JP2010024343A - Composition for preparing powder molding material excellent in heat-conductivity - Google Patents

Composition for preparing powder molding material excellent in heat-conductivity Download PDF

Info

Publication number
JP2010024343A
JP2010024343A JP2008187106A JP2008187106A JP2010024343A JP 2010024343 A JP2010024343 A JP 2010024343A JP 2008187106 A JP2008187106 A JP 2008187106A JP 2008187106 A JP2008187106 A JP 2008187106A JP 2010024343 A JP2010024343 A JP 2010024343A
Authority
JP
Japan
Prior art keywords
pitch
composition
short fibers
graphitized short
based graphitized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008187106A
Other languages
Japanese (ja)
Inventor
Hiroshi Hara
寛 原
Hiroki Sano
弘樹 佐野
Tatsuichiro Kin
辰一郎 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2008187106A priority Critical patent/JP2010024343A/en
Publication of JP2010024343A publication Critical patent/JP2010024343A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition using a carbon fibers and a matrix for preparing a molded article excellent in heat conductivity, and to provide a power molding material comprising the same. <P>SOLUTION: There are provided the composition comprising 100 pts.vol. of a matrix component and 20 to 1,000 pts.vol. of pitch-based graphitized short fibers having an aspect ratio of 4 to 100, to prepare a molded article, excellent in heat conductivity, and a powder molding material comprising the same. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱伝導性に優れた粉体成形体を得るための、マトリクス成分と、一定のアスペクト比を有するピッチ系黒鉛化短繊維とからなる組成物、およびそれからの粉体成形体に関わるものである。本発明の組成物から得られる粉体成形体は熱伝導性に優れ、発熱性部品の熱伝導用途に適するものである。   The present invention relates to a composition comprising a matrix component and pitch-based graphitized short fibers having a certain aspect ratio for obtaining a powder molded article having excellent thermal conductivity, and a powder molded article therefrom. Is. The powder molded body obtained from the composition of the present invention is excellent in thermal conductivity and is suitable for heat conduction applications of exothermic parts.

一般に炭素繊維は、他の合成高分子に比較して熱伝導率が高いと言われているが、サーマルマネジメント用途に向けた、さらなる熱伝導の向上が検討されている。ところが、市販されているPAN系炭素繊維の熱伝導率は通常200W/(m・K)よりも小さい。これは、PAN系炭素繊維が所謂難黒鉛化炭素繊維であり、熱伝導を担う黒鉛性を高めることが非常に困難なことに由来している。これに対して、ピッチ系炭素繊維は易黒鉛化炭素繊維と呼ばれ、PAN系炭素繊維に比べて、黒鉛性を高くすることができるため、高熱伝導率を達成しやすいと認識されている。よって、効率的に熱伝導性を発現できる形状にまで配慮がなされた高熱伝導性フィラーにできる可能性がある。   In general, carbon fibers are said to have higher thermal conductivity than other synthetic polymers, but further improvements in thermal conductivity are being studied for thermal management applications. However, the thermal conductivity of commercially available PAN-based carbon fibers is usually smaller than 200 W / (m · K). This is because the PAN-based carbon fiber is a so-called non-graphitizable carbon fiber, and it is very difficult to improve the graphitization property that bears heat conduction. On the other hand, pitch-based carbon fibers are called graphitizable carbon fibers, and can be made more graphitic than PAN-based carbon fibers, and are recognized to easily achieve high thermal conductivity. Therefore, there is a possibility that a highly thermally conductive filler in which consideration is given to a shape capable of efficiently expressing thermal conductivity can be obtained.

ただ、炭素繊維単体での熱伝導性部材への加工は困難であり、金属材料系フィラー等と同様に、何らかのマトリクスと炭素繊維とを複合し、それを加工し、その成形体を熱対策に用いるることが必要である。そして、熱対策用途の成形品には熱伝導度を向上させることが求められている。   However, it is difficult to process a carbon fiber alone into a heat conductive member. Like a metal material filler, etc., a composite of some matrix and carbon fiber is processed, and the molded body is used as a heat countermeasure. It is necessary to use. And it is calculated | required that the thermal conductivity is improved for the molded article for a heat countermeasure use.

炭素繊維フィラーと樹脂マトリクスからなる成形体を得るには射出成形法が挙げられ、射出成形においては、一旦、マトリクスとフィラーを混合し、ストランドチップを作製する必要があり、チップ化の後に再溶融して型に流し込む必要があり、その際、炭素繊維のような剛性の高いフィラーは、ダメージを受けてしまい、その結果所望の特性を得られないことがある。ただ、簡便な手法であることから、ダメージを低減させる手法が考案されつつある。また、熱硬化性樹脂を使用する場合には、ポリマー自体の常温での粘度を著しく低減させた状態で混練を行うことが可能であり、柔軟な材料の供給は比較的容易であるが、リジッドな成形体の作製には不向きであると言わざるを得ない。   An injection molding method is used to obtain a molded body composed of a carbon fiber filler and a resin matrix. In injection molding, it is necessary to mix the matrix and filler once to produce a strand chip. In such a case, a highly rigid filler such as carbon fiber may be damaged, and as a result, desired characteristics may not be obtained. However, since it is a simple technique, a technique for reducing damage is being devised. In addition, when a thermosetting resin is used, kneading can be performed in a state where the viscosity of the polymer itself at room temperature is remarkably reduced, and the supply of a flexible material is relatively easy. It must be said that it is unsuitable for production of a simple molded body.

粉体成形用組成物に関しては、特許文献1のように、ナノファイバーを別途分散したエラストマー系材料を焼成し、それを金属材料と焼結するという開示があるが、熱伝導率に関する開示は、与えられていない。   As for the powder molding composition, as disclosed in Patent Document 1, there is a disclosure that an elastomeric material in which nanofibers are separately dispersed is fired and sintered with a metal material. Not given.

一方、繊維長数mm程度の炭素繊維と熱可塑性樹脂をドライブレンドする場合、炭素繊維が非常にかさ高くなり、熱可塑性樹脂と均一に分散させるのが困難な傾向にあり、ドライブレンド物をそのまま過熱して成形体を得ようとする目的には適さなかった。そのため、粉体成形で成形体を作製する場合には、適切な炭素繊維の形状が求められていた。
特開2006−56772号公報
On the other hand, when dry blending a carbon fiber having a fiber length of about several millimeters with a thermoplastic resin, the carbon fiber becomes very bulky and tends to be difficult to disperse uniformly with the thermoplastic resin. It was not suitable for the purpose of overheating to obtain a molded product. Therefore, when producing a molded body by powder molding, an appropriate carbon fiber shape has been required.
JP 2006-56772 A

本発明の目的は、極めて高い熱伝導率を有する炭素繊維とマトリクス成分とからなる、熱伝導性に優れた成形体を得るための組成物を提供し、それを用いた電子機器の熱対策部品を提供するものである。   An object of the present invention is to provide a composition for obtaining a molded article having excellent thermal conductivity, comprising a carbon fiber having a very high thermal conductivity and a matrix component, and a heat countermeasure component for an electronic device using the composition. Is to provide.

本発明は、熱伝導性に優れた粉体成形体を得るための、炭素繊維の元の繊維長をほぼ保った複合体を得ることが可能な組成物である。アスペクト比が4〜100といった特定のピッチ系黒鉛化短繊維を用いることで、炭素繊維とマトリックス成分をドライブレンドで均一に分散させることが可能となり、粉体成形により炭素繊維の持つ高い熱伝導率を発揮する成形体を得ることができる。   The present invention is a composition capable of obtaining a composite that substantially maintains the original fiber length of carbon fibers for obtaining a powder molded body having excellent thermal conductivity. By using specific pitch-based graphitized short fibers with an aspect ratio of 4 to 100, carbon fibers and matrix components can be uniformly dispersed by dry blending, and the high thermal conductivity of carbon fibers by powder molding Can be obtained.

すなわち本発明は、マトリクス成分100体積部に対し、アスペクト比が4〜100であるピッチ系黒鉛化短繊維を20〜1000体積部配合した熱伝導性に優れた成形体を得るための組成物、およびそれからの粉体成形体である。   That is, the present invention is a composition for obtaining a molded article excellent in thermal conductivity in which 20 to 1000 parts by volume of pitch-based graphitized short fibers having an aspect ratio of 4 to 100 are blended with 100 parts by volume of a matrix component, And a powder compact from the same.

本発明の組成物は、粉体と特定のピッチ系黒鉛化短繊維をドライブレンドのまま成形するものであり、ピッチ系黒鉛化短繊維の元の繊維長をほぼ保った複合体が得られるので、熱伝導率が高く軽量な粉体成形体を提供ができる。本発明の組成物は、特定のピッチ系黒鉛化短繊維を用いることで、粉体成形法により、好ましく成形体を得ることができる組成物である。得られた成形体は高い熱伝導性が発現でき、熱伝導性が要求される各種部材、たとえば電子機器や、自動車の部品として好適に用いることができる。   The composition of the present invention is obtained by molding a powder and a specific pitch-based graphitized short fiber as a dry blend, and a composite is obtained in which the original fiber length of the pitch-based graphitized short fiber is substantially maintained. In addition, it is possible to provide a lightweight powder compact with high thermal conductivity. The composition of the present invention is a composition capable of preferably obtaining a molded body by a powder molding method by using a specific pitch-based graphitized short fiber. The obtained molded body can exhibit high thermal conductivity, and can be suitably used as various members that are required to have thermal conductivity, such as electronic devices and automobile parts.

次に、本発明の実施の形態について説明する。
本発明の組成物では、マトリクス成分100体積部に対して、アスペクト比が4〜100であるピッチ系黒鉛化短繊維を20〜1000体積部含むものである。
Next, an embodiment of the present invention will be described.
The composition of the present invention contains 20 to 1000 parts by volume of pitch-based graphitized short fibers having an aspect ratio of 4 to 100 with respect to 100 parts by volume of the matrix component.

本発明の組成物は熱伝導性の粉体成形体を得ることを目的とするので、組成物中ピッチ系黒鉛化短繊維が20体積部より少ない場合は、十分な熱伝導性を得ることが困難になる。1000体積部より添加量を多くすると、マトリクス成分が熱伝導性材料を覆うことができずに、ピッチ系黒鉛化短繊維が落下しはじめる。より好ましくは、20〜500体積部である。アスペクト比が4より小さいと、球状と区別がつかなくなり、繊維の特徴が低減する。アスペクト比が100より大きい場合、繊維長が長すぎてハンドリング性が悪くなる。4〜50の範囲が好ましく、4〜25の範囲がさらに好ましい。   Since the composition of the present invention is intended to obtain a thermally conductive powder compact, if the pitch-based graphitized short fiber in the composition is less than 20 parts by volume, sufficient thermal conductivity can be obtained. It becomes difficult. If the addition amount is increased from 1000 parts by volume, the matrix component cannot cover the thermally conductive material, and pitch-based graphitized short fibers begin to fall. More preferably, it is 20-500 volume parts. If the aspect ratio is less than 4, it is indistinguishable from spherical, and the fiber characteristics are reduced. When the aspect ratio is greater than 100, the fiber length is too long and the handling property is deteriorated. The range of 4-50 is preferable, and the range of 4-25 is more preferable.

本発明の組成物は粉体成形に用いるが、粉体成形は、プロセスとして物質の移動が小さく、また、混合をドライブレンドで実施することが多く、熱伝導性が非常に高いピッチ系黒鉛化短繊維の繊維長を残存させることが可能である。通常の高せん断を付与するブレンド法は、機械的に繊維を破損してしまい、ピッチ系黒鉛化短繊維のような炭素繊維の本来的に有する高い熱伝導率を引き出すことは困難であった。しかし、本発明の手法では、これが可能になり、繊維長の変化を抑制し、ピッチ系黒鉛化短繊維の持つ高い熱伝導率を十分に生かした高い熱伝導率の粉体成形体が提供できる。   The composition of the present invention is used for powder molding. However, powder molding is a process in which mass transfer is small, and mixing is often carried out by dry blending, and pitch-based graphitization with very high thermal conductivity. It is possible to leave the fiber length of the short fiber. The usual blending method that imparts high shear mechanically breaks the fiber, and it is difficult to draw out the high thermal conductivity inherent to carbon fibers such as pitch-based graphitized short fibers. However, according to the method of the present invention, this is possible, and it is possible to provide a powder molded body having a high thermal conductivity that suppresses a change in fiber length and sufficiently utilizes the high thermal conductivity of pitch-based graphitized short fibers. .

本発明に用いるマトリクス成分は、本発明の目的である粉体成形に適用可能なものであり、具体的には熱可塑性樹脂や低融点ガラスが挙げられる。なかでも熱可塑性樹脂が好ましい。   The matrix component used in the present invention is applicable to powder molding, which is the object of the present invention, and specifically includes thermoplastic resins and low-melting glass. Of these, thermoplastic resins are preferred.

本発明に用いる熱可塑性樹脂は、ポリオレフィン系樹脂及びその共重合体(ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、エチレン−酢酸ビニル共重合体、エチレン−プロピレン共重合体等のエチレン−α−オレフィン共重合体など)、ポリエステル系樹脂及びその共重合体(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン2,6ナフタレート、液晶性ポリマーなど)、脂肪族ポリアミド類及びその共重合体、芳香族ポリアミド類及びその共重合体等を挙げることができる。さらに、ポリイミド類及びその共重合体、ポリアミドイミド類及びその共重合体、ポリメタクリル酸類及びその共重合体(ポリメタクリル酸メチル等のポリメタクリル酸エステルなど)、ポリアクリル酸類及びその共重合体、ポリアセタール類及びその共重合体、フッ素樹脂類及びその共重合体(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、ポリスチレン類及びその共重合体(スチレン−アクリロニトリル共重合体、ABS樹脂など)、ポリアクリロニトリル類及びその共重合体、ポリフェニレンエーテル(PPE)類及びその共重合体(変性PPE樹脂なども含む)、ポリカーボネート類及びその共重合体、ポリフェニレンスルフィド類及びその共重合体、ポリサルホン類及びその共重合体、ポリエーテルサルホン類及びその共重合体、ポリエーテルニトリル類及びその共重合体、ポリエーテルケトン類及びその共重合体、ポリエーテルエーテルケトン類及びその共重合体、ポリケトン類及びその共重合体等が挙げられる。熱可塑性樹脂としてはポリオレフィン系樹脂、ポリエステル系樹脂、およびポリアミド系樹脂からなる群より選ばれる少なくとも1種であることが好ましい。   The thermoplastic resin used in the present invention is a polyolefin resin and its copolymer (polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ethylene -Ethylene-α-olefin copolymers such as propylene copolymers), polyester resins and copolymers thereof (polyethylene terephthalate, polybutylene terephthalate, polyethylene 2,6 naphthalate, liquid crystalline polymers, etc.), aliphatic polyamides And copolymers thereof, aromatic polyamides and copolymers thereof, and the like. Furthermore, polyimides and copolymers thereof, polyamideimides and copolymers thereof, polymethacrylic acids and copolymers thereof (polymethacrylates such as polymethyl methacrylate), polyacrylic acids and copolymers thereof, Polyacetals and copolymers thereof, fluororesins and copolymers thereof (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polystyrenes and copolymers thereof (styrene-acrylonitrile copolymers, ABS resins, etc.), polyacrylonitrile And copolymers thereof, polyphenylene ethers (PPE) and copolymers thereof (including modified PPE resins), polycarbonates and copolymers thereof, polyphenylene sulfides and copolymers thereof, polysulfones and copolymers thereof Coalescence, polyethersulfone and its Copolymers, polyether nitriles and their copolymers, polyether ketones and copolymers thereof, polyetheretherketones and copolymers thereof include polyketones and copolymers thereof, and the like. The thermoplastic resin is preferably at least one selected from the group consisting of polyolefin resins, polyester resins, and polyamide resins.

中でも、ポリエーテルエーテルケトン類、ポリフェニレンサルファイド類、ポリオキシメチレン類、ポリエステル類、ポリオレフィン類、ポリアミド類、ポリイミド類、ポリアミドイミド類、ポリカーボネート類、ポリフッ化物類よりなる群より選ばれてなる少なくとも1種以上が好適に用いられる。また、結晶質のポリマーは、溶融粘度が低く好ましいが、非晶質でも構わない。   Among them, at least one selected from the group consisting of polyether ether ketones, polyphenylene sulfides, polyoxymethylenes, polyesters, polyolefins, polyamides, polyimides, polyamideimides, polycarbonates, and polyfluorides. The above is preferably used. A crystalline polymer is preferable because it has a low melt viscosity but may be amorphous.

本発明には、上述のとおり、マトリクス成分として低融点ガラスを用いることもできる。低融点ガラスは、融点が450℃以下のガラスであり、融点の分布が小さいものが特に好ましく用いられる。   In the present invention, as described above, low-melting glass can be used as the matrix component. The low melting point glass is a glass having a melting point of 450 ° C. or lower, and a glass having a small melting point distribution is particularly preferably used.

マトリクス成分の形状は特に制約を受けないが、微細な粉体とのブレンドを鑑みると、サイズとしてピッチ系黒鉛化短繊維と同程度以下であることが望ましい。本発明では、マトリクス成分は平均粒径が、500μm以下が望ましく、さらに望ましくは、100μm以下、特に望ましいのは粒径が70μm以下である。また、形状は特に制約をうけないが、フレーク状が好ましい。   The shape of the matrix component is not particularly limited, but considering the blend with fine powder, it is desirable that the size is equal to or less than that of pitch-based graphitized short fibers. In the present invention, the matrix component preferably has an average particle size of 500 μm or less, more preferably 100 μm or less, and particularly preferably a particle size of 70 μm or less. The shape is not particularly limited, but a flake shape is preferred.

一般に粉体状のポリマーにドライブレンドで密度の異なる物質を混合する場合、密度差が大きいと均一に分散することが難しくなる。しかし、本発明を構成するピッチ系黒鉛化短繊維フィラーは密度が2.2g/ccであり、一般的なポリマー材料の密度と似た値であり、ポリマーへの分散性が良好である。特に、ポリマーの中でも比較的密度の高いポリエーテルエーテルケトン類、ポリフェニレンサルファイド類、ポリオキシメチレン類、ポリエステル類、ポリオレフィン類、ポリアミド類、ポリイミド類、ポリアミドイミド類、ポリカーボネート類、ポリフッ化物類、さらに具体的には、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、液晶ポリマー(LCP)、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレン2,6ナフタレート、ポリエーテルイミド、ポリカーボネートなどの樹脂はピッチ系黒鉛化短繊維と密度がより近いため、マトリクスとして好ましい。また、マトリクスとして用いるポリマーはフレーク状が好ましいがこの限りではない。フィラーの分散が悪い場合には、ストランド状のポリマーを凍結粉砕や所謂粉砕プロセスで砕くことで、フレーク状にしても構わない。   In general, when substances having different densities are mixed with a powdered polymer by dry blending, it is difficult to uniformly disperse if the density difference is large. However, the pitch-based graphitized short fiber filler constituting the present invention has a density of 2.2 g / cc, a value similar to the density of a general polymer material, and good dispersibility in the polymer. In particular, among polyether polymers, polyether ether ketones, polyphenylene sulfides, polyoxymethylenes, polyesters, polyolefins, polyamides, polyimides, polyamideimides, polycarbonates, polyfluorides, and more particularly high density Specifically, resins such as polyetheretherketone, polyphenylene sulfide, liquid crystal polymer (LCP), polybutylene terephthalate, polyethylene terephthalate, polyethylene 2,6 naphthalate, polyetherimide, and polycarbonate are more dense than pitch-based graphitized short fibers. Since it is close, it is preferable as a matrix. The polymer used as the matrix is preferably flaky, but is not limited thereto. When the dispersion of the filler is poor, the strand polymer may be flaked by freeze grinding or a so-called grinding process.

また、本発明のピッチ系黒鉛化短繊維は、アルミナや窒化ホウ素などの材料とポリマーとの中間の密度であり、通常ドライブレンドが難しい金属酸化物等とポリマーとのバインダーとしても利用できる。また、本発明に好適に用いられるピッチ系黒鉛化短繊維の形状は直線ではなく、曲率を有している。このこともポリマーとの分散性という観点において、ポリマーとの絡みを向上させ分散性を向上させる効果がある。   The pitch-based graphitized short fibers of the present invention have an intermediate density between materials such as alumina and boron nitride and polymers, and can be used as binders for metal oxides and polymers that are usually difficult to dry blend. Moreover, the shape of the pitch-based graphitized short fibers suitably used in the present invention is not a straight line but has a curvature. This also has an effect of improving the dispersibility by improving the entanglement with the polymer in terms of dispersibility with the polymer.

ここで、ピッチ系黒鉛化短繊維とは、ピッチ系の炭素繊維において、特に3000℃以上の高温で黒鉛化を行った短繊維のことを指す。本発明の組成物を構成するピッチ系黒鉛化短繊維は、マトリックスと好適にドライブレンドすることが可能で、組成物を粉体成形に供したときのフィラーの繊維長の変化が少ないものである。以下ピッチ系黒鉛化短繊維について詳細に述べる。   Here, the pitch-based graphitized short fiber refers to a short fiber obtained by graphitizing a pitch-based carbon fiber at a high temperature of 3000 ° C. or more. The pitch-based graphitized short fibers constituting the composition of the present invention can be suitably dry blended with a matrix, and the fiber length change of the filler when the composition is subjected to powder molding is small. . Hereinafter, the pitch-based graphitized short fibers will be described in detail.

ピッチ系黒鉛化短繊維の原料ピッチとしては、ナフタレンやフェナントレンといった縮合多環炭化水素化合物、石油系ピッチや石炭系ピッチといった縮合複素環化合物等が例示できる。その中でもナフタレンやフェナントレンといった縮合多環炭化水素化合物が好ましく、特にメソフェーズピッチが好ましい。メソフェーズピッチのメソフェーズ率としては少なくとも90%以上、より好ましくは95%以上、更に好ましくは99%以上である。なお、メソフェーズピッチのメソフェーズ率は、溶融状態にあるピッチを偏向顕微鏡で観察することで確認出来る。更に、原料ピッチの軟化点としては、230℃以上340℃以下が好ましい。不融化処理は、軟化点よりも低温で処理する必要がある。このため、軟化点が230℃より低いと、少なくとも軟化点未満の低い温度で不融化処理する必要があり、結果として不融化に長時間を要するため好ましくない。一方、軟化点が340℃を超えると、紡糸に340℃を超える高温が必要となり、ピッチの熱分解を引き起こし、発生したガスで糸に気泡が発生するなどの問題を生じるため好ましくない。軟化点のより好ましい範囲は250℃以上320℃以下、更に好ましくは260℃以上310℃以下である。なお、原料ピッチの軟化点はメトラー法により求めることが出来る。原料ピッチは、二種以上を適宜組合せて用いてもよい。組合せる原料ピッチのメソフェーズ率は少なくとも90%以上であり、軟化点が230℃以上340℃以下であることが好ましい。   Examples of the pitch-based graphitized short fiber raw material pitch include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, condensed heterocyclic compounds such as petroleum pitch and coal pitch, and the like. Among these, condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene are preferable, and mesophase pitch is particularly preferable. The mesophase ratio of the mesophase pitch is at least 90% or more, more preferably 95% or more, and further preferably 99% or more. The mesophase rate of the mesophase pitch can be confirmed by observing the pitch in the molten state with a deflection microscope. Furthermore, the softening point of the raw material pitch is preferably 230 ° C. or higher and 340 ° C. or lower. The infusibilization treatment needs to be performed at a temperature lower than the softening point. For this reason, when the softening point is lower than 230 ° C., it is necessary to perform the infusibilization treatment at a temperature at least lower than the softening point. On the other hand, if the softening point exceeds 340 ° C., a high temperature exceeding 340 ° C. is required for spinning, which causes thermal decomposition of the pitch and causes problems such as generation of bubbles in the yarn due to the generated gas. A more preferable range of the softening point is 250 ° C. or higher and 320 ° C. or lower, and more preferably 260 ° C. or higher and 310 ° C. or lower. The softening point of the raw material pitch can be obtained by the Mettler method. Two or more raw material pitches may be used in appropriate combination. The mesophase ratio of the raw material pitch to be combined is preferably at least 90% or more, and the softening point is preferably 230 ° C. or higher and 340 ° C. or lower.

本発明におけるピッチ系黒鉛化短繊維は、光学顕微鏡で観測した平均繊維径(D1)が5〜20μmであることが好ましい。D1が5μmを下回る場合、ハンドリングが困難になる。逆にD1が20μmを超えると、マトリクス成分との間に隙間が生成しやすくなり、熱伝導率が十分に付与できなくなる。D1の好ましい範囲は5〜15μmであり、より好ましくは7〜13μmである。   The pitch-based graphitized short fibers in the present invention preferably have an average fiber diameter (D1) of 5 to 20 μm observed with an optical microscope. When D1 is less than 5 μm, handling becomes difficult. On the other hand, when D1 exceeds 20 μm, a gap is easily generated between the matrix components, and sufficient thermal conductivity cannot be imparted. A preferable range of D1 is 5 to 15 μm, and more preferably 7 to 13 μm.

本発明におけるピッチ系黒鉛化短繊維は、光学顕微鏡で観測したピッチ系黒鉛化短繊維における繊維径分散(S1)のD1に対する百分率(CV値)は5〜15%であることが好ましい。CV値は小さい程、工程安定性が高く、製品のバラツキが小さいことを意味している。CV値が5%より小さい時、繊維径が極めて揃っているため、フィラーの間隙に入るサイズの小さなフィラーが入り込む量が少なくなり、マトリクス成分と成形体を形成する際に多量のフィラーを添加するのが困難になり、結果として高性能の熱伝導性粉体成形体を得にくくなる。逆にCV値が15%より大きい場合、マトリクス成分と複合する際に、分散性が悪くなり、均一な性能を有する熱伝導性粉体成形体を得ることが困難になる。CV値は好ましくは、5〜12%である。   The pitch-based graphitized short fibers in the present invention preferably have a fiber diameter dispersion (S1) percentage (CV value) to D1 (CV value) of 5 to 15% in the pitch-based graphitized short fibers observed with an optical microscope. The smaller the CV value, the higher the process stability and the smaller the product variation. When the CV value is smaller than 5%, the fiber diameters are extremely uniform, so the amount of small-sized filler entering the gap between the fillers is reduced, and a large amount of filler is added when forming the matrix component and the molded body. As a result, it becomes difficult to obtain a high-performance thermally conductive powder compact. On the other hand, when the CV value is larger than 15%, dispersibility deteriorates when combined with the matrix component, and it becomes difficult to obtain a thermally conductive powder molded body having uniform performance. The CV value is preferably 5 to 12%.

本発明におけるピッチ系黒鉛化短繊維の平均繊維長(L1)は、20〜500μmであることが好ましい。ここで、平均繊維長は個数平均繊維長とし、光学顕微鏡下で測長器を用い、複数の視野において所定本数を測定し、その平均値から求めることができる。L1は目的によって適した値があるが、本発明では当該フィラーを熱伝導性に主眼をおいた組成物に用いるので、L1は20〜500μmの範囲が好ましい。L1が20μmより小さい場合、フィラー同士が接触しにくくなり、効果的な熱伝導が期待しにくくなる。逆に500μmより大きくなる場合、成形体に空隙が発生しやすくなり、所望の熱伝導率を得ることが困難になる。より好ましくは、20〜300μm、さらに好ましくは30〜250μmの範囲である。   The average fiber length (L1) of the pitch-based graphitized short fibers in the present invention is preferably 20 to 500 μm. Here, the average fiber length is a number average fiber length, and a predetermined number is measured in a plurality of fields of view using a length measuring device under an optical microscope, and can be obtained from the average value. Although L1 has a suitable value depending on the purpose, L1 is preferably in the range of 20 to 500 μm in the present invention because the filler is used in a composition that focuses on thermal conductivity. When L1 is smaller than 20 μm, it becomes difficult for the fillers to come into contact with each other, and it is difficult to expect effective heat conduction. On the other hand, when the thickness is larger than 500 μm, voids are likely to be generated in the molded body, and it becomes difficult to obtain a desired thermal conductivity. More preferably, it is 20-300 micrometers, More preferably, it is the range of 30-250 micrometers.

本発明におけるピッチ系黒鉛化短繊維は、六角網面の厚み方向に由来する結晶子サイズが30nm以上であり、さらに六角網面の成長方向に由来する結晶子サイズが50nm以上であることが好ましい。結晶子サイズは六角網面の厚み方向、六角網面の成長方向のいずれも、黒鉛化に対応するものである。高い熱伝導性を発現するためには、一定以上の結晶サイズが必要である。六角網面の厚み方向に由来する結晶子サイズ及び六角網面の成長方向の結晶子サイズは、X線回折法で求める事ができる。測定手法は集中法とし、解析手法としては、学振法を用いることができる。六角網面の厚み方向の結晶子サイズは、(002)面からの回折線を用いて求め、六角網面の成長方向の結晶子サイズは、(110)面からの回折線を用いてそれぞれ求めることができる。   The pitch-based graphitized short fibers in the present invention preferably have a crystallite size derived from the thickness direction of the hexagonal network surface of 30 nm or more, and further a crystallite size derived from the growth direction of the hexagonal network surface of 50 nm or more. . The crystallite size corresponds to graphitization in both the thickness direction of the hexagonal network surface and the growth direction of the hexagonal network surface. In order to develop high thermal conductivity, a crystal size of a certain level or more is required. The crystallite size derived from the thickness direction of the hexagonal mesh surface and the crystallite size in the growth direction of the hexagonal mesh surface can be obtained by an X-ray diffraction method. The measurement method is the concentration method, and the Gakushin method can be used as the analysis method. The crystallite size in the thickness direction of the hexagonal mesh plane is obtained using diffraction lines from the (002) plane, and the crystallite size in the growth direction of the hexagonal mesh plane is obtained using diffraction lines from the (110) plane. be able to.

本発明におけるピッチ系黒鉛化短繊維は走査型電子顕微鏡での側面の観察表面が実質的に平坦であることが好ましい。ここで、実質的に平坦であるとは、フィブリル構造のような激しい凹凸をピッチ系黒鉛化短繊維表面に有しないことを意味する。ピッチ系黒鉛化短繊維の表面に激しい凹凸のような欠陥が存在する場合には、マトリクスとの混練に際して表面積の増大に伴う粘度の増大を引き起こし、成形性を悪化させる。よって、表面凹凸のような欠陥はできるだけ小さい状態が望ましい。より具体的には、走査型電子顕微鏡において1000倍で観察した像での観察視野に、凹凸のような欠陥が10箇所以下であることとする。   The pitch-based graphitized short fibers in the present invention preferably have a substantially flat side observation surface with a scanning electron microscope. Here, “substantially flat” means that the surface of the pitch-based graphitized short fiber does not have severe irregularities such as a fibril structure. When defects such as severe irregularities are present on the surface of pitch-based graphitized short fibers, an increase in viscosity accompanying an increase in surface area is caused at the time of kneading with the matrix, and the moldability is deteriorated. Therefore, it is desirable that defects such as surface irregularities be as small as possible. More specifically, it is assumed that there are 10 or less defects such as irregularities in the observation visual field in an image observed at 1000 times with a scanning electron microscope.

本発明のピッチ系黒鉛化短繊維は、透過型電子顕微鏡による繊維末端観察において、グラフェンシートの端面が閉じていることが好ましい。グラフェンシートの端面が閉じている場合、余分な官能基の発生や、形状に起因する電子の局在化が起こり難い。このため、ピッチ系黒鉛化短繊維に活性点が生じず、シリコーン樹脂やエポキシ樹脂などの熱硬化性樹脂との混練で、触媒活性点の低下による硬化阻害の抑制が可能となる。また、水などの吸着も低減でき、例えばポリエステルのような加水分解を伴う樹脂との混練においても、著しい湿熱耐久性能向上をもたらすことが出来る。   In the pitch-based graphitized short fiber of the present invention, it is preferable that the end face of the graphene sheet is closed in the fiber end observation with a transmission electron microscope. When the end face of the graphene sheet is closed, generation of extra functional groups and localization of electrons due to the shape are difficult to occur. For this reason, active sites do not occur in the pitch-based graphitized short fibers, and inhibition of curing due to a decrease in the catalytic activity points can be suppressed by kneading with a thermosetting resin such as a silicone resin or an epoxy resin. Moreover, adsorption | suction of water etc. can also be reduced, for example, also in kneading | mixing with resin accompanying hydrolysis like polyester, the remarkable heat-and-heat durability performance improvement can be brought about.

本発明で言うグラフェンシートの端面が閉じているとは、透過型電子顕微鏡による繊維末端のグラフェンシート端面の全長が50nmを超え300nm未満である5本の繊維末端を観察したときに、式(1)で表される閉鎖率の平均値(平均閉鎖率)が80%を超え100%以下である状態である。
閉鎖率(%)=B/A ×100 (1)
(Aは繊維末端のグラフェンシート端面の全長(nm)、Bは端面がU字状に湾曲している部分の長さ(nm)を表す)
The end face of the graphene sheet referred to in the present invention is closed when an end of five fiber ends having a total length of more than 50 nm and less than 300 nm by a transmission electron microscope is observed. ) Is an average value of the closing rate (average closing rate) exceeding 80% and not more than 100%.
Closure rate (%) = B / A × 100 (1)
(A represents the total length (nm) of the end surface of the graphene sheet at the fiber end, and B represents the length (nm) of the portion where the end surface is curved in a U-shape)

閉鎖率が80%未満であると余分な官能基の発生や、形状に起因する電子の局在化を引き起こし、他材料との反応を促進する可能性があるため好ましくない。グラフェンシート端面の閉鎖率は90%以上が好ましく、更には95%以上が更に好ましい。   If the closing rate is less than 80%, it is not preferable because it may cause generation of extra functional groups and localization of electrons due to the shape and promote reaction with other materials. The closing rate of the graphene sheet end face is preferably 90% or more, and more preferably 95% or more.

グラフェンシート端面構造は、黒鉛化の前に粉砕を実施するか、黒鉛化の後に粉砕を実施するかにより、大きく異なる。すなわち、黒鉛化後に粉砕処理を行った場合、黒鉛化で成長したグラフェンシートが切断破断され、グラフェンシート端面が開いた状態になり易い。一方、黒鉛化前に粉砕処理を行った場合、黒鉛の成長過程でグラフェンシート端面がU字上に湾曲し、湾曲部分がピッチ系黒鉛化短繊維端部に露出した構造になり易い。このため、グラフェンシート端面閉鎖率が80%を超えるようなピッチ系黒鉛化短繊維を得るためには、粉砕を行った後に黒鉛化処理することが好ましい。   The graphene sheet end face structure varies greatly depending on whether pulverization is performed before graphitization or pulverization is performed after graphitization. That is, when a pulverization process is performed after graphitization, the graphene sheet grown by graphitization is cut and broken, and the graphene sheet end face tends to be open. On the other hand, when the pulverization treatment is performed before graphitization, the graphene sheet end face is curved in a U-shape during the graphite growth process, and the curved portion is likely to be exposed at the pitch-based graphitized short fiber end. For this reason, in order to obtain a pitch-based graphitized short fiber having a graphene sheet end face closing rate exceeding 80%, it is preferable to perform graphitization after pulverization.

本発明におけるピッチ系黒鉛化短繊維の好ましい作製方法を以下に示す。
原料ピッチは溶融法により紡糸され、その後不融化、焼成、ミリング、黒鉛化によってピッチ系黒鉛化短繊維となる。場合によっては、ミリングの後、分級工程を入れることもある。本発明のピッチ系黒鉛化短繊維は透過型電子顕微鏡によるフィラー端面観察においてグラフェンシートが閉じていることを特徴とするが、このようなピッチ系黒鉛化短繊維は、ミリングを行った後に黒鉛化処理を実施することによって、好ましく得ることができる。これは、黒鉛化後にミリングを行うと、黒鉛化に伴い生成したグラフェンシートが切断端面にて開いたままになるのに対して、炭化ピッチ繊維ウェブをミリングしピッチ系炭化短繊維とした後で黒鉛化を行うと、ピッチ系炭化短繊維端面のグラフェンシートがループ状に閉じるという黒鉛の成長過程を用いたものである。以下各工程の好ましい態様について説明する。
A preferred method for producing pitch-based graphitized short fibers in the present invention is shown below.
The raw material pitch is spun by a melting method, and then becomes a pitch-based graphitized short fiber by infusibilization, firing, milling, and graphitization. In some cases, a classification step may be added after milling. The pitch-based graphitized short fibers of the present invention are characterized in that the graphene sheet is closed in the filler end face observation with a transmission electron microscope. Such pitch-based graphitized short fibers are graphitized after milling. It can obtain preferably by implementing a process. This is because, when milling after graphitization, the graphene sheet generated with graphitization remains open at the cut end face, whereas the carbonized pitch fiber web is milled to form pitch-based carbonized short fibers. When graphitization is performed, a graphite growth process in which the graphene sheet on the end face of the pitch-based carbonized short fibers closes in a loop shape is used. Hereinafter, preferred embodiments of each step will be described.

紡糸方法には、特に制限はないが、所謂溶融紡糸法を好ましく挙げることができる。具体的には、口金から吐出した原料ピッチをワインダーで引き取る通常の紡糸延伸法、熱風をアトマイジング源として用いるメルトブロー法、遠心力を利用して原料ピッチを引き取る延伸紡糸法などが挙げられる。中でもピッチ繊維の形態の制御、生産性の高さなどの理由からメルトブロー法を用いることが望ましい。このため以下本発明におけるピッチ系黒鉛化短繊維の製造方法に関してはメルトブロー法について記載する。   The spinning method is not particularly limited, but a so-called melt spinning method can be preferably exemplified. Specific examples include a normal spinning drawing method in which the raw material pitch discharged from the die is drawn by a winder, a melt blow method using hot air as an atomizing source, and a drawing spinning method in which the raw material pitch is drawn using centrifugal force. Among them, it is desirable to use the melt blow method for reasons such as control of the form of pitch fibers and high productivity. For this reason, the melt blow method will be described below for the method for producing pitch-based graphitized short fibers in the present invention.

本発明においては、ピッチ系黒鉛化短繊維の原料となるピッチ繊維を形成するための紡糸ノズルの形状については特に制約はない。通常真円状のものが使用されるが、適時楕円などの異型形状を用いても何ら問題ない。ノズル孔の長さ(LN)と孔径(DN)の比(LN/DN)としては2〜20の範囲が好ましい。LN/DNが20を超えると、ノズルを通過する原料ピッチに強いせん断力が付与され、繊維断面にラジアル構造が発現する。ラジアル構造の発現は、黒鉛化の過程で繊維断面に割れを生じることがあり、機械特性の低下を引き起こすことがあり好ましくない。一方、LN/DNが2未満では、原料ピッチにせん断を付与することが出来ず、結果として黒鉛の配向が低い繊維となる。このため、黒鉛化しても黒鉛化度が十分に上がらず熱伝導性を向上させ難くなり好ましくない。機械強度と熱伝導性の両立を達成するためには、原料ピッチに適度のせん断を付与する必要がある。このため、ノズル孔の長さ(LN)と孔径(DN)の比(LN/DN)は2〜20の範囲が好ましく、更には3〜12の範囲が特に好ましい。   In the present invention, there is no particular limitation on the shape of the spinning nozzle for forming pitch fibers which are raw materials for pitch-based graphitized short fibers. Usually, a round shape is used, but there is no problem even if an irregular shape such as an ellipse is used in a timely manner. The ratio of the nozzle hole length (LN) to the hole diameter (DN) (LN / DN) is preferably in the range of 2-20. When LN / DN exceeds 20, a strong shearing force is imparted to the raw material pitch passing through the nozzle, and a radial structure appears in the fiber cross section. The expression of the radial structure is not preferable because the cross section of the fiber may be cracked during the graphitization process and the mechanical characteristics may be deteriorated. On the other hand, when LN / DN is less than 2, shearing cannot be imparted to the raw material pitch, and as a result, the fibers have low orientation of graphite. For this reason, even if graphitization is performed, the degree of graphitization is not sufficiently increased, making it difficult to improve thermal conductivity, which is not preferable. In order to achieve both mechanical strength and thermal conductivity, it is necessary to impart appropriate shear to the raw material pitch. For this reason, the ratio (LN / DN) of the nozzle hole length (LN) to the hole diameter (DN) is preferably in the range of 2 to 20, and more preferably in the range of 3 to 12.

紡糸時のノズルの温度についても特に制約はなく、安定した紡糸状態が維持できる温度、即ち、原料ピッチの粘度を1〜100Pa・sの範囲にせしめる温度が好ましい。原料ピッチの粘度が1Pa・s未満の状態では、粘度が低すぎて糸形状を維持することが出来ないため好ましくない。一方、原料ピッチの粘度が100Pa・sを超えると、ノズルを通過する際に強いせん断力が付与され、生成されるピッチ繊維断面にラジアル構造が発現するため好ましくない。せん断力を適切な範囲にせしめ、かつ繊維形状を維持するためには、原料ピッチの粘度を適切に制御する必要がある。このため、原料ピッチの粘度は1〜100Pa・sの範囲が好ましく、更には3〜30Pa・sが好ましく、5〜25Pa・sがより好ましい。   The temperature of the nozzle at the time of spinning is not particularly limited, and a temperature at which a stable spinning state can be maintained, that is, a temperature at which the viscosity of the raw material pitch is in the range of 1 to 100 Pa · s is preferable. When the viscosity of the raw material pitch is less than 1 Pa · s, it is not preferable because the viscosity is too low to maintain the yarn shape. On the other hand, when the viscosity of the raw material pitch exceeds 100 Pa · s, a strong shearing force is imparted when passing through the nozzle, and a radial structure appears in the generated pitch fiber cross section, which is not preferable. In order to bring the shearing force into an appropriate range and maintain the fiber shape, it is necessary to appropriately control the viscosity of the raw material pitch. For this reason, the viscosity of the raw material pitch is preferably in the range of 1 to 100 Pa · s, more preferably 3 to 30 Pa · s, and even more preferably 5 to 25 Pa · s.

本発明におけるピッチ系黒鉛化短繊維は、平均繊維径(D1)が5〜20μmであることが好ましいが、ピッチ系黒鉛化短繊維の繊維径の制御方法は、ノズルの孔径を変更する、あるいはノズルからの原料ピッチの吐出量を変更する、あるいはドラフト比を変更することで可能である。ドラフト比の変更は、100〜400℃に加温された毎分100〜10000mの線速度のガスを細化点近傍に吹き付けることによって達成することができる。吹き付けるガスに特に制限は無いが、コストパフォーマンスと安全性の面から空気が望ましい。   The pitch-based graphitized short fiber in the present invention preferably has an average fiber diameter (D1) of 5 to 20 μm. However, the method for controlling the fiber diameter of the pitch-based graphitized short fiber changes the nozzle hole diameter, or This is possible by changing the discharge amount of the raw material pitch from the nozzle or changing the draft ratio. The change of the draft ratio can be achieved by blowing a gas having a linear velocity of 100 to 10,000 m / minute heated to 100 to 400 ° C. in the vicinity of the thinning point. There is no particular restriction on the gas to be blown, but air is desirable from the viewpoint of cost performance and safety.

紡糸されたピッチ繊維は、金網等のベルトに捕集されピッチ繊維ウェブとなる。その際、ベルト搬送速度により任意の目付量に調整できるが、必要に応じ、クロスラップ等の方法により積層させてもよい。ピッチ繊維ウェブの目付量は生産性及び工程安定性を考慮して、150〜1000g/mが好ましい。 The spun pitch fibers are collected on a belt such as a wire mesh to form a pitch fiber web. At that time, the weight per unit area can be adjusted according to the belt conveyance speed, but if necessary, it may be laminated by a method such as cross wrapping. The basis weight of the pitch fiber web is preferably 150 to 1000 g / m 2 in consideration of productivity and process stability.

このようにして得られたピッチ繊維ウェブは、公知の方法で不融化処理し、不融化ピッチ繊維ウェブにする。不融化は、空気、或いはオゾン、二酸化窒素、窒素、酸素、ヨウ素、臭素を空気に添加したガスを用いた酸化性雰囲気下で実施できるが、安全性、利便性を考慮すると空気中で実施することが望ましい。また、バッチ処理、連続処理のどちらでも処理可能であるが、生産性を考慮すると連続処理が望ましい。不融化処理は150〜350℃の温度で、一定時間の熱処理を付与することで達成される。より好ましい温度範囲は、160〜340℃であり、さらに好ましくは、170〜330℃の範囲である。昇温速度は1〜10℃/分が好適に用いられ、連続処理の場合は任意の温度に設定した複数の反応室を順次通過させることで、上記昇温速度を達成できる。昇温速度のより好ましい範囲は、生産性及び工程安定性を考慮して、3〜8℃/分であり、さらに好ましくは4〜6℃/分である。   The pitch fiber web thus obtained is infusibilized by a known method to obtain an infusible pitch fiber web. Infusibilization can be performed in air or in an oxidizing atmosphere using a gas in which ozone, nitrogen dioxide, nitrogen, oxygen, iodine, or bromine is added to air. However, in consideration of safety and convenience, it is performed in air. It is desirable. Further, both batch processing and continuous processing can be performed, but continuous processing is desirable in consideration of productivity. The infusibilization treatment is achieved by applying a heat treatment for a predetermined time at a temperature of 150 to 350 ° C. A more preferable temperature range is 160 to 340 ° C, and a more preferable range is 170 to 330 ° C. A heating rate of 1 to 10 ° C./min is preferably used. In the case of continuous treatment, the above heating rate can be achieved by sequentially passing through a plurality of reaction chambers set at arbitrary temperatures. A more preferable range of the temperature raising rate is 3 to 8 ° C./min, and more preferably 4 to 6 ° C./min in consideration of productivity and process stability.

不融化ピッチ繊維ウェブは、500〜1500℃の温度で、真空中、或いは窒素、アルゴン、クリプトン等の不活性ガスを用いた非酸化性雰囲気中で焼成処理され、炭化ピッチ繊維ウェブになる。焼成処理は、コスト面を考慮して、常圧かつ窒素雰囲気下での処理が望ましい。また、バッチ処理、連続処理のどちらでも処理可能であるが、生産性を考慮すれば連続処理が望ましい。   The infusibilized pitch fiber web is fired at a temperature of 500 to 1500 ° C. in a vacuum or in a non-oxidizing atmosphere using an inert gas such as nitrogen, argon, krypton, etc., to become a carbonized pitch fiber web. In view of cost, the firing treatment is preferably performed at normal pressure and in a nitrogen atmosphere. Further, both batch processing and continuous processing can be performed, but continuous processing is desirable in consideration of productivity.

焼成処理された炭化ピッチ繊維ウェブは、所望の繊維長にするために、切断、破砕・粉砕等の処理が実施される。また、場合によっては、分級処理が実施される。処理方式は所望の繊維長に応じて選定されるが、切断にはギロチン式、回転式等のカッター、1軸、2軸及び多軸回転刃式等が好適に使用され、破砕、粉砕には衝撃作用を利用したハンマ式、ピン式、ボール式、ビーズ式及びロッド式、粒子同士の衝突を利用した高速回転式、圧縮・引裂き作用を利用したロール式、コーン式及びスクリュー式等の破砕機・粉砕機等が好適に使用される。所望の繊維長を得るために、切断と破砕・粉砕を多種複数機で構成してもよい。処理雰囲気は湿式、乾式のどちらでもよい。分級処理には、振動篩い式、遠心分離式、慣性力式、濾過式等の分級装置等が好適に使用される。所望の繊維長は、機種選定のみならず、ロータ・回転刃等の回転数、供給量、刃間クリアランス、系内滞留時間等を制御することによっても得ることができる。また、分級処理を用いる場合には、所望の繊維長は篩い網孔径等を調整することによっても得ることができる。   The fired carbonized pitch fiber web is subjected to processing such as cutting, crushing and pulverization in order to obtain a desired fiber length. In some cases, classification processing is performed. The treatment method is selected according to the desired fiber length. For cutting, guillotine type, rotary type cutters, 1-axis, 2-axis and multi-axis rotary blade types are preferably used for crushing and crushing. Crushers such as hammer type, pin type, ball type, bead type and rod type using impact action, high-speed rotation type using collision between particles, roll type using compression / tearing action, cone type and screw type -A crusher etc. are used suitably. In order to obtain a desired fiber length, cutting, crushing and pulverization may be configured by a plurality of machines. The treatment atmosphere may be either wet or dry. For the classification treatment, a classification device such as a vibration sieve type, a centrifugal separation type, an inertial force type, and a filtration type is preferably used. The desired fiber length can be obtained not only by selecting a model, but also by controlling the number of revolutions of the rotor / rotating blade, supply amount, clearance between blades, residence time in the system, and the like. Moreover, when using a classification process, desired fiber length can be obtained also by adjusting a sieve mesh hole diameter.

上記の切断、破砕・粉砕処理、場合によっては分級処理を併用して作成したピッチ系炭化短繊維は、2500〜3500℃に加熱し黒鉛化して最終的なピッチ系黒鉛化短繊維とする。黒鉛化は、アチソン炉、電気炉等にて実施され、真空中、或いは窒素、アルゴン、クリプトン等の不活性ガスを用いた非酸化性雰囲気下等で実施される。   The pitch-based carbonized short fibers prepared by combining the above-described cutting, crushing / pulverizing treatment, and, in some cases, classification treatment, are heated to 2500 to 3500 ° C. and graphitized to obtain final pitch-based graphitized short fibers. Graphitization is performed in an Atchison furnace, an electric furnace, or the like, and is performed in a vacuum or in a non-oxidizing atmosphere using an inert gas such as nitrogen, argon, or krypton.

本発明におけるピッチ系黒鉛化短繊維は、マトリクス成分との親和性をより高めること、成形性の向上や粉落ち低減を目的として、表面処理やサイジング処理をしても良い。また、必要に応じて表面処理した後にサイジング処理をしても良い。表面処理の方法として特に限定は無いが、具体的にはオゾン処理、プラズマ処理、酸処理などが挙げられる。サイジング処理に用いるサイジング剤に特に限定は無いが、具体的にはエポキシ化合物、水溶性ポリアミド化合物、飽和ポリエステル、不飽和ポリエステル、酢酸ビニル、水、アルコール、グリコールを単独又はこれらの混合物で用いることができる。サイジング剤はフィラーに対し0.01〜10重量%、付着させても良い。しかし、サイジング剤付着ピッチ系炭素繊維フィラーは活性点を持つ可能性もあることから、サイジング処理は極力少ない事が好ましい。好ましい付着量は0.1〜2.5重量%である。   The pitch-based graphitized short fibers in the present invention may be subjected to surface treatment or sizing treatment for the purpose of further increasing the affinity with the matrix component, improving moldability, and reducing powder falling. Further, sizing treatment may be performed after surface treatment as necessary. The surface treatment method is not particularly limited, and specific examples include ozone treatment, plasma treatment, and acid treatment. There is no particular limitation on the sizing agent used for the sizing treatment, but specifically, an epoxy compound, a water-soluble polyamide compound, a saturated polyester, an unsaturated polyester, vinyl acetate, water, alcohol, glycol may be used alone or in a mixture thereof. it can. The sizing agent may be attached in an amount of 0.01 to 10% by weight based on the filler. However, since the sizing agent-attached pitch-based carbon fiber filler may have active sites, it is preferable that the sizing treatment is as little as possible. A preferable adhesion amount is 0.1 to 2.5% by weight.

本発明では、マトリクス成分にピッチ系黒鉛化短繊維を加えて組成物を作製するが、その際、熱伝導性材料としてさらに金属化合物フィラーを1〜1000体積部含んでもよい。金属化合物フィラーとしては、マグネシウム、アルミニウム、金、銀、銅、鉄、酸化マグネシウム、酸化アルミニウム、酸化亜鉛、窒化アルミニウム、酸化窒化アルミニウム、窒化ホウ素、石英、炭化珪素、酸化珪素、窒化珪素、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物、金属合金、等が挙げられる。中でも、マグネシウム、アルミニウム、金、銀、銅、鉄、酸化マグネシウム、酸化アルミニウム、酸化亜鉛、窒化アルミニウム、酸化窒化アルミニウム、窒化ホウ素、石英、炭化珪素、酸化珪素、および窒化珪素からなる群より選ばれる少なくとも1種を好適に用いることができる。   In the present invention, a pitch-based graphitized short fiber is added to the matrix component to prepare a composition. At that time, the metal compound filler may be further included in an amount of 1 to 1000 parts by volume as the heat conductive material. As metal compound fillers, magnesium, aluminum, gold, silver, copper, iron, magnesium oxide, aluminum oxide, zinc oxide, aluminum nitride, aluminum oxynitride, boron nitride, quartz, silicon carbide, silicon oxide, silicon nitride, hydroxide Examples thereof include metal hydroxides such as aluminum and magnesium hydroxide, metal alloys, and the like. Among them, selected from the group consisting of magnesium, aluminum, gold, silver, copper, iron, magnesium oxide, aluminum oxide, zinc oxide, aluminum nitride, aluminum oxynitride, boron nitride, quartz, silicon carbide, silicon oxide, and silicon nitride At least one kind can be suitably used.

中でも、マグネシウム、アルミニウム、亜鉛、金、銀、銅、鉄、酸化マグネシウム、酸化アルミニウム、酸化亜鉛、窒化アルミニウム、酸化窒化アルミニウム、窒化ホウ素、石英、炭化珪素、酸化珪素、および窒化珪素からなる群より選ばれる少なくとも1種以上を好適に用いることができる。   Among these, from the group consisting of magnesium, aluminum, zinc, gold, silver, copper, iron, magnesium oxide, aluminum oxide, zinc oxide, aluminum nitride, aluminum oxynitride, boron nitride, quartz, silicon carbide, silicon oxide, and silicon nitride At least one selected from the above can be suitably used.

金属化合物フィラーは、そのサイズに特に制限はないが、ピッチ系黒鉛化短繊維の形成する隙間を埋める効果を期待する時には、平均粒径が10μm程度のものが好ましい。また、金属化合物フィラーを用いて、絶縁性などを付与したい場合には、粒径の大きなものが望ましく、平均粒径が50μm程度の金属化合物フィラーが用いられる。   The size of the metal compound filler is not particularly limited, but when the effect of filling the gap formed by the pitch-based graphitized short fibers is expected, those having an average particle size of about 10 μm are preferable. In addition, when it is desired to provide insulating properties or the like using a metal compound filler, those having a large particle size are desirable, and a metal compound filler having an average particle size of about 50 μm is used.

金属化合物フィラーの添加量は、マトリクス成分100体積部に対して、1〜1000体積部の範囲で添加することができる。1%未満では、期待する効果が得られ難い。1000体積部より大きい場合は、ピッチ系黒鉛化短繊維の場合と同じで、マトリクス成分がフィラーを覆うことができなくなり、粉落ちの原因になる。求める機能により添加量は適宜変えることができる。   The addition amount of a metal compound filler can be added in the range of 1-1000 volume parts with respect to 100 volume parts of matrix components. If it is less than 1%, it is difficult to obtain the expected effect. When the volume is larger than 1000 parts by volume, it is the same as in the case of pitch-based graphitized short fibers, and the matrix component cannot cover the filler, causing powder falling. The addition amount can be appropriately changed depending on the desired function.

また、ピッチ系黒鉛化短繊維や金属化合物フィラー以外の熱伝導性材料としては天然黒鉛、人造黒鉛、膨張黒鉛、ダイヤモンドなどの炭素材料などを適宜用いることができる。
ピッチ系黒鉛化短繊維よりも、モース硬度が高い材料に関しては、ブレンドの際に、ピッチ系黒鉛化短繊維を壊し、繊維長を著しく短くする可能性がある。これを回避するためには、ブレンド順が重要である。金属化合物フィラーを共存させる場合には、マトリクス成分とピッチ系黒鉛化短繊維を先にブレンドする方法以外に、金属化合物フィラーを先にブレンドし、最後にピッチ系黒鉛化短繊維をブレンドするというような時間差をつけたブレンド方法を取ることが出来る。またブレンドの指標としては、長いものから順にブレンドすることが好ましい。これは、小さいフィラーによる隙間埋めの効果を最終的に発現させるために好ましい。
Moreover, as heat conductive materials other than pitch-based graphitized short fibers and metal compound fillers, carbon materials such as natural graphite, artificial graphite, expanded graphite, and diamond can be used as appropriate.
For materials having a higher Mohs hardness than pitch-based graphitized short fibers, there is a possibility that the pitch-based graphitized short fibers are broken during blending and the fiber length is significantly shortened. In order to avoid this, the blend order is important. In the case of coexisting a metal compound filler, in addition to the method of blending the matrix component and the pitch-based graphitized short fiber first, the metal compound filler is first blended, and finally the pitch-based graphitized short fiber is blended. It is possible to take a blending method with a time difference. As an index of blending, it is preferable to blend in order from the longest. This is preferable in order to finally exhibit the effect of gap filling with a small filler.

本発明の組成物には、必要に応じて他の添加剤を適宜添加しても構わない。他の添加剤としては離型剤、難燃剤、乳化剤、軟化剤、可塑剤、界面活性剤を挙げることができる。
本発明の組成物は、マトリクス成分とピッチ系黒鉛化短繊維を混合することで得られる。混合はドライブレンドが好ましく、ミキサー等を用いることができる。
Other additives may be appropriately added to the composition of the present invention as necessary. Examples of other additives include mold release agents, flame retardants, emulsifiers, softeners, plasticizers, and surfactants.
The composition of the present invention can be obtained by mixing a matrix component and pitch-based graphitized short fibers. Mixing is preferably dry blending, and a mixer or the like can be used.

本発明の組成物を粉体成形することにより粉体成形体を得ることができる。好ましくは組成物を加熱し、圧縮、冷却よりなる工程で成形体を得ることができる。加熱と圧縮とは、同じタイミングで実施することも可能であり、殊更にガス抜き機構を有することが好ましい。加熱は電気ヒーターが制御性の上で好ましい。圧縮は、マトリクス成分によって印加する圧力を適宜調整することができる。冷却は水冷、自然方冷などの方法から得ることができ、冷却速度はマトリクス成分によって適宜調整できる。   A powder molded body can be obtained by powder molding the composition of the present invention. Preferably, the composition can be heated, and a molded body can be obtained by a process comprising compression and cooling. Heating and compression can be performed at the same timing, and it is particularly preferable to have a degassing mechanism. For heating, an electric heater is preferable in terms of controllability. In the compression, the pressure applied by the matrix component can be appropriately adjusted. Cooling can be obtained from methods such as water cooling and natural cooling, and the cooling rate can be appropriately adjusted depending on the matrix component.

組成物を粉体成形した後の残存ピッチ系黒鉛化短繊維の平均繊維長は、好ましくは20〜400μmである。残存ピッチ系黒鉛化短繊維の平均繊維長は、マトリクス成分を溶融濾過或いは熱分解等にて除くことにより求めることができる。   The average fiber length of the remaining pitch-based graphitized short fibers after the composition is powder-molded is preferably 20 to 400 μm. The average fiber length of the remaining pitch-based graphitized short fibers can be determined by removing the matrix component by melt filtration or thermal decomposition.

本発明の組成物では、元のピッチ系黒鉛化短繊維の平均繊維長を1とした場合の残存ピッチ系黒鉛化短繊維の平均繊維長は0.3〜0.99の範囲が好ましい。粉体成形は、熱伝導性材料の性状をうまく維持しやすい方法であるが、完全に成形前の状態が維持できるわけではない。そのため、成形時に折れてしまうフィラーが存在し、元のピッチ系黒鉛化短繊維の長さに対して短い長さになってしまう。0.3未満では、期待される熱伝導性が発揮できないことが多い。できるだけ元の長さに近い長さになっていることが望ましい。   In the composition of the present invention, when the average fiber length of the original pitch-based graphitized short fiber is 1, the average fiber length of the remaining pitch-based graphitized short fiber is preferably in the range of 0.3 to 0.99. Powder molding is a method that can easily maintain the properties of the thermally conductive material, but the state before molding cannot be completely maintained. Therefore, there is a filler that breaks during molding, and the length becomes shorter than the length of the original pitch-based graphitized short fiber. If it is less than 0.3, the expected thermal conductivity cannot often be exhibited. It is desirable that the length be as close to the original length as possible.

本発明の組成物から熱伝導率が5W/mKより高い粉体成形体を得ることが可能となる。特に元の繊維長を長くしたものは、熱伝導性の部材として好適な熱伝導率を示す。
本発明の組成物から粉体成形により得られる粉体成形体は成形用の型に依存するものの多くの場合は平板として得られる。そして粉体成形体の平板を切削加工して成形体を作成することができる。切削加工には、旋盤等の機械加工を用いても構わない。また、切削加工した成形体の熱伝導率は、加工前の成形体とほぼ同じ熱伝導率を示し、5W/mKより高い熱伝導率を示す。
It becomes possible to obtain a powder molded body having a thermal conductivity higher than 5 W / mK from the composition of the present invention. In particular, a material having a long original fiber length exhibits a heat conductivity suitable as a heat conductive member.
Although the powder compact obtained by powder molding from the composition of the present invention depends on the mold for molding, it is often obtained as a flat plate. And the molded object can be created by cutting the flat plate of a powder molded object. Machining such as a lathe may be used for cutting. Moreover, the heat conductivity of the cut molded body shows almost the same thermal conductivity as that of the molded body before processing, showing a thermal conductivity higher than 5 W / mK.

以下に実施例を示すが、本発明はこれらに制限されるものではない。
(1)ピッチ系黒鉛化短繊維の平均繊維径及び繊維径分散:
黒鉛化を経たピッチ系炭素繊維フィラーをJIS R7607に準じ、光学顕微鏡下でスケールを用いて60本測定し、その平均値から求めた。
Examples are shown below, but the present invention is not limited thereto.
(1) Average fiber diameter and fiber diameter dispersion of pitch-based graphitized short fibers:
According to JIS R7607, 60 pitch-based carbon fiber fillers that had undergone graphitization were measured with an optical microscope using a scale, and the average value was obtained.

(2)ピッチ系黒鉛化短繊維の平均繊維長:
平均繊維長は、個数平均繊維長であり、黒鉛化を経たピッチ系黒鉛化短繊維を光学顕微鏡下で測長器で2000本以上測定し、その平均値から求めた。倍率は繊維長に応じて適宜調整した。
成形体中の残存ピッチ系黒鉛化短繊維の平均繊維長は、マトリクス成分を除去した後、同様に観察した。
(2) Average fiber length of pitch-based graphitized short fibers:
The average fiber length is a number average fiber length, and 2000 or more pitch-based graphitized short fibers subjected to graphitization were measured with a length measuring device under an optical microscope, and obtained from the average value. The magnification was appropriately adjusted according to the fiber length.
The average fiber length of the remaining pitch-based graphitized short fibers in the molded body was similarly observed after removing the matrix component.

(3)結晶子サイズ:
X線回折法にて求め、六角網面の厚み方向に由来する結晶子サイズは(002)面からの回折線を用いて求め、六角網面の成長方向に由来する結晶子サイズは(110)面からの回折線を用いて求めた。また、求め方は学振法に準拠して実施した。
(3) Crystallite size:
Obtained by X-ray diffraction method, the crystallite size derived from the thickness direction of the hexagonal mesh surface is obtained using diffraction lines from the (002) plane, and the crystallite size derived from the growth direction of the hexagonal mesh surface is (110). It was determined using diffraction lines from the surface. In addition, the request was made in accordance with the Gakushin Law.

(4)ピッチ系黒鉛化短繊維の熱伝導率:
粉砕工程以外を同じ条件で作製した、黒鉛化後のピッチ系炭素繊維ウェブから糸を抜き出し抵抗率を測定し、特開平11−117143号公報に開示されている熱伝導率と電気比抵抗との関係を表す下記式(1)より求めた。
K=1272.4/ER−49.4 (1)
ここで、Kは熱伝導率W/(m・K)、ERは電気比抵抗μΩmを表す。
(4) Thermal conductivity of pitch-based graphitized short fibers:
The yarn was extracted from the graphitized pitch-based carbon fiber web produced under the same conditions except for the pulverization step, the resistivity was measured, and the thermal conductivity and electrical resistivity disclosed in JP-A-11-117143 were measured. It calculated | required from following formula (1) showing a relationship.
K = 1272.4 / ER-49.4 (1)
Here, K represents thermal conductivity W / (m · K), and ER represents electrical specific resistance μΩm.

(5)ピッチ系黒鉛化短繊維のグラフェンシートの端面微細構造:
ピッチ系黒鉛化短繊維の透過型電子顕微鏡による繊維末端観察において、繊維末端の50〜250万倍のグラフェンシート端面像を5本観察し、繊維末端のグラフェンシート端面の全長A(nm)と端面がU字状に湾曲している部分の長さB(nm)を計測し、閉鎖率(%)=B/A ×100により、閉鎖率を求めた。
(5) Fine structure of the end face of pitch-based graphitized short fiber graphene sheet:
In the fiber end observation with a transmission electron microscope of pitch-based graphitized short fibers, 5 graphene sheet end face images of 500 to 2.5 million times the fiber end were observed, and the total length A (nm) and end face of the graphene sheet end face at the fiber end The length B (nm) of the portion curved in a U-shape was measured, and the closing rate was determined by the closing rate (%) = B / A × 100.

(6)実質的に平坦な表面の確認:
ピッチ系黒鉛化短繊維の側面を走査型電子顕微鏡にて1000倍で観察した像に、凹凸のような欠陥が何箇所あるかを数えた。10箇所以下の場合平滑とした。
(6) Confirmation of a substantially flat surface:
The number of defects such as irregularities in the image obtained by observing the side surface of the pitch-based graphitized short fiber with a scanning electron microscope at 1000 times was counted. In the case of 10 places or less, it was smooth.

(7)粉体成形体の熱伝導率:
ネッチ製LFA−457で測定した。
(7) Thermal conductivity of the powder compact:
It was measured with LFA-457 manufactured by Netch.

(8)密度率:
得られた粉体成形体について組成物の材料仕込み量から求められる計算密度と実測密度との比とした。計算密度は、加成則が成立するとの前提により計算で求めた。
(8) Density rate:
It was set as the ratio of the calculation density calculated | required from the material preparation amount of a composition about the obtained powder compact, and a measured density. The calculation density was obtained by calculation on the assumption that the additivity rule was established.

[参考例1:ピッチ系黒鉛化短繊維の作製]
ピッチ系黒鉛化短繊維は以下の手順で作製した。縮合多環炭化水素化合物よりなるピッチを主原料とした。光学的異方性割合は100%、軟化点が283℃であった。直径0.2mmの孔の紡糸口金を使用し、スリットから加熱空気を毎分6000mの線速度で噴出させて、溶融ピッチを牽引して平均直径11.2μmのピッチ繊維を作製した。紡出された繊維をベルト上に捕集してピッチ繊維ウェブとし、さらにクロスラッピングで目付400g/mとした。
このピッチ繊維ウェブを空気中で170℃から320℃まで平均昇温速度6℃/分で昇温して不融化ピッチ繊維ウェブとした後、更に800℃で焼成を行い炭化ピッチ繊維ウェブとした。この炭化ピッチ繊維ウェブをカッター(ターボ工業製)を用いて粉砕し、3000℃で黒鉛化した。
[Reference Example 1: Production of pitch-based graphitized short fiber]
Pitch-based graphitized short fibers were produced by the following procedure. A pitch made of a condensed polycyclic hydrocarbon compound was used as a main raw material. The optical anisotropy ratio was 100%, and the softening point was 283 ° C. Using a spinneret having a hole with a diameter of 0.2 mm, heated air was ejected from the slit at a linear velocity of 6000 m / min, and the pitch was melted to produce pitch fibers having an average diameter of 11.2 μm. The spun fibers were collected on a belt to form a pitch fiber web, and the basis weight was 400 g / m 2 by cross wrapping.
The pitch fiber web was heated from 170 ° C. to 320 ° C. in air at an average heating rate of 6 ° C./min to form an infusible pitch fiber web, and then fired at 800 ° C. to obtain a carbonized pitch fiber web. The carbonized pitch fiber web was pulverized using a cutter (manufactured by Turbo Industries) and graphitized at 3000 ° C.

黒鉛化後のピッチ系黒鉛化短繊維の平均繊維径は7.8μm、平均繊維径に対する繊維直径分散の比は11%であった。平均繊維長は120μmであった。六角網面の厚み方向に由来する結晶サイズは33nmであった。六角網面の成長方向に由来する結晶サイズは85nmであった。ピッチ系黒鉛化短繊維の走査型電子顕微鏡で観察した表面は平滑であった。また、透過型電子顕微鏡で観察した端面の像にはグラフェンシートが閉じている構造のみが観察され、端面の閉鎖率は100%であった。炭化ピッチ繊維ウェブを粉砕せずに3000℃で黒鉛化したピッチ系炭素繊維ウェブから抜き出した単糸の電気伝導率より求めた熱伝導率は840W/(m・K)であった。アスペクト比は、15であった。密度は2.2g/ccであった。   The average fiber diameter of the pitch-based graphitized short fibers after graphitization was 7.8 μm, and the ratio of the fiber diameter dispersion to the average fiber diameter was 11%. The average fiber length was 120 μm. The crystal size derived from the thickness direction of the hexagonal mesh surface was 33 nm. The crystal size derived from the growth direction of the hexagonal network surface was 85 nm. The surface of pitch-based graphitized short fibers observed with a scanning electron microscope was smooth. Further, only the structure in which the graphene sheet was closed was observed in the image of the end face observed with the transmission electron microscope, and the closing rate of the end face was 100%. The thermal conductivity obtained from the electrical conductivity of the single yarn extracted from the pitch-based carbon fiber web graphitized at 3000 ° C. without pulverizing the carbonized pitch fiber web was 840 W / (m · K). The aspect ratio was 15. The density was 2.2 g / cc.

[実施例1]
マトリクス成分としてポリカーボネート(帝人化成製L1225WP)を用いた。熱伝導性材料として参考例1で得られたピッチ系黒鉛化短繊維を用いた。マトリクス成分100体積部に対してピッチ系黒鉛化短繊維30体積部を添加し、ドライブレンドを行い、組成物を得た。200mm×200mm×100mmの型に組成物を投入し、脱気しながら290℃に加熱し、200MPaで圧縮を行い、その後冷却した。得られた粉体成形体は、密度率が98%であり、熱伝導率は12W/mKであった。
この粉体成形体をガラス容器に入れ、メチレンクロライドでマトリクス成分を溶解し、残存ピッチ系黒鉛化短繊維を採取した。採取されたピッチ系黒鉛化短繊維の平均繊維長は、80μmであった。
[Example 1]
Polycarbonate (L1225WP manufactured by Teijin Chemicals) was used as the matrix component. The pitch-based graphitized short fibers obtained in Reference Example 1 were used as the heat conductive material. 30 parts by volume of pitch-based graphitized short fibers were added to 100 parts by volume of the matrix component and dry blended to obtain a composition. The composition was put into a 200 mm × 200 mm × 100 mm mold, heated to 290 ° C. while degassing, compressed at 200 MPa, and then cooled. The obtained powder compact had a density rate of 98% and a thermal conductivity of 12 W / mK.
This powder compact was put into a glass container, the matrix component was dissolved with methylene chloride, and the remaining pitch-based graphitized short fibers were collected. The average fiber length of the collected pitch-based graphitized short fibers was 80 μm.

[実施例2]
マトリクス成分としてポリカーボネート(帝人化成製L1225WP)を用いた。熱伝導性材料として参考例1で得られたピッチ系黒鉛化短繊維を用いた。マトリクス成分100体積部に対してピッチ系黒鉛化短繊維50体積部を添加し、ドライブレンドを行い、組成物を得た。200mm×200mm×100mmの型に組成物を投入し、脱気しながら290℃に加熱し、200MPaで圧縮を行い、その後冷却した。得られた粉体成形体は、密度率が97%であり、熱伝導率は17W/mKであった。
この粉体成形体をガラス容器に入れ、メチレンクロライドでマトリクス成分を溶解し、残存ピッチ系黒鉛化短繊維を採取した。採取されたピッチ系黒鉛化短繊維の平均繊維長は、70μmであった。
[Example 2]
Polycarbonate (L1225WP manufactured by Teijin Chemicals) was used as the matrix component. The pitch-based graphitized short fibers obtained in Reference Example 1 were used as the heat conductive material. 50 parts by volume of pitch-based graphitized short fibers were added to 100 parts by volume of the matrix component and dry blended to obtain a composition. The composition was put into a 200 mm × 200 mm × 100 mm mold, heated to 290 ° C. while degassing, compressed at 200 MPa, and then cooled. The obtained powder compact had a density rate of 97% and a thermal conductivity of 17 W / mK.
This powder compact was put into a glass container, the matrix component was dissolved with methylene chloride, and the remaining pitch-based graphitized short fibers were collected. The average fiber length of the collected pitch-based graphitized short fibers was 70 μm.

[比較例1]
実施例1でドライブレンドした混合物をニーダー(栗本製ニ軸ニーダー)でストランドチップに加工し、そのチップを射出成形機(名機製)で2mm厚みの成形板に成形した。熱伝導率は0.9W/mKであり、実施例1に比較して1/10以下の熱伝導率であった。
実施例1と同様にポリカーボネートを溶解し、残存ピッチ系黒鉛化短繊維を採取した。採取されたピッチ系黒鉛化短繊維の平均繊維長は24μmであり、元の繊維の20%の長さになっていた。
[Comparative Example 1]
The mixture dry-blended in Example 1 was processed into a strand chip with a kneader (Kurimoto Nisha Kneader), and the chip was formed into a 2 mm-thick molded plate with an injection molding machine (manufactured by Meiki). The thermal conductivity was 0.9 W / mK, which was 1/10 or less that of Example 1.
The polycarbonate was dissolved in the same manner as in Example 1, and the remaining pitch-based graphitized short fibers were collected. The pitch-based graphitized short fibers collected had an average fiber length of 24 μm, which was 20% of the original fibers.

[実施例3]
マトリクス成分としてポリフェニレンスルフィド樹脂(ポリプラスチックス製0220A9)を用いた。熱伝導性材料として参考例1で得られたピッチ系黒鉛化短繊維を用いた。マトリクス成分100体積部に対してピッチ系黒鉛化短繊維100体積部を添加し、ドライブレンドを行い、組成物を得た。200mm×200mm×100mmの型にブレンドした組成物を投入し、脱気しながら310℃に加熱し、300MPaで圧縮を行い、その後冷却した。得られた粉体成形体は、密度率が99%であり、熱伝導率は25W/mKであった。
この粉体成形体を磁性坩堝に入れ、空気中500℃でマトリクス成分を分解し、残存ピッチ系黒鉛化短繊維を採取した。採取されたピッチ系黒鉛化短繊維の平均繊維長は、90μmであった。
[Example 3]
A polyphenylene sulfide resin (0220A9 manufactured by Polyplastics) was used as a matrix component. The pitch-based graphitized short fibers obtained in Reference Example 1 were used as the heat conductive material. 100 parts by volume of pitch-based graphitized short fibers were added to 100 parts by volume of the matrix component and dry blended to obtain a composition. The blended composition was put into a 200 mm × 200 mm × 100 mm mold, heated to 310 ° C. while degassing, compressed at 300 MPa, and then cooled. The obtained powder compact had a density rate of 99% and a thermal conductivity of 25 W / mK.
This powder compact was put into a magnetic crucible, the matrix component was decomposed at 500 ° C. in air, and the remaining pitch-based graphitized short fibers were collected. The average fiber length of the collected pitch-based graphitized short fibers was 90 μm.

[実施例4]
マトリクス成分としてポリフェニレンスルフィド樹脂(ポリプラスチックス製0220A9)を用いた。熱伝導性材料として参考例1で得られたピッチ系黒鉛化短繊維を用いた。マトリクス成分100体積部に対してピッチ系黒鉛化短繊維200体積部を添加し、ドライブレンドを行い、組成物を得た。200mm×200mm×100mmの型にブレンドした組成物を投入し、脱気しながら310℃に加熱し、300MPaで圧縮を行い、その後冷却した。得られた粉体成形体は、密度率が97%であり、熱伝導率は29W/mKであった。
この粉体成形体を磁性坩堝に入れ、空気中500℃でマトリクス成分を分解し、残存ピッチ系黒鉛化短繊維を採取した。採取されたピッチ系黒鉛化短繊維の平均繊維長は、72μmであった。
[Example 4]
A polyphenylene sulfide resin (0220A9 manufactured by Polyplastics) was used as a matrix component. The pitch-based graphitized short fibers obtained in Reference Example 1 were used as the heat conductive material. 200 parts by volume of pitch-based graphitized short fibers were added to 100 parts by volume of the matrix component, and dry blended to obtain a composition. The blended composition was put into a 200 mm × 200 mm × 100 mm mold, heated to 310 ° C. while degassing, compressed at 300 MPa, and then cooled. The obtained powder compact had a density rate of 97% and a thermal conductivity of 29 W / mK.
This powder compact was put into a magnetic crucible, the matrix component was decomposed at 500 ° C. in air, and the remaining pitch-based graphitized short fibers were collected. The average fiber length of the collected pitch-based graphitized short fibers was 72 μm.

[実施例5]
マトリクス成分としてポリエーテルエーテルケトン樹脂(ビクトレックス製)を用いた。熱伝導性材料として参考例1で得られたピッチ系黒鉛化短繊維を用いた。マトリクス成分100体積部に対してピッチ系黒鉛化短繊維100体積部を添加し、ドライブレンドを行い、組成物を得た。200mm×200mm×100mmの型に組成物を投入し、脱気しながら400℃に加熱し、150MPaで圧縮を行い、その後冷却した。得られた粉体成形体は、密度率が96%であり、熱伝導率は23W/mKであった。
この粉体成形体を磁性坩堝に入れ、空気中550℃でマトリクス成分を分解し、残存ピッチ系黒鉛化短繊維を採取した。採取されたピッチ系黒鉛化短繊維の平均繊維長は、78μmであった。
[Example 5]
Polyether ether ketone resin (manufactured by Victrex) was used as a matrix component. The pitch-based graphitized short fibers obtained in Reference Example 1 were used as the heat conductive material. 100 parts by volume of pitch-based graphitized short fibers were added to 100 parts by volume of the matrix component and dry blended to obtain a composition. The composition was put into a 200 mm × 200 mm × 100 mm mold, heated to 400 ° C. while degassing, compressed at 150 MPa, and then cooled. The obtained powder compact had a density rate of 96% and a thermal conductivity of 23 W / mK.
This powder compact was put into a magnetic crucible, the matrix components were decomposed at 550 ° C. in air, and the remaining pitch-based graphitized short fibers were collected. The average pitch length of the collected pitch-based graphitized short fibers was 78 μm.

[参考例2:ピッチ系黒鉛化短繊維の作製]
ピッチ系黒鉛化短繊維の平均繊維長を50μmとした以外は、参考例1と同じ方法でピッチ系黒鉛化短繊維を作製した。アスペクト比は6であった。
[Reference Example 2: Production of pitch-based graphitized short fiber]
Pitch-based graphitized short fibers were produced in the same manner as in Reference Example 1 except that the average fiber length of the pitch-based graphitized short fibers was 50 μm. The aspect ratio was 6.

[実施例6]
マトリクス成分としてポリカーボネート(帝人化成製L1225WP)を用いた。熱伝導性材料として参考例2で得られたピッチ系黒鉛化短繊維を用いた。マトリクス成分100体積部に対してピッチ系黒鉛化短繊維50体積部を添加し、ドライブレンドを行い、組成物を得た。200mm×200mm×100mmの型に組成物を投入し、脱気しながら290℃に加熱し、200MPaで圧縮を行い、その後冷却した。得られた粉体成形体は、密度率が99%であり、熱伝導率は11W/mKであった。
この粉体成形体をガラス容器に入れ、メチレンクロライドでマトリクス成分を溶解し、残存ピッチ系黒鉛化短繊維を採取した。採取されたピッチ系黒鉛化短繊維の平均繊維長は、30μmであった。
[Example 6]
Polycarbonate (L1225WP manufactured by Teijin Chemicals) was used as the matrix component. The pitch-based graphitized short fiber obtained in Reference Example 2 was used as the heat conductive material. 50 parts by volume of pitch-based graphitized short fibers were added to 100 parts by volume of the matrix component and dry blended to obtain a composition. The composition was put into a 200 mm × 200 mm × 100 mm mold, heated to 290 ° C. while degassing, compressed at 200 MPa, and then cooled. The obtained powder compact had a density rate of 99% and a thermal conductivity of 11 W / mK.
This powder compact was put into a glass container, the matrix component was dissolved with methylene chloride, and the remaining pitch-based graphitized short fibers were collected. The average fiber length of the collected pitch-based graphitized short fibers was 30 μm.

[実施例7]
マトリクス成分としてポリフェニレンスルフィド樹脂(ポリプラスチックス製0220A9)を用いた。熱伝導性材料として参考例2で得られたピッチ系黒鉛化短繊維を用いた。マトリクス成分100体積部に対してピッチ系黒鉛化短繊維200体積部を添加し、ドライブレンドを行い、組成物を得た。200mm×200mm×100mmの型にブレンドした組成物を投入し、脱気しながら310℃に加熱し、300MPaで圧縮を行い、その後冷却した。得られた粉体成形体は、密度率が99%であり、熱伝導率は20W/mKであった。
この粉体成形体を磁性坩堝に入れ、空気中500℃でマトリクス成分を分解し、残存ピッチ系黒鉛化短繊維を採取した。採取されたピッチ系黒鉛化短繊維の平均繊維長は、35μmであった。
[Example 7]
A polyphenylene sulfide resin (0220A9 manufactured by Polyplastics) was used as a matrix component. The pitch-based graphitized short fiber obtained in Reference Example 2 was used as the heat conductive material. 200 parts by volume of pitch-based graphitized short fibers were added to 100 parts by volume of the matrix component, and dry blended to obtain a composition. The blended composition was put into a 200 mm × 200 mm × 100 mm mold, heated to 310 ° C. while degassing, compressed at 300 MPa, and then cooled. The obtained powder compact had a density rate of 99% and a thermal conductivity of 20 W / mK.
This powder compact was put into a magnetic crucible, the matrix component was decomposed at 500 ° C. in air, and the remaining pitch-based graphitized short fibers were collected. The average fiber length of the collected pitch-based graphitized short fibers was 35 μm.

[実施例8]
マトリクス成分としてポリエーテルエーテルケトン樹脂(ビクトレックス製)を用いた。熱伝導性材料として参考例2で得られたピッチ系黒鉛化短繊維を用いた。マトリクス成分100体積部に対してピッチ系黒鉛化短繊維200体積部を添加し、ドライブレンドを行い、組成物を得た。200mm×200mm×100mmの型に組成物を投入し、脱気しながら400℃に加熱し、150MPaで圧縮を行い、その後冷却した。得られた粉体成形体は、密度率が98%であり、熱伝導率は16W/mKであった。
この粉体成形体を磁性坩堝に入れ、空気中550℃でマトリクス成分を分解し、残存ピッチ系黒鉛化短繊維を採取した。採取されたピッチ系黒鉛化短繊維の平均繊維長は、28μmであった。
[Example 8]
Polyether ether ketone resin (manufactured by Victrex) was used as a matrix component. The pitch-based graphitized short fiber obtained in Reference Example 2 was used as the heat conductive material. 200 parts by volume of pitch-based graphitized short fibers were added to 100 parts by volume of the matrix component, and dry blended to obtain a composition. The composition was put into a 200 mm × 200 mm × 100 mm mold, heated to 400 ° C. while degassing, compressed at 150 MPa, and then cooled. The obtained powder compact had a density rate of 98% and a thermal conductivity of 16 W / mK.
This powder compact was put into a magnetic crucible, the matrix components were decomposed at 550 ° C. in air, and the remaining pitch-based graphitized short fibers were collected. The average fiber length of the collected pitch-based graphitized short fibers was 28 μm.

[比較例2]
実施例1においてピッチ系黒鉛化短繊維の添加量を5体積部とした以外は実施例1と同様に粉体成形体を作製した。密度率は99%であり、熱伝導率は0.9W/(m・K)であった。
[Comparative Example 2]
A powder compact was produced in the same manner as in Example 1 except that the addition amount of pitch-based graphitized short fibers in Example 1 was 5 parts by volume. The density rate was 99%, and the thermal conductivity was 0.9 W / (m · K).

[比較例3]
実施例1においてピッチ系黒鉛化短繊維に変えて、平均粒径が11μmの球状のカーボンブラックを添加した以外は実施例1と同様に粉体成形体を作製した。密度率は85%であり、熱伝導率は1.9W/(m・K)であった。
[Comparative Example 3]
A powder compact was produced in the same manner as in Example 1 except that spherical carbon black having an average particle diameter of 11 μm was added instead of pitch-based graphitized short fibers in Example 1. The density rate was 85%, and the thermal conductivity was 1.9 W / (m · K).

[参考例3]
参考例1で作製した炭化ピッチ繊維ウェブを3000℃で黒鉛化したピッチ系炭素繊維ウェブをターボ工業製カッターを用いて粉砕し、ピッチ系黒鉛化短繊維を作製した。走査型電子顕微鏡で観察した表面は、一部フィブリル状になっていた。透過型電子顕微鏡でフィラー端面を観察したところ、グラフェンシートは開いており、端面の閉鎖率は35%であった。その他は参考例1と同等のピッチ系黒鉛化短繊維が得られた。
[Reference Example 3]
The pitch-based carbon fiber web obtained by graphitizing the carbonized pitch fiber web prepared in Reference Example 1 at 3000 ° C. was pulverized using a cutter manufactured by Turbo Industry, thereby producing pitch-based graphitized short fibers. The surface observed with a scanning electron microscope was partially fibrillated. When the end face of the filler was observed with a transmission electron microscope, the graphene sheet was open and the closing rate of the end face was 35%. Other than that, pitch-based graphitized short fibers equivalent to those in Reference Example 1 were obtained.

[実施例9]
参考例3で作製したピッチ系黒鉛化短繊維を用いた以外は実施例1と同じとして粉体成形体を作製した。外観としてボイドの発生箇所があった。ボイドのあるところと、無いところの熱伝導率を測定したところ、ボイド箇所は6W/mKであり、ボイドの無い箇所は10W/mKであった。場所によるムラが発生していた。参考例3で作製したピッチ系黒鉛化短繊維のフィブリルの影響で凝集しやすくなり、分散が悪くなったことが原因と推察される。
[Example 9]
A powder compact was prepared in the same manner as in Example 1 except that the pitch-based graphitized short fibers prepared in Reference Example 3 were used. There were voids in appearance. When the thermal conductivity was measured with and without a void, the void portion was 6 W / mK and the void-free portion was 10 W / mK. Unevenness occurred due to location. It is presumed that the cause is that the fibrils of the pitch-based graphitized short fibers prepared in Reference Example 3 are easily aggregated and the dispersion is deteriorated.

[実施例10]
実施例3で作製した粉体成形体を切削加工で円盤状に加工した。この円盤状に加工した成形体を出力0.3Wの面状発熱体に、3分間貼合したところ、温度が65℃から42℃に23℃低下した。
[Example 10]
The powder compact produced in Example 3 was processed into a disk shape by cutting. When the molded body processed into a disk shape was bonded to a planar heating element with an output of 0.3 W for 3 minutes, the temperature dropped from 65 ° C. to 42 ° C. by 23 ° C.

[実施例11]
マトリクス成分としてポリフェニレンスルフィド樹脂(ポリプラスチックス製0220A9)を用いた。熱伝導性材料として参考例1で得られたピッチ系黒鉛化短繊維と球状のアルミナを用いた。マトリクス成分100体積部に対してピッチ系黒鉛化短繊維100体積部を添加し、10μmのアルミナ(マイクロン製球状アルミナ)50体積部を添加した。ドライブレンドを行い、組成物を得た。200mm×200mm×100mmの型に組成物を投入し、脱気しながら310℃に加熱し、300MPaで圧縮を行い、その後冷却した。得られた粉体成形体は、密度率が94%であり、熱伝導率は29W/mKであった。
この粉体成形体を磁性坩堝に入れ、空気中500℃でマトリクス成分を分解し、残存ピッチ系黒鉛化短繊維を採取した。採取されたピッチ系黒鉛化短繊維の平均繊維長は、83μmであった。
[Example 11]
A polyphenylene sulfide resin (0220A9 manufactured by Polyplastics) was used as a matrix component. The pitch-based graphitized short fibers obtained in Reference Example 1 and spherical alumina were used as the heat conductive material. 100 parts by volume of pitch-based graphitized short fibers were added to 100 parts by volume of the matrix component, and 50 parts by volume of 10 μm alumina (Micron spherical alumina) was added. Dry blending was performed to obtain a composition. The composition was put into a 200 mm × 200 mm × 100 mm mold, heated to 310 ° C. while degassing, compressed at 300 MPa, and then cooled. The obtained powder compact had a density rate of 94% and a thermal conductivity of 29 W / mK.
This powder compact was put into a magnetic crucible, the matrix component was decomposed at 500 ° C. in air, and the remaining pitch-based graphitized short fibers were collected. The average fiber length of the collected pitch-based graphitized short fibers was 83 μm.

[実施例12]
マトリクス成分としてポリフェニレンスルフィド樹脂(ポリプラスチックス製0220A9)を用いた。熱伝導性材料として参考例1で得られたピッチ系黒鉛化短繊維と板状の窒化ホウ素を用いた。マトリクス成分100体積部に対してピッチ系黒鉛化短繊維100体積部を添加し、50μmの窒化ホウ素(モメンティブ製)50体積部を添加した。ドライブレンドを行い、組成物を得た。200mm×200mm×100mmの型に組成物を投入し、脱気しながら310℃に加熱し、300MPaで圧縮を行い、その後冷却した。得られた粉体成形体は、密度率が92%であり、熱伝導率は28W/mKであった。
この粉体成形体を磁性坩堝に入れ、空気中500℃でマトリクス成分を分解し、残存ピッチ系黒鉛化短繊維を採取した。採取されたピッチ系黒鉛化短繊維の平均繊維長は、79μmであった。
[Example 12]
A polyphenylene sulfide resin (0220A9 manufactured by Polyplastics) was used as a matrix component. The pitch-based graphitized short fibers obtained in Reference Example 1 and plate-like boron nitride were used as the thermally conductive material. 100 parts by volume of pitch-based graphitized short fibers were added to 100 parts by volume of the matrix component, and 50 parts by volume of 50 μm boron nitride (made by Momentive) was added. Dry blending was performed to obtain a composition. The composition was put into a 200 mm × 200 mm × 100 mm mold, heated to 310 ° C. while degassing, compressed at 300 MPa, and then cooled. The obtained powder compact had a density rate of 92% and a thermal conductivity of 28 W / mK.
This powder compact was put into a magnetic crucible, the matrix component was decomposed at 500 ° C. in air, and the remaining pitch-based graphitized short fibers were collected. The average fiber length of the collected pitch-based graphitized short fibers was 79 μm.

[比較例4]
マトリクス成分としてポリフェニレンスルフィド樹脂(ポリプラスチックス製0220A9)を用いた。熱伝導性材料として球状のアルミナを用いた。マトリクス成分100体積部に対して10μmのアルミナ(マイクロン製球状アルミナ)100体積部を添加した。ドライブレンドを行い、200mm×200mm×100mmの型にブレンドした粉体を投入し、脱気しながら310℃に加熱し、300MPaで圧縮を行い、その後冷却した。得られた粉体成形体は、密度率が91%であり、熱伝導率は0.8W/mKであった。熱伝導率が向上しなかった。
[Comparative Example 4]
A polyphenylene sulfide resin (0220A9 manufactured by Polyplastics) was used as a matrix component. Spherical alumina was used as the heat conductive material. 100 parts by volume of 10 μm alumina (micron spherical alumina) was added to 100 parts by volume of the matrix component. Dry blending was performed, and the powder blended into a 200 mm × 200 mm × 100 mm mold was charged, heated to 310 ° C. while degassing, compressed at 300 MPa, and then cooled. The obtained powder compact had a density rate of 91% and a thermal conductivity of 0.8 W / mK. Thermal conductivity did not improve.

[実施例13]
マトリクス成分としてポリカーボネート(帝人化成製L1225WP)を用いた。熱伝導性材料として参考例1で得られたピッチ系黒鉛化短繊維を用いた。マトリクス成分100体積部に対してピッチ系黒鉛化短繊維30体積部を添加し、さらに20μmφの金属アルミニウム粉末(東洋アルミニウム社製、高純度球状アルミニウム粉末)を100体積部添加し、ドライブレンドを行い、組成物を得た。200mm×200mm×100mmの型に組成物を投入し、脱気しながら290℃に加熱し、200MPaで圧縮を行い、その後冷却した。得られた粉体成形体は、密度率が93%であり、熱伝導率は21W/mKであった。
この粉体成形体をガラス容器に入れ、メチレンクロライドでマトリクス成分を溶解し、残存ピッチ系黒鉛化短繊維を採取した。採取されたピッチ系黒鉛化短繊維の平均繊維長は、72μmであった。
[Example 13]
Polycarbonate (L1225WP manufactured by Teijin Chemicals) was used as the matrix component. The pitch-based graphitized short fibers obtained in Reference Example 1 were used as the heat conductive material. 30 parts by volume of pitch-based graphitized short fibers are added to 100 parts by volume of the matrix component, and 100 parts by volume of 20 μmφ metal aluminum powder (manufactured by Toyo Aluminum Co., Ltd., high-purity spherical aluminum powder) is added and dry blended. A composition was obtained. The composition was put into a 200 mm × 200 mm × 100 mm mold, heated to 290 ° C. while degassing, compressed at 200 MPa, and then cooled. The obtained powder compact had a density rate of 93% and a thermal conductivity of 21 W / mK.
This powder compact was put into a glass container, the matrix component was dissolved with methylene chloride, and the remaining pitch-based graphitized short fibers were collected. The average fiber length of the collected pitch-based graphitized short fibers was 72 μm.

本発明の熱伝導性成形体を提供する組成物は、特定のピッチ系黒鉛化短繊維を用いることで、高い熱伝導性が発現でき、熱伝導性が要求される各種部材として好適に用いることができる。   The composition providing the thermally conductive molded article of the present invention can be used suitably as various members that can exhibit high thermal conductivity and require thermal conductivity by using specific pitch-based graphitized short fibers. Can do.

Claims (11)

マトリクス成分100体積部に対し、アスペクト比が4〜100であるピッチ系黒鉛化短繊維を20〜1000体積部含む、熱伝導性に優れた粉体成形体を得るための組成物。   A composition for obtaining a powder compact having excellent thermal conductivity, comprising 20 to 1000 parts by volume of pitch-based graphitized short fibers having an aspect ratio of 4 to 100 with respect to 100 parts by volume of a matrix component. さらに金属化合物フィラーを1〜1000体積部含む請求項1に記載の組成物。   Furthermore, the composition of Claim 1 containing 1-1000 volume part of metal compound fillers. 当該ピッチ系黒鉛化短繊維がメソフェーズピッチを原料とし、平均繊維径が5〜20μmであり、平均繊維径に対する繊維径分散の百分率(CV値)が5〜15%であり、平均繊維長が20〜500μmであり、走査型電子顕微鏡での観察表面が実質的に平滑であり、かつ透過型電子顕微鏡での端面観察においてグラフェンシートが閉じていることを特徴とする請求項1または2に記載の組成物。   The pitch-based graphitized short fibers are made of mesophase pitch, have an average fiber diameter of 5 to 20 μm, a fiber diameter dispersion percentage (CV value) with respect to the average fiber diameter of 5 to 15%, and an average fiber length of 20 The observation surface with a scanning electron microscope is substantially smooth, and the graphene sheet is closed in end face observation with a transmission electron microscope. Composition. 粉体成形後の残存ピッチ系黒鉛化短繊維の平均繊維長が、20〜400μmである請求項1〜3のいずれかに記載の組成物。   The composition according to any one of claims 1 to 3, wherein the average fiber length of the residual pitch-based graphitized short fibers after powder molding is 20 to 400 µm. マトリクス成分が熱可塑性樹脂である請求項1〜4のいずれかに記載の組成物。   The composition according to any one of claims 1 to 4, wherein the matrix component is a thermoplastic resin. 熱可塑性樹脂が、ポリエーテルエーテルケトン類、ポリフェニレンサルファイド類、ポリオキシメチレン類、ポリエステル類、ポリオレフィン類、ポリアミド類、ポリイミド類、ポリアミドイミド類、ポリカーボネート類およびポリフッ化物類よりなる群より選ばれてなる少なくとも1種以上である請求項1〜5のいずれかに記載の組成物。   The thermoplastic resin is selected from the group consisting of polyether ether ketones, polyphenylene sulfides, polyoxymethylenes, polyesters, polyolefins, polyamides, polyimides, polyamideimides, polycarbonates and polyfluorides. The composition according to any one of claims 1 to 5, wherein the composition is at least one or more. 金属化合物フィラーが、マグネシウム、アルミニウム、亜鉛、金、銀、銅、鉄、酸化マグネシウム、酸化アルミニウム、酸化亜鉛、窒化アルミニウム、酸化窒化アルミニウム、窒化ホウ素、石英、炭化珪素、酸化珪素、および窒化珪素からなる群より選ばれる少なくとも1種以上である請求項2〜6のいずれかに記載の組成物。   Metal compound filler from magnesium, aluminum, zinc, gold, silver, copper, iron, magnesium oxide, aluminum oxide, zinc oxide, aluminum nitride, aluminum oxynitride, boron nitride, quartz, silicon carbide, silicon oxide, and silicon nitride The composition according to claim 2, which is at least one selected from the group consisting of: 請求項1〜7のいずれかに記載の組成物を粉体成形して得られる熱伝導性の粉体成形体。   A thermally conductive powder molded body obtained by powder molding the composition according to claim 1. 粉体成形後に切削加工して得られる請求項8記載の粉体成形体。   The powder molded body according to claim 8, obtained by cutting after powder molding. 熱伝導率が5W/(m・K)より高い請求項8または9に記載の粉体成形体。   The powder compact according to claim 8 or 9, wherein the thermal conductivity is higher than 5 W / (m · K). 請求項1〜7のいずれかに記載の組成物を加熱し、圧縮、冷却よりなる工程を経る粉体成形体の製造方法。   The manufacturing method of the powder compact which heats the composition in any one of Claims 1-7, and passes through the process which consists of compression and cooling.
JP2008187106A 2008-07-18 2008-07-18 Composition for preparing powder molding material excellent in heat-conductivity Withdrawn JP2010024343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008187106A JP2010024343A (en) 2008-07-18 2008-07-18 Composition for preparing powder molding material excellent in heat-conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008187106A JP2010024343A (en) 2008-07-18 2008-07-18 Composition for preparing powder molding material excellent in heat-conductivity

Publications (1)

Publication Number Publication Date
JP2010024343A true JP2010024343A (en) 2010-02-04

Family

ID=41730460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008187106A Withdrawn JP2010024343A (en) 2008-07-18 2008-07-18 Composition for preparing powder molding material excellent in heat-conductivity

Country Status (1)

Country Link
JP (1) JP2010024343A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012685A2 (en) 2011-07-15 2013-01-24 Polyone Corporation Polyamide compounds containing pitch carbon fiber
JP2015117260A (en) * 2013-12-16 2015-06-25 旭化成ケミカルズ株式会社 Organic-inorganic composite composition, molding, and sheet
US10851277B2 (en) 2012-11-21 2020-12-01 Takagi Chemicals, Inc. Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012685A2 (en) 2011-07-15 2013-01-24 Polyone Corporation Polyamide compounds containing pitch carbon fiber
WO2013012685A3 (en) * 2011-07-15 2013-05-02 Polyone Corporation Polyamide compounds containing pitch carbon fiber
CN103687910A (en) * 2011-07-15 2014-03-26 普立万公司 Polyamide compounds containing pitch carbon fiber
EP2731997A2 (en) * 2011-07-15 2014-05-21 PolyOne Corporation Polyamide compounds containing pitch carbon fiber
US20140166925A1 (en) * 2011-07-15 2014-06-19 Polyone Corporation Polyamide compounds containing pitch carbon fiber
EP2731997A4 (en) * 2011-07-15 2015-01-21 Polyone Corp Polyamide compounds containing pitch carbon fiber
US9243178B2 (en) 2011-07-15 2016-01-26 Polyone Corporation Polyamide compounds containing pitch carbon fiber
US10851277B2 (en) 2012-11-21 2020-12-01 Takagi Chemicals, Inc. Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article
JP2015117260A (en) * 2013-12-16 2015-06-25 旭化成ケミカルズ株式会社 Organic-inorganic composite composition, molding, and sheet

Similar Documents

Publication Publication Date Title
JP4538502B2 (en) Pitch-based carbon fiber, mat, and resin molded body containing them
JP4891011B2 (en) Carbon fiber assembly suitable for reinforcement and heat dissipation materials
JP2009179700A (en) Thermally conductive powder coating composition
JP2007291267A (en) Thermally conductive molding material and molded sheet using this
TW201040336A (en) Graphitized short fibers and composition thereof
JP2012171986A (en) Thermally conductive composition
JP2009215404A (en) Sheet-shaped thermally conductive molded product
JP2009191392A (en) Pitch-based carbon fiber filer and molded article using the same
JP2011037919A (en) Thermally conductive bar-shaped resin compact
JP2008189867A (en) Composite material of carbon fiber-reinforced thermoplastic resin
JP2010065123A (en) Heat-conductive molding
JP2009108424A (en) Thermally conductive filler and molded product using the same
JP2008248462A (en) Pitch based carbon fiber filler and molded article using the same
JPWO2008108482A1 (en) Pitch-based carbon fiber, method for producing the same, and molded body
JP2010024343A (en) Composition for preparing powder molding material excellent in heat-conductivity
JP2007291576A (en) Thermoconductive filler and compounded molded article by using the same
JP2009108425A (en) Carbon fiber and composite material using the same
JP7402631B2 (en) Ultrafine carbon fiber mixture, manufacturing method thereof, and carbon-based conductive aid
JP2008308543A (en) Carbon fiber composite sheet and its manufacturing method
WO2010024462A1 (en) Pitch-derived graphitized short fiber and molded object obtained using same
JP2009215403A (en) Sheet-like heat-conductive molded body
JP4971958B2 (en) Sheet-like thermally conductive molded body
JP2012077224A (en) Thermally conductive composition
JP2009030215A (en) Carbon fiber and molded article using the same
JP2008189866A (en) Heat radiation material comprising carbon fiber-reinforced thermosetting resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110512

RD02 Notification of acceptance of power of attorney

Effective date: 20110706

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110706

A761 Written withdrawal of application

Effective date: 20120404

Free format text: JAPANESE INTERMEDIATE CODE: A761