JP2009274902A - Glass - Google Patents

Glass Download PDF

Info

Publication number
JP2009274902A
JP2009274902A JP2008126938A JP2008126938A JP2009274902A JP 2009274902 A JP2009274902 A JP 2009274902A JP 2008126938 A JP2008126938 A JP 2008126938A JP 2008126938 A JP2008126938 A JP 2008126938A JP 2009274902 A JP2009274902 A JP 2009274902A
Authority
JP
Japan
Prior art keywords
component
glass
less
oxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008126938A
Other languages
Japanese (ja)
Other versions
JP5416917B2 (en
Inventor
Hisashi Murozumi
久志 室住
Tomokazu Morita
友和 森田
Kosuke Nakajima
耕介 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2008126938A priority Critical patent/JP5416917B2/en
Priority to PCT/JP2009/058947 priority patent/WO2009139427A1/en
Priority to CN2009801165738A priority patent/CN102015560A/en
Publication of JP2009274902A publication Critical patent/JP2009274902A/en
Application granted granted Critical
Publication of JP5416917B2 publication Critical patent/JP5416917B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Abstract

<P>PROBLEM TO BE SOLVED: To provide glass having low thermal expansion, a low glass transition point and low-temperature melting property, having an average coefficient of linear expansion, at temperature of 0°C to 300°C, preferably of not more than 50×10<SP>-7</SP>°C<SP>-1</SP>, more preferably 45×10<SP>-7</SP>°C<SP>-1</SP>, and most preferably 42×10<SP>-7</SP>°C<SP>-1</SP>, and having a glass transition point of preferably not higher than 650°C, more preferably not higher than 600°C, and most preferably not higher than 580°C. <P>SOLUTION: The glass has an average coefficient of linear expansion, at temperature of 0°C to 300°C, of not more than 50×10<SP>-7</SP>°C<SP>-1</SP>and a glass transition point of not higher than 650°C and contains an SiO<SB>2</SB>component, a B<SB>2</SB>O<SB>3</SB>component and a ZnO component, in terms of oxides, with the total content of these components of not less than 75% and a ratio ZnO/(SiO<SB>2</SB>+B<SB>2</SB>O<SB>3</SB>) of not less than 0.08 of these components by mass%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、各種基板材として有用な低い平均線膨張係数および低いガラス転移点を有するガラスに関する。   The present invention relates to a glass having a low average linear expansion coefficient and a low glass transition point useful as various substrate materials.

平均線膨張係数の低いガラスは精密機器分野における基板材、耐熱ガラス等の幅広い分野で使用されている。   Glass having a low average linear expansion coefficient is used in a wide range of fields such as substrate materials and heat-resistant glass in the precision instrument field.

近年、望遠鏡用のミラー基板用などの用途において、平均線膨張係数が低く、かつ熱間加工性に優れた低いガラス転移点を有するガラスが求められている。さらにこれらのガラスは低いコストで製造することが求められており、低温で溶融可能であることが必要である。   In recent years, glass having a low glass transition point with a low average linear expansion coefficient and excellent hot workability has been demanded in applications such as for mirror substrates for telescopes. Furthermore, these glasses are required to be manufactured at a low cost, and must be meltable at a low temperature.

低熱膨張性のガラスとして一般的に知られているのは硼珪酸ガラスである。その代表としてコーニング社製の#7740が知られており、その平均線膨張係数は0〜300℃で32.5×10−7−1、ガラス転移点は530℃であるものの、溶融温度が1500℃以上と非常に高温である。
そのため、このようなガラスの製造においてはガラスの清澄が困難であり、成型されたガラスの内部品質が悪くなりやすくなるとともに、製造設備のコストが高くなるという問題があった。
Borosilicate glass is commonly known as a low thermal expansion glass. A typical example is Corning # 7740, which has an average linear expansion coefficient of 32.5 × 10 −7 ° C −1 at 0 to 300 ° C. and a glass transition point of 530 ° C., but has a melting temperature of It is a very high temperature of 1500 ° C. or higher.
For this reason, in the production of such glass, it has been difficult to clarify the glass, and the internal quality of the molded glass tends to be deteriorated, and the cost of the production equipment is increased.

また、特許文献1および2に開示されるような低い平均線膨張係数を有するガラスは主に耐熱ガラスとして用いられるため、高いガラス転移点を有することが求められており、低熱膨張性、低温溶融性及び低いガラス転移点を兼ね備えたガラスは開示されていない。   Further, since glass having a low average linear expansion coefficient as disclosed in Patent Documents 1 and 2 is mainly used as a heat-resistant glass, it is required to have a high glass transition point, low thermal expansion, low temperature melting No glass is disclosed that combines the properties and low glass transition point.

特開2005−139031号公報JP 2005-139031 A 特開2000−44278号公報JP 2000-44278 A

本発明の目的は、低熱膨張性および低いガラス転移点を有し、比較的低温での溶融が可能であり、0℃〜300℃における平均線膨張係数が好ましくは50×10−7−1以下、より好ましくは45×10−7℃−以下、最も好ましくは40×10−7−1以下であり、ガラス転移点が好ましくは650℃以下、より好ましくは600℃以下、最も好ましくは580℃以下であるガラスを提供することである。 The object of the present invention is to have a low thermal expansion property and a low glass transition point, can be melted at a relatively low temperature, and preferably has an average linear expansion coefficient at 0 ° C. to 300 ° C. of 50 × 10 −7 ° C. −1. Or less, more preferably 45 × 10 −7 ° C.− 1 or less, most preferably 40 × 10 −7 ° C.− 1 or less, and the glass transition point is preferably 650 ° C. or less, more preferably 600 ° C. or less, most preferably It is to provide a glass that is 580 ° C. or lower.

なお、ガラス原料の溶融温度(単に溶融温度ともいう)とは低温溶融性の指標であり、原料を加熱して融液とするとき、その粘度が102.5dPa・sとなる時の温度をいう。測定は球引上げ式粘度計を用いて測定をすることができ、例えば有限会社オプト企業製BVM−13LHを用いて測定することができる。
また、平均線膨張係数は低熱膨張性の指標であり、JOGIS(日本光学硝子工業会規格)16−2003「光学ガラスの常温付近の平均線膨張係数の測定方法」に則り、温度範囲を0℃から50℃、および0℃から300℃の範囲に換えて測定した値をいう。
また、ガラス転移点は熱間加工性の指標とすることができ、JOGIS(日本光学硝子工業会規格)08−2003「光学ガラスの熱膨張の測定方法」により測定した値である。この値が低いほど低い温度でガラスを変形させることが可能となり、ガラスの熱間加工性は優れている。
The melting temperature of the glass raw material (also simply referred to as the melting temperature) is an index of low-temperature melting property, and when the raw material is heated to form a melt, the temperature at which the viscosity becomes 10 2.5 dPa · s. Say. The measurement can be performed using a ball pulling-up type viscometer, for example, using BVM-13LH manufactured by Opto Corporation.
The average linear expansion coefficient is an indicator of low thermal expansion, and the temperature range is 0 ° C. according to JOGIS (Japan Optical Glass Industry Association Standard) 16-2003 “Measurement Method of Average Linear Expansion Coefficient of Optical Glass Near Room Temperature”. To 50 ° C, and values measured in the range of 0 ° C to 300 ° C.
The glass transition point can be used as an index of hot workability, and is a value measured by JOGIS (Japan Optical Glass Industry Association Standard) 08-2003 “Measurement Method of Thermal Expansion of Optical Glass”. The lower this value is, the lower the temperature of the glass can be deformed, and the better the hot workability of the glass.

上記の課題の解決のため、本発明者は酸化物基準でSiO成分、B成分、およびZnO成分を含有し、これらの成分の合量が75%以上、これらの成分の質量%の比ZnO/(SiO+B)が0.08以上であることを特徴とするガラスは0℃から50℃における平均線膨張係数が50×10−7−1以下、より好ましくは45×10−7−1以下、最も好ましくは42×10−7−1以下であり、ガラス転移点が好ましくは650℃以下、より好ましくは600℃以下、最も好ましくは580℃以下であり、1500℃以下という比較的低温で溶融が可能であることを見出した。より具体的には、本発明は以下のようなものを提供する。 In order to solve the above problems, the present inventor contains SiO 2 component, B 2 O 3 component, and ZnO component on the basis of oxide, and the total amount of these components is 75% or more, and the mass% of these components Glass having a ratio of ZnO / (SiO 2 + B 2 O 3 ) of 0.08 or more has an average linear expansion coefficient at 0 ° C. to 50 ° C. of 50 × 10 −7 ° C.− 1 or less, more preferably 45 × 10 −7 ° C. −1 or less, most preferably 42 × 10 −7 ° C. −1 or less, and the glass transition point is preferably 650 ° C. or less, more preferably 600 ° C. or less, and most preferably 580 ° C. or less. It has been found that melting is possible at a relatively low temperature of 1500 ° C. or lower. More specifically, the present invention provides the following.

(構成1)
酸化物基準の質量%で、SiO成分、B成分、およびZnO成分を含有し、これらの成分の合量が75%以上、これらの成分の質量%の比ZnO/(SiO+B)が0.08以上であり、0〜300℃における平均線膨張係数が20×10−7−1〜50×10−7−1であり、ガラス転移点が650℃以下であるガラス。
(構成2)
酸化物基準の質量%で、ZnO成分の含有量が5%〜20%である構成1に記載のガラス。
(構成3)
Al成分を含有し、酸化物基準の質量%でSiO成分、B成分、Al成分およびZnO成分の合量が90%以上である構成1または2に記載のガラス。
(構成4)
酸化物基準の質量%で、
SiO成分を50〜60%、
成分を15〜22%、
Al成分を8〜15%
含有する構成1〜3のいずれかに記載のガラス。
(構成5)
酸化物基準の質量%で、
LiO成分を0〜2%、および/または
NaO成分を0〜5%
含有する構成1〜4のいずれかに記載のガラス。
(構成6)
酸化物基準の質量%で、NaO成分とLiO成分の合量が5%以下である構成1〜5のいずれかに記載のガラス。
(構成7)
酸化物基準の質量%で、
MgO成分を0〜2%、および/または
SrO成分を0〜2%、および/または
BaO成分を0〜2%、および/または
SnO成分を0〜2%
含有する構成1〜6のいずれかに記載のガラス。
(構成8)
酸化物基準の質量%でAs成分および/またはSb成分を0〜1%含有する構成1〜7のいずれかに記載のガラス。
(構成9)
粘度が102.5dPa・sを示すときの温度が1500℃以下である請求項1〜8のいずれかに記載のガラス。
(Configuration 1)
It contains SiO 2 component, B 2 O 3 component, and ZnO component in mass% based on oxide, and the total amount of these components is 75% or more, and the ratio of these components in mass% ZnO / (SiO 2 + B 2 O 3 ) is 0.08 or more, the average linear expansion coefficient at 0 to 300 ° C. is 20 × 10 −7 ° C. −1 to 50 × 10 −7 ° C.− 1 , and the glass transition point is 650 ° C. or less. Some glass.
(Configuration 2)
The glass according to Configuration 1, wherein the content of the ZnO component is 5% to 20% by mass% based on the oxide.
(Configuration 3)
The composition according to configuration 1 or 2, comprising an Al 2 O 3 component, wherein the total amount of the SiO 2 component, the B 2 O 3 component, the Al 2 O 3 component, and the ZnO component is 90% or more by mass% based on the oxide. Glass.
(Configuration 4)
% By mass based on oxide,
50 to 60% of SiO 2 component,
15-22% of B 2 O 3 component,
Al 2 O 3 component 8-15%
The glass in any one of the structures 1-3 to contain.
(Configuration 5)
% By mass based on oxide,
0 to 2% of Li 2 O component and / or 0 to 5% of Na 2 O component
The glass in any one of the structures 1-4 contained.
(Configuration 6)
% By mass on the oxide basis, the glass according to any of the 1-5 total amount of Na 2 O component and Li 2 O component is not more than 5%.
(Configuration 7)
% By mass based on oxide,
MgO component 0-2%, and / or SrO component 0-2%, and / or BaO component 0-2%, and / or SnO component 0-2%
The glass in any one of the structures 1-6 to contain.
(Configuration 8)
Glass according to any of the 1 to 7, containing 0 to 1% of As 2 O 3 component and / or Sb 2 O 3 component in weight percent on the oxide basis.
(Configuration 9)
The glass according to any one of claims 1 to 8, wherein the temperature when the viscosity is 10 2.5 dPa · s is 1500 ° C or lower.

また、本発明は、成分組成を質量%で表しているため、直接表せるべきものではないが、上記の構成と同様の効果を奏するには、モル%にて概ね以下の範囲となる。
(構成10)
酸化物基準のモル%で、ZnO成分の含有量が4%〜15%である構成1に記載のガラス。
(構成11)
酸化物基準のモル%で、
SiO成分を57〜68%、
成分を14〜21%、
Al成分を4〜11%
含有する構成10に記載のガラス。
(構成12)
酸化物基準のモル%で、
LiO成分を0〜2%、および/または
NaO成分を0〜5%
含有する構成10または11に記載のガラス。
(構成13)
酸化物基準のモル%で、NaO成分とLiO成分の合量が5%以下である構成10〜12のいずれかに記載のガラス。
(構成13)
酸化物基準のモル%で、
MgO成分を0〜4%、および/または
SrO成分を0〜2%、および/または
BaO成分を0〜2%、および/または
SnO成分を0〜2%
含有する構成10〜12のいずれかに記載のガラス。
(構成14)
酸化物基準のモル%でAs成分および/またはSb成分を0〜0.5%含有する構成10〜13のいずれかに記載のガラス。
In the present invention, since the component composition is expressed by mass%, it should not be expressed directly. However, in order to achieve the same effect as the above configuration, the molar ratio is generally within the following range.
(Configuration 10)
The glass according to configuration 1, wherein the content of the ZnO component is 4% to 15% in terms of mol% based on oxide.
(Configuration 11)
In mole percent on oxide basis,
SiO 2 component 57-68%,
14 to 21% of B 2 O 3 component,
Al 2 O 3 component 4-11%
The glass of the structure 10 to contain.
(Configuration 12)
In mole percent on oxide basis,
0 to 2% of Li 2 O component and / or 0 to 5% of Na 2 O component
The glass of the structure 10 or 11 to contain.
(Configuration 13)
In mole percent on the oxide basis, the glass according to any of the 10 to 12 the total amount of Na 2 O component and Li 2 O component is not more than 5%.
(Configuration 13)
In mole percent on oxide basis,
MgO component 0-4%, and / or SrO component 0-2%, and / or BaO component 0-2%, and / or SnO component 0-2%
The glass in any one of the structures 10-12 to contain.
(Configuration 14)
Glass according to any of the 10 to 13 containing 0 to 0.5% of As 2 O 3 component and / or Sb 2 O 3 component in mole percent on the oxide basis.

本発明によれば、低熱膨張性および低ガラス転移点を有し、より好ましい特性として低温溶融性をも兼ね備えたガラスを提供することができる。すなわち、0℃〜300℃における平均線膨張係数が好ましくは50×10−7−1以下、より好ましくは45×10−7−1以下、最も好ましくは42×10−7−1以下であり、ガラス転移点が好ましくは650℃以下、より好ましくは600℃以下、最も好ましくは580℃以下、ガラス原料の溶融温度(原料を加熱して融液としたときの粘度が102.5dPa・sを示すときの温度)が好ましくは1500℃以下、より好ましくは1490℃以下、最も好ましくは1480℃以下のガラスを提供することができる。
本発明のガラスは、熱的寸法安定性や熱間加工性を要求する各種基板材、構造部材、透過光学系材料等として好適である。
According to the present invention, it is possible to provide a glass having a low thermal expansion property and a low glass transition point, and also having a low temperature melting property as a more preferable characteristic. That is, the average linear expansion coefficient at 0 ° C. to 300 ° C. is preferably 50 × 10 −7 ° C.− 1 or less, more preferably 45 × 10 −7 ° C.− 1 or less, and most preferably 42 × 10 −7 ° C.− 1 or less. The glass transition point is preferably 650 ° C. or lower, more preferably 600 ° C. or lower, most preferably 580 ° C. or lower. The melting temperature of the glass raw material (viscosity when the raw material is heated to form a melt is 10 2.5. A glass having a temperature (dPa · s) of preferably 1500 ° C. or lower, more preferably 1490 ° C. or lower, and most preferably 1480 ° C. or lower can be provided.
The glass of the present invention is suitable as various substrate materials, structural members, transmission optical system materials and the like that require thermal dimensional stability and hot workability.

本発明のガラスの平均線膨張係数は、熱的寸法安定性を要求する各種基板材、構造部材、または透過光学系材料等として好ましく適用可能となるために、0℃〜300℃において50×10−7−1以下が好ましく、45×10−7−1以下がより好ましく、42×10−7−1以下が最も好ましい。また、0℃〜300℃における平均線膨張係数の下限値は低い程好ましいが、本発明のガラスにおいては20×10−7−1まで得ることが可能である。
ガラス転移点は、熱間加工を要する各種基板材、構造部材等として好ましく適用可能となるために、650℃以下が好ましく、600℃以下がより好ましく、580℃以下が最も好ましい。また、ガラス転移点は低い程好ましいが、本発明のガラスにおいては500℃まで低い値を示すことが可能である。
ガラス原料の溶融温度はガラス製造のコストを低くし、ガラスの清澄を容易とするために1500℃以下であることが好ましく、1490℃以下がより好ましく、1480℃以下が最も好ましい。また、本発明のガラスの前記溶融温度は1450℃程度まで低い値を示すことが可能である。
The average linear expansion coefficient of the glass of the present invention can be preferably applied as various substrate materials, structural members, or transmission optical system materials that require thermal dimensional stability. −7 ° C. −1 or less is preferable, 45 × 10 −7 ° C. −1 or less is more preferable, and 42 × 10 −7 ° C. −1 or less is most preferable. Moreover, although the lower limit of the average linear expansion coefficient in 0 degreeC-300 degreeC is so preferable that it is low, in the glass of this invention, it is possible to obtain to 20x10 <-7> degreeC- 1 .
The glass transition point is preferably 650 ° C. or less, more preferably 600 ° C. or less, and most preferably 580 ° C. or less, because it can be preferably applied as various substrate materials, structural members and the like that require hot working. Moreover, although a glass transition point is so preferable that it is low, in the glass of this invention, it can show a low value to 500 degreeC.
The melting temperature of the glass raw material is preferably 1500 ° C. or less, more preferably 1490 ° C. or less, and most preferably 1480 ° C. or less in order to reduce the cost of glass production and facilitate glass refining. The melting temperature of the glass of the present invention can be as low as about 1450 ° C.

本発明のガラスを構成する各成分について説明する。なお、特に記載の無い場合、本明細書においては前記各成分は酸化物基準の質量%にて表現する。
ここで、「酸化物基準」とは、本発明のガラスの構成成分の原料として使用される酸化物、硝酸塩等が溶融時にすべて分解され酸化物へ変化すると仮定して、ガラス中に含有される各成分の組成を表記する方法であり、この生成酸化物の質量の総和を100質量%として、ガラス中に含有される各成分の量を表記する。
Each component which comprises the glass of this invention is demonstrated. Note that unless otherwise specified, in the present specification, the respective components are expressed in terms of mass% based on oxides.
Here, the “oxide standard” is contained in the glass on the assumption that oxides, nitrates, etc. used as raw materials of the constituent components of the glass of the present invention are all decomposed and changed into oxides when melted. This is a method of expressing the composition of each component, and the amount of each component contained in the glass is described with the total mass of the generated oxides being 100% by mass.

本発明のガラスは酸化物基準でSiO成分、B成分、およびZnO成分を含有し、これらの成分の合量が75%以上、これらの成分の質量%の比ZnO/(SiO+B)が0.08以上であることを特徴とする。
SiO成分、B成分は本発明のガラス骨格を形成する成分である。
SiO成分は低い平均線膨張係数を得るために必須な成分であるが、ガラスの溶融温度を高くする傾向がある。
成分は高温領域での粘性を下げ低温溶融性を向上させる(より低温で溶融することができる)が、一方でガラスが分相しやすくなる傾向がある。
またZnO成分は低温溶融性を向上させるとともに、ガラス転移点を低くする効果があるが一方でガラスの平均線膨張係数を大きくする傾向がある。
このようにこれらの成分は所望の物性に貢献する効果と相反する効果があり、本発明はこれらのSiO成分、B成分、およびZnO成分の合量を特定の範囲とし、かつ酸化物換算の質量%におけるZnO/(SiO+B)比を特定の範囲とすることで、所望の物性とは相反する効果の影響を最小限とし、所望の物性を得るための効果を最大限に得ることができ、低い溶融温度を維持しながら、0〜300℃における平均線膨張係数が50×10−7−1以下、ガラス転移点が650℃以下のガラスを得ることを可能とするものである。
The glass of the present invention contains a SiO 2 component, a B 2 O 3 component, and a ZnO component on an oxide basis, and the total amount of these components is 75% or more, and the ratio of these components in mass% ZnO / (SiO 2 + B 2 O 3 ) is 0.08 or more.
The SiO 2 component and the B 2 O 3 component are components that form the glass skeleton of the present invention.
The SiO 2 component is an essential component for obtaining a low average linear expansion coefficient, but tends to increase the melting temperature of the glass.
The B 2 O 3 component lowers the viscosity in the high temperature region and improves the low temperature melting property (can be melted at a lower temperature), but on the other hand, the glass tends to be phase-separated.
Further, the ZnO component has the effect of improving the low-temperature meltability and lowering the glass transition point, while it tends to increase the average coefficient of linear expansion of the glass.
As described above, these components have an effect contrary to the effect of contributing to the desired physical properties, and the present invention sets the total amount of these SiO 2 component, B 2 O 3 component, and ZnO component in a specific range, and also oxidizes. By making the ZnO / (SiO 2 + B 2 O 3 ) ratio in mass% in terms of physical properties within a specific range, the effect of obtaining the desired physical properties can be minimized by minimizing the influence of the effects contrary to the desired physical properties. It is possible to obtain a glass having an average linear expansion coefficient at 0 to 300 ° C. of 50 × 10 −7 ° C. −1 or less and a glass transition point of 650 ° C. or less while maintaining a low melting temperature. It is what.

前記SiO成分、B成分、およびZnO成分の合量が75%未満であると、上述したこれらの成分による所望の物性に貢献する効果が充分に得られないため、これらの成分の合量の下限値は75%以上であることが好ましく、78%以上であることがより好ましく、80%以上であることが最も好ましい。 If the total amount of the SiO 2 component, the B 2 O 3 component, and the ZnO component is less than 75%, the above-described effects of contributing to the desired physical properties cannot be sufficiently obtained. The lower limit of the total amount is preferably 75% or more, more preferably 78% or more, and most preferably 80% or more.

前記ZnO/(SiO+B)比が0.08未満であると低温溶融性が損なわれるため、その比は0・08以上であることが好ましく、0.09以上であることがより好ましく、0.10以上であることが最も好ましい。
また、前記比が0.20を超えると失透傾向が増大し、ガラスとしての安定性を著しく損なうため、その比は0.20以下であることが好ましく、0.19以下であることがより好ましく、0.18以下であることが最も好ましい。
If the ZnO / (SiO 2 + B 2 O 3 ) ratio is less than 0.08, the low-temperature meltability is impaired. Therefore, the ratio is preferably 0.08 or more, and more preferably 0.09 or more. Preferably, it is most preferably 0.10 or more.
Further, if the ratio exceeds 0.20, the tendency to devitrification is increased and the stability as glass is remarkably impaired. Therefore, the ratio is preferably 0.20 or less, more preferably 0.19 or less. Preferably, it is 0.18 or less.

前記SiO成分の含有量が50%未満であると、所望の平均線膨張係数得難くなるためSiO成分の含有量の下限は50%以上とすることが好ましく、52%以上とすることがより好ましく、53%以上とすることが最も好ましい。
また、本発明のガラスの溶融温度をより低くし、低温溶融性をより良くするためには、前記SiO成分の含有量の上限は60%以下とすることが好ましく、59%以下とすることがより好ましく、58%以下とすることが最も好ましい。
If the content of the SiO 2 component is less than 50%, it is difficult to obtain a desired average linear expansion coefficient. Therefore, the lower limit of the content of the SiO 2 component is preferably 50% or more, and more preferably 52% or more. More preferably, it is most preferable to set it as 53% or more.
Further, in order to lower the melting temperature of the glass of the present invention and improve the low temperature melting property, the upper limit of the content of the SiO 2 component is preferably 60% or less, and 59% or less. Is more preferable, and most preferably 58% or less.

前記B成分の含有量が15%未満であると、ガラス原料の溶融が困難となりやすいため、前記B成分の含有量の下限を15%以上とすることが好ましく、15.5%以上とすることがより好ましく、16%以上とすることが最も好ましい。
また、前記B成分の含有量が22%を超えるとガラスの平均線膨張係数が大きくなるとともに、分相傾向が増大するため、前記B成分の含有量の上限は22%以下とすることが好ましく、21%以下とすることがより好ましく、20.5%以下とすることが最も好ましい。
When the content of the B 2 O 3 component is less than 15%, melting of the glass raw material tends to be difficult, so the lower limit of the content of the B 2 O 3 component is preferably 15% or more. It is more preferably 5% or more, and most preferably 16% or more.
Further, if the content of the B 2 O 3 component exceeds 22%, the average linear expansion coefficient of the glass increases and the phase separation tendency increases. Therefore, the upper limit of the content of the B 2 O 3 component is 22%. The content is preferably set to be 21% or less, more preferably 21% or less, and most preferably 20.5% or less.

前記ZnO成分の含有量が5%未満であると、ガラス原料の低温溶融が困難となりやすいため、前記ZnO成分の含有量の下限を5%以上とすることが好ましく、7%以上とすることがより好ましく、9%以上とすることが最も好ましい。
前記ZnO成分の含有量が20%を超えると平均線膨張係数が大きくなりやすくなるとともに失透傾向が増大しやすくなるため、その含有量は20%以下が好ましく、16%以下がより好ましく、13%以下が最も好ましい。
If the content of the ZnO component is less than 5%, low temperature melting of the glass raw material tends to be difficult, so the lower limit of the content of the ZnO component is preferably 5% or more, and preferably 7% or more. More preferably, it is most preferably 9% or more.
When the content of the ZnO component exceeds 20%, the average linear expansion coefficient tends to increase and the devitrification tendency tends to increase. Therefore, the content is preferably 20% or less, more preferably 16% or less, 13 % Or less is most preferable.

Al成分は本発明のガラス骨格を形成することができまた、分相を抑制する成分である。このAl成分とSiO成分、B成分、およびZnO成分の合量が90%未満であると、所望の熱膨張係数有するガラスが得難くなるため、前記合量は90%以上とすることが好ましく、92%以上とすることが最も好ましい。
前記Al成分が8%未満であると、熱膨張係数が大きくなりやすくなるとともに、ガラスの分相傾向が大きくなるため、8%以上とすることが好ましく、9%以上とすることが最も好ましい。また15%を超えると溶解性が著しく低下するとともに、所望のガラス転移点を有するガラスが得難くなるため、15%以下とすることが好ましく、13%以下とすることが最も好ましい。
The Al 2 O 3 component is a component that can form the glass skeleton of the present invention and suppresses phase separation. When the total amount of the Al 2 O 3 component, the SiO 2 component, the B 2 O 3 component, and the ZnO component is less than 90%, it becomes difficult to obtain a glass having a desired thermal expansion coefficient. It is preferable to set it as the above, and it is most preferable to set it as 92% or more.
If the Al 2 O 3 component is less than 8%, the coefficient of thermal expansion tends to increase and the tendency of phase separation of the glass increases, so it is preferably 8% or more, and more preferably 9% or more. Most preferred. Further, if it exceeds 15%, the solubility is remarkably lowered and it becomes difficult to obtain a glass having a desired glass transition point. Therefore, it is preferably 15% or less, and most preferably 13% or less.

LiO成分はガラス転移点の低下および溶融性の向上させやすくする任意で添加できる成分である。ただし含有量が大きくなると熱膨張係数が大きくなりやすいことから、その含有量の上限は、好ましくは2%以下、最も好ましくは1%以下である。 The Li 2 O component is a component that can be optionally added to easily lower the glass transition point and improve the meltability. However, since the coefficient of thermal expansion tends to increase as the content increases, the upper limit of the content is preferably 2% or less, and most preferably 1% or less.

NaO成分はガラス転移点の低下および溶融性の向上させやすくする任意で添加できる成分である。ただし含有量が大きくなると熱膨張係数が大きくなりやすいことから、その含有量の上限は、好ましくは5%以下、最も好ましくは4%以下である。 The Na 2 O component is a component that can be optionally added to easily lower the glass transition point and improve the meltability. However, since the coefficient of thermal expansion tends to increase as the content increases, the upper limit of the content is preferably 5% or less, and most preferably 4% or less.

また、LiO成分とNaO成分の合量が5%を超えると、所望の熱膨張係数を有するガラスが得難くなるため、その合量は5%以下が好ましく、4.5%以下がより好ましく、4%以下が最も好ましい。 Further, if the total amount of the Li 2 O component and the Na 2 O component exceeds 5%, it becomes difficult to obtain a glass having a desired thermal expansion coefficient. Therefore, the total amount is preferably 5% or less, and 4.5% or less. Is more preferable, and 4% or less is most preferable.

MgO成分は低温溶融性を向上させやすくする任意で添加できる成分である。ただし含有量が大きくなると、ガラス転移点が高くなるとともに、失透性が増大するため、その含有量の上限は、好ましくは2%以下、最も好ましくは1.5%以下である。   The MgO component is a component that can be optionally added to facilitate improving the low-temperature meltability. However, as the content increases, the glass transition point increases and devitrification increases. Therefore, the upper limit of the content is preferably 2% or less, and most preferably 1.5% or less.

SrO成分は低温溶融性を向上させやすくする任意で添加できる成分である。ただし添加量が多いと平均線膨張係数が大きくなりやすくなるため、その含有量の上限は、好ましくは2%以下、最も好ましくは1%以下である。 The SrO component is a component that can be optionally added to easily improve the low-temperature meltability. However, since the average linear expansion coefficient tends to increase when the amount added is large, the upper limit of the content is preferably 2% or less, and most preferably 1% or less.

BaO成分はガラスの分相を抑制しやすくするとともに、低温溶融性を向上させやすくする任意で添加できる成分である。ただし添加量が多いと平均線膨張係数が大きくなりやすくなるため、その含有量の上限は、好ましくは2%以下、最も好ましくは1.5%以下である。   The BaO component is a component that can be optionally added to easily suppress the phase separation of the glass and to improve the low-temperature meltability. However, since the average linear expansion coefficient tends to increase when the amount added is large, the upper limit of the content is preferably 2% or less, and most preferably 1.5% or less.

SnO成分は低温溶融性を向上させやすくするとともに清澄効果が期待できる任意で添加できる成分である。ただし添加量が多いと平均線膨張係数が大きくなりやすくなるため、その含有量の上限は、好ましくは2%以下、最も好ましくは1%以下である。 The SnO component is a component that can be optionally added so that the low temperature meltability can be easily improved and a clarifying effect can be expected. However, since the average linear expansion coefficient tends to increase when the amount added is large, the upper limit of the content is preferably 2% or less, and most preferably 1% or less.

As成分およびSb成分はガラスの清澄剤として任意で添加できる成分である。ただし多量に加えても清澄効果は大きくならないため1%を上限とし、好ましくは0.5%以下、最も好ましくは0.3%以下である。 As 2 O 3 component and Sb 2 O 3 component are components that can be optionally added as a glass refining agent. However, even if added in a large amount, the clarification effect does not increase, so 1% is the upper limit, preferably 0.5% or less, and most preferably 0.3% or less.

PbO成分はガラスを製造、加工、及び廃棄をする際に環境対策上の措置を講ずる必要があり、そのためのコストを要するため、本発明のガラスにPbOを含有させるべきでない。   Since the PbO component requires measures for environmental measures when manufacturing, processing, and discarding the glass, and costs are required for this, PbO should not be contained in the glass of the present invention.

さらに本発明のガラスにおいては、V、Cr、Mn、Fe、Co、Ni、Mo、Eu、Nd、Sm、Tb、Dy、Er等の各成分は本発明の目的への貢献が少なく、ガラスが着色してしまうため透過光学系材料としての使用を考慮した場合、含有しないことが好ましい。
ただし、ここでいう含有しないとは、不純物として混入される場合を除き、人為的に含有させないことを意味する。
Furthermore, in the glass of the present invention, each component such as V, Cr, Mn, Fe, Co, Ni, Mo, Eu, Nd, Sm, Tb, Dy, and Er contributes little to the object of the present invention. In consideration of use as a transmission optical system material because it is colored, it is preferably not contained.
However, the term “not contained” means that it is not contained artificially unless it is mixed as an impurity.

その他の成分については、本発明の主旨を損なわない程度であれば添加しても良いが、小さい平均線膨張係数を得やすくするために、SiO成分、Al成分、B成分およびZnO成分以外のガラス中に含有される各成分がいずれも酸化物基準の質量%で5%を超えないことが好ましい。 Other components may be added as long as they do not impair the gist of the present invention, but in order to easily obtain a small average linear expansion coefficient, SiO 2 component, Al 2 O 3 component, B 2 O 3 It is preferable that each component contained in the glass other than the component and the ZnO component does not exceed 5% in terms of mass% based on the oxide.

本発明のガラスの製造方法としては、公知の溶融法を用いる事が出来る。すなわち、本発明のガラスが酸化物基準で表わされた組成となるように珪砂、硼酸、酸化アルミニウム、亜鉛華、炭酸リチウム、炭酸ナトリウム、酸化マグネシウム、硝酸ストロンチウム、硝酸バリウム、亜砒酸、五酸化アンチモン等からなるガラス原料を、石英または白金などからなる坩堝へ充填する。そして電気炉、ガス炉などの溶融炉で加熱溶融する。本発明のガラスはガラス原料の溶融温度が1500℃以下であり、前記溶融炉での加熱溶融時の温度は1450℃〜1500℃、好ましい態様においては1400℃〜1450℃の温度で溶融することができる。
溶融後、必要に応じ清澄、撹拌を行いガラスを均質化させ、その後成形型に溶融ガラスを流しこみ急冷することによって成形、徐冷炉において徐冷する。
As a method for producing the glass of the present invention, a known melting method can be used. That is, silica sand, boric acid, aluminum oxide, zinc white, lithium carbonate, sodium carbonate, magnesium oxide, strontium nitrate, barium nitrate, arsenous acid, antimony pentoxide so that the glass of the present invention has a composition expressed on an oxide basis. A glass raw material made of etc. is filled into a crucible made of quartz or platinum. And it heat-melts in melting furnaces, such as an electric furnace and a gas furnace. In the glass of the present invention, the melting temperature of the glass raw material is 1500 ° C. or less, the temperature at the time of heating and melting in the melting furnace is 1450 ° C. to 1500 ° C., and in a preferred embodiment, the glass raw material can be melted at a temperature of 1400 ° C. to 1450 ° C. it can.
After melting, clarification and stirring are performed as necessary to homogenize the glass, and then the molten glass is poured into a mold and rapidly cooled to form and slowly cool in a slow cooling furnace.

徐冷炉から取りだしたガラスは必要に応じて切断、研削、研磨を行うことで、各種基板材、構造部材、透過光学系材料を得ることができる。   The glass taken out from the slow cooling furnace can be cut, ground, and polished as necessary to obtain various substrate materials, structural members, and transmission optical system materials.

本発明の実施例について説明する。ガラスが酸化物基準で表わされた表1に示す組成比となるように珪砂、硼酸、酸化アルミニウム、亜鉛華、炭酸リチウム、炭酸ナトリウム、酸化マグネシウム、硝酸ストロンチウム、硝酸バリウムおよび五酸化アンチモンからなるガラス原料バッチを調製した。バッチは白金坩堝へ充填し、1400〜1500℃の電気炉により、6時間加熱溶融した。溶融したガラスを板状に成型し徐冷した。   Examples of the present invention will be described. It consists of silica sand, boric acid, aluminum oxide, zinc white, lithium carbonate, sodium carbonate, magnesium oxide, strontium nitrate, barium nitrate and antimony pentoxide so that the glass has the composition ratio shown on the oxide basis as shown in Table 1. A glass raw material batch was prepared. The batch was filled in a platinum crucible and heated and melted in an electric furnace at 1400 to 1500 ° C. for 6 hours. The molten glass was molded into a plate shape and slowly cooled.

表1に本発明の実施例の酸化物基準の質量%で表わされたガラス組成、溶融温度、0℃〜50℃における平均線膨張係数(α)および0℃〜300℃における平均線膨張係数(α)、ガラスの粘度が102.5dPa・sを示すときの温度を示す。
また、図1に本発明の実施例7と比較例のガラス(コーニング社#7740)の温度−粘度グラフを示す。















































Table 1 shows the glass composition, melting temperature, average linear expansion coefficient (α) at 0 ° C. to 50 ° C. and average linear expansion coefficient at 0 ° C. to 300 ° C. (Α) indicates the temperature when the viscosity of the glass is 10 2.5 dPa · s.
Moreover, the temperature-viscosity graph of Example 7 of this invention and the glass (Corning company # 7740) of a comparative example is shown in FIG.















































上記実施例のガラスは、すべて0℃から300℃における平均線膨張係数が42×10−7−1以下、粘度が102.5dPa・sを示すときの温度が1500℃以下、かつガラス転移点が580℃以下である。 All the glasses of the above examples have an average linear expansion coefficient of 42 × 10 −7 ° C.− 1 or less at 0 ° C. to 300 ° C., a temperature when the viscosity is 10 2.5 dPa · s, 1500 ° C. or less, and glass The transition point is 580 ° C. or lower.

これらのガラスを切断、研削、研磨といった加工を順に行い、基板材、構造部材、透過光学材料を作成した。これらは全て熱的な寸法安定性を有するものであり、従来の熱低膨張性ガラス、セラミックス材料等に比較して安価に製造でき、容易に加工ができた。   These glasses were sequentially processed by cutting, grinding, and polishing to prepare a substrate material, a structural member, and a transmission optical material. All of these have thermal dimensional stability, and can be manufactured at a lower cost than the conventional heat-low expansion glass and ceramic materials, and can be easily processed.

また、上記実施例にて作製されたガラスは、750℃〜850℃という比較的低い温度で、自重変形させることが可能であった。従って、本発明のガラスを使用することによって細長い棒状のガラス材料を型枠内で加熱することにより変形させ、通常成形が困難である大形のブロック品を容易に得ることも可能である。   Moreover, the glass produced in the said Example was able to carry out self weight deformation | transformation at the comparatively low temperature of 750 to 850 degreeC. Therefore, by using the glass of the present invention, it is possible to easily obtain a large block product which is usually difficult to mold by deforming the elongated rod-shaped glass material by heating in a mold.

本発明の実施例7と比較例(コーニング社#7740)の温度−粘度グラフであり、縦軸は粘度(dPa・s)の対数logηの値であり、横軸は温度(℃)である。It is a temperature-viscosity graph of Example 7 of this invention and a comparative example (Corning company # 7740), a vertical axis | shaft is the value of logarithmic log (eta) of a viscosity (dPa * s), and a horizontal axis is temperature (degreeC).

Claims (9)

酸化物基準の質量%で、SiO成分、B成分、およびZnO成分を含有し、これらの成分の合量が75%以上、これらの成分の質量%の比ZnO/(SiO+B)が0.08以上であり、0〜300℃における平均線膨張係数が20×10−7−1〜50×10−7−1であり、ガラス転移点が650℃以下であるガラス。 It contains SiO 2 component, B 2 O 3 component, and ZnO component in mass% based on oxide, and the total amount of these components is 75% or more, and the ratio of these components in mass% ZnO / (SiO 2 + B 2 O 3 ) is 0.08 or more, the average linear expansion coefficient at 0 to 300 ° C. is 20 × 10 −7 ° C. −1 to 50 × 10 −7 ° C.− 1 , and the glass transition point is 650 ° C. or less. Some glass. 酸化物基準の質量%で、ZnO成分の含有量が5%〜20%である請求項1に記載のガラス。   The glass according to claim 1, wherein the content of the ZnO component is 5% to 20% by mass% based on the oxide. Al成分を含有し、酸化物基準の質量%でSiO成分、B成分、Al成分およびZnO成分の合量が90%以上である請求項1または2に記載のガラス。 The Al 2 O 3 component is contained, and the total amount of the SiO 2 component, the B 2 O 3 component, the Al 2 O 3 component, and the ZnO component is 90% or more by mass% based on the oxide. Glass. 酸化物基準の質量%で、
SiO成分を50〜60%、
成分を15〜22%、
Al成分を8〜15%
含有する請求項1〜3のいずれかに記載のガラス。
% By mass based on oxide,
50 to 60% of SiO 2 component,
15-22% of B 2 O 3 component,
Al 2 O 3 component 8-15%
The glass according to any one of claims 1 to 3.
酸化物基準の質量%で、
LiO成分を0〜2%、および/または
NaO成分を0〜5%
含有する請求項1〜4のいずれかに記載のガラス。
% By mass based on oxide,
0 to 2% of Li 2 O component and / or 0 to 5% of Na 2 O component
The glass according to any one of claims 1 to 4, which is contained.
酸化物基準の質量%で、NaO成分とLiO成分の合量が5%以下である請求項1〜5のいずれかに記載のガラス。 % By mass on the oxide basis, the glass according to any one of claims 1 to 5 the total amount of Na 2 O component and Li 2 O component is not more than 5%. 酸化物基準の質量%で、
MgO成分を0〜2%、および/または
SrO成分を0〜2%、および/または
BaO成分を0〜2%、および/または
SnO成分を0〜2%
含有する請求項1〜6のいずれかに記載のガラス。
% By mass based on oxide,
MgO component 0-2%, and / or SrO component 0-2%, and / or BaO component 0-2%, and / or SnO component 0-2%
The glass according to claim 1, which is contained.
酸化物基準の質量%でAs成分および/またはSb成分を0〜1%含有する請求項1〜7のいずれかに記載のガラス。 Glass according to claim 1 containing 0 to 1% of As 2 O 3 component and / or Sb 2 O 3 component in weight percent on the oxide basis. 粘度が102.5dPa・sを示すときの温度が1500℃以下である請求項1〜8のいずれかに記載のガラス。 The glass according to any one of claims 1 to 8, wherein the temperature when the viscosity is 10 2.5 dPa · s is 1500 ° C or lower.
JP2008126938A 2008-05-14 2008-05-14 Glass Expired - Fee Related JP5416917B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008126938A JP5416917B2 (en) 2008-05-14 2008-05-14 Glass
PCT/JP2009/058947 WO2009139427A1 (en) 2008-05-14 2009-05-13 Glass
CN2009801165738A CN102015560A (en) 2008-05-14 2009-05-13 Glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008126938A JP5416917B2 (en) 2008-05-14 2008-05-14 Glass

Publications (2)

Publication Number Publication Date
JP2009274902A true JP2009274902A (en) 2009-11-26
JP5416917B2 JP5416917B2 (en) 2014-02-12

Family

ID=41318793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008126938A Expired - Fee Related JP5416917B2 (en) 2008-05-14 2008-05-14 Glass

Country Status (3)

Country Link
JP (1) JP5416917B2 (en)
CN (1) CN102015560A (en)
WO (1) WO2009139427A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019055911A (en) * 2014-10-08 2019-04-11 コーニング インコーポレイテッド Glass and glass ceramic having metal oxide density gradient
US11021393B2 (en) 2014-11-04 2021-06-01 Corning Incorporated Deep non-frangible stress profiles and methods of making
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US11084756B2 (en) 2014-10-31 2021-08-10 Corning Incorporated Strengthened glass with ultra deep depth of compression
US11174197B2 (en) 2016-04-08 2021-11-16 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US11267228B2 (en) 2015-07-21 2022-03-08 Corning Incorporated Glass articles exhibiting improved fracture performance
US11472734B2 (en) 2015-12-11 2022-10-18 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
US11492291B2 (en) 2012-02-29 2022-11-08 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
US11634359B2 (en) 2014-02-24 2023-04-25 Corning Incorporated Strengthened glass with deep depth of compression
US11878941B2 (en) 2014-06-19 2024-01-23 Corning Incorporated Glasses having non-frangible stress profiles
US11963320B2 (en) 2016-04-08 2024-04-16 Corning Incorporated Glass-based articles including a stress profile comprising two regions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5788643B2 (en) * 2010-05-21 2015-10-07 株式会社オハラ Glass substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230641A (en) * 1988-07-18 1990-02-01 Mitsubishi Electric Corp Ceramic substrate material
JP2002265233A (en) * 2001-03-05 2002-09-18 Nippon Sheet Glass Co Ltd Glass preform for laser beam machining and glass for laser beam machining
JP2005139031A (en) * 2003-11-07 2005-06-02 Okamoto Glass Co Ltd Heat resistant glass
JP2006089330A (en) * 2004-09-24 2006-04-06 Nippon Electric Glass Co Ltd Exhaust tube glass for display and exhaust tube for display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230641A (en) * 1988-07-18 1990-02-01 Mitsubishi Electric Corp Ceramic substrate material
JP2002265233A (en) * 2001-03-05 2002-09-18 Nippon Sheet Glass Co Ltd Glass preform for laser beam machining and glass for laser beam machining
JP2005139031A (en) * 2003-11-07 2005-06-02 Okamoto Glass Co Ltd Heat resistant glass
JP2006089330A (en) * 2004-09-24 2006-04-06 Nippon Electric Glass Co Ltd Exhaust tube glass for display and exhaust tube for display

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492291B2 (en) 2012-02-29 2022-11-08 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US11634359B2 (en) 2014-02-24 2023-04-25 Corning Incorporated Strengthened glass with deep depth of compression
US11878941B2 (en) 2014-06-19 2024-01-23 Corning Incorporated Glasses having non-frangible stress profiles
US11459270B2 (en) 2014-10-08 2022-10-04 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
JP2019055911A (en) * 2014-10-08 2019-04-11 コーニング インコーポレイテッド Glass and glass ceramic having metal oxide density gradient
US11220456B2 (en) 2014-10-08 2022-01-11 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US10730791B2 (en) 2014-10-08 2020-08-04 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US11465937B2 (en) 2014-10-08 2022-10-11 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US11746046B2 (en) 2014-10-31 2023-09-05 Corning Incorporated Strengthened glass with ultra deep depth of compression
US11084756B2 (en) 2014-10-31 2021-08-10 Corning Incorporated Strengthened glass with ultra deep depth of compression
US11377388B2 (en) 2014-11-04 2022-07-05 Corning Incorporated Deep non-frangible stress profiles and methods of making
US11021393B2 (en) 2014-11-04 2021-06-01 Corning Incorporated Deep non-frangible stress profiles and methods of making
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
US11267228B2 (en) 2015-07-21 2022-03-08 Corning Incorporated Glass articles exhibiting improved fracture performance
US11472734B2 (en) 2015-12-11 2022-10-18 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
US11878936B2 (en) 2015-12-11 2024-01-23 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
US11279652B2 (en) 2016-04-08 2022-03-22 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US11691913B2 (en) 2016-04-08 2023-07-04 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US11174197B2 (en) 2016-04-08 2021-11-16 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US11963320B2 (en) 2016-04-08 2024-04-16 Corning Incorporated Glass-based articles including a stress profile comprising two regions

Also Published As

Publication number Publication date
WO2009139427A1 (en) 2009-11-19
JP5416917B2 (en) 2014-02-12
CN102015560A (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP5416917B2 (en) Glass
JP3750984B2 (en) Optical glass and optical product manufacturing method
JP5073353B2 (en) Optical glass
JP2019123662A (en) Optical glass
JP2010030848A (en) Glass
JP2013119517A (en) Phosphate optical glass
JP6694229B2 (en) Glass
JP5751744B2 (en) Glass
WO2010029967A1 (en) Glass
WO2003072518A1 (en) Optical glass
JP2007070194A (en) Optical glass
JP2009203154A (en) Glass
JP2010030849A (en) Glass
JPWO2007136071A1 (en) Optical glass
JP2010189197A (en) Photoconductive fiber
JP2004168593A (en) Optical glass
JP2006117503A (en) Optical glass
JP2013028532A (en) Optical glass
JP2509329B2 (en) Glass for optical fiber
JP5770973B2 (en) Optical glass and optical element
JP2010030850A (en) Glass
JP5292029B2 (en) Glass
JP3195789B2 (en) Optical glass and molded products
JP5688887B2 (en) Optical glass
JP2000072474A (en) Optical glass for press formed lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees