JP2009215403A - Sheet-like heat-conductive molded body - Google Patents

Sheet-like heat-conductive molded body Download PDF

Info

Publication number
JP2009215403A
JP2009215403A JP2008059625A JP2008059625A JP2009215403A JP 2009215403 A JP2009215403 A JP 2009215403A JP 2008059625 A JP2008059625 A JP 2008059625A JP 2008059625 A JP2008059625 A JP 2008059625A JP 2009215403 A JP2009215403 A JP 2009215403A
Authority
JP
Japan
Prior art keywords
sheet
pitch
content
inorganic compound
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008059625A
Other languages
Japanese (ja)
Inventor
Hiroki Sano
弘樹 佐野
Hiroshi Hara
寛 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2008059625A priority Critical patent/JP2009215403A/en
Publication of JP2009215403A publication Critical patent/JP2009215403A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-conductive molded body having excellent heat conductivity. <P>SOLUTION: In the sheet-like heat-conductive molded body containing 90 to 100 wt.% composition composed of a resin, pitch type graphite short fibers having an aspect ratio of 3 or more and an inorganic compound having an aspect ratio of 3 or below, when such a content of the pitch type graphite short fibers that heat conductivity of the sheet is made double or more if the content is increased by 5 wt.% is defined as Wf<SB>A</SB>wt.% in a relation between the heat conductivity of a sheet composed of the resin and pitch type graphite short fibers having an aspect ratio of 3 or more and a content of the pitch type graphite short fibers and such a content of the inorganic compound that the heat conductivity is made double or more if the content is increased by 5 wt.% is defined as Wf<SB>B</SB>wt.% in a relation between the heat conductivity of a sheet composed of the resin and the inorganic compound having the aspect ratio of 3 or below and a content of the inorganic compound in the sheet, a content (Wf<SB>C</SB>wt.%) of the pitch type graphite short fibers and a content (Wf<SB>D</SB>wt.%) of the inorganic compound in the composition satisfy a relation of Wf<SB>C</SB>/Wf<SB>A</SB>+Wf<SB>D</SB>/Wf<SB>B</SB>>1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ピッチ系黒鉛化短繊維を含むシート状熱伝導性成形体に関わるものである。さらに詳しくは、熱伝導成形体中のピッチ系黒鉛化短繊維と無機フィラーの含有量の割合を制御した熱伝導性成形体であり、電子部品の放熱部材や熱交換器に好適に使用される。   The present invention relates to a sheet-like thermally conductive molded article containing pitch-based graphitized short fibers. More specifically, it is a thermally conductive molded body in which the ratio of the content of pitch-based graphitized short fibers and inorganic filler in the thermally conductive molded body is controlled, and is suitably used for heat dissipation members and heat exchangers of electronic components. .

高性能の炭素繊維はポリアクリロニトリル(PAN)を原料とするPAN系炭素繊維と、一連のピッチ類を原料とするピッチ系炭素繊維に分類できる。そして炭素繊維は強度・弾性率が通常の合成高分子に比較して著しく高いという特徴を利用し、航空・宇宙用途、建築・土木用途、産業用ロボット、スポーツ・レジャー用途など広く用いられている。また、PAN系炭素繊維は、主として、その強度を利用する分野に、そしてピッチ系炭素繊維は、弾性率を利用する分野に用いられることが多い。   High-performance carbon fibers can be classified into PAN-based carbon fibers made from polyacrylonitrile (PAN) and pitch-based carbon fibers made from a series of pitches. Carbon fiber is widely used for aerospace applications, construction / civil engineering applications, industrial robots, sports / leisure applications, etc., taking advantage of its significantly higher strength and elastic modulus than ordinary synthetic polymers. . In addition, PAN-based carbon fibers are often used mainly in the field of utilizing the strength, and pitch-based carbon fibers are used in the field of utilizing the elastic modulus.

近年、省エネルギーに代表されるエネルギーの効率的使用方法が注目されている一方で、高速化されたCPUや電子回路のジュール熱による発熱が重篤な問題として認識されつつある。また、電子注入を発光原理とするエレクトロルミネッセンス素子においても同様に重篤な問題として顕在化している。一方、各種素子を形成するプロセスに目を向けると環境配慮型プロセスが求められており、その対策として鉛が添加されていない所謂鉛フリー半田への切り替えがなされている。鉛フリー半田は融点が通常の鉛含有半田に比較して高いため、プロセスの熱の効率的な使用が要求されている。そして、このような製品・プロセスが内包する熱に由来する問題を解決するためには、熱の効率的な処理(サーマルマネジメント)を達成する必要がある。   In recent years, an efficient method of using energy typified by energy saving has attracted attention, while heat generation due to Joule heat in a CPU and an electronic circuit that have been speeded up has been recognized as a serious problem. Similarly, an electroluminescent element that uses electron injection as a light emission principle is also manifesting as a serious problem. On the other hand, when considering the process of forming various elements, an environmentally conscious process is demanded, and as a countermeasure against this, switching to so-called lead-free solder to which lead is not added has been made. Since lead-free solder has a higher melting point than ordinary lead-containing solder, efficient use of process heat is required. And in order to solve the problem originating in the heat which such a product and process includes, it is necessary to achieve the efficient process (thermal management) of heat.

サーマルマネジメントを具現化するには、金属・金属酸化物・金属窒化物・金属酸窒化物・合金といった、熱伝導性の高い無機材料を用いることが多い。金属ダイカストは、その典型的な例と考えることができる。しかし、複雑な形状をした電気部品などの筐体を作製するには、上述した材料をフィラーとして何らかのマトリクスに混合した複合材として用いることが、費用対効果の面から望ましい。しかし、マトリクスに用いられることが多い合成樹脂の熱伝導率はフィラーの1/100程度以下であり、多量のフィラーを混合する必要がある。しかしながら、多量のフィラーの添加は、成形性の劣化を招き、実用性を損なってしまう。そのため、効率的に熱伝導性を発現でき、形状にまで配慮がなされた高熱伝導性フィラーが求められていた。   In order to realize thermal management, inorganic materials having high thermal conductivity such as metal, metal oxide, metal nitride, metal oxynitride, and alloy are often used. Metal die casting can be considered a typical example. However, in order to manufacture a housing such as an electric component having a complicated shape, it is desirable from the viewpoint of cost effectiveness to use the above-described material as a composite material mixed with some matrix as a filler. However, the thermal conductivity of the synthetic resin often used for the matrix is about 1/100 or less that of the filler, and a large amount of filler needs to be mixed. However, the addition of a large amount of filler causes deterioration of moldability and impairs practicality. Therefore, there has been a demand for a highly thermally conductive filler that can efficiently exhibit thermal conductivity and that takes into consideration its shape.

一般に炭素繊維は、他の合成高分子に比較して熱伝導率が高いと言われているが、サーマルマネジメント用途に向けた、さらなる熱伝導の向上が検討されている。ところが、市販されているPAN系炭素繊維の熱伝導率は通常200W/(m・K)よりも小さい。これは、PAN系炭素繊維が所謂難黒鉛化炭素繊維であり、熱伝導を担う黒鉛性を高めることが非常に困難なことに由来している。これに対して、ピッチ系炭素繊維は易黒鉛化炭素繊維と呼ばれ、PAN系炭素繊維に比べて、黒鉛性を高くすることができるため、高熱伝導率を達成しやすいと認識されている。よって、効率的に熱伝導性を発現できる形状にまで配慮がなされた高熱伝導性フィラーにできる可能性がある。   In general, carbon fibers are said to have higher thermal conductivity than other synthetic polymers, but further improvements in thermal conductivity are being studied for thermal management applications. However, the thermal conductivity of commercially available PAN-based carbon fibers is usually smaller than 200 W / (m · K). This is because the PAN-based carbon fiber is a so-called non-graphitizable carbon fiber, and it is very difficult to improve the graphitization property that bears heat conduction. On the other hand, pitch-based carbon fibers are called graphitizable carbon fibers, and can be made more graphitic than PAN-based carbon fibers, and are recognized to easily achieve high thermal conductivity. Therefore, there is a possibility that a highly thermally conductive filler in which consideration is given to a shape capable of efficiently expressing thermal conductivity can be obtained.

ただ、炭素繊維単体での熱伝導性部材への加工は困難であり、非常に特殊な手法を用いる必要がある。そこで、金属性フィラー等と同様に、何らかのマトリクスと炭素繊維を複合材化し、それを成形体化し、その成形体の熱伝導度を向上させることが求められる。   However, it is difficult to process a carbon fiber alone into a heat conductive member, and it is necessary to use a very special method. Therefore, like a metallic filler or the like, it is required to form a composite material of some matrix and carbon fiber, to form a molded body, and to improve the thermal conductivity of the molded body.

次にサーマルマネジメントに用いる成形体の特徴について考察する。一般的に炭素繊維を用いた成形体は、アスペクト比を有するために樹脂と混合する際に、粘度が高くなりやすく高充填するのが難しいことが多い。そのため、炭素繊維単独で使用するよりもアスペクト比の低い化合物、特に熱伝導性の無機化合物と複合して成形体を得ることが多くある。しかし、無機化合物は一部を除いて熱伝導性が炭素繊維より低いものが多く、炭素繊維と比較して効率的に熱伝導性を高めるのが難しい。特許文献1、2には、炭素繊維と無機化合物を組み合わせた成形体が報告されているが、その組成が必ずしも適切とは言えず、十分にその性能を引き出しているとは言い難い。   Next, the characteristics of the molded body used for thermal management are considered. In general, since a molded body using carbon fibers has an aspect ratio, it tends to have a high viscosity when mixed with a resin, and it is often difficult to perform high filling. For this reason, it is often the case that a molded body is obtained by combining with a compound having a lower aspect ratio, particularly a thermally conductive inorganic compound, than when using carbon fiber alone. However, most of the inorganic compounds have a lower thermal conductivity than carbon fibers except for some of them, and it is difficult to efficiently increase the thermal conductivity compared to carbon fibers. Patent Documents 1 and 2 report a molded body in which carbon fiber and an inorganic compound are combined. However, the composition is not necessarily appropriate, and it is difficult to say that the performance is sufficiently extracted.

特開平8−283456号公報JP-A-8-283456 特開2001−156227号公報JP 2001-156227 A

上記のように、炭素繊維、特にピッチ系炭素繊維の高熱伝導性という観点からサーマルマネジメント用途の開発が進みつつある。しかし、サーマルマネジメントの観点からは成形体としての熱伝導性が更に高くなっていることが必要とされている。
そこで、熱伝導性フィラーの高充填により高い熱伝導性を有する熱伝導性成形体が強く望まれていた。
As described above, development of thermal management applications is progressing from the viewpoint of high thermal conductivity of carbon fibers, particularly pitch-based carbon fibers. However, from the viewpoint of thermal management, it is required that the thermal conductivity as a molded body is further increased.
Therefore, there has been a strong demand for a thermally conductive molded body having high thermal conductivity due to high filling of the thermally conductive filler.

本発明者らは、シート状成形体の熱伝導度を向上させることを鑑み、一つに炭素繊維の充填状態に着目し、アスペクト比が3以上のピッチ系黒鉛化短繊維とアスペクト比が3以下の化合物の含有量と混合比がある範囲にある場合に、熱伝導性成形体の熱伝導性が著しく改善されることを見出し、優れた熱伝導性を持った熱伝導性成形体を得ることに到達した。   In view of improving the thermal conductivity of the sheet-like molded body, the present inventors have focused attention on the filling state of the carbon fiber, and the pitch-based graphitized short fiber having an aspect ratio of 3 or more and an aspect ratio of 3 When the content and mixing ratio of the following compounds are within a certain range, it is found that the thermal conductivity of the thermally conductive molded body is remarkably improved, and a thermally conductive molded body having excellent thermal conductivity is obtained. I reached that.

本発明は、樹脂、アスペクト比が3以上のピッチ系黒鉛化短繊維、およびアスペクト比が3以下の無機化合物からなる組成物を90〜100重量%含有するシートであって、樹脂とアスペクト比が3以上の該ピッチ系黒鉛化短繊維とからなるシートの熱伝導率とシート中のピッチ系黒鉛化短繊維の含有量との関係において、含有量を5重量%増加したときに熱伝導率が2倍以上となる該ピッチ系黒鉛化短繊維の含有量をWf重量%とし、樹脂とアスペクト比が3以下の無機化合物とからなるシートの熱伝導率とシート中の無機化合物との含有量との関係において、含有量を5重量%増加したときに熱伝導率が2倍以上となる無機化合物の含有量をWfB重量%としたとき、ピッチ系黒鉛化短繊維の含有量(Wf重量%)と該無機化合物の含有量(Wf重量%)について、Wf/Wf+Wf/Wf>1の関係にあるようにピッチ系黒鉛化短繊維と無機化合物とを含有したシート状熱伝導性成形体である。 The present invention is a sheet containing 90 to 100% by weight of a composition comprising a resin, pitch-based graphitized short fibers having an aspect ratio of 3 or more, and an inorganic compound having an aspect ratio of 3 or less, and the aspect ratio of the resin is In the relationship between the thermal conductivity of a sheet comprising three or more pitch-based graphitized short fibers and the content of pitch-based graphitized short fibers in the sheet, the thermal conductivity is increased when the content is increased by 5% by weight. The content of the pitch-based graphitized short fiber that is twice or more is Wf A wt%, and the thermal conductivity of the sheet composed of a resin and an inorganic compound having an aspect ratio of 3 or less and the content of the inorganic compound in the sheet When the content of the inorganic compound that increases the thermal conductivity by 2 times or more when the content is increased by 5 wt% is Wf B wt%, the content of pitch-based graphitized short fibers (Wf C % By weight) and the inorganic compound It is a sheet-like thermally conductive molded body containing pitch-based graphitized short fibers and an inorganic compound so that the content (Wf D wt%) has a relationship of Wf C / Wf A + Wf D / Wf B > 1 .

ピッチ系黒鉛化短繊維と無機化合物とをWf/Wf+Wf/Wf>1の関係にあるような割合で含有させることにより、上記樹脂と上記該無機化合物からなり、無機化合物の含有量が(Wf+Wf)重量%であるシートの熱伝導率に対し、3倍以上の熱伝導率を有するシート状熱伝導性成形体を提供することが可能となる。 By containing the pitch-based graphitized short fibers and the inorganic compound at a ratio such that Wf C / Wf A + Wf D / Wf B > 1 is satisfied, the resin is composed of the resin and the inorganic compound. It becomes possible to provide a sheet-like thermally conductive molded body having a thermal conductivity of 3 times or more with respect to the thermal conductivity of the sheet whose amount is (Wf C + Wf D ) wt%.

本発明のシート状熱伝導性成形体は、アスペクト比が3以上のピッチ系黒鉛化短繊維とアスペクト比が3以下の無機化合物の含有量と混合比を制御することで、高い熱伝導性が成形体中に発現することを可能にせしめている。   The sheet-like thermally conductive molded article of the present invention has high thermal conductivity by controlling the content and mixing ratio of pitch-based graphitized short fibers having an aspect ratio of 3 or more and inorganic compounds having an aspect ratio of 3 or less. It can be expressed in the molded body.

以下に、本発明の実施の形態について順次説明する。
本発明のシート状熱伝導性成形体は、樹脂、アスペクト比が3以上のピッチ系黒鉛化短繊維、およびアスペクト比が3以下の無機化合物からなる組成物を90〜100重量%含有するシートであって、樹脂とアスペクト比が3以上の該ピッチ系黒鉛化短繊維とからなるシートの熱伝導率とシート中のピッチ系黒鉛化短繊維の含有量との関係において、含有量を5重量%増加したときに熱伝導率が2倍以上となる該ピッチ系黒鉛化短繊維の含有量をWf重量%とし、樹脂とアスペクト比が3以下の無機化合物とからなるシートの熱伝導率とシート中の無機化合物との含有量との関係において、含有量を5重量%増加したときに熱伝導率が2倍以上となる無機化合物の含有量をWfB重量%としたとき、ピッチ系黒鉛化短繊維の含有量(Wf重量%)と該無機化合物の含有量(Wf重量%)について、Wf/Wf+Wf/Wf>1の関係にあるようにピッチ系黒鉛化短繊維と無機化合物とを含有するシート状熱伝導性成形体である。
Hereinafter, embodiments of the present invention will be sequentially described.
The sheet-like thermally conductive molded body of the present invention is a sheet containing 90 to 100% by weight of a composition comprising a resin, pitch-based graphitized short fibers having an aspect ratio of 3 or more, and an inorganic compound having an aspect ratio of 3 or less. In the relationship between the thermal conductivity of the sheet comprising the resin and the pitch-based graphitized short fibers having an aspect ratio of 3 or more and the content of the pitch-based graphitized short fibers in the sheet, the content is 5% by weight. The thermal conductivity and sheet of a sheet comprising a resin and an inorganic compound having an aspect ratio of 3 or less, wherein the content of the pitch-based graphitized short fibers whose thermal conductivity increases by a factor of 2 or more when increased is Wf A wt% In relation to the content with the inorganic compound in the composition, when the content of the inorganic compound that increases the thermal conductivity by 2 times or more when the content is increased by 5 wt% is Wf B wt%, the pitch graphitization Short fiber content (Wf C %) And the content of the inorganic compound (Wf D wt%), the sheet containing pitch-based graphitized short fibers and the inorganic compound so as to have a relationship of Wf C / Wf A + Wf D / Wf B > 1 It is a heat conductive molded article.

ピッチ系黒鉛化短繊維と無機化合物とをWf/Wf+Wf/Wf>1の関係にあるような割合で含有させることにより、上記樹脂と上記該無機化合物からなり、無機化合物の含有量が(Wf+Wf)重量%であるシートの熱伝導率に対し、3倍以上の熱伝導率を有するシート状熱伝導性成形体を提供することが可能となる。 By containing the pitch-based graphitized short fibers and the inorganic compound at a ratio such that Wf C / Wf A + Wf D / Wf B > 1 is satisfied, the resin is composed of the resin and the inorganic compound. It becomes possible to provide a sheet-like thermally conductive molded body having a thermal conductivity of 3 times or more with respect to the thermal conductivity of the sheet whose amount is (Wf C + Wf D ) wt%.

本発明のシート状熱伝導性成形体は、平板状に成形した状態における熱伝導率が5W/(m・K)以上とすることが可能であり、さらに好ましくは10W/(m・K)以上である。   The sheet-like thermally conductive molded body of the present invention can have a thermal conductivity of 5 W / (m · K) or more, more preferably 10 W / (m · K) or more in a state of being formed into a flat plate shape. It is.

Wf/Wf+Wf/Wfの値は好ましくは1.05以上、さらに好ましくは1.1以上である。なかでもWf/Wfの値は、用途によるが好ましくは0.25以上、さらに好ましくは0.3以上である。Wf/Wfの値は用途によるが好ましくは0.75以上、さらに好ましくは0.8以上である。 The value of Wf C / Wf A + Wf D / Wf B is preferably 1.05 or more, more preferably 1.1 or more. In particular, the value of Wf C / Wf A is preferably 0.25 or more, more preferably 0.3 or more, depending on the use. The value of Wf D / Wf B depends on the use, but is preferably 0.75 or more, more preferably 0.8 or more.

ピッチ系黒鉛化短繊維または無機化合物の含有量が5重量%増加したときに熱伝導率が2倍以上になる状態とは、フィラー同士の繋がりが急激に発達しており、熱伝導材のネットワークが十分に形成できている状態である。この様な状態をパーコレーションと呼ぶこともある。   When the content of pitch-based graphitized short fibers or inorganic compounds is increased by 5% by weight, the state where the thermal conductivity is doubled or more means that the connection between the fillers has developed rapidly, and the network of the thermal conductive material Is fully formed. Such a state is sometimes called percolation.

本発明におけるアスペクト比が3以上のピッチ系黒鉛化短繊維は、フィラー同士が効率良く繋がり熱伝導材のネットワークを容易に形成させることが可能であり、樹脂中の含有量が少ない状態でも、パーコレーションが達成できる。アスペクト比が3以下の無機化合物でもパーコレーションは発生するが、WfA重量%<Wf重量%となる。特に無機化合物が球状の場合、パーコレーションは体心立方、面心立方、六方最密などの構造を取れる時に発現するが、パーコレーションの発現には、70重量%以上の含有が必要な場合が多い。しかし、低い濃度でパーコレーションを達成できるピッチ系黒鉛化炭素繊維を無機化合物に添加することで、無機化合物単独で使用する時よりもパーコレーション濃度を低下させる事ができ、より少量の添加で熱伝導率の大幅な向上を達成しやすくする。更に、アスペクト比が3以下の無機化合物を使用する事で、ピッチ系黒鉛化短繊維単独で使用する時よりも、樹脂と混合した時の粘度の急激な上昇を抑制する事ができ、良好な成形性を得られる。 In the pitch-based graphitized short fibers having an aspect ratio of 3 or more in the present invention, fillers can be efficiently connected to each other to easily form a network of a heat conductive material, and even if the content in the resin is small, the percolation Can be achieved. Percolation occurs even with an inorganic compound having an aspect ratio of 3 or less, but Wf A wt% <Wf B wt%. In particular, when the inorganic compound is spherical, percolation appears when a body-centered cubic, face-centered cubic, hexagonal close-packed structure, etc. can be formed, but in order to develop percolation, it is often necessary to contain 70% by weight or more. However, by adding pitch-based graphitized carbon fiber that can achieve percolation at a low concentration to the inorganic compound, the percolation concentration can be lowered compared to when the inorganic compound is used alone, and the thermal conductivity can be reduced by adding a smaller amount. Making it easier to achieve significant improvements. Furthermore, by using an inorganic compound having an aspect ratio of 3 or less, it is possible to suppress a rapid increase in viscosity when mixed with a resin, compared to when using pitch-based graphitized short fibers alone, which is favorable. Formability can be obtained.

本発明のシート状熱伝導性成形体は、ピッチ系黒鉛化短繊維の含有量が3〜50重量%であることが好ましい。ピッチ系黒鉛化短繊維の含有量が3重量%以下だと、熱伝導材が少なく、熱伝導性が期待できない。逆にピッチ系黒鉛化短繊維の含有量が50重量%以上だと、ピッチ系黒鉛化短繊維を樹脂に分散させ、シート状成形体に加工するのが困難になりやすい。好ましくは5〜30重量部である。   The sheet-like thermally conductive molded body of the present invention preferably has a pitch-based graphitized short fiber content of 3 to 50% by weight. When the content of pitch-based graphitized short fibers is 3% by weight or less, there are few heat conductive materials, and heat conductivity cannot be expected. On the other hand, when the content of the pitch-based graphitized short fibers is 50% by weight or more, it is difficult to disperse the pitch-based graphitized short fibers in the resin and process the sheet-shaped molded body. Preferably it is 5-30 weight part.

本発明におけるピッチ系黒鉛化短繊維は、光学顕微鏡で観測した平均繊維径(D1)が2〜20μmである事が好ましい。D1が2μmを下回る場合、樹脂と複合する際に当該短繊維の本数が多くなるため、樹脂/短繊維混合物の粘度が高くなり、成形が困難になる。逆にD1が20μmを超えると、樹脂と複合する際に短繊維の本数が少なくなるため、当該短繊維同士が接触しにくくなり、複合材とした時に効果的な熱伝導を発揮しにくくなる。D1の好ましい範囲は5〜15μmであり、より好ましくは7〜13μmである。   The pitch-based graphitized short fibers in the present invention preferably have an average fiber diameter (D1) of 2 to 20 μm observed with an optical microscope. When D1 is less than 2 μm, the number of the short fibers increases when compounding with the resin, so that the viscosity of the resin / short fiber mixture becomes high and molding becomes difficult. On the other hand, when D1 exceeds 20 μm, the number of short fibers decreases when combined with the resin, so that the short fibers do not easily come into contact with each other, and it is difficult to exhibit effective heat conduction when used as a composite material. A preferable range of D1 is 5 to 15 μm, and more preferably 7 to 13 μm.

本発明におけるピッチ系黒鉛化短繊維は、光学顕微鏡で観測したピッチ系黒鉛化短繊維における繊維径分散(S1)の平均繊維径(D1)に対する百分率(CV値)は3〜15が好ましい。CV値は繊維径のバラツキの指標であり、小さい程、工程安定性が高く、製品のバラツキが小さいことを意味している。CV値が3より小さい時、繊維径が極めて揃っているため、ピッチ系黒鉛化短繊維の間隙に入るサイズの小さな短繊維の量が少なくなり、樹脂と複合する際により密な充填状態を形成するのが困難になり、結果として高性能の複合材を得にくくなることがある。逆にCV値が15より大きい場合、樹脂と複合する際に、分散性が悪くなり、均一な性能を有する複合材を得ることが困難になることがある。CV値は好ましくは、5〜13である。CV値は、紡糸時の溶融メソフェーズピッチの粘度を調節すること、具体的には、メルトブロー法にて紡糸する際は、紡糸時のノズル孔での溶融粘度を5.0〜25.0Pa・Sに調整する事で実現できる。   In the pitch-based graphitized short fibers in the present invention, the percentage (CV value) to the average fiber diameter (D1) of the fiber diameter dispersion (S1) in the pitch-based graphitized short fibers observed with an optical microscope is preferably 3-15. The CV value is an index of fiber diameter variation, and the smaller the value, the higher the process stability and the smaller the product variation. When the CV value is less than 3, the fiber diameters are very uniform, so the amount of small fibers with a small size entering the gaps between pitch-based graphitized short fibers is reduced, and a denser packing state is formed when compounded with resin. It can be difficult to achieve and, as a result, it can be difficult to obtain high performance composites. On the other hand, when the CV value is larger than 15, the dispersibility is deteriorated when compounding with the resin, and it may be difficult to obtain a composite material having uniform performance. The CV value is preferably 5-13. The CV value is adjusted by adjusting the viscosity of the melted mesophase pitch at the time of spinning. Specifically, when spinning by the melt blow method, the melt viscosity at the nozzle hole at the time of spinning is 5.0-25.0 Pa · S. It can be realized by adjusting to.

ピッチ系黒鉛化短繊維は、一般的には平均繊維長1mm未満からなるミルドファイバーと平均繊維長1mm以上10mm未満からなるカットファイバーの2種類がある。ミルドファイバーの外観は粉状のため分散性に優れ、カットファイバーの外観は繊維状に近いため、繊維同士の接触が得られやすい特徴がある。   There are generally two types of pitch-based graphitized short fibers: milled fibers having an average fiber length of less than 1 mm and cut fibers having an average fiber length of 1 mm or more and less than 10 mm. Since the appearance of the milled fiber is powdery, it is excellent in dispersibility, and the appearance of the cut fiber is close to the fiber shape.

本発明におけるのピッチ系黒鉛化短繊維はミルドファイバーに該当し、その平均繊維長(L1)は、20〜300μmであることが好ましい。ここで、平均繊維長は個数平均繊維長とし、光学顕微鏡下で測長器を用い、複数の視野において所定本数を測定し、その平均値から求めることができる。L1が20μmより小さい場合、当該短繊維同士が接触しにくくなり、効果的な熱伝導が期待しにくくなる。逆に300μmより大きくなる場合、樹脂と混合する際にマトリックス/短繊維混合物の粘度が高くなり、成形性が低くなる傾向にある。より好ましくは、20〜250μmの範囲である。この様なピッチ系黒鉛化短繊維を得る手法として特に制限はないがミリングの条件、すなわちカッター等で粉砕する際の、カッターの回転速度、ボールミルの回転数、ジェットミルの気流速度、クラッシャーの衝突回数、ミリング装置中の滞留時間を調節することにより平均繊維長を制御することができる。また、ミリング後のピッチ系炭素短繊維から、篩等の分級操作を行って、短い繊維長または、長い繊維長のピッチ系炭素短繊維を除去することにより調整することができる。   The pitch-based graphitized short fibers in the present invention correspond to milled fibers, and the average fiber length (L1) is preferably 20 to 300 μm. Here, the average fiber length is a number average fiber length, and a predetermined number is measured in a plurality of fields of view using a length measuring device under an optical microscope, and can be obtained from the average value. When L1 is smaller than 20 μm, it becomes difficult for the short fibers to come into contact with each other, and it becomes difficult to expect effective heat conduction. On the other hand, when it is larger than 300 μm, the viscosity of the matrix / short fiber mixture tends to be high when mixing with the resin, and the moldability tends to be low. More preferably, it is the range of 20-250 micrometers. There is no particular limitation on the method for obtaining such pitch-based graphitized short fibers, but when milling with a cutter, etc., the rotation speed of the cutter, the rotation speed of the ball mill, the air velocity of the jet mill, the collision of the crusher The average fiber length can be controlled by adjusting the number of times and the residence time in the milling apparatus. Moreover, it can adjust by performing classification operation, such as a sieve, from pitch-type carbon short fiber after milling, and removing pitch-type carbon short fiber of short fiber length or long fiber length.

本発明におけるピッチ系黒鉛化短繊維は、黒鉛結晶からなり、六角網面の成長方向に由来する結晶子サイズが30nm以上であることが好ましい。結晶子サイズは六角網面の成長方向のいずれも、黒鉛化度に対応するものであり、熱物性を発現するためには、一定サイズ以上が必要である。六角網面の成長方向の結晶子サイズは、X線回折法で求める事ができる。測定手法は集中法とし、解析手法としては学振法が好適に用いられる。六角網面の成長方向の結晶子サイズは、(110)面からの回折線を用いて求めることができる。   The pitch-based graphitized short fibers in the present invention are preferably made of graphite crystals, and the crystallite size derived from the growth direction of the hexagonal network surface is preferably 30 nm or more. The crystallite size corresponds to the degree of graphitization in any of the growth directions of the hexagonal network surface, and a certain size or more is necessary to exhibit thermophysical properties. The crystallite size in the growth direction of the hexagonal mesh surface can be obtained by an X-ray diffraction method. The measurement method is a concentration method, and the Gakushin method is preferably used as an analysis method. The crystallite size in the growth direction of the hexagonal mesh plane can be obtained using diffraction lines from the (110) plane.

本発明におけるピッチ系黒鉛化短繊維は、透過型電子顕微鏡による繊維末端観察において、グラフェンシートの端面が閉じていることが好ましい。グラフェンシートの端面が閉じている場合、余分な官能基の発生や、形状に起因する電子の局在化が起こり難い。このため、ピッチ系黒鉛化短繊維に活性点が生じず、シリコーン樹脂やエポキシ樹脂などの熱硬化性樹脂との混練で、触媒活性点の低下による硬化の抑制が可能となる。また、水などの吸着も低減でき、例えばポリエステルのような加水分解を伴う樹脂との混練においても、著しい湿熱耐久性能向上をもたらすことが出来る。50万〜400万倍に拡大した透過型電子顕微鏡による視野範囲で、グラフェンシートの端面は80%閉じている事が好ましい。80%以下であると余分な官能基の発生や、形状に起因する電子の局在化を引き起こし、他材料との反応を促進する可能性があるため好ましくない。グラフェンシート端面の閉鎖率は90%以上が好ましく、更には95%以上が更に好ましい。   In the pitch-based graphitized short fiber in the present invention, it is preferable that the end face of the graphene sheet is closed in the fiber end observation with a transmission electron microscope. When the end face of the graphene sheet is closed, generation of extra functional groups and localization of electrons due to the shape are difficult to occur. For this reason, active points do not occur in the pitch-based graphitized short fibers, and curing by reducing the catalytic active point can be suppressed by kneading with a thermosetting resin such as a silicone resin or an epoxy resin. Moreover, adsorption | suction of water etc. can also be reduced, for example, also in kneading | mixing with resin accompanying hydrolysis like polyester, the remarkable heat-and-heat durability performance improvement can be brought about. It is preferable that the end face of the graphene sheet is 80% closed within the field of view by a transmission electron microscope magnified 500,000 to 4,000,000 times. If it is 80% or less, generation of extra functional groups and localization of electrons due to the shape may be caused, and the reaction with other materials may be promoted. The closing rate of the graphene sheet end face is preferably 90% or more, and more preferably 95% or more.

グラフェンシート端面構造は、黒鉛化の前に粉砕を実施するか、黒鉛化の後に粉砕を実施するかにより、大きく異なる。すなわち、黒鉛化後に粉砕処理を行った場合、黒鉛化で成長したグラフェンシートが切断破断され、グラフェンシート端面が開いた状態になり易い。一方、黒鉛化前に粉砕処理を行った場合、黒鉛の成長過程でグラフェンシート端面がU字上に湾曲し、湾曲部分がピッチ系黒鉛化短繊維端部に露出した構造になり易い。このため、グラフェンシート端面閉鎖率が80%を超えるようなピッチ系黒鉛化短繊維を得るためには、粉砕を行った後に黒鉛化処理することが好ましい。   The graphene sheet end face structure varies greatly depending on whether pulverization is performed before graphitization or pulverization is performed after graphitization. That is, when a pulverization process is performed after graphitization, the graphene sheet grown by graphitization is cut and broken, and the graphene sheet end face tends to be open. On the other hand, when the pulverization treatment is performed before graphitization, the graphene sheet end face is curved in a U-shape during the graphite growth process, and the curved portion is likely to be exposed at the pitch-based graphitized short fiber end. For this reason, in order to obtain a pitch-based graphitized short fiber having a graphene sheet end face closing rate exceeding 80%, it is preferable to perform graphitization after pulverization.

本発明におけるピッチ系黒鉛化短繊維は走査型電子顕微鏡での側面の観察表面が実質的に平坦であることが好ましい。ここで、実質的に平坦であるとは、フィブリル構造のような激しい凹凸をピッチ系黒鉛化短繊維に有しないことを意味する。ピッチ系黒鉛化短繊維の表面に激しい凹凸のような欠陥が存在する場合には、マトリクス樹脂との混練に際して表面積の増大に伴う粘度の増大を引き起こし、成形性を悪化させる。よって、表面凹凸のような欠陥はできるだけ小さい状態が望ましい。より具体的には、走査型電子顕微鏡において1000倍で観察した像での観察視野に、凹凸のような欠陥が10箇所以下であることとする。この様なピッチ系黒鉛化短繊維を得る手法としては、ミリングを行った後に黒鉛化処理を実施することによって、好ましく得る事ができる。   The pitch-based graphitized short fibers in the present invention preferably have a substantially flat side observation surface with a scanning electron microscope. Here, “substantially flat” means that the pitch-based graphitized short fibers do not have severe unevenness like a fibril structure. When defects such as severe irregularities are present on the surface of pitch-based graphitized short fibers, an increase in viscosity accompanying an increase in surface area is caused at the time of kneading with the matrix resin, and the moldability is deteriorated. Therefore, it is desirable that defects such as surface irregularities be as small as possible. More specifically, it is assumed that there are 10 or less defects such as irregularities in the observation visual field in an image observed at 1000 times with a scanning electron microscope. As a method for obtaining such pitch-based graphitized short fibers, it can be preferably obtained by performing graphitization after milling.

以下本発明におけるピッチ系炭素短繊維の好ましい製造法について述べる。
ピッチ系炭素短繊維の原料としては、例えば、ナフタレンやフェナントレンといった縮合多環炭化水素化合物、石油系ピッチや石炭系ピッチといった縮合複素環化合物等が挙げられる。その中でもナフタレンやフェナントレンといった縮合多環炭化水素化合物が好ましく、特にメソフェーズピッチが好ましい。メソフェーズピッチのメソフェーズ率としては少なくとも90%以上、より好ましくは95%以上、更に好ましくは99%以上である。なお、メソフェーズピッチのメソフェーズ率は、溶融状態にあるピッチを偏光顕微鏡で観察することで確認出来る。
Hereinafter, a preferred method for producing pitch-based carbon short fibers in the present invention will be described.
Examples of the raw material for the pitch-based carbon short fibers include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, and condensed heterocyclic compounds such as petroleum-based pitch and coal-based pitch. Among these, condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene are preferable, and mesophase pitch is particularly preferable. The mesophase ratio of the mesophase pitch is at least 90% or more, more preferably 95% or more, and further preferably 99% or more. The mesophase ratio of the mesophase pitch can be confirmed by observing the pitch in the molten state with a polarizing microscope.

更に、原料ピッチの軟化点としては、230℃以上340℃以下が好ましい。不融化処理は、軟化点よりも低温で処理する必要がある。このため、軟化点が230℃より低いと、少なくとも軟化点未満の低い温度で不融化処理する必要があり、結果として不融化に長時間を要するため好ましくない。一方、軟化点が340℃を超えると、紡糸に340℃を超える高温が必要となり、ピッチの熱分解を引き起こし、発生したガスで糸に気泡が発生するなどの問題を生じるため好ましくない。軟化点のより好ましい範囲は250℃以上320℃以下、更に好ましくは260℃以上310℃以下である。なお、原料ピッチの軟化点はメトラー法により求めることが出来る。原料ピッチは、二種以上を適宜組み合わせて用いてもよい。組み合わせる原料ピッチのメソフェーズ率は少なくとも90%以上であり、軟化点が230℃以上340℃以下であることが好ましい。   Furthermore, the softening point of the raw material pitch is preferably 230 ° C. or higher and 340 ° C. or lower. The infusibilization treatment needs to be performed at a temperature lower than the softening point. For this reason, when the softening point is lower than 230 ° C., it is necessary to perform the infusibilization treatment at a temperature at least lower than the softening point. On the other hand, if the softening point exceeds 340 ° C., a high temperature exceeding 340 ° C. is required for spinning, which causes thermal decomposition of the pitch and causes problems such as generation of bubbles in the yarn due to the generated gas. A more preferable range of the softening point is 250 ° C. or higher and 320 ° C. or lower, and more preferably 260 ° C. or higher and 310 ° C. or lower. The softening point of the raw material pitch can be obtained by the Mettler method. Two or more raw material pitches may be used in appropriate combination. The mesophase ratio of the raw material pitch to be combined is preferably at least 90% or more, and the softening point is preferably 230 ° C. or higher and 340 ° C. or lower.

メソフェーズピッチは溶融法により紡糸され、その後不融化、炭化、粉砕、黒鉛化によってピッチ系黒鉛化短繊維となる。場合によっては、粉砕の後、分級工程を入れることもある。   The mesophase pitch is spun by a melting method and then converted into pitch-based graphitized short fibers by infusibilization, carbonization, pulverization and graphitization. In some cases, a classification step may be added after the pulverization.

以下各工程の好ましい態様について説明する。
紡糸方法には特に制限はないが、所謂溶融紡糸法を適応することができる。具体的には、口金から吐出したメソフェーズピッチをワインダーで引き取る通常の紡糸延伸法、熱風をアトマイジング源として用いるメルトブロー法、遠心力を利用してメソフェーズピッチを引き取る遠心紡糸法などが挙げられる。中でもピッチ系炭素繊維前駆体の形態の制御、生産性の高さなどの理由からメルトブロー法を用いることが望ましい。このため以下ピッチ系黒鉛化短繊維の製造方法に関してはメルトブロー法について記載する。
Hereinafter, preferred embodiments of each step will be described.
The spinning method is not particularly limited, but a so-called melt spinning method can be applied. Specific examples include a normal spinning drawing method in which a mesophase pitch discharged from a die is drawn with a winder, a melt blow method using hot air as an atomizing source, and a centrifugal spinning method in which a mesophase pitch is drawn using centrifugal force. Among these, it is desirable to use the melt blow method for reasons such as control of the form of the pitch-based carbon fiber precursor and high productivity. For this reason, the melt blow method will be described below with respect to the method for producing pitch-based graphitized short fibers.

ピッチ系炭素繊維前駆体を形成する紡糸ノズルの形状はどのようなものであっても良い。通常真円状のものが使用されるが、適時楕円などの異型形状のノズルを用いても何ら問題ない。ノズル孔の長さ(LN)と孔径(DN)の比(LN/DN)としては、2〜20の範囲が好ましい。LN/DNが20を超えると、ノズルを通過するメソフェーズピッチに強いせん断力が付与され、繊維断面にラジアル構造が発現する。ラジアル構造の発現は、黒鉛化の過程で繊維断面に割れを生じさせることがあり、機械特性の低下を引き起こすことがあるため好ましくない。一方、LN/DNが2未満では、原料ピッチにせん断を付与することが出来ず、結果として黒鉛の配向が低いピッチ系炭素繊維前駆体となる。このため、黒鉛化しても黒鉛化度を十分に上げることが出来ず、熱伝導性を向上させ難く好ましくない。機械強度と熱伝導性の両立を達成するには、メソフェーズピッチに適度のせん断を付与する必要がある。このため、ノズル孔の長さ(LN)と孔径(DN)の比(LN/DN)は2〜20の範囲が好ましく、更には3〜12の範囲が特に好ましい。   The spinning nozzle for forming the pitch-based carbon fiber precursor may have any shape. Normally, a perfect circle is used, but there is no problem even if a nozzle having an irregular shape such as an ellipse is used in a timely manner. The ratio of the nozzle hole length (LN) to the hole diameter (DN) (LN / DN) is preferably in the range of 2-20. When LN / DN exceeds 20, a strong shearing force is imparted to the mesophase pitch passing through the nozzle, and a radial structure appears in the fiber cross section. The expression of the radial structure is not preferable because it may cause a crack in the fiber cross-section during the graphitization process and may cause a decrease in mechanical properties. On the other hand, if LN / DN is less than 2, shearing cannot be imparted to the raw material pitch, resulting in a pitch-based carbon fiber precursor having a low orientation of graphite. For this reason, even when graphitized, the degree of graphitization cannot be sufficiently increased, and it is difficult to improve the thermal conductivity. In order to achieve both mechanical strength and thermal conductivity, it is necessary to apply appropriate shear to the mesophase pitch. For this reason, the ratio (LN / DN) of the nozzle hole length (LN) to the hole diameter (DN) is preferably in the range of 2 to 20, and more preferably in the range of 3 to 12.

紡糸時のノズルの温度、メソフェーズピッチがノズルを通過する際のせん断速度、ノズルからブローされる風量、風の温度等についても特に制約はなく、安定した紡糸状態が維持できる条件、即ち、メソフェーズピッチのノズル孔での溶融粘度が1〜100Pa・sの範囲にあれば良い。   There are no particular restrictions on the temperature of the nozzle during spinning, the shear rate when the mesophase pitch passes through the nozzle, the air volume blown from the nozzle, the temperature of the wind, etc. The melt viscosity at the nozzle hole may be in the range of 1 to 100 Pa · s.

ノズルを通過するメソフェーズピッチの溶融粘度が1Pa・s未満の場合、溶融粘度が低すぎて糸形状を維持することが出来ず好ましくない。一方、メソフェーズピッチの溶融粘度が100Pa・sを超える場合、メソフェーズピッチに強いせん断力が付与され、繊維断面にラジアル構造を形成するため好ましくない。メソフェーズピッチに付与するせん断力を適切な範囲にせしめ、かつ繊維形状を維持するためには、ノズルを通過するメソフェーズピッチの溶融粘度を制御する必要がある。このため、メソフェーズピッチの溶融粘度を1〜100Pa・sの範囲にするのが好ましく、更には3〜30Pa・sの範囲にすることが好ましく、5〜25Pa・sの範囲にすることが更に好ましい。   When the melt viscosity of the mesophase pitch passing through the nozzle is less than 1 Pa · s, the melt viscosity is too low to maintain the yarn shape, which is not preferable. On the other hand, when the melt viscosity of the mesophase pitch exceeds 100 Pa · s, a strong shearing force is applied to the mesophase pitch and a radial structure is formed in the fiber cross section, which is not preferable. In order to keep the shearing force applied to the mesophase pitch within an appropriate range and maintain the fiber shape, it is necessary to control the melt viscosity of the mesophase pitch passing through the nozzle. Therefore, the melt viscosity of the mesophase pitch is preferably in the range of 1 to 100 Pa · s, more preferably in the range of 3 to 30 Pa · s, and further preferably in the range of 5 to 25 Pa · s. .

本発明におけるピッチ系黒鉛化短繊維は、平均繊維径(D1)が2〜20μm以下であることが好ましいが、ピッチ系黒鉛化短繊維の平均繊維径の制御は、ノズルの孔径を変更する、あるいはノズルからの原料ピッチの吐出量を変更する、あるいはドラフト比を変更することで調整可能である。ドラフト比の変更は、100〜400℃に加温された毎分100〜20000mの線速度のガスを細化点近傍に吹き付けることによって達成することができる。吹き付けるガスに特に制限は無いが、コストパフォーマンスと安全性の面から空気が望ましい。   The pitch-based graphitized short fiber in the present invention preferably has an average fiber diameter (D1) of 2 to 20 μm or less, but the control of the average fiber diameter of the pitch-based graphitized short fiber changes the hole diameter of the nozzle. Or it can adjust by changing the discharge amount of the raw material pitch from a nozzle, or changing a draft ratio. The draft ratio can be changed by blowing a gas having a linear velocity of 100 to 20000 m / minute heated to 100 to 400 ° C. in the vicinity of the thinning point. There is no particular restriction on the gas to be blown, but air is desirable from the viewpoint of cost performance and safety.

ピッチ系炭素繊維前駆体は、金網等のベルトに捕集されピッチ系炭素繊維前駆体ウェブとなる。その際、ベルト搬送速度により任意の目付量に調整できるが、必要に応じ、クロスラップ等の方法により積層させてもよい。ピッチ系炭素繊維前駆体ウェブの目付量は生産性及び工程安定性を考慮して、150〜1000g/mが好ましい。 The pitch-based carbon fiber precursor is collected on a belt such as a wire mesh to form a pitch-based carbon fiber precursor web. At that time, the weight per unit area can be adjusted according to the belt conveyance speed, but if necessary, it may be laminated by a method such as cross wrapping. The basis weight of the pitch-based carbon fiber precursor web is preferably 150 to 1000 g / m 2 in consideration of productivity and process stability.

このようにして得られたピッチ系炭素繊維前駆体ウェブは、公知の方法で不融化処理し、ピッチ系不融化繊維ウェブにする。不融化は、空気、或いはオゾン、二酸化窒素、窒素、酸素、ヨウ素、臭素を空気に添加したガスを用いた酸化性雰囲気下で実施できるが、安全性、利便性を考慮すると空気中で実施することが望ましい。また、バッチ処理、連続処理のどちらでも処理可能であるが、生産性を考慮すると連続処理が望ましい。不融化処理は150〜350℃の温度で、一定時間の熱処理を付与することで達成される。より好ましい温度範囲は、160〜340℃である。昇温速度は1〜10℃/分が好適に用いられ、連続処理の場合は任意の温度に設定した複数の反応室を順次通過させることで、上記昇温速度を達成できる。昇温速度のより好ましい範囲は、生産性及び工程安定性を考慮して、3〜9℃/分である。   The pitch-based carbon fiber precursor web thus obtained is infusibilized by a known method to form a pitch-based infusible fiber web. Infusibilization can be performed in air or in an oxidizing atmosphere using a gas in which ozone, nitrogen dioxide, nitrogen, oxygen, iodine, or bromine is added to air, but in consideration of safety and convenience, it is performed in air. It is desirable. Further, both batch processing and continuous processing can be performed, but continuous processing is desirable in consideration of productivity. The infusibilization treatment is achieved by applying a heat treatment for a predetermined time at a temperature of 150 to 350 ° C. A more preferable temperature range is 160 to 340 ° C. A heating rate of 1 to 10 ° C./min is preferably used. In the case of continuous treatment, the above heating rate can be achieved by sequentially passing through a plurality of reaction chambers set at arbitrary temperatures. A more preferable range of the heating rate is 3 to 9 ° C./min in consideration of productivity and process stability.

ピッチ系不融化繊維ウェブは、600〜2000℃の温度で、真空中、或いは窒素、アルゴン、クリプトン等の不活性ガスを用いた非酸化性雰囲気中で炭化処理され、ピッチ系炭素繊維ウェブになる。炭化処理は、コスト面を考慮して、常圧かつ窒素雰囲気下での処理が望ましい。また、バッチ処理、連続処理のどちらでも処理可能であるが、生産性を考慮すれば連続処理が望ましい。   The pitch-based infusible fiber web is carbonized at a temperature of 600 to 2000 ° C. in a vacuum or in a non-oxidizing atmosphere using an inert gas such as nitrogen, argon, or krypton, to become a pitch-based carbon fiber web. . Carbonization treatment is preferably performed at normal pressure and in a nitrogen atmosphere in consideration of cost. Further, both batch processing and continuous processing can be performed, but continuous processing is desirable in consideration of productivity.

炭化処理されたピッチ系炭素繊維ウェブは、所望の繊維長にするために、切断、破砕・粉砕等の処理が実施される。また、場合によっては、分級処理が実施される。処理方式は所望の繊維長に応じて選定されるが、切断にはギロチン式、1軸、2軸及び多軸回転式等のカッターが好適に使用され、破砕、粉砕には衝撃作用を利用したハンマ式、ピン式、ボール式、ビーズ式及びロッド式、粒子同士の衝突を利用した高速回転式、圧縮・引裂き作用を利用したロール式、コーン式及びスクリュー式等の破砕機・粉砕機等が好適に使用される。所望の繊維長を得るために、切断と破砕・粉砕を多種複数機で構成してもよい。処理雰囲気は湿式、乾式のどちらでもよい。分級処理には、振動篩い式、遠心分離式、慣性力式、濾過式等の分級装置等が好適に使用される。所望の繊維長は、機種選定のみならず、ロータ・回転刃等の回転数、供給量、刃間クリアランス、系内滞留時間等を制御することによっても得ることができる。また、分級処理を用いる場合には、所望の繊維長は篩い網孔径等を調整することによっても得ることができる。   The carbonized pitch-based carbon fiber web is subjected to processing such as cutting, crushing and pulverization in order to obtain a desired fiber length. In some cases, classification processing is performed. The treatment method is selected according to the desired fiber length, but a guillotine type, one-axis, two-axis, and multi-axis rotary type cutters are preferably used for cutting, and an impact action is used for crushing and crushing. Hammer type, pin type, ball type, bead type and rod type, high speed rotation type using collision of particles, roll type using compression / tearing action, cone type and screw type etc. Preferably used. In order to obtain a desired fiber length, cutting, crushing and pulverization may be configured by a plurality of machines. The treatment atmosphere may be either wet or dry. For the classification treatment, a classification device such as a vibration sieve type, a centrifugal separation type, an inertial force type, and a filtration type is preferably used. The desired fiber length can be obtained not only by selecting a model, but also by controlling the number of revolutions of the rotor / rotating blade, supply amount, clearance between blades, residence time in the system, and the like. Moreover, when using a classification process, desired fiber length can be obtained also by adjusting a sieve mesh hole diameter.

上記の切断、破砕・粉砕処理、場合によっては分級処理を併用して作成したピッチ系炭素短繊維は、2000〜3500℃に加熱し黒鉛化して最終的なピッチ系黒鉛化短繊維とする。黒鉛化は、アチソン炉、電気炉等にて実施され、真空中、或いは窒素、アルゴン、クリプトン等の不活性ガスを用いた非酸化性雰囲気下等で実施される。   The pitch-based carbon short fibers prepared by using the above-described cutting, crushing / pulverizing treatment, and, in some cases, classification treatment, are heated to 2000-3500 ° C. and graphitized to obtain the final pitch-based graphitized short fibers. Graphitization is performed in an Atchison furnace, an electric furnace, or the like, and is performed in a vacuum or in a non-oxidizing atmosphere using an inert gas such as nitrogen, argon, or krypton.

本発明においてピッチ系黒鉛化短繊維は、マトリックスの親和性をより高め、成形性の向上や複合材とした時の機械強度の向上を目的として、表面処理やサイジング処理をしても良い。また、必要に応じて表面処理した後にサイジング処理をしても良い。表面処理の方法として特に限定は無いが、具体的には、電着処理、めっき処理、オゾン処理、プラズマ処理、酸処理などが挙げられる。サイジング処理に用いるサイジング剤に特に限定は無いが、具体的にはエポキシ化合物、水溶性ポリアミド化合物、飽和ポリエステル、不飽和ポリエステル、酢酸ビニル、水、アルコール、グリコールを単独又はこれらの混合物で用いることができる。サイジング剤はフィラーに対し0.01〜10重量%、付着させても良い。しかし、サイジング剤付着ピッチ系炭素繊維フィラーは活性点を持つ可能性もあることから、サイジング処理は極力少ない事が好ましい。好ましい付着量は0.1〜2.5重量%である。サイジング剤の種類や使用量は、目的や複合させるマトリックスを考慮して用いるのが望ましい。   In the present invention, the pitch-based graphitized short fibers may be subjected to a surface treatment or a sizing treatment for the purpose of further improving the affinity of the matrix, improving the moldability, and improving the mechanical strength when used as a composite material. Further, sizing treatment may be performed after surface treatment as necessary. The surface treatment method is not particularly limited, and specific examples include electrodeposition treatment, plating treatment, ozone treatment, plasma treatment, and acid treatment. There is no particular limitation on the sizing agent used for the sizing treatment, but specifically, an epoxy compound, a water-soluble polyamide compound, a saturated polyester, an unsaturated polyester, vinyl acetate, water, alcohol, glycol may be used alone or in a mixture thereof. it can. The sizing agent may be attached in an amount of 0.01 to 10% by weight based on the filler. However, since the sizing agent-attached pitch-based carbon fiber filler may have active sites, it is preferable that the sizing treatment is as little as possible. A preferable adhesion amount is 0.1 to 2.5% by weight. It is desirable to use the sizing agent in consideration of the purpose and the matrix to be combined.

本発明ではアスペクト比が3以下の無機化合物を使用する。具体的には、酸化アルミニウム、酸化マグネシウム、酸化ケイ素、酸化亜鉛、などの金属酸化物、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物、窒化ホウ素、窒化アルミニウムなどの金属窒化物、酸化窒化アルミニウムなどの金属酸窒化物、炭化珪素などの金属炭化物、金、銀、銅、アルミニウムなどの金属もしくは金属合金、天然黒鉛、人造黒鉛、膨張黒鉛、ダイヤモンドなどの炭素材料などが挙げられる。また、2種類以上併用することも可能である。   In the present invention, an inorganic compound having an aspect ratio of 3 or less is used. Specifically, metal oxides such as aluminum oxide, magnesium oxide, silicon oxide, and zinc oxide, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, metal nitrides such as boron nitride and aluminum nitride, oxynitride Examples thereof include metal oxynitrides such as aluminum, metal carbides such as silicon carbide, metals or metal alloys such as gold, silver, copper, and aluminum, and carbon materials such as natural graphite, artificial graphite, expanded graphite, and diamond. Two or more types can be used in combination.

本発明のシート状熱伝導性成形体は、無機化合物の含有量が20〜90重量%であることが好ましい。無機化合物の含有量が20重量%以下だと、相対的にピッチ系黒鉛化短繊維の比率が多くなり、ピッチ系黒鉛化短繊維を樹脂に分散させ、シート状成形体に加工するのが困難になりやすい。逆に無機化合物の含有量が90重量%以上だと、相対的に樹脂の量が少なくなり、無機化合物及びピッチ系黒鉛化繊維を分散し、シート状成形体に加工するのが困難になりやすい。好ましくは30〜80重量部である。   The sheet-like thermally conductive molded body of the present invention preferably has an inorganic compound content of 20 to 90% by weight. When the content of the inorganic compound is 20% by weight or less, the ratio of pitch-based graphitized short fibers increases relatively, and it is difficult to disperse the pitch-based graphitized short fibers in the resin and process it into a sheet-like molded body. It is easy to become. Conversely, when the content of the inorganic compound is 90% by weight or more, the amount of the resin is relatively small, and it is difficult to disperse the inorganic compound and the pitch-based graphitized fiber and process it into a sheet-like molded body. . Preferably it is 30-80 weight part.

樹脂は、熱可塑性樹脂、熱硬化性樹脂のいずれか一つ以上を含有し、さらに複合成形体に所望の物性を発現させるために熱可塑性樹脂と熱硬化性樹脂を適宜混合して用いることもできる。   The resin contains any one or more of a thermoplastic resin and a thermosetting resin, and a thermoplastic resin and a thermosetting resin may be appropriately mixed and used in order to develop desired physical properties in the composite molded body. it can.

マトリクスに用いることができる熱可塑性樹脂としてポリオレフィン類及びその共重合体(ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、エチレン−酢酸ビニル共重合体、エチレン−プロピレン共重合体等のエチレン−α−オレフィン共重合体など)、ポリメタクリル酸類及びその共重合体(ポリメタクリル酸メチル等のポリメタクリル酸エステルなど)、ポリアクリル酸類及びその共重合体、ポリアセタール類及びその共重合体、フッ素樹脂類及びその共重合体(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、ポリエステル類及びその共重合体(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン2,6ナフタレート、液晶性ポリマーなど)、ポリスチレン類及びその共重合体(スチレン−アクリロニトリル共重合体、ABS樹脂など)、ポリアクリロニトリル類及びその共重合体、ポリフェニレンエーテル(PPE)類及びその共重合体(変性PPE樹脂なども含む)、脂肪族ポリアミド類及びその共重合体、芳香族ポリアミド類及びその共重合体、ポリイミド類及びその共重合体、ポリアミドイミド類及びその共重合体、ポリカーボネート類及びその共重合体、ポリフェニレンスルフィド類及びその共重合体、ポリサルホン類及びその共重合体、ポリエーテルサルホン類及びその共重合体、ポリエーテルニトリル類及びその共重合体、ポリエーテルケトン類及びその共重合体、ポリエーテルエーテルケトン類及びその共重合体、ポリケトン類及びその共重合体、エラストマー、液晶性ポリマー、シリコーンオイル等が挙げられる。これらから一種を単独で用いても、二種以上を適宜組み合わせて用いても良い。   Polyolefins and their copolymers (polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ethylene as thermoplastic resins that can be used in the matrix -Ethylene-α-olefin copolymer such as propylene copolymer), polymethacrylic acid and its copolymer (polymethacrylic acid ester such as polymethyl methacrylate), polyacrylic acid and its copolymer, polyacetal And copolymers thereof, fluororesins and copolymers thereof (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyesters and copolymers thereof (polyethylene terephthalate, polybutylene terephthalate, polyethylene 2,6 naphtha) Liquid crystal polymers), polystyrenes and copolymers thereof (styrene-acrylonitrile copolymers, ABS resins, etc.), polyacrylonitriles and copolymers thereof, polyphenylene ethers (PPE) and copolymers thereof ( Modified PPE resins), aliphatic polyamides and copolymers thereof, aromatic polyamides and copolymers thereof, polyimides and copolymers thereof, polyamideimides and copolymers thereof, polycarbonates and copolymers thereof Polymers, polyphenylene sulfides and copolymers thereof, polysulfones and copolymers thereof, polyether sulfones and copolymers thereof, polyether nitriles and copolymers thereof, polyether ketones and copolymers thereof , Polyether ether ketones and copolymers thereof, polyketones and And copolymers, elastomers, liquid crystalline polymers, silicone oils, and the like. One of these may be used alone, or two or more may be used in appropriate combination.

また、熱硬化性樹脂としては、エポキシ類、アクリル類、ウレタン類、シリコーン類、フェノール類、イミド類、熱硬化型変性PPE類、および熱硬化型PPE類、ポリブタジエン系ゴム及びその共重合体、アクリル系ゴム及びその共重合体、シリコーン系ゴム及びその共重合体、天然ゴムなどが挙げられ、これらから一種を単独で用いても、二種以上を適宜組み合わせて用いても良い。   Examples of the thermosetting resin include epoxies, acrylics, urethanes, silicones, phenols, imides, thermosetting modified PPEs, thermosetting PPEs, polybutadiene rubbers and copolymers thereof, Examples thereof include acrylic rubber and copolymers thereof, silicone rubber and copolymers thereof, natural rubber, and the like. One of these may be used alone, or two or more may be used in appropriate combination.

本発明のシート状熱伝導性成形体を構成する組成物は、ピッチ系黒鉛化短繊維および無機化合物と樹脂とを混合して作製する。この時、同時にピッチ系黒鉛化短繊維と無機化合物と樹脂を混練しても、ピッチ系黒鉛化短繊維もしくは無機化合物を樹脂と混練した後に残りのフィラーを混練しても構わない。混合の際には、ニーダー、各種ミキサー、ブレンダー、ロール、押出機、ミリング機、自公転式の撹拌機などの混合装置又は混練装置が好適に用いられる。   The composition constituting the sheet-like thermally conductive molded body of the present invention is prepared by mixing pitch-based graphitized short fibers and inorganic compounds with a resin. At this time, the pitch-based graphitized short fibers, the inorganic compound, and the resin may be kneaded at the same time, or the remaining fillers may be kneaded after the pitch-based graphitized short fibers or the inorganic compound are kneaded with the resin. In mixing, a mixing device or a kneading device such as a kneader, various mixers, a blender, a roll, an extruder, a milling machine, or a self-revolving stirrer is preferably used.

そして本発明のシート状熱伝導性成形体は、射出成形法、プレス成形法、カレンダー成形法、ロール成形法、押出成形法、注型成形法、ブロー成形法等の成形方法にて、成形することが可能である。成形条件は、成形手法とマトリクスに依存し、熱可塑性樹脂の場合は、当該樹脂の溶融粘度より温度を上げた状態で成形を実施する。マトリクスが熱硬化性樹脂の場合は、適切な型において、当該樹脂の硬化温度を付与するといった方法を挙げることができる。   The sheet-like thermally conductive molded body of the present invention is molded by a molding method such as an injection molding method, a press molding method, a calendar molding method, a roll molding method, an extrusion molding method, a casting molding method, or a blow molding method. It is possible. The molding conditions depend on the molding method and the matrix. In the case of a thermoplastic resin, the molding is performed in a state where the temperature is higher than the melt viscosity of the resin. In the case where the matrix is a thermosetting resin, a method of applying a curing temperature of the resin in an appropriate mold can be exemplified.

本発明のシート状熱伝導性成形体は、樹脂、アスペクト比が3以上のピッチ系黒鉛化短繊維、およびアスペクト比が3以下の無機化合物からなる組成物を90〜100重量%含有するシートであるが、シートを構成する該組成物以外の成分としては、アスペクト比が3超の無機化合物等の各種機能フィラーや各種の添加剤が挙げられる。   The sheet-like thermally conductive molded body of the present invention is a sheet containing 90 to 100% by weight of a composition comprising a resin, pitch-based graphitized short fibers having an aspect ratio of 3 or more, and an inorganic compound having an aspect ratio of 3 or less. However, examples of components other than the composition constituting the sheet include various functional fillers such as inorganic compounds having an aspect ratio of more than 3 and various additives.

また各種機能フィラーとしては機械強度向上のためのガラス繊維、アルミナ繊維などの繊維状フィラー、成形性向上のためのマイカ、炭酸カルシウムなどの非繊維状フィラーが挙げられる。
添加剤は必要に応じて複数、用いても構わない。添加剤としては離型剤、難燃剤、乳化剤、軟化剤、可塑剤、界面活性剤を挙げることができる。
Examples of various functional fillers include fibrous fillers such as glass fibers and alumina fibers for improving mechanical strength, non-fibrous fillers such as mica and calcium carbonate for improving moldability.
A plurality of additives may be used as necessary. Examples of the additive include a release agent, a flame retardant, an emulsifier, a softener, a plasticizer, and a surfactant.

このようにして得られたシート状熱伝導性成形体は、発熱体に貼付し用いることができる。当該成形体は、電子機器等において半導体素子や電源、光源などの電子部品が発生する熱を効果的に外部へ放散させるための放熱部材、伝熱部材あるいはそれらの構成材料等として用いることができる。   The sheet-like thermally conductive molded body obtained in this way can be used by being attached to a heating element. The molded body can be used as a heat radiating member, a heat transfer member, or a constituent material thereof for effectively radiating heat generated by electronic components such as a semiconductor element, a power source, and a light source in an electronic device or the like. .

以下に実施例を示すが、本発明はこれらに制限されるものではない。
なお、本実施例における各値は、以下の方法に従って求めた。
(1)ピッチ系黒鉛化短繊維の平均繊維径は、JIS R7607に準じ、光学顕微鏡下でスケールを用いて60本測定し、その平均値から求めた。
(2)ピッチ系黒鉛化短繊維の個数平均繊維長は、光学顕微鏡下において測長器で2000本(10視野、200本ずつ)測定し、その平均値から求めた。
(3)成形体中のピッチ系黒鉛化短繊維の面内方向と厚み方向の比は、成形体の断面を走査型電子顕微鏡で100倍の倍率で観察し、面内方向に並んでいる数と厚み方向に並んでいる数を数え、その比を求めた。
(4)ピッチ系黒鉛化短繊維の結晶子サイズは、X線回折に現れる(110)面からの反射を測定し、学振法にて求めた。
(5)ピッチ系黒鉛化短繊維の端面は、透過型電子顕微鏡で100万倍の倍率で観察し、400万倍に写真上で拡大し、グラフェンシートを確認した。
(6)ピッチ系黒鉛化短繊維の表面は走査型電子顕微鏡で1000倍の倍率で観察し、凹凸を確認した。
(7)シート状熱伝導性成形体の面内方向の熱伝導率は、京都電子製QTM−500を用いプローブ法で求めた。
Examples are shown below, but the present invention is not limited thereto.
In addition, each value in a present Example was calculated | required according to the following method.
(1) The average fiber diameter of pitch-based graphitized short fibers was measured from 60 averages using a scale under an optical microscope in accordance with JIS R7607 and obtained from the average value.
(2) The number average fiber length of the pitch-based graphitized short fibers was determined from the average value of 2000 (10 fields of view, 200) measured with a length measuring device under an optical microscope.
(3) The ratio between the in-plane direction and the thickness direction of the pitch-based graphitized short fibers in the molded body is the number of cross sections of the molded body observed in a scanning electron microscope at a magnification of 100 times and aligned in the in-plane direction. And the number in the thickness direction was counted, and the ratio was obtained.
(4) The crystallite size of the pitch-based graphitized short fibers was determined by the Gakushin method by measuring the reflection from the (110) plane appearing in X-ray diffraction.
(5) The end face of the pitch-based graphitized short fiber was observed with a transmission electron microscope at a magnification of 1,000,000 times, magnified on a photograph at a magnification of 4 million times, and a graphene sheet was confirmed.
(6) The surface of the pitch-based graphitized short fiber was observed with a scanning electron microscope at a magnification of 1000 times, and irregularities were confirmed.
(7) The thermal conductivity in the in-plane direction of the sheet-like thermally conductive molded body was determined by the probe method using QTM-500 manufactured by Kyoto Electronics.

[参考例1]
縮合多環炭化水素化合物よりなるピッチを主原料とした。光学的異方性割合は100%、軟化点が283℃であった。直径0.2mmφの孔のキャップを使用し、スリットから加熱空気を毎分5500mの線速度で噴出させて、溶融ピッチを牽引して平均直径14.5μmのピッチ系短繊維を作製した。この時の紡糸温度は325℃であり、溶融粘度は18.5Pa・S(185poise)であった。紡出された繊維をベルト上に捕集してマットとし、さらにクロスラッピングで目付320g/mのピッチ系炭素繊維前駆体からなるピッチ系炭素繊維前駆体ウェブとした。
このピッチ系炭素繊維前駆体ウェブを空気中で170℃から320℃まで平均昇温速度5℃/分で昇温して不融化、更に800℃で焼成を行った。このピッチ系炭素繊維ウェブをカッター(ターボ工業製)を用いて800rpmで粉砕し、3000℃で黒鉛化した。
[Reference Example 1]
A pitch made of a condensed polycyclic hydrocarbon compound was used as a main raw material. The optical anisotropy ratio was 100%, and the softening point was 283 ° C. Using a cap with a hole with a diameter of 0.2 mmφ, heated air was ejected from the slit at a linear velocity of 5500 m / min, and the melt pitch was pulled to produce pitch-based short fibers with an average diameter of 14.5 μm. The spinning temperature at this time was 325 ° C., and the melt viscosity was 18.5 Pa · S (185 poise). The spun fibers were collected on a belt to form a mat, and a pitch-based carbon fiber precursor web made of a pitch-based carbon fiber precursor having a basis weight of 320 g / m 2 by cross-wrapping.
The pitch-based carbon fiber precursor web was heated from 170 ° C. to 320 ° C. at an average heating rate of 5 ° C./min to be infusible, and further fired at 800 ° C. The pitch-based carbon fiber web was pulverized at 800 rpm using a cutter (manufactured by Turbo Kogyo) and graphitized at 3000 ° C.

ピッチ系黒鉛化短繊維の平均繊維径は9.8μm、平均繊維径に対する繊維径分散の比(CV値)は11%であった。個数平均繊維長は150μm、六角網面の成長方向に由来する結晶サイズは70nmであった。
ピッチ系黒鉛化短繊維の端面は透過型顕微鏡の観察によりグラフェンシートが閉じていることを確認した。また、表面は走査型電子顕微鏡の観察により、凹凸は1個であり実質的に平滑であった。
ピッチ系黒鉛化短繊維と二液硬化性シリコーン系樹脂(東レダウシリコーン社製商品名「SE1740」)とを自公転混合機(シンキー社製商品名「あわとり練太郎ARV310」)を用いて3分間混合した後、真空プレス機(北川精機製)で、プレス加工し厚み0.5mmの平板状の複合成形体を得、130℃で2時間硬化することで、シート状熱伝導性成形体を作成した。パーコレーションWf%は36重量%であった。
The average fiber diameter of the pitch-based graphitized short fibers was 9.8 μm, and the ratio of the fiber diameter dispersion to the average fiber diameter (CV value) was 11%. The number average fiber length was 150 μm, and the crystal size derived from the growth direction of the hexagonal network surface was 70 nm.
It was confirmed by observation with a transmission microscope that the graphene sheet was closed on the end face of the pitch-based graphitized short fiber. Moreover, the surface was substantially smooth with one unevenness | corrugation by observation with the scanning electron microscope.
Pitch-based graphitized short fibers and two-component curable silicone resin (trade name “SE1740” manufactured by Toray Dow Silicone Co., Ltd.) are used 3 by using a revolving mixer (trade name “Shinky Co., Ltd. product name“ Awatori Kentaro ARV310 ”). After mixing for a minute, it is pressed by a vacuum press machine (manufactured by Kitagawa Seiki) to obtain a flat composite molded body having a thickness of 0.5 mm, and cured at 130 ° C. for 2 hours. Created. Percolation Wf A % was 36% by weight.

[参考例2]
アルミナ(マイクロン社製商品名AX10−32)と二液硬化性シリコーン系樹脂(東レダウシリコーン社製商品名「SE1740」)とを自公転混合機(シンキー社製商品名「あわとり練太郎ARV310」)を用いて3分間混合した後、真空プレス機(北川精機製)で、プレス加工し厚み1mmの平板状の複合成形体を得、130℃で2時間硬化することで、シート状熱伝導性成形体を作成した。パーコレーションWf%は88重量%であった。
[Reference Example 2]
Alumina (trade name AX10-32 manufactured by Micron) and a two-part curable silicone resin (trade name “SE1740” manufactured by Toray Dow Silicone Co., Ltd.) are mixed with a revolving mixer (trade name “Awatori Neraro ARV310” manufactured by Shinky Corporation). ) Using a vacuum press machine (manufactured by Kitagawa Seiki) to obtain a flat composite molded body having a thickness of 1 mm and cured at 130 ° C. for 2 hours, whereby a sheet-like thermal conductivity is obtained. A molded body was prepared. Percolation Wf A % was 88% by weight.

[実施例1]
参考例1と同様の手法でピッチ系黒鉛化短繊維を作製した。
ピッチ系黒鉛化短繊維Wf10重量%とアルミナ(マイクロン社製商品名AX10−32)Wf70重量%と二液硬化性シリコーン系樹脂(東レダウシリコーン社製商品名「SE1740」)20重量%とを自公転混合機(シンキー社製商品名「あわとり練太郎ARV310」)を用いて3分間混合した後、真空プレス機(北川精機製)で、プレス加工し厚み0.5mmの平板状の複合成形体を得、130℃で2時間硬化することで、シート状熱伝導性成形体を作成した。Wf/Wf+Wf/Wf=1.07であった。
Wf+Wf=80重量%の時のアルミナと二液硬化性シリコーン系樹脂からなるシート状熱伝導性成形体の熱伝導率は1.0W/m・Kであった。
作成したシート状熱伝導性成形体中の熱伝導率は6.5W/m・Kであり、Wf+Wf=80重量%の時のアルミナと二液硬化性シリコーン系樹脂からなるシート状熱伝導性成形体と比較して6.5倍の熱伝導率であった。
[Example 1]
Pitch-based graphitized short fibers were produced in the same manner as in Reference Example 1.
Pitch-based graphitized short fibers Wf C 10% by weight, alumina (trade name AX10-32 manufactured by Micron) 70% by weight Wf D and two-part curable silicone resin (trade name “SE1740” manufactured by Toray Dow Silicone) 20% by weight % Is mixed for 3 minutes using a revolutionary mixing machine (trade name “Awatori Nertaro ARV310” manufactured by Shinky Corporation), and then pressed with a vacuum press (made by Kitagawa Seiki) to form a flat plate with a thickness of 0.5 mm. Was obtained, and cured at 130 ° C. for 2 hours to prepare a sheet-like thermally conductive molded body. Was Wf C / Wf A + Wf D / Wf B = 1.07.
When Wf C + Wf D = 80% by weight, the thermal conductivity of the sheet-like thermally conductive molded body made of alumina and the two-part curable silicone resin was 1.0 W / m · K.
The sheet-like heat conductive molded body thus prepared has a heat conductivity of 6.5 W / m · K, and Wf C + Wf D = 80 wt% sheet-like heat composed of alumina and a two-part curable silicone resin. The thermal conductivity was 6.5 times that of the conductive molded body.

[実施例2]
参考例1と同様の手法でピッチ系黒鉛化短繊維を作製した。
ピッチ系黒鉛化短繊維Wf20重量%とアルミナ(マイクロン社製商品名AX10−32)Wf60重量%と二液硬化性シリコーン系樹脂(東レダウシリコーン社製商品名「SE1740」)20重量%とを自公転混合機(シンキー社製商品名「あわとり練太郎ARV310」)を用いて3分間混合した後、真空プレス機(北川精機製)で、プレス加工し厚み0.5mmの平板状の複合成形体を得、130℃で2時間硬化することで、シート状熱伝導性成形体を作成した。Wf/Wf+Wf/Wf=1.24であった。
作成したシート状熱伝導性成形体中の熱伝導率は15.1W/m・Kであり、Wf+Wf=80重量%の時のアルミナと二液硬化性シリコーン系樹脂からなるシート状熱伝導性成形体と比較して15.1倍の熱伝導率であった。
[Example 2]
Pitch-based graphitized short fibers were produced in the same manner as in Reference Example 1.
20% by weight of pitch-based graphitized short fibers Wf C , alumina (trade name AX10-32 manufactured by Micron), 60% by weight of Wf D, and 20 parts by weight of two-part curable silicone resin (trade name “SE1740” manufactured by Toray Dow Silicone) % Is mixed for 3 minutes using a revolutionary mixing machine (trade name “Awatori Nertaro ARV310” manufactured by Sinky Corporation) and then pressed with a vacuum press (made by Kitagawa Seiki) to form a flat plate with a thickness of 0.5 mm. Was obtained, and cured at 130 ° C. for 2 hours to prepare a sheet-like thermally conductive molded body. Wf C / Wf A + Wf D / Wf B = 1.24.
The sheet-like heat conductive molded body thus produced has a thermal conductivity of 15.1 W / m · K, and Wf C + Wf D = 80 wt% sheet-like heat composed of alumina and a two-part curable silicone resin. The thermal conductivity was 15.1 times that of the conductive molded body.

[比較例1]
参考例1と同様の手法でピッチ系黒鉛化短繊維を作製した。
ピッチ系黒鉛化短繊維Wf5重量%とアルミナWf60重量%と二液硬化性シリコーン系樹脂(東レダウシリコーン社製商品名「SE1740」)35重量%とを自公転混合機(シンキー社製商品名「あわとり練太郎ARV310」)を用いて3分間混合した後、真空プレス機(北川精機製)で、プレス加工し厚み0.5mmの平板状の複合成形体を得、130℃で2時間硬化することで、シート状熱伝導性成形体を作成した。Wf/Wf+Wf/Wf=0.82であった。
Wf+Wf=65重量%の時のアルミナと二液硬化性シリコーン系樹脂からなるシート状熱伝導性成形体の熱伝導率は0.8W/m・Kであった。
作成したシート状熱伝導性成形体中の熱伝導率は1.5W/m・Kであり、Wf+Wf=65重量%の時のアルミナと二液硬化性シリコーン系樹脂からなるシート状熱伝導性成形体と比較して1.9倍の熱伝導率であった。
[Comparative Example 1]
Pitch-based graphitized short fibers were produced in the same manner as in Reference Example 1.
Pitch-based graphitized short fiber Wf C 5% by weight, alumina Wf D 60% by weight, two-component curable silicone resin (trade name “SE1740” manufactured by Toray Dow Silicone Co., Ltd.) 35% by weight Product name “Awatori Nerita ARV310”) for 3 minutes, and then pressed with a vacuum press (made by Kitagawa Seiki Co., Ltd.) to obtain a flat composite molded product having a thickness of 0.5 mm at 130 ° C. By curing for 2 hours, a sheet-like thermally conductive molded body was prepared. Was Wf C / Wf A + Wf D / Wf B = 0.82.
When Wf C + Wf D = 65% by weight, the thermal conductivity of the sheet-like thermally conductive molded body made of alumina and the two-part curable silicone resin was 0.8 W / m · K.
The sheet-like heat conductive molded body thus prepared has a thermal conductivity of 1.5 W / m · K, and Wf C + Wf D = 65 wt% sheet-like heat composed of alumina and a two-part curable silicone resin. The thermal conductivity was 1.9 times that of the conductive molded body.

本発明のシート状熱伝導性成形体は、シート状熱伝導性成形体中のピッチ系黒鉛化短繊維とアスペクト比が3以下の無機化合物の含有量と混合比を制御することで、高い熱伝導性が発現することを可能にせしめている。これにより、高い放熱特性が要求される場所に用いることが可能になり、サーマルマネージメントを確実なものとする。   The sheet-like thermally conductive molded article of the present invention has a high heat resistance by controlling the content and mixing ratio of pitch-based graphitized short fibers in the sheet-like thermally conductive molded article and an inorganic compound having an aspect ratio of 3 or less. It is possible to develop conductivity. As a result, it can be used in places where high heat dissipation characteristics are required, and thermal management is ensured.

Claims (9)

樹脂、アスペクト比が3以上のピッチ系黒鉛化短繊維、およびアスペクト比が3以下の無機化合物からなる組成物を90〜100重量%含有するシートであって、
樹脂とアスペクト比が3以上のピッチ系黒鉛化短繊維とからなるシートの熱伝導率とシート中のピッチ系黒鉛化短繊維の含有量との関係において、含有量を5重量%増加したときに熱伝導率が2倍以上となる該ピッチ系黒鉛化短繊維の含有量をWf重量%とし、
樹脂とアスペクト比が3以下の無機化合物とからなるシートの熱伝導率とシート中の無機化合物との含有量との関係において、含有量を5重量%増加したときに熱伝導率が2倍以上となる無機化合物の含有量をWfB重量%としたとき、
組成物における該ピッチ系黒鉛化短繊維の含有量(Wf重量%)と該無機化合物の含有量(Wf重量%)について、Wf/Wf+Wf/Wf>1の関係にあるシート状熱伝導性成形体。
A sheet containing 90-100% by weight of a resin, a pitch-based graphitized short fiber having an aspect ratio of 3 or more, and an inorganic compound having an aspect ratio of 3 or less,
When the content is increased by 5% by weight in the relationship between the thermal conductivity of a sheet composed of a resin and pitch-based graphitized short fibers having an aspect ratio of 3 or more and the content of pitch-based graphitized short fibers in the sheet The content of the pitch-based graphitized short fiber having a thermal conductivity of 2 times or more is Wf A wt%,
In the relationship between the thermal conductivity of a sheet composed of a resin and an inorganic compound having an aspect ratio of 3 or less and the content of the inorganic compound in the sheet, the thermal conductivity is more than doubled when the content is increased by 5% by weight. When the content of the inorganic compound becomes Wf B wt%,
The pitch-based graphitized short fiber content (Wf C wt%) and the inorganic compound content (Wf D wt%) in the composition are in a relationship of Wf C / Wf A + Wf D / Wf B > 1. Sheet-like thermally conductive molded body.
該樹脂と該該無機化合物からなり無機化合物の含有量が(Wf+Wf)重量%であるシートの熱伝導率に対し、3倍以上の熱伝導率を有する、請求項1に記載のシート状熱伝導性成形体。 2. The sheet according to claim 1, wherein the sheet has a thermal conductivity that is at least three times the thermal conductivity of the sheet comprising the resin and the inorganic compound and the content of the inorganic compound is (Wf C + Wf D ) wt%. -Like thermally conductive molded body. 該ピッチ系黒鉛化短繊維の含有量が3〜50重量%である請求項1または2に記載のシート状熱伝導性成形体。   The sheet-like thermally conductive molded article according to claim 1 or 2, wherein the content of the pitch-based graphitized short fibers is 3 to 50% by weight. 該無機化合物の含有量が20〜90重量%である請求項1〜3のいずれか1項に記載のシート状熱伝導性成形体。   Content of this inorganic compound is 20 to 90 weight%, The sheet-like heat conductive molded object of any one of Claims 1-3. シート状熱伝導性成形体の原料となるピッチ系黒鉛化短繊維が、メソフェーズピッチを原料とし、平均繊維径が2〜20μmであり、平均繊維径に対する繊維径分散の百分率(CV値)が3〜15であり、個数平均繊維長が20〜300μmであり、六角網面の成長方向に由来する結晶子サイズが30nm以上であり、透過型電子顕微鏡によるフィラー端面観察においてグラフェンシートが閉じており、走査型電子顕微鏡での観察表面が実質的に平坦である請求項1〜4のいずれか1項に記載のシート状熱伝導性成形体。   The pitch-based graphitized short fibers used as the raw material of the sheet-like thermally conductive molded body are made of mesophase pitch as a raw material, have an average fiber diameter of 2 to 20 μm, and have a fiber diameter dispersion percentage (CV value) of 3 with respect to the average fiber diameter. -15, the number average fiber length is 20-300 μm, the crystallite size derived from the growth direction of the hexagonal network surface is 30 nm or more, and the graphene sheet is closed in the filler end face observation by a transmission electron microscope, The sheet-like thermally conductive molded article according to any one of claims 1 to 4, wherein an observation surface with a scanning electron microscope is substantially flat. 樹脂が、ポリカーボネート類、ポリエチレンテレフタレート類、ポリブチレンテレフタレート類、ポリエチレン2,6ナフタレート類、ナイロン類、ポリプロピレン類、ポリエチレン類、ポリエーテルケトン類、ポリフェニレンスルフィド類、およびアクリロニトリル-ブタジエン-スチレン系共重合樹脂類からなる群より選ばれる少なくとも一種の樹脂である請求項1〜5のいずれか1項に記載のシート状熱伝導性成形体。   The resins are polycarbonates, polyethylene terephthalates, polybutylene terephthalates, polyethylene 2,6 naphthalates, nylons, polypropylenes, polyethylenes, polyether ketones, polyphenylene sulfides, and acrylonitrile-butadiene-styrene copolymer resins. The sheet-like thermally conductive molded article according to any one of claims 1 to 5, which is at least one kind of resin selected from the group consisting of the above. 樹脂が、エポキシ類、アクリル類、ウレタン類、シリコーン類、フェノール類、イミド類、熱硬化型変性PPE類、および熱硬化型PPE類からなる群より選ばれる少なくとも一種の樹脂である請求項1〜5のいずれか1項に記載のシート状熱伝導性成形体。   The resin is at least one resin selected from the group consisting of epoxies, acrylics, urethanes, silicones, phenols, imides, thermosetting modified PPEs, and thermosetting PPEs. The sheet-like thermally conductive molded article according to any one of 5. 平板状に成形した状態における熱伝導率が5W/(m・K)以上である、請求項1〜7のいずれか1項に記載のシート状熱伝導性成形体。   The sheet-like thermally conductive molded body according to any one of claims 1 to 7, wherein the thermal conductivity in a state of being formed into a flat plate is 5 W / (m · K) or more. 成形方法が、射出成形法、プレス成形法、カレンダー成形法、ロール成形法、押出成形法、注型成形法、およびブロー成形法からなる群より選ばれる少なくとも一種である請求項1〜8のいずれか1項に記載のシート状熱伝導性成形体。   The molding method is at least one selected from the group consisting of an injection molding method, a press molding method, a calendar molding method, a roll molding method, an extrusion molding method, a cast molding method, and a blow molding method. The sheet-like thermally conductive molded article according to item 1.
JP2008059625A 2008-03-10 2008-03-10 Sheet-like heat-conductive molded body Withdrawn JP2009215403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008059625A JP2009215403A (en) 2008-03-10 2008-03-10 Sheet-like heat-conductive molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008059625A JP2009215403A (en) 2008-03-10 2008-03-10 Sheet-like heat-conductive molded body

Publications (1)

Publication Number Publication Date
JP2009215403A true JP2009215403A (en) 2009-09-24

Family

ID=41187599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008059625A Withdrawn JP2009215403A (en) 2008-03-10 2008-03-10 Sheet-like heat-conductive molded body

Country Status (1)

Country Link
JP (1) JP2009215403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077598A1 (en) * 2009-12-25 2011-06-30 日信工業株式会社 Carbon-fiber composite material, process for producing same, insulation article, electronic component, and logging tool
JP2013256579A (en) * 2012-06-12 2013-12-26 Teijin Ltd Heat conductive polycarbonate resin composition
JP2013256578A (en) * 2012-06-12 2013-12-26 Teijin Ltd Heat conductive polycarbonate resin composition
US8901228B2 (en) 2009-12-28 2014-12-02 Nissin Kogyo Co., Ltd. Carbon fiber composite material, method of producing the same, insulating article, electronic part, and logging tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077598A1 (en) * 2009-12-25 2011-06-30 日信工業株式会社 Carbon-fiber composite material, process for producing same, insulation article, electronic component, and logging tool
JP5647152B2 (en) * 2009-12-25 2014-12-24 日信工業株式会社 Carbon fiber composite material and manufacturing method thereof, insulating article, electronic component, and logging device
US8901228B2 (en) 2009-12-28 2014-12-02 Nissin Kogyo Co., Ltd. Carbon fiber composite material, method of producing the same, insulating article, electronic part, and logging tool
JP2013256579A (en) * 2012-06-12 2013-12-26 Teijin Ltd Heat conductive polycarbonate resin composition
JP2013256578A (en) * 2012-06-12 2013-12-26 Teijin Ltd Heat conductive polycarbonate resin composition

Similar Documents

Publication Publication Date Title
JP4538502B2 (en) Pitch-based carbon fiber, mat, and resin molded body containing them
JP2009179700A (en) Thermally conductive powder coating composition
JPWO2010087371A1 (en) Graphitized short fiber and composition thereof
JP2012171986A (en) Thermally conductive composition
JP2007291267A (en) Thermally conductive molding material and molded sheet using this
JP2009215404A (en) Sheet-shaped thermally conductive molded product
JP2008069474A (en) Carbon fiber aggregate suitable for reinforcing material/heat-dissipating material
JP2009191392A (en) Pitch-based carbon fiber filer and molded article using the same
JP2010065123A (en) Heat-conductive molding
JP2009108424A (en) Thermally conductive filler and molded product using the same
JP2008208316A (en) Carbon fiber composite material
JP2010056299A (en) Method of producing thermally-conductive rubber sheet
JP2013007124A (en) Pitch-based graphitized short fiber coated with polyamide imide
WO2010024462A1 (en) Pitch-derived graphitized short fiber and molded object obtained using same
JP2011037919A (en) Thermally conductive bar-shaped resin compact
WO2011013840A1 (en) Insulated pitch-based graphitized short fibers
JP2008248462A (en) Pitch based carbon fiber filler and molded article using the same
JP2009108425A (en) Carbon fiber and composite material using the same
JP2009215403A (en) Sheet-like heat-conductive molded body
JP2008189867A (en) Composite material of carbon fiber-reinforced thermoplastic resin
JP2007291576A (en) Thermoconductive filler and compounded molded article by using the same
JPWO2008108482A1 (en) Pitch-based carbon fiber, method for producing the same, and molded body
JP2012077224A (en) Thermally conductive composition
JP2008308543A (en) Carbon fiber composite sheet and its manufacturing method
JP2009030215A (en) Carbon fiber and molded article using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101220

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20110706

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110706

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120404