JP2009274893A - METHOD FOR DETOXIFYING HFC-134a AND PREPARATION METHOD OF CALCIUM CARBONATE - Google Patents

METHOD FOR DETOXIFYING HFC-134a AND PREPARATION METHOD OF CALCIUM CARBONATE Download PDF

Info

Publication number
JP2009274893A
JP2009274893A JP2008125996A JP2008125996A JP2009274893A JP 2009274893 A JP2009274893 A JP 2009274893A JP 2008125996 A JP2008125996 A JP 2008125996A JP 2008125996 A JP2008125996 A JP 2008125996A JP 2009274893 A JP2009274893 A JP 2009274893A
Authority
JP
Japan
Prior art keywords
hfc
calcium
calcium carbonate
reaction
calcium hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008125996A
Other languages
Japanese (ja)
Other versions
JP5342805B2 (en
Inventor
Hideki Yamamoto
秀樹 山本
Katsura Matsubara
桂 松原
Norihiko Nakayama
紀彦 中山
Shinji Uematsu
眞司 植松
Takahiro Okazaki
隆宏 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiraishi Kogyo Kaisha Ltd
Original Assignee
Shiraishi Kogyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiraishi Kogyo Kaisha Ltd filed Critical Shiraishi Kogyo Kaisha Ltd
Priority to JP2008125996A priority Critical patent/JP5342805B2/en
Publication of JP2009274893A publication Critical patent/JP2009274893A/en
Application granted granted Critical
Publication of JP5342805B2 publication Critical patent/JP5342805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for detoxifying HFC-134a, capable of achieving high reaction efficiency when decomposing HFC-134a by a catalytic reaction with a metal compound. <P>SOLUTION: HFC-134a (C<SB>2</SB>H<SB>2</SB>F<SB>4</SB>) is brought into contact with calcium oxide formed by thermally decomposing calcium hydroxide and decomposed according to formula (A1): 2C<SB>2</SB>H<SB>2</SB>F<SB>4</SB>+4CaO→4CaF<SB>2</SB>+3C+2H<SB>2</SB>O+CO<SB>2</SB>. Here, a byproduct produced in a process for preparing calcium carbonate by carbonate gas reaction method is used as the calcium hydroxide. HFC-134a is brought into contact with the byproduct to thermally decompose the calcium hydroxide into calcium oxide as well as to decompose HFC-134a by a reaction according to formula (A1). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、HFC−134a(C)を分解して無害化する無害化処理方法、さらにこの無害化処理方法で生成した分解物を利用して炭酸カルシウムを製造する方法に関する。 The present invention relates to a detoxification treatment method for decomposing and detoxifying HFC-134a (C 2 H 2 F 4 ), and further to a method for producing calcium carbonate using a decomposition product generated by this detoxification treatment method.

地球温暖化の主な原因は、二酸化炭素、メタン系ガス、フロンガス等の温室効果ガスの大気中への放出である。これらの温室効果ガスの一つであるフロンガスは、炭素、フッ素、塩素からなる特定フロン(CFC)と、塩素を含まない代替フロン(HFC)とに大別される。特定フロンは分解によって放出される塩素原子がオゾン層を破壊することが解明され、先進国においては既に生産が中止されたため、代替フロンは、塩素を含まずオゾン層を破壊しない物質として期待されている。しかしながら、代替フロンは二酸化炭素の数千倍から数万倍の地球温暖化係数(GWP)を有していることが問題となり、我が国では使用済み代替フロンを回収して無害な物質に変換して処理することが義務づけられている。   The main cause of global warming is the release of greenhouse gases such as carbon dioxide, methane-based gas, and chlorofluorocarbon into the atmosphere. Freon gas, which is one of these greenhouse gases, is roughly classified into specific chlorofluorocarbon (CFC) composed of carbon, fluorine, and chlorine and alternative chlorofluorocarbon (HFC) that does not contain chlorine. It has been clarified that chlorine atoms released by decomposition destroy the ozone layer, and production has already been discontinued in developed countries. Therefore, alternative chlorofluorocarbons are expected to be substances that do not contain chlorine and do not destroy the ozone layer. Yes. However, the problem is that CFCs have a global warming potential (GWP) several thousand to tens of thousands times that of carbon dioxide, and in Japan, used CFCs are recovered and converted into harmless substances. It is obliged to process.

現在実用化されているフロンガスの無害化方法としては、焼成炉内で高温に加熱して熱分解するロータリーキルン法や、アルカリ土類金属またはアルカリ金属の金属化合物にフロンガスを接触させて反応させてフッ化金属に変換する方法がある(特許文献1、2参照)。
特開平10−277363号公報 特開2005−52724号公報
As a detoxifying method of fluorocarbon gas that is currently in practical use, a rotary kiln method in which pyrolysis is performed by heating to a high temperature in a firing furnace, or fluorocarbon gas is brought into contact with an alkaline earth metal or a metal compound of an alkali metal to react with the fluorocarbon. There is a method of converting to metallized metal (see Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 10-277363 JP 2005-52724 A

しかしながら、ロータリーキルン法はフッ化水素等の腐食性ガスが発生するための二次処理が必要となる。また、金属化合物にフロンガスを接触させる分解方法では金属化合物とフロンガスとの接触面積が反応効率に大きく影響を与えるが、接触面積に限度があるためにフロンガスを規定濃度以下に効率良く分解することが困難であった。   However, the rotary kiln method requires a secondary treatment for generating a corrosive gas such as hydrogen fluoride. In the decomposition method in which CFC gas is brought into contact with the metal compound, the contact area between the metal compound and CFC gas greatly affects the reaction efficiency. However, because the contact area is limited, CFC gas can be efficiently decomposed below the specified concentration. It was difficult.

本発明は、上述した背景技術に鑑み、金属化合物との接触反応によるHFC−134aの分解処理において、高い反応効率を達成できるHFC−134aの無害化処理方法の提供を目的とするものである。さらに、この無害化処理方法で生成された二酸化炭素を利用する炭酸カルシウムの製造方法の提供を目的とする。   In view of the background art mentioned above, the present invention aims to provide a detoxification method for HFC-134a that can achieve high reaction efficiency in the decomposition treatment of HFC-134a by contact reaction with a metal compound. Furthermore, it aims at provision of the manufacturing method of the calcium carbonate using the carbon dioxide produced | generated by this detoxification processing method.

即ち、本発明のHFC−134aの無害化処理方法は下記[1]〜[6]に記載の構成を有する。   That is, the detoxification method for HFC-134a of the present invention has the configurations described in [1] to [6] below.

[1]HFC−134a(C)を水酸化カルシウムの熱分解によって得た酸化カルシウムに接触させ、下式(A1)に基づいて前述HFC−134aを分解することを特徴するHFC−134aの無害化処理方法。
2C+4CaO→4CaF+3C+2HO+CO …(A1)
[1] HFC characterized in that HFC-134a (C 2 H 2 F 4 ) is brought into contact with calcium oxide obtained by thermal decomposition of calcium hydroxide, and the above-mentioned HFC-134a is decomposed based on the following formula (A1) -134a detoxification method.
2C 2 H 2 F 4 + 4CaO → 4CaF 2 + 3C + 2H 2 O + CO 2 (A1)

[2]前項1において、水酸化カルシウムとして、炭酸ガス反応法による炭酸カルシウム製造工程で副生し、水酸化カルシウムおよび炭酸カルシウムを含有する副生成物を用い、当該副生成物にHFC−134aを接触させ、水酸化カルシウムを酸化カルシウムに熱分解するとともに、前式(A1)に基づく反応によりHFC−134aを分解するHFC−134aの無害化処理方法。   [2] In the preceding item 1, as a calcium hydroxide, a by-product in a calcium carbonate production process by a carbon dioxide reaction method is used, and a by-product containing calcium hydroxide and calcium carbonate is used, and HFC-134a is added to the by-product. A detoxifying treatment method for HFC-134a, wherein contact is made to thermally decompose calcium hydroxide into calcium oxide, and HFC-134a is decomposed by a reaction based on the previous formula (A1).

[3]前項2の副生成物中に10質量%以上の水酸化カルシウムが含有されているHFC−134aの無害化処理方法。   [3] A detoxifying method for HFC-134a, wherein 10% by mass or more of calcium hydroxide is contained in the by-product of the preceding item 2.

[4]前項2または3の副生成物の加熱後の比表面積が10m/g以上であるHFC−134aの無害化処理方法。 [4] A detoxification method for HFC-134a, wherein the by-product of the preceding item 2 or 3 has a specific surface area after heating of 10 m 2 / g or more.

[5]前項1〜4のいずれかにおける接触反応を773〜873Kで行うHFC−134aの無害化処理方法。   [5] A detoxification treatment method for HFC-134a, wherein the contact reaction according to any one of items 1 to 4 is performed at 773 to 873K.

[6]前項1〜5のいずれかにおいて、前式(A1)基づいて生成した二酸化炭素を下式(B3)式に基づいて水酸化カルシウムと反応させ、二酸化炭素を炭酸カルシウムに変換するHFC−134aの無害化処理方法。
Ca(OH)+CO→CaCO+ HO …(B3)
[6] In any one of the preceding items 1 to 5, the carbon dioxide generated based on the previous formula (A1) is reacted with calcium hydroxide based on the following formula (B3) to convert the carbon dioxide into calcium carbonate. The detoxification processing method of 134a.
Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O (B3)

また、本発明の炭酸カルシウムの製造方法は下記[7][8]に記載の構成を有する。   Moreover, the manufacturing method of the calcium carbonate of this invention has the structure as described in following [7] [8].

[7]前項1〜5のいずれかに記載のHFC−134aの無害化処理方法により下式(A1)に基づいて生成した二酸化炭素を水酸化カルシウムと反応させ、下式(B3)式に基づいて炭酸カルシウムを生成させることを特徴とする炭酸カルシウムの製造方法。
2C+4CaO→4CaF+3C+2HO+CO …(A1)
Ca(OH)+CO→CaCO+HO …(B3)
[7] Carbon dioxide generated based on the following formula (A1) by the detoxification method for HFC-134a according to any one of the preceding items 1 to 5 is reacted with calcium hydroxide, and based on the following formula (B3) And producing calcium carbonate.
2C 2 H 2 F 4 + 4CaO → 4CaF 2 + 3C + 2H 2 O + CO 2 (A1)
Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O (B3)

[8]前項7において、前式(B3)に基づく反応は、炭酸ガス反応法による炭酸カルシウムの製造工程である炭酸カルシウムの製造方法。   [8] In the preceding item 7, the reaction based on the previous formula (B3) is a method for producing calcium carbonate, which is a step for producing calcium carbonate by a carbon dioxide reaction method.

上記[1]に記載の発明によれば、水酸化カルシウムの熱分解によって得た酸化カルシウムは比表面積が大きいために、HFC−134aとの接触反応において高い反応性が得られる。このため、HFC−134aを効率良く分解して無害化できる。   According to the invention described in [1] above, since calcium oxide obtained by pyrolysis of calcium hydroxide has a large specific surface area, high reactivity is obtained in the contact reaction with HFC-134a. For this reason, HFC-134a can be efficiently decomposed and rendered harmless.

上記[2]に記載に記載の発明は、反応剤として炭酸カルシウムの製造時の副生成物を用いるものである。この副生成物は、炭酸カルシウムの製造工程において規格外品として不可避的に生じるものであるから、コスト的に有利である。また、原料石灰岩を炭酸カルシウムの製造とHFC−134aの無害化処理の両方に使用できるので、天然資源が有効に活用される。   The invention described in the above [2] uses a by-product during the production of calcium carbonate as a reactant. Since this by-product is inevitably generated as a non-standard product in the calcium carbonate production process, it is advantageous in terms of cost. Moreover, since raw material limestone can be used for both the manufacture of calcium carbonate and the detoxification treatment of HFC-134a, natural resources are effectively utilized.

上記[3][4][5]に記載の各発明によれば、HFC−134aとの接触反応において特に高い反応性が得られる。   According to each invention described in the above [3] [4] [5], particularly high reactivity can be obtained in the contact reaction with HFC-134a.

上記[6]に記載の発明によれば、HFC−134aの分解物の一つである二酸化炭素が炭酸カルシウムに変換されるので、高度の無害化を達成できる。   According to the invention described in [6] above, since carbon dioxide, which is one of the decomposition products of HFC-134a, is converted to calcium carbonate, a high degree of detoxification can be achieved.

上記[7]に記載の発明によれば、HFC−134aの分解物の一つである二酸化炭素を炭酸カルシウムの製造原料として活用できる。   According to the invention described in [7] above, carbon dioxide, which is one of the decomposition products of HFC-134a, can be used as a raw material for producing calcium carbonate.

上記[8]に記載の発明によれば、炭酸カルシウム製造時の副生成物およびHFC−134aの分解物である二酸化炭素を介して、HFC−134aの分解処理と炭酸ガス反応法による炭酸カルシウムの製造とを循環させることができる。   According to the invention described in [8] above, the decomposition of HFC-134a and the carbon dioxide by the carbon dioxide reaction method via carbon dioxide which is a by-product during the production of calcium carbonate and the decomposition product of HFC-134a. Manufacturing can be circulated.

本発明のHFC−134aの無害化処理方法は、分解反応剤として水酸化カルシウムを熱分解することによって得られる酸化カルシウムを用い、この酸化カルシウムにHFC−134aを接触させ、(A1)式に基づいて分解することを基本要旨とする。HFC−134aは代替フロンとして用いられる四フッ化炭化窒素(C)である。
2C+4CaO→4CaF+3C+2HO+CO …(A1)
The detoxification treatment method for HFC-134a of the present invention uses calcium oxide obtained by thermally decomposing calcium hydroxide as a decomposition reaction agent, contacts HFC-134a with this calcium oxide, and is based on the formula (A1). The basic point is to disassemble. HFC-134a is nitrogen tetrafluoride carbide (C 2 H 2 F 4 ) used as an alternative chlorofluorocarbon.
2C 2 H 2 F 4 + 4CaO → 4CaF 2 + 3C + 2H 2 O + CO 2 (A1)

後掲の表1に示すように、水酸化カルシウム(Ca(OH))を853K以上に加熱すると熱分解により酸化カルシウム(CaO)が生成する。また、酸化カルシウム(CaO)は炭酸カルシウム(CaCO)を1173K以上に加熱することによっても生成される。一般に、市販の酸化カルシウムは炭酸カルシウムの熱分解によって製造されたものである。以下の説明において、水酸化カルシウムの熱分解によって得られた酸化カルシウムを「水酸化カルシウム由来の酸化カルシウム」と略し、炭酸カルシウムの熱分解によって得られた酸化カルシウムを「炭酸カルシウム由来の酸化カルシウム」と略する。 As shown in Table 1 below, when calcium hydroxide (Ca (OH) 2 ) is heated to 853 K or more, calcium oxide (CaO) is generated by thermal decomposition. Calcium oxide (CaO) is also generated by heating calcium carbonate (CaCO 3 ) to 1173K or higher. In general, commercially available calcium oxide is produced by thermal decomposition of calcium carbonate. In the following description, calcium oxide obtained by thermal decomposition of calcium hydroxide is abbreviated as “calcium oxide derived from calcium hydroxide”, and calcium oxide obtained by thermal decomposition of calcium carbonate is referred to as “calcium oxide derived from calcium carbonate”. Abbreviated.

異なった方法で生成された2種類の酸化カルシウムは、化学的性質が同一でありいずれも上記(A1)式に基づいてHFC−134aを分解するが、水酸化カルシウム由来の酸化カルシウムの方が反応性が高い。これは、固体と気体との接触反応においては固体の比表面積が反応性に影響を与え、比表面積の大きい水酸化カルシウム由来の酸化カルシウムの方が反応性が大きいためであると考えられる。   Two types of calcium oxide produced by different methods have the same chemical properties and both decompose HFC-134a based on the above formula (A1), but calcium oxide derived from calcium hydroxide reacts more. High nature. This is considered to be because in the contact reaction between the solid and the gas, the specific surface area of the solid affects the reactivity, and the calcium oxide derived from calcium hydroxide having a large specific surface area is more reactive.

表1に、市販の水酸化カルシウムおよび炭酸カルシウムの比表面積の一例、およびこれらの熱分解によって得た酸化カルシウムの比表面積を示す。表1より、水酸化カルシウムおよび炭酸カルシウムの比表面積には大きな差があり、これらの熱分解によって生成される酸化カルシウムの比表面積にも差が生じる。水酸化カルシウム由来の酸化カルシウムの比表面積は炭酸カルシウム由来の酸化カルシウムよりも極めて大きく、この比表面積の差がHFC−134aに対する反応性に影響を与えていることを裏付けている。   Table 1 shows an example of specific surface areas of commercially available calcium hydroxide and calcium carbonate, and specific surface areas of calcium oxide obtained by thermal decomposition thereof. From Table 1, there is a large difference in the specific surface area of calcium hydroxide and calcium carbonate, and there is also a difference in the specific surface area of calcium oxide produced by these thermal decompositions. The specific surface area of calcium oxide derived from calcium hydroxide is much larger than that of calcium oxide derived from calcium carbonate, confirming that the difference in specific surface area affects the reactivity to HFC-134a.

Figure 2009274893
Figure 2009274893

本発明において、接触反応によりHFC−134aを分解するための反応剤として、炭酸カルシウムの製造工程で生じる副生成物を推奨する。以下に詳述するように、前記副生成物は水酸化カルシウムおよび炭酸カルシウムを含有し、接触反応によりHFC−134aを分解できる温度に加熱すると、水酸化カルシウムは比表面積の大きい酸化カルシウムに熱分解される。そして、HFC−134aがこの酸化カルシウムと反応することによって分解されて無害化される。   In the present invention, as a reaction agent for decomposing HFC-134a by catalytic reaction, a by-product generated in the production process of calcium carbonate is recommended. As described in detail below, the by-product contains calcium hydroxide and calcium carbonate. When heated to a temperature at which HFC-134a can be decomposed by catalytic reaction, calcium hydroxide is thermally decomposed into calcium oxide having a large specific surface area. Is done. And HFC-134a is decomposed | disassembled and detoxified by reacting with this calcium oxide.

水酸化カルシウムの分解反応は、酸化カルシウムの比表面積をより拡大できることから非酸化性雰囲気、例えば窒素ガス雰囲気中で行うことが好ましい。また、酸素の影響により、HFC−134aと酸化カルシウムとの反応活性が低下すると考えられることから、HFC−134aと副生成物との接触反応は非酸化性雰囲気中で行うことが好ましい。   The decomposition reaction of calcium hydroxide is preferably performed in a non-oxidizing atmosphere such as a nitrogen gas atmosphere because the specific surface area of calcium oxide can be further increased. Moreover, since it is thought that the reaction activity of HFC-134a and calcium oxide falls under the influence of oxygen, it is preferable to perform the contact reaction of HFC-134a and a by-product in a non-oxidizing atmosphere.

〔炭酸カルシウムの製造工程〕
炭酸カルシウムの製造方法の一つに、炉内で原料石灰石を焼成する炭酸ガス反応法と呼ばれる方法がある。その製造原理は以下のとおりである。
[Production process of calcium carbonate]
One of the methods for producing calcium carbonate is a method called a carbon dioxide reaction method in which raw material limestone is fired in a furnace. The manufacturing principle is as follows.

(1)第1工程
原料の石灰石(炭酸カルシウム:CaCO)を焼成して生石灰(酸化カルシウム:CaO)と二酸化炭素(CO)に分解する。
CaCO → CaO + CO …(B1)
(1) 1st process Raw material limestone (calcium carbonate: CaCO 3 ) is fired and decomposed into quick lime (calcium oxide: CaO) and carbon dioxide (CO 2 ).
CaCO 3 → CaO + CO 2 (B1)

(2)第2工程
生石灰に水を加えて消石灰(水酸化カルシウム:Ca(OH))とする。
CaO +HO → Ca(OH) …(B2)
(2) 2nd process Water is added to quicklime and it is set as slaked lime (calcium hydroxide: Ca (OH) 2 ).
CaO + H 2 O → Ca (OH) 2 (B2)

(3)第3工程
第1工程の(B1)式で発生した二酸化炭素を炉内に吹き込んで消石灰と反応させ、高純度で粒子の均一な炭酸カルシウムを生成させる。
Ca(OH) + CO → CaCO + HO …(B3)
(3) Third Step Carbon dioxide generated in the formula (B1) in the first step is blown into the furnace and reacted with slaked lime to produce calcium carbonate with high purity and uniform particles.
Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O (B3)

(B1)(B2)(B3)式に示すように、化学量論的には原料石灰石から等量の炭酸カルシウムが製造されるが、実際の製造工程では、第2工程で生成した水酸化カルシウムのうち、粒子形状や粒子径が製品規格に合わないものを選別して第3工程に渡すことなく副生成物として取り除いている。この副生成物には、規格外の水酸化カルシウムの他、第1工程で未反応の炭酸カルシウムが含まれ、さらに前記水酸化カルシウムが空気中の二酸化炭素と反応して生成される炭酸カルシウムや第2工程で未反応の酸化カルシウムも含まれていることがある。従って、前記副生成物の構成は、主として水酸化カルシウムおよび炭酸カルシウムであり、その他の成分として酸化カルシウムが含まれていることもある(原料中の不純物を除く)。   As shown in the formulas (B1), (B2), and (B3), stoichiometrically, an equal amount of calcium carbonate is produced from raw limestone, but in the actual production process, calcium hydroxide produced in the second process Among them, those whose particle shape and particle diameter do not meet the product standards are selected and removed as by-products without passing to the third step. In addition to non-standard calcium hydroxide, this by-product includes unreacted calcium carbonate in the first step, and further, calcium carbonate produced by the reaction of the calcium hydroxide with carbon dioxide in the air. In the second step, unreacted calcium oxide may also be included. Therefore, the by-product is mainly composed of calcium hydroxide and calcium carbonate, and may contain calcium oxide as other components (excluding impurities in the raw material).

固・気接触反応によるHFC−134aの分解温度域において、前記副生成物中の水酸化カルシウムは酸化カルシウムに熱分解される。表1に示したように、水酸化カルシウム由来の酸化カルシウムは比表面積が大きく、HFC−134aとの反応性の高い酸化カルシウムである。また、前記分解温度域において、副生成物中の炭酸カルシウムの一部も酸化カルシウムに分解される。炭酸カルシウム由来の酸化カルシウムも炭酸カルシウムよりも比表面積が拡大されて(表1参照)、反応性の向上に寄与する。また、高温下でも分解されない水酸化カルシウムおよび炭酸カルシウムも存在するから、反応系内において、水酸化カルシウム由来の酸化カルシウム、炭酸カルシウム由来の酸化カルシウム、水酸化カルシウム、炭酸カルシウム、(B2)式で未反応の酸化カルシウムが存在し、これらのいずれもがHFC−134aの分解反応に寄与する。即ち、反応系内において下記(A1)(A2)(A3)式の3つの分解反応が並行して進み、特に、水酸化カルシウム由来の酸化カルシウムによる分解反応が反応性向上に大きく寄与していると考えられる。
2C+4CaO→4CaF+3C+2HO+CO …(A1)
2C+4CaCO→4CaF+3C+2HO+5CO …(A2)
2C+4Ca(OH)→4CaF+3C+6HO+CO …(A3)
In the decomposition temperature range of HFC-134a by solid-gas contact reaction, calcium hydroxide in the by-product is thermally decomposed into calcium oxide. As shown in Table 1, calcium oxide derived from calcium hydroxide has a large specific surface area and is highly reactive with HFC-134a. In the decomposition temperature range, a part of the calcium carbonate in the by-product is also decomposed into calcium oxide. Calcium oxide derived from calcium carbonate also has a larger specific surface area than calcium carbonate (see Table 1), and contributes to improved reactivity. In addition, since there are calcium hydroxide and calcium carbonate that are not decomposed even at high temperatures, in the reaction system, calcium oxide derived from calcium hydroxide, calcium oxide derived from calcium carbonate, calcium hydroxide, calcium carbonate, (B2) Unreacted calcium oxide is present, and all of these contribute to the decomposition reaction of HFC-134a. That is, the following three decomposition reactions (A1), (A2), and (A3) proceed in parallel in the reaction system, and in particular, the decomposition reaction by calcium oxide derived from calcium hydroxide greatly contributes to the improvement of reactivity. it is conceivable that.
2C 2 H 2 F 4 + 4CaO → 4CaF 2 + 3C + 2H 2 O + CO 2 (A1)
2C 2 H 2 F 4 + 4CaCO 3 → 4CaF 2 + 3C + 2H 2 O + 5CO 2 (A2)
2C 2 H 2 F 4 + 4Ca (OH) 2 → 4CaF 2 + 3C + 6H 2 O + CO 2 (A3)

分解反応剤として用いる副生成物は炭酸カルシウムの製造工程で生成されるものであり、その成分構成は意図的に制御できるものではない。製造する炭酸カルシウムは化学的に同一であっても、製品規格によって各工程で除外される中間生成物の量が異なり、原料石灰石の純度によっても変動するからである。組成に変動があったとしても、副生成物に水酸化カルシウムおよび炭酸カルシウムは必ず含まれており、反応性を顕著に向上させ得る成分は、熱分解によって比表面積の大きい酸化カルシウムとなる水酸化カルシウムであるから、副生成物を用いることによって反応性を高めることができる。   The by-product used as a decomposition reaction agent is produced in the production process of calcium carbonate, and its component constitution cannot be intentionally controlled. This is because even if the calcium carbonate to be produced is chemically the same, the amount of intermediate products excluded in each step varies depending on the product specifications, and varies depending on the purity of the raw limestone. Even if there is a variation in the composition, calcium hydroxide and calcium carbonate are always contained in the by-products, and the component that can significantly improve the reactivity is hydroxylation that becomes calcium oxide having a large specific surface area by thermal decomposition. Since it is calcium, the reactivity can be enhanced by using a by-product.

しかも、前記副生成物は、炭酸カルシウムの製造工程において規格外品として不可避的に生じるものであるから、コスト的に有利な反応剤である。また、原料石灰岩を炭酸カルシウムの製造と代替フロンの無害化処理の両方に使用できるので、天然資源が有効に活用され、資源保護の観点からも副生成物を用いる意義は大きい。   Moreover, since the by-product is inevitably generated as a non-standard product in the calcium carbonate production process, it is a cost-effective reactant. Moreover, since raw material limestone can be used for both the production of calcium carbonate and the detoxification treatment of alternative chlorofluorocarbons, natural resources are effectively used, and the use of by-products is also significant from the viewpoint of resource protection.

また、(A1)(A2)(A3)式に示すように、HFC−134aの分解処理によってCaF、C、HO、およびCOが生じる。フッ化カルシウム(CaF)はホタル石と称される安定かつ無害な物質であって、固形化した状態で生成する。炭素(C)も安定かつ無害な物質であり固形化した状態で生成する。水(HO)も無害であり気体として生成する。気体として生成する二酸化炭素(CO)も人体に直接的に有害な物質ではないものの、二酸化炭素排出量の増大が地球温暖化の一因となっていることを考慮すると、二酸化炭素を他の物質に変換して高度の無害化処理を行うことが好ましい。本発明においては、HFC−134aの分解反応で生成した二酸化炭素を水酸化カルシウムと反応させて炭酸カルシウムに変換することを推奨する((B3)式参照)。(B3)式に基づく処理を追加すると反応系外に二酸化炭素が排出されないので、HFC−134aの分解処理に止まらず、高度の無害化処理が達成される。
Ca(OH)+CO→CaCO+ HO …(B3)
Further, as shown in the formulas (A1), (A2), and (A3), CaF 2 , C, H 2 O, and CO 2 are generated by the decomposition treatment of HFC-134a. Calcium fluoride (CaF 2 ) is a stable and harmless substance called fluorite and is produced in a solid state. Carbon (C) is also a stable and harmless substance and is produced in a solid state. Water (H 2 O) is also harmless and is produced as a gas. Although carbon dioxide (CO 2 ) generated as a gas is not a substance that is directly harmful to the human body, considering that the increase in carbon dioxide emissions contributes to global warming, It is preferable to perform a highly detoxifying process by converting to a substance. In the present invention, it is recommended to react carbon dioxide produced by the decomposition reaction of HFC-134a with calcium hydroxide to convert it into calcium carbonate (see formula (B3)). When the treatment based on the formula (B3) is added, carbon dioxide is not discharged out of the reaction system, so that not only the decomposition treatment of HFC-134a but also a highly detoxifying treatment is achieved.
Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O (B3)

(B3)式は上述した炭酸カルシウムの製造工程に含まれる反応であり、HFC−134aの高度な無害化処理方法は、本発明の炭酸カルシウムの製造方法の一部を構成している。本発明の炭酸カルシウムの製造方法については後に詳述する。   The formula (B3) is a reaction included in the above-described calcium carbonate production process, and the highly detoxifying treatment method of HFC-134a constitutes a part of the calcium carbonate production method of the present invention. The method for producing calcium carbonate of the present invention will be described in detail later.

HFC−134aを分解するための反応剤中の水酸化カルシウムの含有量は限定されるものではないが、反応性を顕著に高めるためには10質量%以上の水酸化カルシウムを含有していることが好ましい。反応剤中に10質量%の水酸化カルシウムが含まれていれば、反応性を15〜20%向上させることができるからである。炭酸ガス反応法による炭酸カルシウム製造工程で生じる副生成物には少なくとも10質量%の水酸化カルシウムが含まれているので、水酸化カルシウムの含有量の点から、反応剤として副生成物を用いることで反応性を高め得ることは明確である。特に好ましい水酸化カルシウムの含有量は60質量%以上である。水酸化カルシウム含有量が多いほど反応性が向上するので上限値の定めはないが、副生成物中の水酸化カルシウムの含有量は90質量%以下であること多い。従って、副生成物中の特に好ましい水酸化カルシウムの含有量は10〜90質量%である。   The content of calcium hydroxide in the reactant for decomposing HFC-134a is not limited, but in order to significantly increase the reactivity, it should contain 10% by mass or more of calcium hydroxide. Is preferred. This is because if 10% by mass of calcium hydroxide is contained in the reactant, the reactivity can be improved by 15 to 20%. Since the by-product produced in the calcium carbonate production process by the carbon dioxide reaction method contains at least 10% by mass of calcium hydroxide, the by-product should be used as a reactant in terms of the content of calcium hydroxide. It is clear that the reactivity can be increased. A particularly preferable calcium hydroxide content is 60% by mass or more. The higher the calcium hydroxide content, the better the reactivity, so there is no upper limit, but the content of calcium hydroxide in the by-product is often 90% by mass or less. Therefore, the content of particularly preferable calcium hydroxide in the by-product is 10 to 90% by mass.

また、固・気接触反応では固体の比表面積が大きいほど反応性が高くなる。本発明においても、分解反応剤の表面積、詳細には加熱時の比表面積が大きいほどHFC−134aを効率良く分解することができる。かかる観点から、分解反応剤の加熱時の比表面積は10m/g以上であることが好ましい。前記副生成物の比表面積は水酸化カルシウムの含有量および比表面積に影響を受けるが、副生成物中の水酸化カルシウムは製造工程で規格外として除外されたものであるから、意図的に水酸化カルシウムの含有量や比表面積を制御することは困難である。しかし、上述したように、副生成物には10質量%以上の水酸化カルシウムが含まれており、この副生成物を加熱すると比表面積は10m/g以上になるので、比表面積の点からも反応剤として副生成物を用いることで反応性を高め得ることは明確である。副生成物を含む分解反応剤の加熱における特に好ましい比表面積は12m/g以上である。また、比表面積の上限値は限定されないが、50m/gであれば十分な反応性が得られる。従って、副生成物を含む分解反応剤の加熱における好ましい比表面積は10〜50m/gであり、特に好ましい比表面積は12〜50m/gである。 In the solid-gas contact reaction, the higher the specific surface area of the solid, the higher the reactivity. Also in the present invention, HFC-134a can be efficiently decomposed as the surface area of the decomposition reactant, specifically, the specific surface area during heating increases. From this viewpoint, it is preferable that the specific surface area when the decomposition reaction agent is heated is 10 m 2 / g or more. Although the specific surface area of the by-product is affected by the content and specific surface area of calcium hydroxide, the calcium hydroxide in the by-product has been excluded as a non-standard in the production process. It is difficult to control the content and specific surface area of calcium oxide. However, as described above, the by-product contains 10% by mass or more of calcium hydroxide, and when this by-product is heated, the specific surface area becomes 10 m 2 / g or more. It is clear that the reactivity can be enhanced by using a by-product as a reactant. A particularly preferable specific surface area in heating the decomposition reaction agent containing a by-product is 12 m 2 / g or more. Moreover, although the upper limit of a specific surface area is not limited, if it is 50 m < 2 > / g, sufficient reactivity will be obtained. Therefore, the preferable specific surface area in the heating of the decomposition reaction agent containing a by-product is 10 to 50 m 2 / g, and the particularly preferable specific surface area is 12 to 50 m 2 / g.

なお、本発明は、HFC−134aの分解反応剤を炭酸カルシウム製造時の副生成物に限定するものではない。反応時に水酸化カルシウム由来の酸化カルシウムが存在すれば高い反応性が得られるので、水酸化カルシウムまたは水酸化カルシウム由来の酸化カルシウム以外の反応剤が混合されている場合も本発明に含まれる。また、反応剤にカルシウム以外のアルカリ土類金属やアルカリ金属の化合物を含んでいる場合も本発明に含まれる。しかし、炭酸カルシウム製造時の副生成物は従来廃棄されていたものであるから、HFC−134aの分解に用いることで廃棄物を再資源化できるという点で、副生成物の利用を推奨できる。   In the present invention, the decomposition reaction agent for HFC-134a is not limited to a by-product during the production of calcium carbonate. Since high reactivity is obtained if calcium oxide derived from calcium hydroxide is present during the reaction, the present invention includes cases where a reaction agent other than calcium hydroxide or calcium hydroxide derived from calcium hydroxide is mixed. Further, the present invention includes a case where the reactant contains an alkaline earth metal other than calcium or an alkali metal compound. However, since the by-product during the production of calcium carbonate has been conventionally discarded, the use of the by-product can be recommended in that the waste can be recycled by using it for the decomposition of HFC-134a.

上記(A1)式に基づく反応、即ち酸化カルシウムとの接触反応によるHFC−134aの分解処理は、773〜873Kで行うことが好ましい。773K未満では反応性が低下して処理効率が低下し、873Kを超える高温ではHFC−134aの分解処理が反応分解剤を用いることなく自発的に起こり、エネルギー効率やコスト面において適切でないからである。上記温度域は水酸化カルシウムが熱分解される温度域であるから、この温度域で前記副生成物とHFC−134aとの接触反応を行うと、副生成物中の水酸化カルシウムが熱分解し、熱分解によって生じた酸化カルシウムによってHFC−134aを効率良く分解することができる。特に好ましい反応温度は823〜873Kである。   The reaction based on the above formula (A1), that is, the decomposition treatment of HFC-134a by the contact reaction with calcium oxide is preferably performed at 773 to 873K. If the temperature is lower than 773K, the reactivity is lowered and the processing efficiency is lowered. At a temperature higher than 873K, the HFC-134a is decomposed spontaneously without using a reactive decomposition agent, and is not appropriate in terms of energy efficiency and cost. . Since the above temperature range is a temperature range in which calcium hydroxide is thermally decomposed, when the contact reaction between the by-product and HFC-134a is performed in this temperature range, the calcium hydroxide in the by-product is thermally decomposed. HFC-134a can be efficiently decomposed by calcium oxide generated by thermal decomposition. A particularly preferred reaction temperature is 823-873K.

ここで、HFC−134aの分解反応の(A1)(A2)(A3)式、および炭酸ガス反応法による炭酸カルシウムの製造工程の(B1)(B2)(B3)式を再掲する。
〔HFC−134aの分解反応〕
2C+4CaO→4CaF+3C+2HO+CO …(A1)
2C+4CaCO→4CaF+3C+2HO+5CO …(A2)
2C+4Ca(OH)→4CaF+3C+6HO+CO …(A3)
〔炭酸カルシウムの製造工程〕
CaCO→CaO + CO …(B1)
CaO +HO→Ca(OH) …(B2)
Ca(OH)+CO→CaCO+ HO …(B3)
Here, the formulas (A1), (A2), and (A3) of the decomposition reaction of HFC-134a and the formulas (B1), (B2), and (B3) of the production process of calcium carbonate by the carbon dioxide gas reaction method are shown again.
[HFC-134a decomposition reaction]
2C 2 H 2 F 4 + 4CaO → 4CaF 2 + 3C + 2H 2 O + CO 2 (A1)
2C 2 H 2 F 4 + 4CaCO 3 → 4CaF 2 + 3C + 2H 2 O + 5CO 2 (A2)
2C 2 H 2 F 4 + 4Ca (OH) 2 → 4CaF 2 + 3C + 6H 2 O + CO 2 (A3)
[Production process of calcium carbonate]
CaCO 3 → CaO + CO 2 (B1)
CaO + H 2 O → Ca (OH) 2 (B2)
Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O (B3)

(A1)(A2)(A3)式より、炭酸カルシウム製造時の副生成物でHFC−134aを分解処理すると、二酸化炭素が生じる。この二酸化炭素は、炭酸カルシウム製造の第1工程の(B1)式で生じる二酸化炭素ともに第3工程の(B3)式の左辺に導入し、消石灰との反応に利用することができる。従って、炭酸カルシウムの製造時の副生成物でHFC−134aの分解処理を行うと、分解処理で生じた二酸化炭素を炭酸カルシウムの製造工程に戻して炭酸カルシウムの製造原料として活用することができ、副生成物の再資源化を図ることができる。炭酸カルシウムの製造時に生じた副生成物は再度HFC−134aの分解に用いることができるので、前記副生成物および二酸化炭素を介してHFC−134aの分解処理と炭酸カルシウムの製造とを循環させることができる。   From the formulas (A1), (A2), and (A3), when HFC-134a is decomposed with a by-product at the time of calcium carbonate production, carbon dioxide is generated. This carbon dioxide can be introduced into the left side of the formula (B3) in the third step together with the carbon dioxide generated in the formula (B1) in the first step of calcium carbonate production and used for the reaction with slaked lime. Therefore, when HFC-134a is decomposed by a by-product during the production of calcium carbonate, the carbon dioxide produced by the decomposition treatment can be returned to the calcium carbonate production process and used as a raw material for producing calcium carbonate. By-products can be recycled. Since the by-product generated during the production of calcium carbonate can be used again for the decomposition of HFC-134a, the decomposition treatment of HFC-134a and the production of calcium carbonate are circulated through the by-product and carbon dioxide. Can do.

〔流通式分解処理装置〕
図1は、本発明のHFC−134aの無害化処理方法を実施するための装置の一例を模式的に示すものである。
[Distributed dismantling equipment]
FIG. 1 schematically shows an example of an apparatus for carrying out the detoxifying treatment method for HFC-134a of the present invention.

流通式分解処理装置(1)において、(10)は円筒型の反応容器であり、加熱器(11)内に配置されている。前記反応容器(10)内には粉末状の反応剤が気体流通可能な状態に充填され、充填された反応剤は、熱電対(図示省略)によって温度が監視されるとともに、温度制御装置(12)で加熱器(11)を制御することにより、設定された反応温度に加熱される。HFC−134aは、マスフローコントローラ(20)により窒素ガスとともに流量調節がなされ、混合された被処理ガスとして導入管(16)に送り込まれ、予備加熱器(13)を通過する間に設定された反応温度に予備加熱された後、前記反応容器(10)の下端の導入口(14)から反応容器(10)内に導入される。被処理ガスは反応容器(10)を通過する間に反応剤と接触し、上記(A1)(A2)(A3)式に基づいてHFC−134aが分解処理され、上端の送出口(15)から処理済みガスとして送り出される。前記反応容器(10)から送出管(17)に送出された処理済みガスは、送出管(17)の途中に設けられた採取口(18)から随時採取されてガスクロマトグラフ等により分析がなされ、未分解のHFC−134a濃度が監視される。(21)はHFC−134aの導入口、(22)は窒素ガスの導入口であり、これらのガス流量は独立して制御される。また、予備加熱器(13)は温度制御装置(12)によって温度制御がなされる。   In the flow type decomposition treatment apparatus (1), (10) is a cylindrical reaction vessel, which is disposed in the heater (11). The reaction vessel (10) is filled with a powdery reactant in a gas-flowable state, and the temperature of the filled reactant is monitored by a thermocouple (not shown) and a temperature control device (12 ) To control the heater (11) to heat to the set reaction temperature. The flow rate of HFC-134a is adjusted together with nitrogen gas by the mass flow controller (20), sent to the introduction pipe (16) as a mixed gas to be treated, and the reaction set while passing through the preheater (13). After being preheated to a temperature, the reaction vessel (10) is introduced into the reaction vessel (10) from the lower inlet (14). The gas to be treated comes into contact with the reactant while passing through the reaction vessel (10), and the HFC-134a is decomposed based on the above formulas (A1), (A2), and (A3), and is sent from the upper outlet (15). It is sent out as treated gas. The treated gas sent from the reaction vessel (10) to the delivery pipe (17) is collected at any time from a sampling port (18) provided in the middle of the delivery pipe (17) and analyzed by a gas chromatograph or the like, Undecomposed HFC-134a concentration is monitored. (21) is an inlet for HFC-134a, and (22) is an inlet for nitrogen gas, and the flow rates of these gases are independently controlled. The temperature of the preheater (13) is controlled by the temperature control device (12).

上述した流通式分解処理装置(1)において、HFC−134aを無害化処理する方法について説明する。   A method for detoxifying HFC-134a in the above-described flow-type decomposition processing apparatus (1) will be described.

まず、反応容器(10)に反応剤(例えば、炭酸カルシウム製造時の副生成物)を充填し、導入管(16)から窒素ガスを導入して系内を非酸化性雰囲気とし、温度制御装置(12)により加熱器(11)内を反応に適した温度に設定する。次に、被処理ガスとしてHFC−134aおよび窒素ガスを所定の流量で導入管(16)に導入し、予備加熱器(13)で反応温度に加熱して反応容器(10)に導入する。被処理ガスが反応容器(10)内を通過する間にHFC−134aと反応剤が接触し、上記(A1)式、あるいはさらに(A2)(A3)式に基づいてHFC−134aが分解される。(A1)(A2)(A3)式の反応による生成物のうち、固体のCaF(ホタル石)およびC(炭素)は反応容器(10)内に残り、気体の水(HO)および二酸化炭素(CO)は窒素ガスおよび未反応のHFC−134aとともに送出口(15)から送出管(17)に送り出され、反応系外に出る。処理済みの混合ガスは、送出管(18)上の採取口(18)から適宜採取され、ガスクロマトグラフ等により処理済みガスの定性分析および定量分析がなされる。 First, the reaction vessel (10) is filled with a reactant (for example, a by-product during the production of calcium carbonate), and nitrogen gas is introduced from the introduction pipe (16) to create a non-oxidizing atmosphere in the system. The temperature inside the heater (11) is set to a temperature suitable for the reaction by (12). Next, HFC-134a and nitrogen gas as treatment gases are introduced into the introduction pipe (16) at a predetermined flow rate, heated to the reaction temperature with a preheater (13), and introduced into the reaction vessel (10). While the gas to be treated passes through the reaction vessel (10), the HFC-134a and the reactant come into contact with each other, and the HFC-134a is decomposed based on the above formula (A1) or further (A2) (A3). . (A1) (A2) Among the products obtained by the reaction of the formula (A3), solid CaF 2 (fluorite) and C (carbon) remain in the reaction vessel (10), and gaseous water (H 2 O) and Carbon dioxide (CO 2 ) is sent out together with nitrogen gas and unreacted HFC-134a from the delivery port (15) to the delivery pipe (17) and out of the reaction system. The treated mixed gas is appropriately collected from the collection port (18) on the delivery pipe (18), and qualitative analysis and quantitative analysis of the treated gas are performed by a gas chromatograph or the like.

処理済みガスの分析結果により、未反応のHFC−134aが基準値以下まで分解されたことが確認されれば、処理済みガスの成分は窒素ガス、水蒸気、二酸化炭素であるから、これらが混合された処理済みガスは炭酸カルシウムの製造工程に供給される。また、分析結果により、基準値を超えるHFC−134aが存在している場合は、未反応のHFC−134aを回収して再び分解処理を行う。   If the analysis result of the processed gas confirms that the unreacted HFC-134a has been decomposed to a reference value or less, the components of the processed gas are nitrogen gas, water vapor, and carbon dioxide. The treated gas is supplied to the calcium carbonate manufacturing process. Moreover, when HFC-134a exceeding a reference value exists according to the analysis result, unreacted HFC-134a is recovered and decomposed again.

なお、本発明のHFC−134aの無害化処理方法は、HFC−134aガスを反応容器内に流通させて連続的に接触反応を行う流通式に限定されない。密閉された反応容器内で反応剤とHFC−134aガスを接触させるバッチ式の分解処理によっても実施することができる。   The detoxification treatment method for HFC-134a of the present invention is not limited to a flow type in which HFC-134a gas is circulated in a reaction vessel to continuously perform a catalytic reaction. It can also be carried out by a batch-type decomposition treatment in which a reactant and HFC-134a gas are brought into contact in a sealed reaction vessel.

図1の流通式分解処理装置(1)を用い、種々の条件でHFC−134aの分解実験を行った。前記分解処理装置(1)の反応容器(10)は、内直径50mm×高さ181mm、容量355.4mlの円筒体である。HFC−134aは窒素ガスとともに被処理ガスとして各々所定の流量で導入管(16)に導入し、反応容器(10)内に充填し所定温度に加熱した反応剤に連続的に接触させた。反応容器(10)を通過する間に分解処理がなされた処理済みガスは、送出管(17)上の採取口(18)から一定時間毎に採取してガスクロマトグラフで分析し、反応前後におけるHFC−134aのピーク面積から一点検量線法を用いてHFC−134a濃度を算出し、下記式により分解率を算出した。   Using the flow-type decomposition treatment apparatus (1) of FIG. 1, the decomposition experiment of HFC-134a was conducted under various conditions. The reaction vessel (10) of the decomposition treatment apparatus (1) is a cylindrical body having an inner diameter of 50 mm × height of 181 mm and a capacity of 355.4 ml. HFC-134a was introduced into the introduction pipe (16) as a gas to be treated together with nitrogen gas at a predetermined flow rate, and continuously contacted with the reactant filled in the reaction vessel (10) and heated to a predetermined temperature. The treated gas that has been decomposed while passing through the reaction vessel (10) is collected from the collection port (18) on the delivery pipe (17) at regular intervals and analyzed by gas chromatography, and HFC before and after the reaction. The concentration of HFC-134a was calculated from the peak area of −134a using the one-inspection curve method, and the decomposition rate was calculated by the following formula.

分解率(%)=〔1−(C/C)〕×100
:処理済みガス中のHFC−134aの濃度
:被処理ガス中のHFC−134aの濃度
Decomposition rate (%) = [1- (C F / C I )] × 100
C F : concentration of HFC-134a in the treated gas C I : concentration of HFC-134a in the gas to be treated

〔分解実験1〕
反応剤として、水酸化カルシウムを熱分解して得た酸化カルシウムおよび炭酸カルシウム由来の酸化カルシウム(純度98%、和光純薬工業株式会社製)を用いてHFC−134aの無害化処理を行った。これらの酸化カルシウムの比表面積、およびこれらの酸化カルシウムの原料となった水酸化カルシウムおよび炭酸カルシウムの比表面積は表1に示すものである。
[Decomposition experiment 1]
As a reaction agent, detoxification of HFC-134a was performed using calcium oxide obtained by thermally decomposing calcium hydroxide and calcium oxide derived from calcium carbonate (purity 98%, manufactured by Wako Pure Chemical Industries, Ltd.). The specific surface areas of these calcium oxides and the specific surface areas of calcium hydroxide and calcium carbonate used as raw materials for these calcium oxides are shown in Table 1.

反応容器(10)に充填した反応剤および量は、水酸化カルシウム由来の酸化カルシウム10g、炭酸カルシウム由来の酸化カルシウム10g、炭酸カルシウム由来の酸化カルシウム30gの3種類とした。その他の条件は共通で、反応温度を823K、HFC−134aの流量を10cm/min、窒素ガスの流量を50cm/minとした。そして、被処理ガスの流通開始から一定時間毎に処理済みガスを分析してHFC−134aの分解率を求めた。 The reaction agent and amount charged in the reaction vessel (10) were three types: 10 g of calcium oxide derived from calcium hydroxide, 10 g of calcium oxide derived from calcium carbonate, and 30 g of calcium oxide derived from calcium carbonate. Other conditions were common, the reaction temperature was 823 K, the flow rate of HFC-134a was 10 cm 3 / min, and the flow rate of nitrogen gas was 50 cm 3 / min. And the processed gas was analyzed for every fixed time from the distribution start of to-be-processed gas, and the decomposition rate of HFC-134a was calculated | required.

図2に水酸化カルシウム由来の酸化カルシウム10gおよび炭酸カルシウム由来の酸化カルシウム10gによる分解率の径時変化を示し、図3に炭酸カルシウム由来の酸化カルシウム10gまたは30gを用いた場合の分解率の径時変化を示す。   FIG. 2 shows the time-dependent change in the decomposition rate by 10 g of calcium oxide derived from calcium hydroxide and 10 g of calcium oxide derived from calcium carbonate, and FIG. 3 shows the diameter of the decomposition rate when 10 g or 30 g of calcium oxide derived from calcium carbonate is used. Indicates time change.

図2に示すように、水酸化カルシウム由来の酸化カルシウムでは、10gの反応剤で分解処理開始から60分間は99%以上の分解率でHFC−134aを分解でき、120分後でも約93%分解することができた。一方、10gの炭酸カルシウム由来の酸化カルシウムでは、分解処理開始から5分後は約46%の分解率であったが、10分以降は約20%しか分解することができなかった。また、図3に示すように、30gの炭酸カルシウム由来の酸化カルシウムで反応させると、開始直後の5分後は約92%の分解率を達成できたが、その後は分解率が急に低下して20分以降では約60%しか分解できなかった。   As shown in FIG. 2, with calcium oxide derived from calcium hydroxide, HFC-134a can be decomposed at a decomposition rate of 99% or more for 60 minutes from the start of the decomposition treatment with 10 g of the reactant, and about 93% decomposition after 120 minutes. We were able to. On the other hand, with 10 g of calcium carbonate derived from calcium carbonate, the decomposition rate was about 46% after 5 minutes from the start of the decomposition treatment, but only about 20% could be decomposed after 10 minutes. Moreover, as shown in FIG. 3, when reacted with 30 g of calcium carbonate derived from calcium carbonate, a degradation rate of about 92% was achieved after 5 minutes immediately after the start, but thereafter the degradation rate suddenly decreased. After about 20 minutes, only about 60% could be decomposed.

〔分解実験2〕
反応剤として、炭酸ガス反応法による炭酸カルシウム製造時の副生成物を用いた。前記副生成物は60質量%の水酸化カルシウムを含有し、残部は炭酸カルシウムである。また、前記副生成物の加熱前の比表面積は12.80m/gであり、823Kで加熱すると比表面積は14.37m/gの拡大した。また、比較用の反応剤として、市販の炭酸カルシウム(白石工業株式会社製、加熱前の比表面積1.05〜1.20m/g)を用いた。
[Decomposition experiment 2]
As a reactant, a by-product at the time of producing calcium carbonate by a carbon dioxide reaction method was used. The by-product contains 60% by weight calcium hydroxide, the balance being calcium carbonate. The specific surface area of the by-product before heating was 12.80 m 2 / g, and when heated at 823 K, the specific surface area increased by 14.37 m 2 / g. In addition, commercially available calcium carbonate (manufactured by Shiroishi Kogyo Co., Ltd., specific surface area before heating: 1.05 to 1.20 m 2 / g) was used as a reactant for comparison.

上述した2種類の反応剤を用い、その他の反応条件を変えてHFC−134aの分解処理を行い、分解率を比較した。以下に分解処理条件を示すとともに結果を図4〜図7に示す。   Using the above-mentioned two kinds of reactants, HFC-134a was decomposed under different reaction conditions, and the decomposition rates were compared. The decomposition treatment conditions are shown below, and the results are shown in FIGS.

(1)図4
反応剤として10gの副生成物および10gの市販炭酸カルシウムを用いて、反応剤による比較を行った。その他の条件は共通で、反応温度を823K、HFC−134aの流量を10cm/min、窒素ガスの流量を50cm/minとした。図4に示すように、副生成物では開始後40分までは100%分解でき、60分後でも96%を分解することができた。一方、市販の炭酸カルシウムでは、5分後でも47%しか分解できず、60分後には22%まで低下した。
(1) FIG.
A comparison was made using 10 g of by-product and 10 g of commercially available calcium carbonate as the reactant. Other conditions were common, the reaction temperature was 823 K, the flow rate of HFC-134a was 10 cm 3 / min, and the flow rate of nitrogen gas was 50 cm 3 / min. As shown in FIG. 4, the by-product was able to decompose 100% up to 40 minutes after the start and 96% even after 60 minutes. On the other hand, with commercially available calcium carbonate, only 47% could be decomposed even after 5 minutes and dropped to 22% after 60 minutes.

(2)図5
反応剤として10gの副生成物を用い、反応温度(823K、773K、723K)による比較を行った。その他の条件は共通で、HFC−134aの流量を10cm/min、窒素ガスの流量を50cm/minでとした。図5に示すように、反応温度が高いほど高い分解率を達成することができた。しかしながら、最も低い723Kでも、市販炭酸カルシウムを823Kで反応させるよりもはるかに高い分解率を達成できた。
(2) FIG.
10 g of by-product was used as a reactant, and the comparison was made according to the reaction temperature (823K, 773K, 723K). Other conditions were common, and the flow rate of HFC-134a was 10 cm 3 / min, and the flow rate of nitrogen gas was 50 cm 3 / min. As shown in FIG. 5, the higher the reaction temperature, the higher the decomposition rate could be achieved. However, even the lowest 723K achieved much higher degradation rates than reacting commercial calcium carbonate at 823K.

(3)図6
反応剤として10gの副生成物を用い、HFC−134aの流量および窒素ガスの流量による比較を行った。その他の条件は共通で、反応温度を823Kとした。HFC−134a流量が大きくなるほど反応剤の耐久性が低下し、かつ窒素ガスとの合計流量が大きくなるほど反応容器内における被処理ガスの通過速度が速くなってHFC−134aと反応剤の接触時間が短くなる。図6に示すように、HFC−134a:5m/min+窒素ガス:25m/minおよびHFC−134a:10m/min+窒素ガス:50m/minでは開始後40分までは99%、その後60分までは96%以上の高い分解率を達成することができた。また、HFC−134a:15m/min+窒素ガス:75m/minでも、開始後35分までは99%以上の分解率を達成でき45分までは92%以上の分解率を達成できた。即ち、反応剤との接触時間を短くしても、市販炭酸カルシウムよりもはるかに高い分解率を達成できた。
(3) FIG.
10 g of by-product was used as a reactant, and comparison was made according to the flow rate of HFC-134a and the flow rate of nitrogen gas. Other conditions were common and the reaction temperature was 823K. As the flow rate of HFC-134a increases, the durability of the reactant decreases, and as the total flow rate with nitrogen gas increases, the passing speed of the gas to be treated in the reaction vessel increases and the contact time between HFC-134a and the reactant is increased. Shorter. As shown in FIG. 6, with HFC-134a: 5 m 3 / min + nitrogen gas: 25 m 3 / min and HFC-134a: 10 m 3 / min + nitrogen gas: 50 m 3 / min, 99% until 40 minutes after the start, then 60 Up to a minute, a high decomposition rate of 96% or more could be achieved. Further, even with HFC-134a: 15 m 3 / min + nitrogen gas: 75 m 3 / min, a decomposition rate of 99% or more was achieved until 35 minutes after the start, and a decomposition rate of 92% or more was achieved until 45 minutes. That is, even when the contact time with the reactant was shortened, a decomposition rate far higher than that of commercially available calcium carbonate could be achieved.

(4)図7
反応剤として副生成物の充填量を10g、20gとし、反応剤の耐久性を比較した。その他の条件は共通で、反応温度を823K、HFC−134aの流量を10cm/min、窒素ガスの流量を50cm/minとした。図7に示すように、反応剤の充填量を増やすことで高い分解率を長時間持続することができた。
(4) FIG.
By packing amounts of by-products as reactants were 10 g and 20 g, and the durability of the reactants was compared. Other conditions were common, the reaction temperature was 823 K, the flow rate of HFC-134a was 10 cm 3 / min, and the flow rate of nitrogen gas was 50 cm 3 / min. As shown in FIG. 7, it was possible to maintain a high decomposition rate for a long time by increasing the filling amount of the reactant.

本発明のHFC−134aの無害化処理方法は、HFC−134aを水酸化カルシウムの熱分解によって得た酸化カルシウムに接触させることによって高い分解率が得られる。また、分解時に生成される二酸化炭素を炭酸カルシウムの製造に用いることができる。   In the method for detoxifying HFC-134a of the present invention, a high decomposition rate can be obtained by contacting HFC-134a with calcium oxide obtained by thermal decomposition of calcium hydroxide. In addition, carbon dioxide produced during decomposition can be used for the production of calcium carbonate.

本発明のHFC−134aの無害化処理方法を実施するための流通式分解処理装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the flow-type decomposition processing apparatus for enforcing the detoxification processing method of HFC-134a of this invention. 反応剤として由来の異なる酸化カルシウムを用いた場合の、被処理ガスの流通時間と分解率との関係を示すグラフである。It is a graph which shows the relationship between the distribution time and the decomposition rate of to-be-processed gas at the time of using the calcium oxide from which origin originates as a reactive agent. 反応剤の量を変えた場合の、被処理ガスの流通時間と分解率との関係を示すグラフである。It is a graph which shows the relationship between the distribution time and the decomposition rate of to-be-processed gas at the time of changing the quantity of a reactive agent. 異なる反応剤を用いた場合の、被処理ガスの流通時間と分解率との関係を示すグラフである。It is a graph which shows the relationship between the distribution time of a to-be-processed gas, and a decomposition rate at the time of using a different reactant. 反応温度を変えた場合の、被処理ガスの流通時間と分解率との関係を示すグラフである。It is a graph which shows the relationship between the distribution time of a to-be-processed gas at the time of changing reaction temperature, and a decomposition rate. 被処理ガスの流量を変えた場合の、被処理ガスの流通時間と分解率との関係を示すグラフである。It is a graph which shows the relationship between the distribution time and the decomposition rate of to-be-processed gas at the time of changing the flow volume of to-be-processed gas. 反応剤の量を変えた場合の、被処理ガスの流通時間と分解率との関係を示すグラフである。It is a graph which shows the relationship between the distribution time and the decomposition rate of to-be-processed gas at the time of changing the quantity of a reactive agent.

符号の説明Explanation of symbols

1…流通式分解処理装置
10…反応容器
11…加熱器
12…温度制御装置
13…予備加熱器
16…導入管
17…送出管
21…HFC−134aの導入口
22…窒素ガスの導入口
1 ... Distribution-type disassembly treatment device
10 ... Reaction vessel
11 ... Heater
12 ... Temperature control device
13… Preheater
16 ... Introduction pipe
17 ... Delivery pipe
21 ... HFC-134a inlet
22… Nitrogen gas inlet

Claims (8)

HFC−134a(C)を水酸化カルシウムの熱分解によって得た酸化カルシウムに接触させ、下式(A1)に基づいて前述HFC−134aを分解することを特徴するHFC−134aの無害化処理方法。
2C+4CaO→4CaF+3C+2HO+CO …(A1)
HFC-134a (C 2 H 2 F 4 ) is brought into contact with calcium oxide obtained by thermal decomposition of calcium hydroxide, and HFC-134a is decomposed based on the following formula (A1). Detoxification treatment method.
2C 2 H 2 F 4 + 4CaO → 4CaF 2 + 3C + 2H 2 O + CO 2 (A1)
請求項1において、水酸化カルシウムとして、炭酸ガス反応法による炭酸カルシウム製造工程で副生し、水酸化カルシウムおよび炭酸カルシウムを含有する副生成物を用い、当該副生成物にHFC−134aを接触させ、水酸化カルシウムを酸化カルシウムに熱分解するとともに、前式(A1)に基づく反応によりHFC−134aを分解するHFC−134aの無害化処理方法。   In Claim 1, as a calcium hydroxide, by-product in the calcium carbonate manufacturing process by a carbon dioxide reaction method is used, and the by-product containing calcium hydroxide and calcium carbonate is used, HFC-134a is made to contact the said by-product. A method for detoxifying HFC-134a, in which calcium hydroxide is thermally decomposed into calcium oxide and HFC-134a is decomposed by a reaction based on the previous formula (A1). 請求項2の副生成物中に10質量%以上の水酸化カルシウムが含有されているHFC−134aの無害化処理方法。   The detoxification method of HFC-134a in which 10 mass% or more of calcium hydroxide is contained in the by-product of claim 2. 請求項2または3の副生成物の加熱後の比表面積が10m/g以上であるHFC−134aの無害化処理方法。 A method for detoxifying HFC-134a, wherein the by-product of claim 2 or 3 has a specific surface area after heating of 10 m 2 / g or more. 請求項1〜4のいずれかにおける接触反応を773〜873Kで行うHFC−134aの無害化処理方法。   The detoxification processing method of HFC-134a which performs the contact reaction in any one of Claims 1-4 at 773-873K. 請求項1〜5のいずれかにおいて、前式(A1)基づいて生成した二酸化炭素を下式(B3)式に基づいて水酸化カルシウムと反応させ、二酸化炭素を炭酸カルシウムに変換するHFC−134aの無害化処理方法。
Ca(OH)+CO→CaCO+ HO …(B3)
In any one of Claims 1-5, the carbon dioxide produced | generated based on previous Formula (A1) is made to react with calcium hydroxide based on the following Formula (B3), and carbon dioxide is converted into calcium carbonate. Detoxification treatment method.
Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O (B3)
請求項1〜5のいずれかに記載のHFC−134aの無害化処理方法により下式(A1)に基づいて生成した二酸化炭素を水酸化カルシウムと反応させ、下式(B3)式に基づいて炭酸カルシウムを生成させることを特徴とする炭酸カルシウムの製造方法。
2C+4CaO→4CaF+3C+2HO+CO …(A1)
Ca(OH)+CO→CaCO+HO …(B3)
The carbon dioxide produced | generated based on the following Formula (A1) with the detoxification processing method of HFC-134a in any one of Claims 1-5 is made to react with calcium hydroxide, and carbonic acid is produced | generated based on the following Formula (B3). A method for producing calcium carbonate, characterized by producing calcium.
2C 2 H 2 F 4 + 4CaO → 4CaF 2 + 3C + 2H 2 O + CO 2 (A1)
Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O (B3)
請求項7において、前式(B3)に基づく反応は、炭酸ガス反応法による炭酸カルシウムの製造工程である炭酸カルシウムの製造方法。   8. The method for producing calcium carbonate according to claim 7, wherein the reaction based on the previous formula (B3) is a production process of calcium carbonate by a carbon dioxide reaction method.
JP2008125996A 2008-05-13 2008-05-13 Method for detoxifying HFC-134a and method for producing calcium carbonate Active JP5342805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125996A JP5342805B2 (en) 2008-05-13 2008-05-13 Method for detoxifying HFC-134a and method for producing calcium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125996A JP5342805B2 (en) 2008-05-13 2008-05-13 Method for detoxifying HFC-134a and method for producing calcium carbonate

Publications (2)

Publication Number Publication Date
JP2009274893A true JP2009274893A (en) 2009-11-26
JP5342805B2 JP5342805B2 (en) 2013-11-13

Family

ID=41440662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125996A Active JP5342805B2 (en) 2008-05-13 2008-05-13 Method for detoxifying HFC-134a and method for producing calcium carbonate

Country Status (1)

Country Link
JP (1) JP5342805B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230520A (en) * 1987-03-16 1988-09-27 Nippon Sekkai Kogyo Kk Production of calcium carbonate having controlled particle diameter
JPH06211518A (en) * 1993-01-14 1994-08-02 Ishikawajima Harima Heavy Ind Co Ltd Recovering equipment for carbon dioxide
JPH0847617A (en) * 1994-08-08 1996-02-20 Marukoshi Eng:Kk Method for absorbing and removing harmful component and device therefor
JPH10277363A (en) * 1997-04-08 1998-10-20 Dowa Mining Co Ltd Method for decomposing fluorocarbons and reaction agent for decomposition
JPH1111941A (en) * 1997-06-18 1999-01-19 Okutama Kogyo Kk Production of light calcium carbonate
JP2000189539A (en) * 1998-12-28 2000-07-11 Oei Kaihatsu Kogyo Kk Cracking treatment of hardly crackable material and apparatus therefor
JP2003020468A (en) * 2001-07-05 2003-01-24 Dowa Mining Co Ltd Fluorinated gas-decomposing agent
JP2005095730A (en) * 2003-09-22 2005-04-14 Kyocera Corp Decomposition agent and decomposition method for fluorine compound
JP2006007219A (en) * 2005-07-19 2006-01-12 Dowa Mining Co Ltd Decomposition equipment of carbon fluorides
JP2006305410A (en) * 2005-04-26 2006-11-09 Ueda Sekkai Seizo Kk Method for decomposing hardly decomposable chlorofluocarbon gas

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230520A (en) * 1987-03-16 1988-09-27 Nippon Sekkai Kogyo Kk Production of calcium carbonate having controlled particle diameter
JPH06211518A (en) * 1993-01-14 1994-08-02 Ishikawajima Harima Heavy Ind Co Ltd Recovering equipment for carbon dioxide
JPH0847617A (en) * 1994-08-08 1996-02-20 Marukoshi Eng:Kk Method for absorbing and removing harmful component and device therefor
JPH10277363A (en) * 1997-04-08 1998-10-20 Dowa Mining Co Ltd Method for decomposing fluorocarbons and reaction agent for decomposition
JPH1111941A (en) * 1997-06-18 1999-01-19 Okutama Kogyo Kk Production of light calcium carbonate
JP2000189539A (en) * 1998-12-28 2000-07-11 Oei Kaihatsu Kogyo Kk Cracking treatment of hardly crackable material and apparatus therefor
JP2003020468A (en) * 2001-07-05 2003-01-24 Dowa Mining Co Ltd Fluorinated gas-decomposing agent
JP2005095730A (en) * 2003-09-22 2005-04-14 Kyocera Corp Decomposition agent and decomposition method for fluorine compound
JP2006305410A (en) * 2005-04-26 2006-11-09 Ueda Sekkai Seizo Kk Method for decomposing hardly decomposable chlorofluocarbon gas
JP2006007219A (en) * 2005-07-19 2006-01-12 Dowa Mining Co Ltd Decomposition equipment of carbon fluorides

Also Published As

Publication number Publication date
JP5342805B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
EP0819449B1 (en) Process for decomposing fluorocarbons, reagent and apparatus used therefor
KR100384274B1 (en) Reactive agent and process for decomposing fluorine compounds and use thereof
JP3249986B2 (en) CFC decomposition treatment method and equipment
JP5342805B2 (en) Method for detoxifying HFC-134a and method for producing calcium carbonate
JP6256938B2 (en) Fluorocarbon decomposition method
JP4264076B2 (en) Carbon fluoride decomposition equipment
JP3190225B2 (en) CFC decomposition method
JP3592886B2 (en) Decomposition method and reactant for decomposition of carbon fluorides
JP5405857B2 (en) Calcium fluoride recovery method
KR19990023454A (en) Decomposition Method of Nitrogen Fluoride or Sulfur Fluoride and Decomposition Reactor for It
JP3919328B2 (en) Decomposing agent for fluorine-containing compound gas and method for producing the same
KR101392805B1 (en) Absorption material for removing PFC and acid gas
JP2681034B2 (en) How to make CFCs harmless
JP4698201B2 (en) Fluorine-containing gas decomposition treatment apparatus and fluorine compound recovery method using the same
JP5399051B2 (en) Selective immobilization of chlorine and fluorine in flon destruction gas or dry etching exhaust gas and recycling of recovered materials
KR100356305B1 (en) Reactive agent and process for decomposing nitrogen fluoride
JP4968141B2 (en) Method for detoxifying asbestos-containing material and method for producing cement
JP2005095730A (en) Decomposition agent and decomposition method for fluorine compound
JP3713366B2 (en) Method for decomposing nitrogen fluoride and reagent for decomposition
JPH0924243A (en) Cfc decomposing agent
JPH1028839A (en) Decomposition of halide gas
JP2000042365A (en) Detoxifying treatment of organic chlorine compound by mixed fused salt
JPH0924242A (en) Chlorofluorocarbon(cfc) decomposition apparatus
KR101448475B1 (en) Absorption material for removing PFC and acid gas
JP5074439B2 (en) Halogen gas treating agent, method for producing the same, and detoxification method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5342805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250