a plurality of machines. The treatment atmosphere may be either wet or dry. For the classification treatment, a classification device such as a vibration sieve type, a centrifugal separation type, an inertial force type, and a filtration type is preferably used. The desired fiber length can be obtained not only by selecting a model, but also by controlling the number of revolutions of the rotor / rotating blade, supply amount, clearance between blades, residence time in the system, and the like. Moreover, when using a classification process, desired fiber length can be obtained also by adjusting a sieve mesh hole diameter.

(黒鉛化)
上記の切断、破砕・粉砕処理、場合によっては分級処理を併用して作成したピッチ系炭素短繊維は、2000〜3500℃に加熱し黒鉛化して最終的なピッチ系黒鉛化短繊維とする。黒鉛化は、アチソン炉、電気炉等にて実施され、真空中、或いは窒素、アルゴン、クリプトン等の不活性ガスを用いた非酸化性雰囲気下等で実施される。なお、本発明では、一連の製造過程のいずれかにおいて、サイジング等の表面処理を施しても良い。
(Graphitization)
The pitch-based carbon short fibers prepared by using the above-described cutting, crushing / pulverizing treatment, and, in some cases, classification treatment, are heated to 2000-3500 ° C. and graphitized to obtain the final pitch-based graphitized short fibers. Graphitization is performed in an Atchison furnace, an electric furnace, or the like, and is performed in a vacuum or in a non-oxidizing atmosphere using an inert gas such as nitrogen, argon, or krypton. In the present invention, surface treatment such as sizing may be performed in any of a series of manufacturing processes.

〈組成物〉
本発明は、本発明のピッチ系黒鉛化短繊維とマトリクスとを含み、該ピッチ系黒鉛化短繊維の含有率が3〜60体積%、好ましくは10〜50体積%である組成物を包含する。ピッチ系黒鉛化短繊維の含有量が、3体積%より少ない添加量では、熱伝導性を十分に確保することが難しい。一方、60体積%より多く添加するのは困難である。
マトリクスは熱可塑性樹脂及び/又は熱硬化性樹脂であることが好ましい。さらに複合成形体に所望の物性を発現させるために熱可塑性樹脂と熱硬化性樹脂を適宜混合して用いることもできる。
<Composition>
The present invention includes a composition comprising the pitch-based graphitized short fibers of the present invention and a matrix, wherein the content of the pitch-based graphitized short fibers is 3 to 60% by volume, preferably 10 to 50% by volume. . When the content of pitch-based graphitized short fibers is less than 3% by volume, it is difficult to ensure sufficient thermal conductivity. On the other hand, it is difficult to add more than 60% by volume.
The matrix is preferably a thermoplastic resin and / or a thermosetting resin. Furthermore, a thermoplastic resin and a thermosetting resin can be appropriately mixed and used in order to develop desired physical properties in the composite molded body.

マトリクスに用いることができる熱可塑性樹脂としてポリオレフィン類及びその共重合体(ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、エチレン−酢酸ビニル共重合体、エチレン−プロピレン共重合体等のエチレン−α−オレフィン共重合体など)、ポリメタクリル酸類及びその共重合体(ポリメタクリル酸メチル等のポリメタクリル酸エステルなど)、ポリアクリル酸類及びその共重合体、ポリアセタール類及びその共重合体、フッ素樹脂類及びその共重合体(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、ポリエステル類及びその共重合体(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン2,6ナフタレート、液晶性ポリマーなど)、ポリスチレン類及びその共重合体(スチレン−アクリロニトリル共重合体、ABS樹脂など)、ポリアクリロニトリル類及びその共重合体、ポリフェニレンエーテル(PPE)類及びその共重合体(変性PPE樹脂なども含む)、脂肪族ポリアミド類及びその共重合体、芳香族ポリアミド類及びその共重合体、ポリイミド類及びその共重合体、ポリアミドイミド類及びその共重合体、ポリカーボネート類及びその共重合体、ポリフェニレンスルフィド類及びその共重合体、ポリサルホン類及びその共重合体、ポリエーテルサルホン類及びその共重合体、ポリエーテルニトリル類及びその共重合体、ポリエーテルケトン類及びその共重合体、ポリエーテルエーテルケトン類及びその共重合体、ポリケトン類及びその共重合体、シリコーンオイル等が挙げられる。   Polyolefins and their copolymers (polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ethylene as thermoplastic resins that can be used in the matrix -Ethylene-α-olefin copolymer such as propylene copolymer), polymethacrylic acid and its copolymer (polymethacrylic acid ester such as polymethyl methacrylate), polyacrylic acid and its copolymer, polyacetal And copolymers thereof, fluororesins and copolymers thereof (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyesters and copolymers thereof (polyethylene terephthalate, polybutylene terephthalate, polyethylene 2,6 naphtha) Liquid crystal polymers), polystyrenes and copolymers thereof (styrene-acrylonitrile copolymers, ABS resins, etc.), polyacrylonitriles and copolymers thereof, polyphenylene ethers (PPE) and copolymers thereof ( Modified PPE resins), aliphatic polyamides and copolymers thereof, aromatic polyamides and copolymers thereof, polyimides and copolymers thereof, polyamideimides and copolymers thereof, polycarbonates and copolymers thereof Polymers, polyphenylene sulfides and copolymers thereof, polysulfones and copolymers thereof, polyether sulfones and copolymers thereof, polyether nitriles and copolymers thereof, polyether ketones and copolymers thereof , Polyether ether ketones and copolymers thereof, polyketones and These copolymers, silicone oils and the like.

なかでも熱可塑性樹脂として、ポリカーボネート類及びその共重合体、ポリエステル類及びその共重合体、ポリアミド類及びその共重合体、ポリオレフィン類及びその共重合体、ポリエーテルケトン類及びその共重合体、ポリフェニレンスルフィド類及びその共重合体、およびABS樹脂類、シリコーンオイルからなる群より選ばれる少なくとも一種の樹脂が好ましく挙げられる。これらから一種を単独で用いても、二種以上を適宜組み合わせて用いても良い。また、これらの熱可塑性樹脂に難燃剤等の添加剤や他の機能性フィラーなどが混入していても良い。
また、熱硬化性樹脂としては、エポキシ類、アクリル類、ウレタン類、シリコーン類、フェノール類、イミド類、熱硬化型変性PPE類、および熱硬化型PPE類、ポリブタジエン系ゴム及びその共重合体、アクリル系ゴム及びその共重合体、シリコーン系ゴム及びその共重合体、天然ゴムなどが挙げられ、これらから一種を単独で用いても、二種以上を適宜組み合わせて用いても良い。また、これらの熱硬化性樹脂に難燃剤等の添加剤や機能性フィラーなどが混入していても良い。
Among these, as thermoplastic resins, polycarbonates and copolymers thereof, polyesters and copolymers thereof, polyamides and copolymers thereof, polyolefins and copolymers thereof, polyether ketones and copolymers thereof, polyphenylene Preferable examples include at least one resin selected from the group consisting of sulfides and copolymers thereof, ABS resins, and silicone oil. One of these may be used alone, or two or more may be used in appropriate combination. Moreover, an additive such as a flame retardant or other functional filler may be mixed in these thermoplastic resins.
Examples of the thermosetting resin include epoxies, acrylics, urethanes, silicones, phenols, imides, thermosetting modified PPEs, thermosetting PPEs, polybutadiene rubbers and copolymers thereof, Examples thereof include acrylic rubber and copolymers thereof, silicone rubber and copolymers thereof, natural rubber, and the like. One of these may be used alone, or two or more may be used in appropriate combination. Further, an additive such as a flame retardant or a functional filler may be mixed in these thermosetting resins.

本発明の組成物は、ピッチ系黒鉛化短繊維とマトリクスとを混合して作製するが、混合の際には、ニーダー、各種ミキサー、ブレンダー、ロール、押出機、ミリング機、自公転式の撹拌機などの混合装置又は混練装置が好適に用いられる。そして、複合材料及び/または複合成形体は、射出成形法、プレス成形法、カレンダー成形法、ロール成形法、押出成形法、粉体成形法、注型成形法、ブロー成形法等の成形方法にて、成形することが可能である。成形条件は、成形手法とマトリクスに依存し、熱可塑性樹脂の場合は、当該樹脂の溶融粘度より温度を上げた状態で成形を実施する。マトリクスが熱硬化性樹脂の場合は、適切な型において、当該樹脂の硬化温度を付与するといった方法を挙げることができる。   The composition of the present invention is prepared by mixing pitch-based graphitized short fibers and a matrix. During mixing, kneaders, various mixers, blenders, rolls, extruders, milling machines, self-revolving stirring A mixing device such as a machine or a kneading device is preferably used. Then, the composite material and / or the composite molded body is subjected to molding methods such as injection molding, press molding, calendar molding, roll molding, extrusion molding, powder molding, cast molding, and blow molding. And can be molded. The molding conditions depend on the molding method and the matrix. In the case of a thermoplastic resin, the molding is performed in a state where the temperature is higher than the melt viscosity of the resin. In the case where the matrix is a thermosetting resin, a method of applying a curing temperature of the resin in an appropriate mold can be exemplified.

〈成形体〉
本発明の組成物を平板状に成形した成形体は熱伝導率が2W/(m・K)以上であることが好ましい。即ち本発明は、該組成物からなり、熱伝導率が2W/(m・K)以上である平板を包含する。2W/(m・K)の熱伝導率は、マトリクスとして用いている高分子材料に比較すると約一桁高い熱伝導率である。本発明の組成物は、例えば成形体として電子部品用放熱板、電波遮蔽板、熱交換器などに用いることが出来る。従って、本発明は、該組成物からなる電子部品用放熱板を包含する。該組成物からなる電波遮蔽板を包含する。本発明は、該組成物からなる熱交換器を包含する。
<Molded body>
The molded body obtained by molding the composition of the present invention into a flat plate shape preferably has a thermal conductivity of 2 W / (m · K) or more. That is, this invention includes the flat plate which consists of this composition and whose heat conductivity is 2 W / (m * K) or more. The thermal conductivity of 2 W / (m · K) is about one digit higher than that of the polymer material used as the matrix. The composition of the present invention can be used, for example, as a molded body for a heat sink for electronic parts, a radio wave shielding plate, a heat exchanger, and the like. Therefore, this invention includes the heat sink for electronic components which consists of this composition. An electromagnetic wave shielding plate made of the composition is included. The present invention includes a heat exchanger comprising the composition.

以下に実施例を示すが、本発明はこれらに制限されるものではない。
(1)ピッチ系黒鉛化短繊維の平均繊維径及び繊維径分散:
平均繊維径及び繊維径分散は、ピッチ系黒鉛化短繊維をJIS R7607に準じ、光学顕微鏡下でスケールを用いて60本測定し、その平均値から求めた。また、CV値は、得られた平均繊維径(Ave)と繊維径の偏差(S)との比率として、下記式(2)により決定した。
CV=S/Ave×100 (2)
ここで、
Examples are shown below, but the present invention is not limited thereto.
(1) Average fiber diameter and fiber diameter dispersion of pitch-based graphitized short fibers:
The average fiber diameter and fiber diameter dispersion were determined from the average value of 60 pitch-based graphitized short fibers measured under an optical microscope using a scale according to JIS R7607. Moreover, CV value was determined by following formula (2) as a ratio of the obtained average fiber diameter (Ave) and the deviation (S) of a fiber diameter.
CV = S / Ave × 100 (2)
here,

Figure 2009275323
Figure 2009275323

であり、Xは観測値、nは観測数である。
(2)ピッチ系黒鉛化短繊維の平均繊維長:
平均繊維長は、個数平均繊維長であり、黒鉛化を経たピッチ系黒鉛化短繊維を光学顕微鏡下、測長器で2000本測定し、その平均値から求めた。倍率は繊維長に応じて適宜調整した。
(3)ピッチ系黒鉛化短繊維の真密度:
ピッチ系黒鉛化短繊維の真密度は、浮沈法により測定した。すなわち、シリンダー内に比重2.17(g/cm)のジブロモエタンと比重2.89(g/cm)のブロモホルムの混合溶液を作成し、25±0.2℃の温度にコントロールする。上記混合溶液にピッチ系黒鉛化短繊維を浸析させ、1.3kPaで3分間保持した後、ピッチ系黒鉛化炭素繊維が混合液の中央に来るまでかき混ぜる。10分後ピッチ系黒鉛化炭素繊維が浮上するようであればジブロモエタンを追加し、沈むようであればブロモホルムを滴下する。この操作をピッチ系黒鉛化炭素繊維が静止するまで繰り返す。ピッチ系黒鉛化炭素繊維が静止した後、その混合液体の密度を比重浮ひょうで測定し、ピッチ系黒鉛化炭素繊維の密度とした。
(4)結晶の大きさ:
X線回折法にて求め、六角網面の厚み方向に由来する結晶子の大きさは(002)面からの回折線を用いて求め、六角網面の成長方向に由来する結晶子の大きさは(110)面からの回折線を用いて求めた。また、求め方は学振法に準拠して実施した。
(5)ピッチ系黒鉛化短繊維の熱伝導率:
粉砕工程以外を同じ条件で作製した、ピッチ系黒鉛化繊維ウェブから糸を抜き出し抵抗率を測定し、特開平11−117143号公報に開示されている熱伝導率と電気比抵抗との関係を表す下記式(3)より求めた。
K=1272.4/ER−49.4 (3)
ここで、Kはピッチ系黒鉛化繊維の熱伝導率W/(m・K)、ERは同じピッチ系黒鉛化繊維の電気比抵抗μΩmを表す。
(6)実質的に平坦な表面の確認:
ピッチ系黒鉛化短繊維を走査型電子顕微鏡にて1000倍で観察した像に、凹凸のような欠陥が何箇所あるかを数えた。10箇所以下の場合平滑とした。
(7)ピッチ系黒鉛化短繊維のグラフェンシートの端面微細構造:
ピッチ系黒鉛化短繊維の透過型電子顕微鏡による繊維末端観察において、繊維末端の50〜250万倍のグラフェンシート端面像を5本観察し、繊維末端のグラフェンシート端面の全長A(nm)と端面がU字状に湾曲している部分の長さB(nm)を計測し、閉鎖率(%)=B/A ×100により、閉鎖率を求めた。
(8)平板状成形体の熱伝導率:
京都電子製QTM−500で測定した。
Where X is the observed value and n is the number of observations.
(2) Average fiber length of pitch-based graphitized short fibers:
The average fiber length is a number average fiber length, and 2000 pitch-graphitized short fibers subjected to graphitization were measured under an optical microscope with a length measuring instrument, and obtained from the average value. The magnification was appropriately adjusted according to the fiber length.
(3) True density of pitch-based graphitized short fibers:
The true density of the pitch-based graphitized short fibers was measured by the float / sink method. That is, a mixed solution of dibromoethane having a specific gravity of 2.17 (g / cm 3 ) and bromoform having a specific gravity of 2.89 (g / cm 3 ) is prepared in a cylinder and controlled at a temperature of 25 ± 0.2 ° C. Pitch-based graphitized short fibers are infiltrated into the above mixed solution, held at 1.3 kPa for 3 minutes, and then stirred until the pitch-based graphitized carbon fibers come to the center of the mixed solution. After 10 minutes, dibromoethane is added if the pitch-based graphitized carbon fiber emerges, and bromoform is added dropwise if it sinks. This operation is repeated until the pitch-based graphitized carbon fiber is stationary. After the pitch-based graphitized carbon fiber was stationary, the density of the mixed liquid was measured with a specific gravity float to obtain the density of the pitch-based graphitized carbon fiber.
(4) Crystal size:
The size of the crystallite derived from the thickness direction of the hexagonal mesh surface obtained by X-ray diffraction method is obtained using the diffraction line from the (002) plane, and the size of the crystallite derived from the growth direction of the hexagonal mesh surface. Was determined using diffraction lines from the (110) plane. In addition, the request was made in accordance with the Gakushin Law.
(5) Thermal conductivity of pitch-based graphitized short fibers:
A yarn was extracted from a pitch-based graphitized fiber web produced under the same conditions except for the pulverization step, and the resistivity was measured to represent the relationship between the thermal conductivity and the electrical resistivity disclosed in JP-A-11-117143. It calculated | required from following formula (3).
K = 1272.4 / ER-49.4 (3)
Here, K represents the thermal conductivity W / (m · K) of the pitch-based graphitized fiber, and ER represents the electrical specific resistance μΩm of the same pitch-based graphitized fiber.
(6) Confirmation of a substantially flat surface:
The number of defects such as irregularities was counted in an image obtained by observing the pitch-based graphitized short fibers with a scanning electron microscope at 1000 times. In the case of 10 places or less, it was smooth.
(7) Fine structure of the end face of the graphene sheet of pitch-based graphitized short fibers:
In the fiber end observation with a transmission electron microscope of pitch-based graphitized short fibers, 5 graphene sheet end face images of 500 to 2.5 million times the fiber end were observed, and the total length A (nm) and end face of the graphene sheet end face at the fiber end The length B (nm) of the portion curved in a U-shape was measured, and the closing rate was determined by the closing rate (%) = B / A × 100.
(8) Thermal conductivity of flat molded body:
Measured with QTM-500 manufactured by Kyoto Electronics.

[実施例1]
光学的異方性割合が100%、軟化点が288℃である縮合多環炭化水素化合物よりなるメソフェーズピッチを原料とした。335℃で溶融した原料を直径0.2mmφの孔、2mm長のキャピラリーを有する口金を使用し、スリットから加熱空気を毎分5500mの線速度で噴出させて、溶融粘度が15Pa・sであるピッチを、流速0.0002(m)、せん断速度7500s−1で牽引させることでピッチに112.5kPaの応力を付与した後、金網ベルト上に捕集させ連続的なマットとし、さらにクロスラッピングで目付け350g/mのピッチ系炭素繊維前駆体ウェブとした。なお、このウェブを構成するピッチ系炭素繊維前駆体の平均繊維径は11.3μmであった。
このピッチ系炭素繊維前駆体ウェブを空気中で175℃から280℃まで平均昇温速度4℃/分で昇温して不融化し、ピッチ系不融化繊維ウェブを作成した。次にピッチ系不融化繊維ウェブを窒素雰囲気中800℃で焼成した後、セイシン企業製のジェットミル粉砕機(SKジェット・オー・ミル)で粉砕処理を施し、ピッチ系炭素短繊維を得た。このピッチ系炭素短繊維を非酸化性雰囲気とした電気炉にて3000℃で熱処理することで、ピッチ系黒鉛化短繊維を得た。
[Example 1]
A mesophase pitch composed of a condensed polycyclic hydrocarbon compound having an optical anisotropy ratio of 100% and a softening point of 288 ° C. was used as a raw material. A pitch of melt viscosity of 15 Pa · s is obtained by using a base having a 0.2 mmφ diameter hole and a 2 mm long capillary for the raw material melted at 335 ° C., and blowing heated air from the slit at a linear velocity of 5500 m / min. Is pulled at a flow rate of 0.0002 (m) and a shear rate of 7500 s −1 to give a stress of 112.5 kPa, and then collected on a wire mesh belt to form a continuous mat, and further weighted by cross wrapping. A pitch-based carbon fiber precursor web of 350 g / m 2 was obtained. In addition, the average fiber diameter of the pitch-type carbon fiber precursor which comprises this web was 11.3 micrometers.
This pitch-based carbon fiber precursor web was heated and infusible from 175 ° C. to 280 ° C. at an average heating rate of 4 ° C./min to prepare a pitch-based infusible fiber web. Next, the pitch-based infusible fiber web was fired at 800 ° C. in a nitrogen atmosphere, and then pulverized with a jet mill pulverizer (SK Jet Oh Mill) manufactured by Seishin Corporation to obtain pitch-based carbon short fibers. Pitch-based graphitized short fibers were obtained by heat-treating the pitch-based carbon short fibers at 3000 ° C. in an electric furnace in a non-oxidizing atmosphere.

ピッチ系黒鉛化短繊維の平均繊維径(D1)は8.2μm、D1に対するL1の比は8.5、繊維径分散の平均繊維径に対する百分率(CV値)は13%、真密度は2.193g/ccであった。また、ピッチ系黒鉛化短繊維の透過型電子顕微鏡による5本の繊維末端観察において、170万倍のグラフェンシート端面像から求めたグラフェンシート端面の閉鎖率はそれぞれ、89%、94%、94%、92%、90%であり、グラフェンシート端面の平均閉鎖率は91.8%であった。
また、走査型電子顕微鏡で1000倍の倍率で観察した、ピッチ系黒鉛化短繊維の表面には、大きな凹凸のような欠陥はなく平滑であった。X線回折法によって求めた六角網面の厚み方向の結晶の大きさは、55nmであった。また、六角網面の成長方向の結晶の大きさは、125nmであった。
The average fiber diameter (D1) of the pitch-based graphitized short fibers is 8.2 μm, the ratio of L1 to D1 is 8.5, the percentage of the fiber diameter dispersion to the average fiber diameter (CV value) is 13%, and the true density is 2. It was 193 g / cc. Further, in the observation of five fiber ends with a transmission electron microscope of pitch-based graphitized short fibers, the graphene sheet end face closing rates determined from the 1.7 million times graphene sheet end face images were 89%, 94%, and 94%, respectively. 92% and 90%, and the average closing rate of the end face of the graphene sheet was 91.8%.
Further, the surface of the pitch-based graphitized short fiber observed with a scanning electron microscope at a magnification of 1000 was smooth and free from defects such as large irregularities. The crystal size in the thickness direction of the hexagonal network surface determined by the X-ray diffraction method was 55 nm. The crystal size in the growth direction of the hexagonal network surface was 125 nm.

なお、焼成までを同じ工程で作製し、粉砕を実施しなかったピッチ系炭素繊維ウェブを、非酸化性雰囲気とした電気炉にて3000℃で熱処理したピッチ系黒鉛化繊維ウェブより、単糸を抜き取り、電気比抵抗を測定したところ、1.6μΩmであった。熱伝導度は750W/(m・K)であった。また、LIB負極剤特性を調べたところ、容量は345mAh/gであり、黒鉛の理論値(375mAh/g)に近いものであった。
東レダウシリコーン製の熱硬化樹脂(SE1740A)10mlとピッチ系黒鉛化短繊維10gを真空型プラネタリミキサー(シンキー製ARV−310)にて3分間混練し、東レダウシリコーン製の熱硬化樹脂(SE1740B)を10ml追加し、さらに3分間真空混練することで、スラリー20mlを作成した。上記スラリーを130℃で熱処理し、樹脂の硬化する時間を計測したところ、5分間で硬化した。
From the pitch-based graphitized fiber web that was heat-treated at 3000 ° C. in a non-oxidizing atmosphere in a pitch-based carbon fiber web that was produced in the same process until firing and was not pulverized, The electrical resistivity was extracted and measured to be 1.6 μΩm. The thermal conductivity was 750 W / (m · K). Further, when the characteristics of the LIB negative electrode agent were examined, the capacity was 345 mAh / g, which was close to the theoretical value of graphite (375 mAh / g).
10 ml of Toray Dow silicone thermosetting resin (SE1740A) and 10 g of pitch-based graphitized short fibers were kneaded for 3 minutes with a vacuum planetary mixer (Sinky ARV-310), and Toray Dow silicone thermosetting resin (SE1740B). 10 ml of the mixture was added, and the mixture was further vacuum-kneaded for 3 minutes to prepare 20 ml of slurry. The slurry was heat-treated at 130 ° C., and the curing time of the resin was measured.

[比較例1]
ピッチ系不融化繊維ウェブを3000℃で黒鉛化して、ピッチ系黒鉛化繊維ウェブを作成後、粉砕処理を施すことでピッチ系黒鉛化短繊維を製造した以外は、実施例1に従い製造した。
ピッチ系黒鉛化短繊維の平均繊維径(D1)は7.4μm、D1に対するL1の比は6.8、繊維径分散の平均繊維径に対する百分率は17%、真密度は2.185g/ccであった。また、ピッチ系黒鉛化短繊維の透過型電子顕微鏡による5本の繊維末端観察において、170万倍のグラフェンシート端面像から求めたグラフェンシート端面の閉鎖率はそれぞれ、11%、7%、10%、5%、8%であり、グラフェンシート端面の平均閉鎖率は8.2%であった。また、走査型電子顕微鏡で1000倍の倍率で観察した、ピッチ系黒鉛化短繊維の表面には、大きな凹凸のような欠陥が観察視野内に20以上認められた。X線回折法によって求めた六角網面の厚み方向の結晶の大きさは、30nmであった。また、六角網面の成長方向の結晶の大きさは、61nmであった。なお、ピッチ系炭素繊維ウェブを、非酸化性雰囲気とした電気炉にて3000℃で熱処理したピッチ系黒鉛化繊維ウェブより、単糸を抜き取り、電気比抵抗を測定したところ、1.6μΩmであった。熱伝導度は750W/(m・K)であった。
東レダウシリコーン製の熱硬化樹脂(SE1740A)10mlとピッチ系黒鉛化短繊維10gを真空型プラネタリミキサー(シンキー製ARV−310)にて3分間混練し、東レダウシリコーン製の熱硬化樹脂(SE1740B)を10ml追加し、さらに3分間真空混練することで、スラリー20mlを作成した。上記スラリーを130℃で熱処理し、樹脂の硬化する時間を計測したところ、90分経過しても硬化しなかった。
[Comparative Example 1]
The pitch-based infusible fiber web was graphitized at 3000 ° C. to produce a pitch-based graphitized fiber web and then pulverized to produce pitch-based graphitized short fibers.
The average fiber diameter (D1) of the pitch-based graphitized short fibers is 7.4 μm, the ratio of L1 to D1 is 6.8, the percentage of the fiber diameter dispersion to the average fiber diameter is 17%, and the true density is 2.185 g / cc. there were. Further, in the observation of five fiber ends with a transmission electron microscope of pitch-based graphitized short fibers, the graphene sheet end face closing rates obtained from the 1.7 million times graphene sheet end face images were 11%, 7%, and 10%, respectively. The average closing rate of the graphene sheet end face was 8.2%. Further, 20 or more defects such as large irregularities were observed in the observation field on the surface of the pitch-based graphitized short fibers observed with a scanning electron microscope at a magnification of 1000 times. The crystal size in the thickness direction of the hexagonal network surface determined by the X-ray diffraction method was 30 nm. The crystal size in the growth direction of the hexagonal network surface was 61 nm. The pitch-based carbon fiber web was extracted from a pitch-based graphitized fiber web heat-treated at 3000 ° C. in an electric furnace in a non-oxidizing atmosphere, and the electrical resistivity was measured to be 1.6 μΩm. It was. The thermal conductivity was 750 W / (m · K).
10 ml of Toray Dow silicone thermosetting resin (SE1740A) and 10 g of pitch-based graphitized short fibers were kneaded for 3 minutes with a vacuum planetary mixer (Sinky ARV-310), and Toray Dow silicone thermosetting resin (SE1740B). 10 ml of the mixture was added, and the mixture was further vacuum-kneaded for 3 minutes to prepare 20 ml of slurry. When the slurry was heat-treated at 130 ° C. and the time for curing of the resin was measured, it was not cured even after 90 minutes.

[比較例2]
ピッチ系炭素短繊維を非酸化性雰囲気とした電気炉にて2000℃で熱処理することで、ピッチ系黒鉛化短繊維を得た。ピッチ系黒鉛化短繊維の平均繊維径(D1)は8.2μm、D1に対するL1の比は8.5、繊維径分散の平均繊維径に対する百分率は13%、真密度は2.103g/ccであった。また、ピッチ系黒鉛化短繊維の透過型電子顕微鏡による5本の繊維末端観察において、170万倍のグラフェンシート端面像から求めたグラフェンシート端面の閉鎖率はそれぞれ、21%、28%、20%、27%、24%であり、グラフェンシート端面の平均閉鎖率は24%であった。また、走査型電子顕微鏡で1000倍の倍率で観察した、ピッチ系黒鉛化短繊維の表面には、大きな凹凸のような欠陥はなく平滑であった。X線回折法によって求めた六角網面の厚み方向の結晶の大きさは、5nmであった。また、六角網面の成長方向の結晶の大きさは、10nmであった。
東レダウシリコーン製の熱硬化樹脂(SE1740A)10mlとピッチ系黒鉛化短繊維10gを真空型プラネタリミキサー(シンキー製ARV−310)にて3分間混練し、東レダウシリコーン製の熱硬化樹脂(SE1740B)を10ml追加し、さらに3分間真空混練することで、スラリー20mlを作成した。上記スラリーを130℃で熱処理し、樹脂の硬化する時間を計測したところ、90分経過しても硬化しなかった。
[Comparative Example 2]
Pitch-based graphitized short fibers were obtained by heat-treating the pitch-based carbon short fibers at 2000 ° C. in an electric furnace in a non-oxidizing atmosphere. The average fiber diameter (D1) of pitch-based graphitized short fibers is 8.2 μm, the ratio of L1 to D1 is 8.5, the percentage of the fiber diameter dispersion to the average fiber diameter is 13%, and the true density is 2.103 g / cc. there were. Further, in the observation of five fiber ends with a transmission electron microscope of pitch-based graphitized short fibers, the graphene sheet end face closing rates obtained from the 1.7 million times graphene sheet end face images were 21%, 28%, and 20%, respectively. 27% and 24%, and the average closing rate of the end face of the graphene sheet was 24%. Further, the surface of the pitch-based graphitized short fiber observed with a scanning electron microscope at a magnification of 1000 was smooth and free from defects such as large irregularities. The crystal size in the thickness direction of the hexagonal network surface determined by the X-ray diffraction method was 5 nm. The crystal size in the growth direction of the hexagonal network surface was 10 nm.
10 ml of Toray Dow silicone thermosetting resin (SE1740A) and 10 g of pitch-based graphitized short fibers were kneaded for 3 minutes with a vacuum planetary mixer (Sinky ARV-310), and Toray Dow silicone thermosetting resin (SE1740B). 10 ml of the mixture was added, and the mixture was further vacuum-kneaded for 3 minutes to prepare 20 ml of slurry. When the slurry was heat-treated at 130 ° C. and the time for curing of the resin was measured, it was not cured even after 90 minutes.

[比較例3]
三菱化学(株)製の炭素繊維(K223QM)の透過型電子顕微鏡による5本の繊維末端観察において、170万倍のグラフェンシート端面像から求めたグラフェンシート端面の閉鎖率は全て、0%であり、グラフェンシート端面の平均閉鎖率は0%であった。また、走査型電子顕微鏡で1000倍の倍率で観察した、ピッチ系黒鉛化短繊維の表面には、大きな凹凸のような欠陥はなく平滑であった。
東レダウシリコーン製の熱硬化樹脂(SE1740A)10mlと上述の炭素繊維10gを真空型プラネタリミキサー(シンキー製ARV−310)にて3分間混練し、東レダウシリコーン製の熱硬化樹脂(SE1740B)を10ml追加し、さらに3分間真空混練することで、スラリー20mlを作成した。上記スラリーを130℃で熱処理し、樹脂の硬化する時間を計測したところ、90分経過しても硬化しなかった。
[Comparative Example 3]
In the observation of the end of five fibers with a transmission electron microscope of carbon fiber (K223QM) manufactured by Mitsubishi Chemical Corporation, the closing rate of the graphene sheet end face obtained from the 1.7 million magnification graphene sheet end face image is all 0%. The average closing rate of the end face of the graphene sheet was 0%. Further, the surface of the pitch-based graphitized short fiber observed with a scanning electron microscope at a magnification of 1000 was smooth and free from defects such as large irregularities.
10 ml of Toray Dow silicone thermosetting resin (SE1740A) and 10 g of the above-mentioned carbon fiber are kneaded for 3 minutes with a vacuum type planetary mixer (ARV-310 made by Sinky), and 10 ml of Toray Dow silicone thermosetting resin (SE1740B). Addition and further vacuum kneading for 3 minutes to prepare 20 ml of slurry. When the slurry was heat-treated at 130 ° C. and the time for curing of the resin was measured, it was not cured even after 90 minutes.

[比較例4]
縮合多環炭化水素化合物よりなるピッチを主原料とした。光学的異方性割合は100%、軟化点が283℃であった。直径0.2mmφの孔、0.6mm長のキャップを使用し、スリットから加熱空気を毎分5000mの線速度で噴出させて、溶融粘度が55Pa・sであるピッチをせん断速度7500s−1で牽引させることでピッチに412.5kpaの応力を付与し、平均繊維径が15μmのピッチ系短繊維を作製した。紡出された短繊維をベルト上に捕集してマットとし、さらにクロスラッピングで目付320g/mのピッチ系炭素短繊維ウェブとした。
このウェブを空気中で175℃から280℃まで平均昇温速度7℃/分で昇温して不融化を行った。不融化したウェブを窒素雰囲気中800℃で焼成した後、粉砕処理を施し、平均繊維長が28μmのピッチ系炭素短繊維とした。その後、非酸化性雰囲気とした電気炉にて3000℃で熱処理することで黒鉛化し、ピッチ系黒鉛化短繊維とした。なお、平均繊維径は10.1μm、繊維径分散の平均繊維径に対する百分率は13%、真密度は2.17g/ccであった。
[Comparative Example 4]
A pitch made of a condensed polycyclic hydrocarbon compound was used as a main raw material. The optical anisotropy ratio was 100%, and the softening point was 283 ° C. Using a hole with a diameter of 0.2 mmφ and a cap with a length of 0.6 mm, heated air is ejected from the slit at a linear velocity of 5000 m / min, and a pitch with a melt viscosity of 55 Pa · s is pulled at a shear rate of 7500 s −1 . Thus, a stress of 412.5 kpa was applied to the pitch, and pitch-based short fibers having an average fiber diameter of 15 μm were produced. The spun short fibers were collected on a belt to form a mat, and further a pitch-based carbon short fiber web having a basis weight of 320 g / m 2 by cross wrapping.
The web was infusibilized by increasing the temperature from 175 ° C. to 280 ° C. in air at an average temperature increase rate of 7 ° C./min. The infusible web was fired at 800 ° C. in a nitrogen atmosphere and then pulverized to obtain pitch-based carbon short fibers having an average fiber length of 28 μm. Then, it graphitized by heat-processing at 3000 degreeC with the electric furnace made into the non-oxidizing atmosphere, and it was set as the pitch-type graphitized short fiber. The average fiber diameter was 10.1 μm, the percentage of the fiber diameter dispersion to the average fiber diameter was 13%, and the true density was 2.17 g / cc.

透過型電子顕微鏡で100万倍の倍率で観察し、400万倍に写真上で拡大したところ、5本のグラフェンシート端面の閉鎖率は全て100%であった。また、走査型電子顕微鏡で4000倍の倍率で観察した、ピッチ系炭素短繊維フィラーの表面は、大きな凹凸はなく平滑であった。上述のピッチ系黒鉛化短繊維のLIB負極剤特性を調べたところ、容量は285mAh/gであり、黒鉛の理論値(375mAh/g)からかけ離れた値であった。
以上の結果をまとめ下記表1に示す。
When observed with a transmission electron microscope at a magnification of 1,000,000 and enlarged on a photograph at a magnification of 4 million, the closing rates of the end faces of the five graphene sheets were all 100%. Further, the surface of the pitch-based carbon short fiber filler, which was observed with a scanning electron microscope at a magnification of 4000 times, was smooth with no large irregularities. When the LIB negative electrode agent characteristics of the pitch-based graphitized short fibers described above were examined, the capacity was 285 mAh / g, which was far from the theoretical value of graphite (375 mAh / g).
The above results are summarized and shown in Table 1 below.

Figure 2009275323
Figure 2009275323

[実施例2]
熱可塑性樹脂として、ポリフェニレンスルフィド(ポリプラスチック製,フォートロン,0220A9)を選定し、実施例1で作成したピッチ系黒鉛化短繊維とを70:30の体積比でクリモト製二軸混練機にて組成物を作成した。この組成物を名機製作所製の射出成形機にて、厚み2mmの平板に成形した。この平板の熱伝導率を測定したところ、4.1W/(m・K)であった。
[Example 2]
As a thermoplastic resin, polyphenylene sulfide (polyplastic, Fortron, 0220A9) is selected, and the pitch-based graphitized short fiber prepared in Example 1 is used at a volume ratio of 70:30 in a Kurimoto biaxial kneader. A composition was prepared. This composition was molded into a flat plate having a thickness of 2 mm using an injection molding machine manufactured by Meiki Seisakusho. The thermal conductivity of this flat plate was measured and found to be 4.1 W / (m · K).

[比較例5]
ピッチ系黒鉛化短繊維を添加しない、ポリフェニレンスルフィドの平板を作成した。熱伝導率は0.4W/(m・K)であった。
[Comparative Example 5]
A plate of polyphenylene sulfide without the addition of pitch-based graphitized short fibers was prepared. The thermal conductivity was 0.4 W / (m · K).

本発明のピッチ系黒鉛化短繊維は、電子部品などに利用することができる。   The pitch-based graphitized short fibers of the present invention can be used for electronic parts and the like.

ピッチ系黒鉛化短繊維の末端の模式図を示す。The schematic diagram of the terminal of pitch system graphitized short fiber is shown.

符号の説明Explanation of symbols

A 繊維末端のグラフェンシート端面の全長
B 端面がU字状に湾曲している部分の長さ
A Total length of graphene sheet end face at fiber end B Length of end face curved in U shape

Claims (11)

(i)光学顕微鏡で観測した平均繊維径(D1)が2μmより大きく20μm以下であり、平均繊維径(D1)に対する繊維径分散(S1)の百分率が3〜20%の範囲であり、
(ii)走査型電子顕微鏡での観察表面が実質的に平坦であり、かつ
(iii)透過型電子顕微鏡による繊維末端のグラフェンシート端面の全長が50nmを超え300nm未満である5本の繊維末端を観察したときに、式(1)で表される閉鎖率の平均値(平均閉鎖率)が80%を超え100%未満であるピッチ系黒鉛化短繊維。
閉鎖率(%)=B/A ×100 (1)
(Aは繊維末端のグラフェンシート端面の全長(nm)、Bは端面がU字状に湾曲している部分の長さ(nm)を表す)
(I) The average fiber diameter (D1) observed with an optical microscope is greater than 2 μm and not greater than 20 μm, and the percentage of the fiber diameter dispersion (S1) relative to the average fiber diameter (D1) is in the range of 3 to 20%.
(Ii) The surface of the observation with a scanning electron microscope is substantially flat, and (iii) The total length of the end surface of the graphene sheet at the end of the fiber by a transmission electron microscope is more than 50 nm and less than 300 nm. A pitch-based graphitized short fiber having an average closing rate (average closing rate) represented by the formula (1) of more than 80% and less than 100% when observed.
Closure rate (%) = B / A × 100 (1)
(A represents the total length (nm) of the end surface of the graphene sheet at the fiber end, and B represents the length (nm) of the portion where the end surface is curved in a U-shape)
平均閉鎖率が95%を超え100未満である請求項1に記載のピッチ系黒鉛化短繊維。 The pitch-based graphitized short fiber according to claim 1, having an average closing rate of more than 95% and less than 100. 平均繊維長(L1)が10μm以上700μm以下の範囲であり、平均繊維径(D1)に対するL1の比が1〜50である、請求項1または2に記載のピッチ系黒鉛化短繊維。 The pitch-based graphitized short fibers according to claim 1 or 2, wherein the average fiber length (L1) is in the range of 10 µm to 700 µm, and the ratio of L1 to the average fiber diameter (D1) is 1 to 50. 真密度が2.15〜2.30g/ccの範囲であり、繊維軸方向の熱伝導率が400W/(m・K)以上である、請求項1〜3のいずれか一項に記載のピッチ系黒鉛化短繊維。 The pitch according to any one of claims 1 to 3, wherein the true density is in the range of 2.15 to 2.30 g / cc, and the thermal conductivity in the fiber axis direction is 400 W / (m · K) or more. Graphitized short fiber. 六角網面の厚み方向に由来する結晶子の大きさが30nm以上であり、六角網面の成長方向に由来する結晶子の大きさが80nm以上である請求項1〜4のいずれか一項に記載のピッチ系黒鉛化短繊維。 The size of the crystallite derived from the thickness direction of the hexagonal network surface is 30 nm or more, and the size of the crystallite derived from the growth direction of the hexagonal network surface is 80 nm or more. The pitch-based graphitized short fiber described. 請求項1〜5のいずれか一項に記載のピッチ系黒鉛化短繊維とマトリクスとを含み、短繊維の含有率が3〜60体積%である組成物。 The composition which contains the pitch-type graphitized short fiber as described in any one of Claims 1-5, and a matrix, and the content rate of a short fiber is 3-60 volume%. マトリクスが、熱可塑性樹脂及び/又は熱硬化性樹脂である請求項6に記載の組成物。 The composition according to claim 6, wherein the matrix is a thermoplastic resin and / or a thermosetting resin. 請求項6記載の組成物からなり、熱伝導率が2W/(m・K)以上である平板。 A flat plate comprising the composition according to claim 6 and having a thermal conductivity of 2 W / (m · K) or more. 請求項6記載の組成物からなる電子部品用放熱板。 A heat sink for electronic parts, comprising the composition according to claim 6. 請求項6記載の組成物からなる電波遮蔽板。 A radio wave shielding plate comprising the composition according to claim 6. 請求項6記載の組成物からなる熱交換器。 A heat exchanger comprising the composition according to claim 6.
JP2008129548A 2008-05-16 2008-05-16 Pitch-based graphitized staple fiber Withdrawn JP2009275323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008129548A JP2009275323A (en) 2008-05-16 2008-05-16 Pitch-based graphitized staple fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008129548A JP2009275323A (en) 2008-05-16 2008-05-16 Pitch-based graphitized staple fiber

Publications (1)

Publication Number Publication Date
JP2009275323A true JP2009275323A (en) 2009-11-26

Family

ID=41441018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008129548A Withdrawn JP2009275323A (en) 2008-05-16 2008-05-16 Pitch-based graphitized staple fiber

Country Status (1)

Country Link
JP (1) JP2009275323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104213253A (en) * 2014-09-15 2014-12-17 北京化工大学常州先进材料研究院 Preparation method of novel mesophase pitch-based composite carbon fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104213253A (en) * 2014-09-15 2014-12-17 北京化工大学常州先进材料研究院 Preparation method of novel mesophase pitch-based composite carbon fibers

Similar Documents

Publication Publication Date Title
WO2010087371A1 (en) Graphitized short fibers and composition thereof
JPWO2006112487A1 (en) Pitch-based carbon fiber, mat, and resin molded body containing them
JP2007291267A (en) Thermally conductive molding material and molded sheet using this
JP2012171986A (en) Thermally conductive composition
JP2009215404A (en) Sheet-shaped thermally conductive molded product
JP2010056299A (en) Method of producing thermally-conductive rubber sheet
JP6523070B2 (en) Method for producing ultrafine carbon fiber, extrafine carbon fiber, and carbon-based conductive aid containing the ultrafine carbon fiber
JP2011037919A (en) Thermally conductive bar-shaped resin compact
JP2007119647A (en) Composite material
JP2010065123A (en) Heat-conductive molding
JP5015490B2 (en) Thermally conductive filler and composite molded body using the same
JP2009108424A (en) Thermally conductive filler and molded product using the same
JP7402631B2 (en) Ultrafine carbon fiber mixture, manufacturing method thereof, and carbon-based conductive aid
JPWO2008108482A1 (en) Pitch-based carbon fiber, method for producing the same, and molded body
JP2009108425A (en) Carbon fiber and composite material using the same
WO2010024462A1 (en) Pitch-derived graphitized short fiber and molded object obtained using same
JP2009215403A (en) Sheet-like heat-conductive molded body
WO2018062352A1 (en) Heat dissipation sheet
JP2012077224A (en) Thermally conductive composition
JP2017210705A (en) Method for producing ultrafine carbon fiber
JP2009275323A (en) Pitch-based graphitized staple fiber
JP2010024343A (en) Composition for preparing powder molding material excellent in heat-conductivity
JP2012188488A (en) Thermally conductive composition
JP2012082295A (en) Thermally conductive composition
JP2011017111A (en) Insulated pitch-based graphitized short fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120405