JP2009274882A - Glass, crystallized glass, manufacturing method for crystallized glass, and optical component - Google Patents

Glass, crystallized glass, manufacturing method for crystallized glass, and optical component Download PDF

Info

Publication number
JP2009274882A
JP2009274882A JP2008124671A JP2008124671A JP2009274882A JP 2009274882 A JP2009274882 A JP 2009274882A JP 2008124671 A JP2008124671 A JP 2008124671A JP 2008124671 A JP2008124671 A JP 2008124671A JP 2009274882 A JP2009274882 A JP 2009274882A
Authority
JP
Japan
Prior art keywords
glass
mol
oxide
crystallized
crystallized glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008124671A
Other languages
Japanese (ja)
Other versions
JP5333715B2 (en
Inventor
Hirokazu Masai
博和 正井
Takumi Fujiwara
巧 藤原
Moriteru Ohara
盛輝 大原
Naoki Sugimoto
直樹 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
AGC Inc
Original Assignee
Tohoku University NUC
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Asahi Glass Co Ltd filed Critical Tohoku University NUC
Priority to JP2008124671A priority Critical patent/JP5333715B2/en
Publication of JP2009274882A publication Critical patent/JP2009274882A/en
Application granted granted Critical
Publication of JP5333715B2 publication Critical patent/JP5333715B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/006Glass-ceramics fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/253Silica-free oxide glass compositions containing germanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide glass from which a fresnoite type crystal having high optical nonlinearity can be selectively obtained and crystallized glass having sufficiently high optical nonlinearity can be efficiently produced and which can be drawn to a fiber shape, the crystallized glass having the fresnoite type crystal precipitated which is obtained from the glass , a manufacturing method for the crystallized glass, and an optical component. <P>SOLUTION: The glass for forming the optical component for use in optical guided waves contains 20 to 35 mol% of an oxide of an alkaline-earth metal, 10 to 15 mol% of an oxide of titanium, 10 to 40 mol% of an oxide of germanium and 10 to 60 mol% of an oxide of silicon, and has a difference between the crystallization temperature and the glass transition temperature of 100°C or more. The crystallized glass is obtained by heat-treating the glass. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光導波用の光学部材を形成するためのガラス、前記ガラスを結晶化させた結晶化ガラス及びその製造方法、並びに前記結晶化ガラスからなる光学部材に関する。   The present invention relates to glass for forming an optical member for optical waveguide, crystallized glass obtained by crystallizing the glass, a manufacturing method thereof, and an optical member made of the crystallized glass.

今日、種々の分野において、ガラスは産業を支える基幹材料の一つとして認識されている。ガラスは、安価な上にその秀でた光学特性や各種特性の高い均質性、さらには非晶質構造に基づく賦形性など、他にはない極めて優れた特徴を有する材料である。そのため、今日では、光ファイバやディスプレイ用ガラスなどを例として、種々の機能性材料として用いられている。しかしながら、このようにして得られる機能性材料は、基本的に光を伝達、透過する機能のみを有するものであるため、光に対して能動的に機能を発現する光機能性材料として用いることができない。そのため、光を制御する機能を有する材料は、構造規則性を有しその周期構造に基づく2次光非線形性などを本質的に有している結晶材料にほぼ完全に依存しているといっても過言ではない。   Today, glass is recognized as one of the key materials supporting the industry in various fields. Glass is an inexpensive material that has excellent characteristics such as excellent optical properties, high homogeneity of various properties, and formability based on an amorphous structure. Therefore, today, optical fibers and display glass are used as examples of various functional materials. However, the functional material obtained in this way basically has only the function of transmitting and transmitting light, so that it can be used as an optical functional material that actively expresses light. Can not. Therefore, it is said that a material having a function of controlling light is almost completely dependent on a crystal material having a structural regularity and essentially having a second-order optical nonlinearity based on the periodic structure. Is not an exaggeration.

結晶化ガラスは、析出結晶を選択することにより、高い透明性、広い透過波長域、成型加工の容易性等のガラス本来の特性と結晶材料に固有の特性とをガラスに付与したものであり、例えば、結晶とガラスの膨張係数を制御することによって作製された低熱膨張性ガラスは工業的にも広く実用化されている。仮に、前述の結晶化ガラス中に、光波に対し能動的に作用可能な光学結晶を析出させることができれば、得られる結晶化ガラスは、ガラスに本来存在しない光波制御性とガラスの優れた賦形性および透明性を併せ持つ新しい光機能性材料となる。   The crystallized glass is obtained by selecting the precipitated crystal to give the glass original characteristics such as high transparency, wide transmission wavelength range, ease of molding, and characteristics inherent to the crystal material. For example, low thermal expansion glass produced by controlling the expansion coefficient of crystals and glass is widely used industrially. If an optical crystal capable of actively acting on a light wave can be precipitated in the crystallized glass, the resulting crystallized glass has a light wave controllability that does not originally exist in glass and an excellent shape of the glass. It becomes a new optical functional material that has both transparency and transparency.

ガラス中に光機能性結晶を析出させた報告に関しては、これまでにいくつか報告がなされており、新しい光機能性材料として研究開発が進んでいる。これらは、光非線形の大きな結晶をガラス中に種々の方法を用いて析出させるものである(特許文献1〜5参照)。   Several reports have been made on the precipitation of optical functional crystals in glass, and research and development are progressing as new optical functional materials. These deposit a crystal having a large optical nonlinearity in glass using various methods (see Patent Documents 1 to 5).

この光機能性材料を現在の光ネットワーク中に導入する場合においては、伝送用光ガラス光ファイバとの接合性に優れるファイバ形状とすることが望まれる。更に、ファイバ形状にした場合には、効率的に大きな非線形性を有する結晶を析出させる必要がある。その析出結晶候補の1つがフレスノイト型の結晶(化学式 ABC : A, B, Cはそれぞれアルカリ土類金属、遷移金属、14属元素)である。フレスノイト型の結晶が析出した結晶化ガラスは、一般的な光学非線形結晶であるニオブ酸リチウムに匹敵する大きな非線形性を示すことが報告されている(非特許文献1、2参照)。 In the case where this optical functional material is introduced into the current optical network, it is desired that the optical functional material has a fiber shape excellent in bondability with a transmission optical glass optical fiber. Furthermore, in the case of a fiber shape, it is necessary to efficiently precipitate a crystal having a large nonlinearity. One of the precipitated crystal candidates is a Fresnoite type crystal (chemical formula A 2 BC 2 O x : A, B, and C are alkaline earth metal, transition metal, and group 14 element, respectively). It has been reported that crystallized glass on which Fresnoite crystals are precipitated exhibits a large non-linearity comparable to a general optical non-linear crystal lithium niobate (see Non-Patent Documents 1 and 2).

特開2005−272198号公報JP 2005-272198 A 特開2003−98563号公報JP 2003-98563 A 特開2003−12347号公報JP 2003-12347 A 特開2000−211944号公報JP 2000-211944 A 特開2008−19123号公報JP 2008-19123 A 高橋ら アプライド フィジックス レターズ 82号 223頁 (2002年)Takahashi et al. Applied Physics Letters 82, 223 (2002) 正井ら ジャーナル オブ アプライド フィジックス 101号 033530頁 (2007年)Masai et al. Journal of Applied Physics 101 No. 033530 (2007)

しかし、従来の結晶化ガラスは、析出結晶の特性に主眼がおかれていたため、熱力学的には比較的結晶化しやすいものであった。そのため、成形中に結晶化してしまう可能性がある。特に、ファイバ型デバイスとして実用化する場合は、まずファイバ曳糸中には結晶化しないことが求められ、更には析出結晶の非線形性が大きいという条件に加えて(1)光が導波する部分での結晶の析出を防ぐ、(2)外的要因により光が導波しない部分のみを結晶化する、という2つの条件を満たす必要があるが、従来の結晶化ガラスでは困難である。   However, the conventional crystallized glass is relatively easy to crystallize thermodynamically because it focuses on the characteristics of the precipitated crystal. Therefore, it may crystallize during molding. In particular, when it is put into practical use as a fiber type device, it is first required not to crystallize in the fiber yarn, and in addition to the condition that the nonlinearity of the precipitated crystal is large, (1) a portion where light is guided It is necessary to satisfy the following two conditions: (2) crystallize only a portion where light is not guided due to external factors, but this is difficult with conventional crystallized glass.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、光学非線形性の高いフレスノイト型の結晶を選択的に結晶化でき、しかも十分に高い光学非線形性を発揮できる結晶化ガラスを効率よく製造でき、かつ、ファイバ形状に線引き可能なガラス、そのガラスを用いて得られるフレスノイト型の結晶が析出した結晶化ガラス及びその結晶化ガラスの製造方法、並びに、光学部材を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and provides a crystallized glass capable of selectively crystallizing a Fresnoit type crystal having high optical nonlinearity and exhibiting sufficiently high optical nonlinearity. To provide a glass that can be efficiently manufactured and drawn into a fiber shape, a crystallized glass in which a Fresnoit type crystal obtained by using the glass is precipitated, a method for manufacturing the crystallized glass, and an optical member Objective.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、特定量のアルカリ土類金属の酸化物、特定量のチタン酸化物、特定量のゲルマニウム酸化物、特定量のケイ素酸化物及び特定量の鉄、ニッケル、コバルト、マンガン、バナジウム、銅から選ばれる少なくとも1種を含有させて得られるガラスは、ファイバ形状に線引きすることが容易であり、加熱することでフレスノイト型の結晶を選択的に結晶化でき、得られる結晶化ガラスも十分な光学非線形性を有することを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have obtained a specific amount of an alkaline earth metal oxide, a specific amount of titanium oxide, a specific amount of germanium oxide, and a specific amount of silicon oxide. The glass obtained by containing at least one selected from iron, nickel, cobalt, manganese, vanadium, and copper is easy to draw into a fiber shape, and when heated, a fresnoite type crystal is formed. The inventors have found that the crystallized glass obtained can be selectively crystallized and the obtained crystallized glass has sufficient optical nonlinearity, and the present invention has been completed.

すなわち、本発明のガラスは、アルカリ土類金属の酸化物を20〜35モル%、チタン酸化物を10〜15モル%、ゲルマニウム酸化物を10〜40モル%、ケイ素酸化物を10〜60モル%の割合で含有することを特徴とするものである。あるいは、上記のガラスに酸化ストロンチウム、酸化ニオビウム、酸化ホウ素または酸化ビスマスを30モル%以下、更には鉄、ニッケル、コバルト、マンガン、バナジウム、銅から選ばれる少なくとも1種を1〜3モル%含有することを特徴とするガラスである。上記のガラスは、結晶化温度とガラス転移温度との差が100℃以上であることを特徴とする。   That is, the glass of the present invention comprises 20 to 35 mol% of an alkaline earth metal oxide, 10 to 15 mol% of titanium oxide, 10 to 40 mol% of germanium oxide, and 10 to 60 mol of silicon oxide. % Content. Alternatively, the glass contains 30 mol% or less of strontium oxide, niobium oxide, boron oxide or bismuth oxide, and further contains 1 to 3 mol% of at least one selected from iron, nickel, cobalt, manganese, vanadium, and copper. It is the glass characterized by this. The glass is characterized in that the difference between the crystallization temperature and the glass transition temperature is 100 ° C. or more.

一方、本発明の結晶化ガラスは、上記本発明のガラスを熱処理することによって得られる、フレスノイト型の結晶が析出していることを特徴とするものである。結晶化ガラスの形態は特に限定されることは無く、バルクガラスであっても、ファイバ型であっても、問題は無い。本発明の結晶化ガラスの製造方法は、2とおり存在する。一方は、上記本発明のガラスを電気炉中で加熱することを特徴とする。他方は、上記本発明のガラスにレーザ光を照射して加熱することを特徴とする。   On the other hand, the crystallized glass of the present invention is characterized in that a Fresnoite-type crystal obtained by heat-treating the glass of the present invention is precipitated. The form of crystallized glass is not particularly limited, and there is no problem whether it is bulk glass or fiber type. There are two methods for producing the crystallized glass of the present invention. One is characterized in that the glass of the present invention is heated in an electric furnace. The other is characterized in that the glass of the present invention is heated by irradiation with laser light.

また、本発明の光学部材は、上記本発明の結晶化ガラスからなることを特徴とするものである。   The optical member of the present invention is characterized by comprising the crystallized glass of the present invention.

本発明のガラスは、高い非線形性を有するフレスノイト型の結晶を析出可能で、かつ、結晶化温度とガラス転移温度との差が100℃以上であることから、熱安定に優れ、ファイバ形状への線引きも容易である。また、上記ガラスを用いて作製された本発明の結晶化ガラスはフレスノイト型結晶が析出しており、高い光学非線形性を発揮できる。また、結晶化ガラスを製造するには、前記のガラスを加熱するだけでよく、製造方法も簡易で生産性も高い。また、本発明の光学部材は、フレスノイト型の結晶による高い光学非線形性を有し、更に形状に自由度があるためファイバ型にも応用可能である。   The glass of the present invention is capable of precipitating a Fresnoit type crystal having high non-linearity, and is excellent in thermal stability because it has a difference between the crystallization temperature and the glass transition temperature of 100 ° C. or more. Drawing is also easy. Further, the crystallized glass of the present invention produced using the above glass has a fresnoite crystal precipitated, and can exhibit high optical nonlinearity. In order to produce crystallized glass, it is only necessary to heat the glass, and the production method is simple and the productivity is high. Further, the optical member of the present invention has high optical nonlinearity due to the Fresnoit type crystal, and further has a degree of freedom in shape, so that it can be applied to a fiber type.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

先ず、本発明のガラスは、アルカリ土類金属の酸化物を20〜35モル%、チタン酸化物を10〜15モル%、ゲルマニウム酸化物を10〜40モル%、ケイ素酸化物を10〜60モル%の割合で含有する。   First, the glass of the present invention comprises 20 to 35 mol% of an alkaline earth metal oxide, 10 to 15 mol% of titanium oxide, 10 to 40 mol% of germanium oxide, and 10 to 60 mol of silicon oxide. % Content.

ここで、アルカリ土類金属の酸化物の含有割合が20モル%未満では、得られるガラスを加熱してフレスノイト型の結晶を析出させる際に析出結晶が少なくなり、他方35モル%を超えると、熱安定性が低下し、ガラス転移温度以上において結晶化が進行しやすくなり透明で均一なガラスが得られなくなる。好ましくは、25〜35モル%である。また、析出フレスノイト型結晶は、そのc軸方向の長さが長いほど光学非線形性が大きいことが明らかになっているため、アルカリ土類金属の酸化物の中でも、イオン半径の大きいバリウム酸化物が望ましい。   Here, when the content ratio of the alkaline earth metal oxide is less than 20 mol%, when the obtained glass is heated to precipitate the Fresnoite-type crystals, the number of precipitated crystals decreases, and when the content exceeds 35 mol%, The thermal stability is lowered, and crystallization is likely to proceed above the glass transition temperature, making it impossible to obtain a transparent and uniform glass. Preferably, it is 25-35 mol%. In addition, it has been clarified that the precipitated fresnoite crystal has a larger optical nonlinearity as the length in the c-axis direction is longer. Therefore, among the alkaline earth metal oxides, barium oxide having a large ionic radius is used. desirable.

チタン酸化物の含有割合が10モル%未満では、得られるガラスを加熱してフレスノイト型の結晶を析出させる際に光非線形材料として使用するために十分な量の結晶が析出しなくなり、他方15モル%を超えると、フレスノイト型の結晶がガラス中に析出して透明で均一なガラスが得られなくなる、あるいは、熱安定性を示す結晶化温度とガラス転移温度の差が100℃未満になり、ファイバ形状にするための線引きが困難になる。好ましくは、10〜15モル%である。   When the content of titanium oxide is less than 10 mol%, a sufficient amount of crystals for use as an optical nonlinear material is not precipitated when the resulting glass is heated to precipitate a fresnoite type crystal, while the other 15 mol. If it exceeds 50%, a Fresnoit type crystal will precipitate in the glass and a transparent and uniform glass cannot be obtained, or the difference between the crystallization temperature showing the thermal stability and the glass transition temperature will be less than 100 ° C. It becomes difficult to draw a line to make the shape. Preferably, it is 10-15 mol%.

ゲルマニウム酸化物の含有割合が10モル%未満では、析出フレスノイト型結晶におけるゲルマニウム含有量が少なくなり、充分な光学非線形性が得られない。実際に、大きな光学非線形性をもたらす材料の目安となる酸素分極率が組成から見積もることができるが、この値が小さくなる。他方、40モル%を超えると、ガラス転移温度以上において結晶化が進行しやすくなり、急冷をせずガラスを作製した際に透明で均一なガラスファイバが得られない。好ましくは、15〜35モル%である。   When the germanium oxide content is less than 10 mol%, the germanium content in the precipitated fresnoite crystal decreases, and sufficient optical nonlinearity cannot be obtained. Actually, the oxygen polarizability, which is a measure of a material that brings about a large optical nonlinearity, can be estimated from the composition, but this value becomes small. On the other hand, if it exceeds 40 mol%, crystallization is likely to proceed above the glass transition temperature, and a transparent and uniform glass fiber cannot be obtained when glass is produced without rapid cooling. Preferably, it is 15-35 mol%.

ケイ素酸化物の含有割合が10モル%未満では、ガラス転移温度以上において結晶化が進行しやすくなり、急冷をせずガラスを作製した際に透明で均一なガラスファイバが得られなくなり、他方、60モル%を超えると、析出フレスノイト型結晶におけるシリカ含有量が多くなり、得られる結晶化ガラスの光学非線形性が低下する。好ましくは、15〜55モル%であり、20〜50モル%であることが特に好ましい。   When the content of silicon oxide is less than 10 mol%, crystallization is likely to proceed at a glass transition temperature or higher, and a transparent and uniform glass fiber cannot be obtained when glass is produced without rapid cooling. When it exceeds mol%, the silica content in the precipitated fresnoite crystal increases, and the optical nonlinearity of the crystallized glass obtained decreases. Preferably, it is 15-55 mol%, and it is especially preferable that it is 20-50 mol%.

また、本発明のガラスは、上記のガラス組成に加えて、酸化ストロンチウム、酸化ニオビウム、酸化ホウ素または酸化ビスマスを30モル%以下、更には鉄、ニッケル、コバルト、マンガン、バナジウム、銅から選ばれる少なくとも1種を1〜3モル%含有してもよい。酸化ストロンチウム、酸化ニオビウム、酸化ホウ素または酸化ビスマスを30モル%以下の割合で含有するガラスは、結晶化温度とガラス転移温度との差がより大きくなり、ファイバ形状にする際の線引きが良好になる。また、鉄、ニッケル、コバルト、マンガン、バナジウム、銅から選ばれる少なくとも1種を1〜3モル%含有するガラスは、赤外波長域に吸収を持ち、赤外レーザを照射することにより、位置選択的に結晶化を誘起させることが可能である。さらに、遷移金属酸化物を添加することにより、ガラス転移温度が低下し、遷移金属を含まないガラスよりもより低温で結晶化しやすいという特徴がある。   In addition to the above glass composition, the glass of the present invention contains at least 30 mol% of strontium oxide, niobium oxide, boron oxide or bismuth oxide, and at least selected from iron, nickel, cobalt, manganese, vanadium, and copper. One type may be contained in an amount of 1 to 3 mol%. A glass containing strontium oxide, niobium oxide, boron oxide or bismuth oxide in a proportion of 30 mol% or less has a larger difference between the crystallization temperature and the glass transition temperature, and has better drawing when forming into a fiber shape. . In addition, glass containing 1 to 3 mol% of at least one selected from iron, nickel, cobalt, manganese, vanadium, and copper has absorption in the infrared wavelength region, and is position-selected by irradiating with an infrared laser. It is possible to induce crystallization. Furthermore, by adding a transition metal oxide, the glass transition temperature is lowered, and it is characterized in that it is easier to crystallize at a lower temperature than a glass not containing a transition metal.

上述のガラスは、熱安定性を示す結晶化温度とガラス転移温度との差が100℃以上であり、かつ、フレスノイト結晶が析出するならば、他の構成元素を含むことができる。   The glass described above can contain other constituent elements as long as the difference between the crystallization temperature exhibiting thermal stability and the glass transition temperature is 100 ° C. or more and a Fresnoite crystal is precipitated.

尚、結晶化温度とは示唆熱分析(DTA)により求められる温度であって、10℃/分で昇温しながら測定したときに得られるDTA曲線において、ガラス転移温度以上の温度域において現れるプラトー(平坦)部と、結晶化による発熱が確認された温度以上の曲線部における初めの変曲点とを結ぶ接線の交点として定義される温度である。実際には、結晶化温度よりも低温で結晶が析出する場合があり、熱物性の目安(指標となる)の温度といえる。参考のために、図5に典型的なガラスのDTA曲線を示す。   The crystallization temperature is a temperature obtained by suggestive thermal analysis (DTA), and a plateau appearing in a temperature range above the glass transition temperature in a DTA curve obtained when measured while raising the temperature at 10 ° C./min. This is a temperature defined as the intersection of tangent lines connecting the (flat) part and the first inflection point in the curved part above the temperature at which heat generation due to crystallization is confirmed. In practice, crystals may be deposited at a temperature lower than the crystallization temperature, which can be said to be a temperature (an index) of thermophysical properties. For reference, a typical glass DTA curve is shown in FIG.

次に、上記本発明のガラスを好適に製造することが可能な方法を説明する。すなわち、本発明のガラスを好適に製造することが可能な方法は、前述の必須成分及び他の成分の材料を、前記必須成分が前述の含有割合となるように秤量して混合し、得られた混合物を溶融する方法が挙げられる。   Next, a method capable of suitably producing the glass of the present invention will be described. That is, the method capable of suitably producing the glass of the present invention is obtained by weighing and mixing the above-mentioned essential components and other component materials so that the above-mentioned essential components have the above-mentioned content ratio. And a method of melting the mixed mixture.

また、このような材料を混合した混合物を溶融させる方法としては特に制限されず、ガラスを製造することが可能な公知の方法を適宜採用することができ、例えば、坩堝を用いて1300〜1550℃の温度条件で10分〜3時間程度加熱して前記混合物を溶融する方法を採用してもよい。このとき、前記材料の混合物を溶融させるために用いる坩堝としては白金坩堝を用いる。例えば、アルミナ坩堝を用いた場合には、前記材料中に坩堝からアルミナが溶出するため、ガラス中からのフレスノイト型の結晶の析出を妨げる。   Moreover, it does not restrict | limit especially as a method of melting the mixture which mixed such a material, The well-known method which can manufacture glass can be employ | adopted suitably, For example, it is 1300-1550 degreeC using a crucible. A method of melting the mixture by heating for about 10 minutes to 3 hours under the above temperature conditions may be employed. At this time, a platinum crucible is used as a crucible used for melting the mixture of the materials. For example, when an alumina crucible is used, alumina is eluted from the crucible into the material, thus preventing the precipitation of fresnoite crystals from the glass.

以上、本発明のガラスについて説明したが、以下に本発明の結晶化ガラスについて説明する。   Although the glass of the present invention has been described above, the crystallized glass of the present invention will be described below.

本発明の結晶化ガラスは、上記本発明のガラスを結晶化させたものである。すなわり、アルカリ土類金属の酸化物を20〜35モル%、チタン酸化物を10〜15モル%、ゲルマニウム酸化物を10〜40モル%、ケイ素酸化物を10〜60モル%の割合で含有し、且つ、フレスノイト型の結晶が析出していることを特徴とするものである。あるいは、アルカリ土類金属の酸化物を20〜35モル%、チタン酸化物を10〜15モル%、ゲルマニウム酸化物を10〜40モル%、ケイ素酸化物を10〜60モル%、および、鉄、ニッケル、コバルト、マンガン、バナジウム、銅から選ばれる少なくとも1種を1〜3モル%の割合で含有し、且つ、フレスノイト型の結晶が析出していることを特徴とするものである。   The crystallized glass of the present invention is obtained by crystallizing the glass of the present invention. That is, the alkaline earth metal oxide is 20 to 35 mol%, the titanium oxide is 10 to 15 mol%, the germanium oxide is 10 to 40 mol%, and the silicon oxide is 10 to 60 mol%. And a Fresnoite type crystal is precipitated. Alternatively, 20 to 35 mol% of an alkaline earth metal oxide, 10 to 15 mol% of titanium oxide, 10 to 40 mol% of germanium oxide, 10 to 60 mol% of silicon oxide, and iron, It contains at least one selected from nickel, cobalt, manganese, vanadium, and copper in a proportion of 1 to 3 mol%, and a Fresnoite type crystal is precipitated.

更には、上記本発明のガラスと同様の他成分を含有していてもよい。   Furthermore, you may contain the other component similar to the glass of the said invention.

また、本発明の結晶化ガラスは、フレスノイト型の結晶がガラス全体に析出しているため、2次光非線形性を示す材料として好適に用いることができる。   The crystallized glass of the present invention can be suitably used as a material exhibiting second-order optical nonlinearity because the Fresnoite-type crystals are precipitated throughout the glass.

次に、本発明の結晶化ガラスを好適に製造することが可能な本発明の結晶化ガラスの製造方法について説明する。   Next, the manufacturing method of the crystallized glass of this invention which can manufacture the crystallized glass of this invention suitably is demonstrated.

本発明の結晶化ガラスの製造方法は、上記本発明のガラスを加熱してフレスノイト型の結晶が析出させることを特徴とする。尚、加熱処理の時間は、加熱温度や目的とするフレスノイト型の結晶の結晶化の程度等によっても異なるものであり、特に制限されず、所望の量のフレスノイト型の結晶が得られる時間加熱すればよい。   The method for producing crystallized glass of the present invention is characterized in that the glass of the present invention is heated to precipitate a Fresnoit type crystal. The time for the heat treatment varies depending on the heating temperature, the degree of crystallization of the desired fresnoite type crystal, etc., and is not particularly limited, and is heated for the time required to obtain a desired amount of the fresnoite type crystal. That's fine.

フレスノイト型の結晶の結晶相形成の有無、あるいは結晶化の程度は、X線解析により確認できる。また、結晶化の程度は用途等に応じて適宜選択すればよい。   The presence or absence of crystal phase formation or the degree of crystallization of a Fresnoit type crystal can be confirmed by X-ray analysis. In addition, the degree of crystallization may be appropriately selected according to the application.

また、加熱処理の方法としては特に制限されず、フレスノイト型の結晶を析出させることが可能な公知の方法を適宜採用でき、例えば、レーザ光を照射して加熱する方法、あるいは、電気炉、ホットプレート、白熱灯等の熱源を用いて加熱する方法等種々の方法を適宜採用できる。なお、熱源を用いて加熱する方法は、大面積を容易に且つ効率的に加熱することが可能な方法である。   The heat treatment method is not particularly limited, and a known method capable of precipitating a Fresnoit type crystal can be appropriately employed. For example, a method of heating by irradiating a laser beam, an electric furnace, a hot Various methods such as a method of heating using a heat source such as a plate or an incandescent lamp can be appropriately employed. Note that the method of heating using a heat source is a method capable of heating a large area easily and efficiently.

特に、レーザ光を照射する方法では、ガラスの照射領域のみを加熱でき、所望の領域に選択的にフレスノイト型の結晶を析出させることが可能であるため、好ましい加熱方法である。用いるレーザには制限はなく、レーザ光の照射領域に対し、温度を制御しつつ均一に加熱できるものが好適に用いられ、紫外レーザ、YAGレーザ、炭酸ガスレーザ等の種々のレーザを適宜用いることができる。さらに、レーザの照射強度も特に制限されず、適宜調整することが可能である。なお、照射強度が高すぎるとアブレーションが起こる、あるいは、表面にクラックが発生する等の問題が生じる場合があるため、照射強度はこのような問題が発生しない範囲で調整することが好ましい。   In particular, the method of irradiating with laser light is a preferable heating method because only the irradiated region of glass can be heated and a Fresnoite-type crystal can be selectively deposited in a desired region. The laser to be used is not limited, and a laser beam that can be heated uniformly while controlling the temperature is suitably used, and various lasers such as an ultraviolet laser, a YAG laser, and a carbon dioxide laser can be used as appropriate. it can. Further, the irradiation intensity of the laser is not particularly limited and can be appropriately adjusted. If the irradiation intensity is too high, problems such as ablation or cracking on the surface may occur. Therefore, it is preferable to adjust the irradiation intensity within a range where such a problem does not occur.

最後に、本発明の光学部材について説明する。本発明の光学部材は、上記本発明の結晶化ガラスからなるファイバ型であることを特徴とするものである。従って、本発明のファイバ型光学部材は、フレスノイト型結晶が析出しているため、本来ガラスには存在しない2次光学非線形性を賦与したものになる。さらに、ファイバ形状であるため、伝送用光ファイバとの接続が容易で、また光との作用長が長いため、より大きな光変調効果が得られるという利点がある。   Finally, the optical member of the present invention will be described. The optical member of the present invention is a fiber type made of the crystallized glass of the present invention. Therefore, the fiber-type optical member of the present invention has a second-order optical nonlinearity that does not originally exist in glass because the Fresnoit-type crystal is precipitated. Furthermore, since it is a fiber shape, it is easy to connect to a transmission optical fiber, and since the action length with light is long, there is an advantage that a larger light modulation effect can be obtained.

以下に実施例及び比較例を挙げて本発明を更に説明するが、本発明は実施例より何ら制限されるものではない。   EXAMPLES The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited to the examples.

表1〜3にモル%表示で示す組成のガラスを、白金ルツボを用いて1300〜1550℃で溶解する溶融法により作製した。尚、表中の「実」は実施例を、「比」は比較例を示す。   Glasses having compositions shown in Tables 1 to 3 in terms of mol% were prepared by a melting method using a platinum crucible and melting at 1300 to 1550 ° C. In the table, “actual” indicates an example, and “ratio” indicates a comparative example.

そして、各ガラスのガラス転移点Tg(単位:℃)及び結晶化温度Tx(単位:℃)を示差熱分析(DTA)によりそれぞれ測定した。尚、結晶化温度Tx(単位:℃)は10℃/分で昇温しながら測定したときに得られるDTA曲線において、ガラス転移温度以上の温度域において現れるプラトー(平坦)部と、結晶化による発熱が確認された温度以上の曲線部における初めの変曲点とを結ぶ接線の交点として定義される温度して求めた。Ts、Tx及び(Tx−Tg:単位℃)を表1〜3に示す。   Then, the glass transition point Tg (unit: ° C.) and the crystallization temperature Tx (unit: ° C.) of each glass were measured by differential thermal analysis (DTA). The crystallization temperature Tx (unit: ° C.) is a plateau (flat) portion appearing in a temperature range equal to or higher than the glass transition temperature in the DTA curve obtained when measured while raising the temperature at 10 ° C./min, and due to crystallization. The temperature was determined as the temperature defined as the intersection of the tangent lines connecting the first inflection point in the curved portion above the temperature at which heat generation was confirmed. Tables 1 to 3 show Ts, Tx, and (Tx−Tg: unit ° C.).

実施例1〜17のガラスは、結晶化温度とガラス転移温度との差(Tx−Tg)が100℃以上であり、熱的に安定なガラスであることがわかる。比較例1〜6のガラスは、(Tx−Tg)が100℃未満であり、熱的に不安定で、ファイバに線引きするのが困難である。   It can be seen that the glasses of Examples 1 to 17 have a difference (Tx−Tg) between the crystallization temperature and the glass transition temperature of 100 ° C. or more and are thermally stable. The glasses of Comparative Examples 1 to 6 have (Tx−Tg) of less than 100 ° C., are thermally unstable, and are difficult to draw into a fiber.

また、実施例3で得られたガラスを、840℃で、3時間熱処理した後、4℃/分の平均冷却速度で室温まで冷却し、結晶化ガラスを得た。得られた結晶化ガラスのXRDパターンを図1に示すが、フレスノイト型の結晶の析出が確認された。   The glass obtained in Example 3 was heat-treated at 840 ° C. for 3 hours, and then cooled to room temperature at an average cooling rate of 4 ° C./min to obtain crystallized glass. An XRD pattern of the obtained crystallized glass is shown in FIG. 1, and it was confirmed that a Fresnoite type crystal was precipitated.

また、実施例5で得られたガラスの光吸収スペクトルを測定した結果、1080nmにおける吸収係数は8.92であった。更に、同ガラスに波長1080nmのCWレーザを照射したところ、0.55W以上において、結晶化が確認できた。図2は、0.7Wでレーザを照射して形成されたドット部より緑色の第二次高調(SH)光が発生している様子を表す写真である。また、同ガラスにおけるガラス部とレーザ照射部のラマンスペクトルを図3に示すが、489、600、733、793、861cm−1に明瞭なピークが確認され、フレスノイト型の結晶の振動モードに対応すると考えられる。 Moreover, as a result of measuring the light absorption spectrum of the glass obtained in Example 5, the absorption coefficient in 1080 nm was 8.92. Further, when the glass was irradiated with a CW laser having a wavelength of 1080 nm, crystallization was confirmed at 0.55 W or more. FIG. 2 is a photograph showing a state in which green second harmonic (SH) light is generated from a dot portion formed by irradiating a laser at 0.7 W. Moreover, although the Raman spectrum of the glass part and laser irradiation part in the same glass is shown in FIG. 3, clear peaks are confirmed at 489, 600, 733, 793, and 861 cm −1 , corresponding to the vibration mode of the Fresnoite type crystal. Conceivable.

また、実施例5で得られたガラスの光吸収スペクトルを測定した結果、1080nmにおける吸収係数は3.14であった。1.55W以上のレーザを照射した場合において、結晶化が確認できた。   Moreover, as a result of measuring the light absorption spectrum of the glass obtained in Example 5, the absorption coefficient in 1080 nm was 3.14. Crystallization was confirmed when a laser of 1.55 W or more was irradiated.

また、比較例4、比較例5、比較例6、比較例7の各ガラスを加熱処理して結晶化させたが、図4に示すように実施例3と比較例4ではフレスノイト型の結晶が確認されたが、他は明確なフレスノイト型の結晶化が確認できなかった。ここで、比較例4はTx―Tgの値が75度と低く、ファイバなどの成形加工時に結晶が析出したため、不適である。   Moreover, although each glass of the comparative example 4, the comparative example 5, the comparative example 6, and the comparative example 7 was heat-processed and crystallized, in Example 3 and the comparative example 4, as shown in FIG. Although it was confirmed, no clear Fresnoite-type crystallization could be confirmed. Here, Comparative Example 4 is not suitable because the value of Tx−Tg is as low as 75 degrees, and crystals are precipitated during molding of a fiber or the like.

実施例3で得られた結晶化ガラスのXRDパターンである。3 is an XRD pattern of crystallized glass obtained in Example 3. FIG. 実施例5で得られたガラスにレーザ光を照射した際の顕微鏡写真である。It is a microscope picture at the time of irradiating the laser beam to the glass obtained in Example 5. 実施例5で得られたガラスのレーザ照射部分(上部)と未照射部分(下部)のラマンスペクトルである。It is a Raman spectrum of the laser irradiation part (upper part) and the non-irradiation part (lower part) of the glass obtained in Example 5. 実施例3、比較例4、比較例5、比較例6、比較例7で得られた各結晶化ガラスのXRDパターンである。It is an XRD pattern of each crystallized glass obtained in Example 3, Comparative Example 4, Comparative Example 5, Comparative Example 6, and Comparative Example 7. 結晶化温度を説明するための図である。It is a figure for demonstrating crystallization temperature.

Claims (10)

光導波用の光学部材を形成するためのガラスであって、アルカリ土類金属の酸化物を20〜35モル%、チタン酸化物を10〜15モル%、ゲルマニウム酸化物を10〜40モル%、ケイ素酸化物を10〜60モル%の割合で含有することを特徴とするガラス。   A glass for forming an optical member for an optical waveguide, comprising 20 to 35 mol% of an alkaline earth metal oxide, 10 to 15 mol% of titanium oxide, 10 to 40 mol% of germanium oxide, Glass containing silicon oxide in a proportion of 10 to 60 mol%. 酸化ストロンチウム、酸化ニオビウム、酸化ホウ素または酸化ビスマスを30モル%以下の割合で含有することを特徴とする請求項1記載のガラス。   2. The glass according to claim 1, comprising strontium oxide, niobium oxide, boron oxide or bismuth oxide in a proportion of 30 mol% or less. 鉄、ニッケル、コバルト、マンガン、バナジウム、銅から選ばれる少なくとも1種を1〜3モル%含有することを特徴とする請求項1または2に記載のガラス。   3. The glass according to claim 1, comprising 1 to 3 mol% of at least one selected from iron, nickel, cobalt, manganese, vanadium, and copper. 結晶化温度とガラス転移温度との差が100℃以上であることを特徴とする請求項1〜3の何れか1項に記載のガラス。   The glass according to any one of claims 1 to 3, wherein the difference between the crystallization temperature and the glass transition temperature is 100 ° C or more. 請求項1〜4の何れか1項に記載のガラスを熱処理してなり、フレスノイト型の結晶が析出していることを特徴とする結晶化ガラス。   A crystallized glass obtained by heat-treating the glass according to claim 1, wherein a Fresnoite-type crystal is precipitated. ファイバ形状であることを特徴とする請求項5記載の結晶化ガラス。   6. The crystallized glass according to claim 5, which has a fiber shape. 請求項1〜4の何れか1項に記載のガラスを所定形状に成形し、加熱してフレスノイト型の結晶を析出させることを特徴とする請求項5記載の結晶化ガラスの製造方法。   6. The method for producing crystallized glass according to claim 5, wherein the glass according to any one of claims 1 to 4 is formed into a predetermined shape and heated to precipitate a Fresnoite-type crystal. 請求項1〜4の何れか1項に記載のガラスを線引きしてファイバ形状に成形し、加熱してフレスノイト型の結晶を析出させることを特徴とする請求項6記載の結晶化ガラスの製造方法。   The method for producing crystallized glass according to claim 6, wherein the glass according to any one of claims 1 to 4 is drawn into a fiber shape and heated to precipitate a Fresnoit type crystal. . 加熱をレーザ照射により行うことを特徴とする請求項7または8記載の結晶化カラスの製造方法。   9. The method for producing a crystallized crow according to claim 7, wherein the heating is performed by laser irradiation. 請求項6に記載の結晶化ガラスからなることを特徴とするファイバ型の光学部材。   A fiber-type optical member comprising the crystallized glass according to claim 6.
JP2008124671A 2008-05-12 2008-05-12 Glass, crystallized glass, crystallized glass manufacturing method and optical member Expired - Fee Related JP5333715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124671A JP5333715B2 (en) 2008-05-12 2008-05-12 Glass, crystallized glass, crystallized glass manufacturing method and optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008124671A JP5333715B2 (en) 2008-05-12 2008-05-12 Glass, crystallized glass, crystallized glass manufacturing method and optical member

Publications (2)

Publication Number Publication Date
JP2009274882A true JP2009274882A (en) 2009-11-26
JP5333715B2 JP5333715B2 (en) 2013-11-06

Family

ID=41440651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124671A Expired - Fee Related JP5333715B2 (en) 2008-05-12 2008-05-12 Glass, crystallized glass, crystallized glass manufacturing method and optical member

Country Status (1)

Country Link
JP (1) JP5333715B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240736A (en) * 1997-12-22 1999-09-07 Ohara Inc Light-emitting glass ceramic
JP2001072432A (en) * 1999-07-06 2001-03-21 Minolta Co Ltd Optical glass
JP2005132693A (en) * 2003-10-31 2005-05-26 Mitsubishi Electric Corp Electro-optical element and its manufacturing method
JP2005272198A (en) * 2004-03-24 2005-10-06 Asahi Glass Co Ltd Method for manufacturing second-order optical nonlinear transparent crystallized glass
JP2006083021A (en) * 2004-09-16 2006-03-30 Ohara Inc Method for manufacturing crystallized glass
JP2006327925A (en) * 2005-04-28 2006-12-07 Ohara Inc Optical glass
WO2007091483A1 (en) * 2006-02-09 2007-08-16 Nagaoka University Of Technology Optical component and method for manufacturing the same
JP2008001551A (en) * 2006-06-21 2008-01-10 Hoya Corp Optical glass, glass molding, optical element and their fabrication processes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240736A (en) * 1997-12-22 1999-09-07 Ohara Inc Light-emitting glass ceramic
JP2001072432A (en) * 1999-07-06 2001-03-21 Minolta Co Ltd Optical glass
JP2005132693A (en) * 2003-10-31 2005-05-26 Mitsubishi Electric Corp Electro-optical element and its manufacturing method
JP2005272198A (en) * 2004-03-24 2005-10-06 Asahi Glass Co Ltd Method for manufacturing second-order optical nonlinear transparent crystallized glass
JP2006083021A (en) * 2004-09-16 2006-03-30 Ohara Inc Method for manufacturing crystallized glass
JP2006327925A (en) * 2005-04-28 2006-12-07 Ohara Inc Optical glass
WO2007091483A1 (en) * 2006-02-09 2007-08-16 Nagaoka University Of Technology Optical component and method for manufacturing the same
JP2008001551A (en) * 2006-06-21 2008-01-10 Hoya Corp Optical glass, glass molding, optical element and their fabrication processes

Also Published As

Publication number Publication date
JP5333715B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
TW567174B (en) Transparent gallate glass-ceramics
Yonesaki et al. Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser
JP2002519299A (en) Tantalum containing glass and glass ceramic
Rezvani et al. Structure and optical band gap study of transparent oxyfluoride glass-ceramics containing CaF2 nanocrystals
Honma et al. New optical nonlinear crystallized glasses and YAG laser-induced crystalline dot formation in rare-earth bismuth borate system
Kumar et al. Transparent ultra-low expansion lithium aluminosilicate glass-ceramics: Crystallization kinetics, structural and optical properties
CN105164068A (en) Glass with improved total pitch stability
Sigaev et al. KTiOPO4 precipitation from potassium titanium phosphate glasses, producing second harmonic generation
CN102153283B (en) Method for preparing PbSe quantum dot doped fiber material
Pernice et al. Crystallization of the K2O· Nb2O5· 2SiO2 glass: evidences for existence of bulk nanocrystalline structure
Kumar et al. Physical and spectroscopic features of cobalt ions in multi-component CaF2–ZnO–Bi2O3–P2O5 glass ceramics
JP2006512274A (en) ZnO-based glass ceramic
Yadav et al. Crystallization and dielectric properties of Fe 2 O 3 doped barium strontium titanate borosilicate glass
Maruyama et al. Enhanced quantum yield of yellow photoluminescence of Dy3+ ions in nonlinear optical Ba2TiSi2O8 nanocrystals formed in glass
Paul et al. Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform
Coon et al. Viscosity and crystallization of bioactive glasses from 45S5 to 13‐93
Tarafder et al. Advanced glass-ceramic nanocomposites for structural, photonic, and optoelectronic applications
Sigaev et al. Glasses and their crystallization in the (1− х) KNbO3· хSiO2 system at low glass-forming oxide contents, 0⩽ х⩽ 0.35
Cha et al. Synthesis, electronic polarizability and β-BaB2O4 crystallization in BaO–B2O3–TeO2 glasses
Shen et al. Preparation and third-order optical nonlinearity of glass ceramics based on GeS2–Ga2S3–CsCl pseudo-ternary system
JP5333715B2 (en) Glass, crystallized glass, crystallized glass manufacturing method and optical member
Li et al. The effects of lanthanum addition on optical characteristics of Ge− Ga− S− AgI chalcogenide glasses
Shinozaki Design of crystallization of oxyfluoride glasses based on the local structure of fluorine
Li et al. Competitive Phase Separation to Controllable Crystallization in 80 GeS 2· 20 In 2 S 3 Chalcogenide Glass
Honma et al. Synthesis of LaF3 nanocrystals by laser-induced Nd3+ atom heat processing in oxyfluoride glasses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees