JP2005132693A - Electro-optical element and its manufacturing method - Google Patents

Electro-optical element and its manufacturing method Download PDF

Info

Publication number
JP2005132693A
JP2005132693A JP2003372097A JP2003372097A JP2005132693A JP 2005132693 A JP2005132693 A JP 2005132693A JP 2003372097 A JP2003372097 A JP 2003372097A JP 2003372097 A JP2003372097 A JP 2003372097A JP 2005132693 A JP2005132693 A JP 2005132693A
Authority
JP
Japan
Prior art keywords
glass
component
electro
optical
dimensionally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003372097A
Other languages
Japanese (ja)
Inventor
Junichiro Hoshizaki
潤一郎 星崎
Kiichi Yoshiara
喜市 吉新
Sadayuki Matsumoto
貞行 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003372097A priority Critical patent/JP2005132693A/en
Publication of JP2005132693A publication Critical patent/JP2005132693A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/253Silica-free oxide glass compositions containing germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electro-optical element containing an optical waveguide by dispersion precipitating ferroelectric microcrystals having high electro-optical effect and nonlinear optical effect inside glass without requiring heat treatment. <P>SOLUTION: This manufacturing method of an electro-optical element comprises a step in which a glass body mainly containing either one of a glass component (a) containing at least one of Li<SB>2</SB>O and K<SB>2</SB>O, at least one of Nb<SB>2</SB>O<SB>5</SB>and Ta<SB>2</SB>O<SB>5</SB>, and at least one of SiO<SB>2</SB>, GeO<SB>2</SB>, and TeO<SB>2</SB>, or a glass component (b) containing at least one of MgO, CaO, SrO, and BaO, at least one of TiO<SB>2</SB>, and ZrO<SB>2</SB>, and at least one of SiO<SB>2</SB>, and GeO<SB>2</SB>, is prepared, a step in which a core part in which microcrystals are dispersed is formed inside the glass body by condensation irradiating a pulse laser having a longer wavelength than the fundamental absorption end wavelength of the glass component, and a step in which an optical waveguide having a two dimensionally or three dimensionally continued core is formed by scanning the focus of a laser two dimensionally or three dimensionally in the glass body while condensation irradiating the pulse laser. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、微結晶(ナノ結晶)が分散した光導波路を備える電気光学素子及びその製造方法に関する。   The present invention relates to an electro-optical element including an optical waveguide in which microcrystals (nanocrystals) are dispersed and a method for manufacturing the same.

インターネットの急速な拡大による通信需要の増大に伴って伝送容量の高速大容量化が必要とされ、その対策として波長の異なる多数の光にそれぞれ信号を乗せて伝送する波長分割多重(WDM)通信システムが活躍している。しかし、現在の実用システムに導入されているWDMシステムでも通信需要には応えきれず、そのため波長あたりの伝送容量の増大が必要になってきており、現在までに40Gbps(1秒間に40Gbit)伝送技術の開発が行われ、数年後には立ち上がろうとしている。40Gbps以上のシステムでは、より高速な応答性能が求められるため、既存の半導体EA(電界吸収型)変調器の適用は難しく、電気光学効果を利用した単結晶LiNbOなどを基材とした外部変調器が主流になる可能性が高い。この電気光学効果は、従来、LiNbOに代表される単結晶材料に特有とされ、これらの材料を用いた機能デバイスの研究開発が行われている。しかし、このLiNbO等の単結晶材料は、既存のネットワークに施設されている石英ガラスファイバとは異質の材料である。そのため、LiNbOと石英ガラスファイバとの接続損失は高く、ファイバとの整合性に乏しいことなどや、高コストなどの課題があり、未だ光ファイバネットワークの主要な制御デバイスに成りえていない。 A wavelength division multiplexing (WDM) communication system that transmits a signal on a large number of light beams having different wavelengths as a countermeasure against the increase in communication capacity due to an increase in communication demand due to the rapid expansion of the Internet. Is active. However, even the WDM system introduced in the current practical system cannot meet the demand for communication, and therefore, it is necessary to increase the transmission capacity per wavelength, and 40 Gbps (40 Gbit per second) transmission technology has been developed up to now. Has been developed and is about to stand up in a few years. In systems of 40 Gbps or more, since faster response performance is required, it is difficult to apply the existing semiconductor EA (electroabsorption type) modulator, and external modulation based on single crystal LiNbO 3 using the electro-optic effect is used. The vessel is likely to become mainstream. This electro-optic effect is conventionally unique to single crystal materials typified by LiNbO 3 , and functional devices using these materials have been researched and developed. However, this single crystal material such as LiNbO 3 is a different material from the quartz glass fiber provided in the existing network. Therefore, the connection loss between LiNbO 3 and the silica glass fiber is high, and there are problems such as poor matching with the fiber and high cost, and it has not yet become a main control device of the optical fiber network.

一方、シリカガラス系材料は、低コストで伝搬特性に優れ、ファイバとの接続損失が低く、広い透過波長域を持つことから、光デバイスの基幹材料として期待されている。しかし、シリカガラス系材料は、本質的に電気光学効果や非線形光学効果を持たないため、フィルタなどの受動的なデバイスに限定されてきた。1980年代に入って、ポーリング法によってシリカガラスに光非線形性を誘起させた報告が行われて以来、効果的なポーリング方法の探索が活発に行われている。さらに近年では、紫外光ポーリングによってLiNbO単結晶に匹敵する電気光学効果および非線形光学効果が発現することが見出されている。実用レベルの電気光学効果および非線形光学効果と、低損失や優れた賦形性、コストパフォーマンスなどのガラス材料本来の優れた特性を併せ持つ材料は、従来にない特徴を有する新フォトニクス材料として期待されている。しかし、ポーリングにより誘起させた電気光学効果及び非線形光学効果は、性能の長期安定性に課題があり、デバイス応用への進展を妨げる要因となっている。 On the other hand, silica glass-based materials are expected as basic materials for optical devices because they are low in cost, have excellent propagation characteristics, have low connection loss with fibers, and have a wide transmission wavelength range. However, silica glass-based materials have essentially no electro-optic effect or non-linear optical effect, and thus have been limited to passive devices such as filters. In the 1980s, since the report of inducing optical nonlinearity in silica glass by the poling method has been made, the search for an effective poling method has been actively conducted. Furthermore, in recent years, it has been found that the electro-optic effect and the nonlinear optical effect comparable to those of a LiNbO 3 single crystal are exhibited by ultraviolet light poling. A material that has both the electro-optic and non-linear optical effects at practical levels, and the excellent properties inherent in glass materials such as low loss, excellent formability, and cost performance, is expected as a new photonics material with unprecedented characteristics. Yes. However, the electro-optic effect and the nonlinear optical effect induced by poling have a problem in long-term stability of performance, which is a factor that hinders progress to device application.

以下、ポーリングによらず電気光学効果及び非線形光学効果を有する結晶を形成する先行例の非特許文献及び特許文献に関して説明する。まず、ガラスに結晶を析出させる方法としては、UVレーザ光を照射することでガラス表面に直径40〜60nmのナノ結晶を析出させる事例がある(例えば、非特許文献1参照。)。この事例では結晶析出に用いられたガラスの組成は15KO−15Nb−70TeOである。このガラスは、電気光学効果や非線形光学効果が大きい強誘電体結晶KNbOの構成元素をガラス組成に含み、またガラス骨格を形成するためのTeOが含まれている。このガラスの表面に、波長λ=308nmのXeClエキシマレーザ光を位相マスクを介して照射することにより、非線形光学効果を有するナノ結晶をガラス表面に析出させている。レーザ光は位相マスクを通過する際に干渉光が生じ、高強度のレーザ光がガラス表面の局所領域に照射されてナノ結晶が析出する。 Hereinafter, the non-patent document and the patent document of the prior examples for forming the crystal having the electro-optic effect and the nonlinear optical effect regardless of the poling will be described. First, as a method for precipitating crystals on glass, there is an example in which nanocrystals having a diameter of 40 to 60 nm are precipitated on the glass surface by irradiating with UV laser light (for example, see Non-Patent Document 1). The composition of the glass used for crystallization in this case is 15K 2 O-15Nb 2 O 5 -70TeO 2. This glass contains a constituent element of the ferroelectric crystal KNbO 3 having a large electro-optic effect and nonlinear optical effect in the glass composition, and TeO 2 for forming a glass skeleton. By irradiating the glass surface with XeCl excimer laser light having a wavelength λ = 308 nm through a phase mask, nanocrystals having a nonlinear optical effect are deposited on the glass surface. When the laser beam passes through the phase mask, interference light is generated, and a high-intensity laser beam is irradiated onto a local region of the glass surface, thereby depositing nanocrystals.

次に、ガラス材料内部にのみ所定パターンで微結晶を選択析出させる微結晶分散ガラスおよびその製造方法について説明する(例えば、特許文献1参照。)。この例では、光源から出射させたパルスレーザ光をレンズ等の集光装置によって所定の深さのガラス内部に集光照射することにより、ガラス組成に含んでいる金属イオンを光還元して変質域を生成させる。次いで、熱処理を行って、上記変質域を核として微結晶をガラス内部に選択的に析出させている。微結晶領域は、集光点の相対移動やレーザ光のオン・オフにより所定の位置にパターン形成される。金属イオンには、Auイオン、Agイオン、Cuイオン、Ptイオン等が挙げられている。   Next, a microcrystal-dispersed glass in which microcrystals are selectively deposited in a predetermined pattern only inside the glass material and a manufacturing method thereof will be described (for example, see Patent Document 1). In this example, pulsed laser light emitted from a light source is condensed and irradiated inside a glass having a predetermined depth by a condensing device such as a lens, so that the metal ions contained in the glass composition are photoreduced and the altered region. Is generated. Next, heat treatment is performed to selectively precipitate microcrystals in the glass with the altered region as a nucleus. The microcrystalline region is patterned at a predetermined position by relative movement of the condensing point and on / off of the laser beam. Metal ions include Au ions, Ag ions, Cu ions, Pt ions, and the like.

「UV−Laser Induced Photonic Periodic Structure in Tellurite−Based Glass Ceramics」 X IX International Congress on Glass, ICD X IX ,July 1−6,2001:Ryou Ogawa(特にFig.1及びFig.2)“UV-Laser Induced Photoperiodic Structure in Tellurite-Based Glass Ceramics”, X IX International Congress on Glass, ICD X IX, O1g. 特開平11−71139号公報(第4頁〜第9項、図1、図2)Japanese Patent Laid-Open No. 11-71139 (pages 4 to 9 and FIGS. 1 and 2)

ガラスの一部に非線形光学効果の大きい強誘電体結晶を析出させる上記先行技術の場合には、ガラス表面のみに結晶析出が生じ、ガラス内部に結晶を析出させることが出来ない。結晶析出がガラス表面のみに生じる原因は、上記組成のガラスが波長400〜500nm付近に基礎吸収端を持つためと考えられる。照射されたレーザ光の波長がこのガラスの吸収波長領域にあるため、レーザ光はガラス表面近傍で吸収されて、局所領域での結晶化にのみエネルギーが消費されてしまうことによると考えられる。従って、この事例ではガラス内部にレーザ光を入射させて、内部に結晶を析出させることが出来ない。そのため、この結晶析出部分を用いて電気光学素子を作製する際には、例えば、光導波路を形成する場合には、導波路を所定のパターン形状に加工するためのエッチングプロセスが必要になる。さらに、成膜プロセスによるクラッド層形成工程が必要になるという問題があった。   In the case of the above prior art in which a ferroelectric crystal having a large nonlinear optical effect is deposited on a part of glass, crystal deposition occurs only on the glass surface, and crystals cannot be deposited inside the glass. The reason why crystal precipitation occurs only on the glass surface is considered to be because the glass having the above composition has a fundamental absorption edge in the vicinity of a wavelength of 400 to 500 nm. Since the wavelength of the irradiated laser beam is in the absorption wavelength region of this glass, it is considered that the laser beam is absorbed near the glass surface and energy is consumed only for crystallization in the local region. Therefore, in this case, it is impossible to cause laser light to enter the glass and to precipitate crystals inside. For this reason, when an electro-optic element is manufactured using this crystal precipitation portion, for example, when an optical waveguide is formed, an etching process for processing the waveguide into a predetermined pattern shape is required. Furthermore, there is a problem that a cladding layer forming step by a film forming process is required.

また、上記特開平11−71139号公報に記載の微結晶分散ガラスの製造方法の場合には、あらかじめ金属イオンを分散させたガラス内部にパルスレーザ光を集光照射して、該金属イオンを光還元して変質域を生成させ、次いで熱処理することによって変質域を核として微結晶を選択的に成長させている。この場合、パルスレーザ光照射の後、熱処理を行うことが必要となる。しかし、ガラスを熱処理するとレーザ光照射によって高められたコア部(非結晶部)の等価屈折率が低下し、屈折率の分布の発生あるいは消失によって導波路の伝搬特性が著しく低下するという問題が生じる。   Further, in the case of the method for producing a microcrystalline dispersed glass described in the above-mentioned Japanese Patent Application Laid-Open No. 11-71139, pulsed laser light is condensed and irradiated inside the glass in which metal ions are dispersed in advance, and the metal ions are irradiated with light. Reduction is generated to produce an altered region, and then heat treatment is performed to selectively grow microcrystals with the altered region as a nucleus. In this case, it is necessary to perform heat treatment after the pulse laser beam irradiation. However, when the glass is heat-treated, the equivalent refractive index of the core (non-crystalline part), which is increased by laser light irradiation, decreases, and the propagation characteristics of the waveguide deteriorate significantly due to the occurrence or disappearance of the refractive index distribution. .

そこで、本発明の目的は、熱処理を要することなく、ガラス内部に電気光学効果及び非線形光学効果の大きい強誘電体の微結晶を分散析出させた光導波路を含む電気光学素子を得ることである。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to obtain an electro-optic element including an optical waveguide in which ferroelectric microcrystals having a large electro-optic effect and nonlinear optical effect are dispersed and precipitated inside the glass without requiring heat treatment.

本発明に係る電気光学素子は、(1)LiO、KOのうち少なくとも1種の成分と、Nb、Taのうち少なくとも1種の成分と、SiO、GeO、TeOのうち少なくとも1種の成分とを含んだガラス成分と、(2)MgO、CaO、SrO、BaOのうち少なくとも1種の成分と、TiO、ZrOのうち少なくとも1種の成分と、SiO、GeOのうち少なくとも1種の成分とを含んだガラス成分との内、いずれか一方のガラス成分を主体として含むガラス体を用意するステップと、
前記ガラス成分の基礎吸収端波長より長波長のパルスレーザ光を前記ガラス体の内部に集光照射して微結晶が分散したコア部を形成するステップと、
前記パルスレーザ光を集光照射しながら、前記レーザ光の集光点を前記ガラス体の内部について2次元的又は3次元的に走査して前記コア部が2次元的又は3次元的に連続する光導波路を形成するステップと
を含む。
The electro-optic element according to the present invention includes (1) at least one component of Li 2 O and K 2 O, at least one component of Nb 2 O 5 and Ta 2 O 5 , and SiO 2 and GeO. 2 , a glass component including at least one component of TeO 2 , (2) at least one component of MgO, CaO, SrO, and BaO, and at least one component of TiO 2 and ZrO 2 And a step of preparing a glass body mainly comprising any one of the glass components including at least one component of SiO 2 and GeO 2 ;
A step of forming a core part in which fine crystals are dispersed by condensing and irradiating a pulse laser beam having a wavelength longer than the fundamental absorption edge wavelength of the glass component inside the glass body;
While condensing and irradiating the pulsed laser beam, the laser beam condensing point is scanned two-dimensionally or three-dimensionally inside the glass body, and the core portion is two-dimensionally or three-dimensionally continuous. Forming an optical waveguide.

本発明に係る電気光学素子の製造方法によれば、パルスレーザ光の集光照射によってその集光点にのみ電気光学効果及び非線形光学効果を有する微結晶が分散するコア部を形成できるので、所望の箇所にコア部を形成できる。また、パルスレーザ光の集光点を2次元的又は3次元的に走査することで、コア部が複雑な2次元又は3次元構造を有する光導波路を容易に形成することができる。さらに、本発明に用いたガラスの組成によれば、パルスレーザ光の集光照射のみでガラス体の内部に微結晶を分散析出させることができる。そのため、熱処理を必要とせず、ガラス体及びコア部の寸法を歪ませることなく、また、熱処理を行わないのでコア部の微結晶以外の部分の屈折率を高いままに維持できる。また、熱処理工程を要しないので製造コストを低減できる。また、電気光学素子の製造にあたって、レーザ光の集光点を走査した部分にコア部を形成でき、該コア部の周囲がクラッド部となるので、クラッド層を形成するための加工プロセスや成膜プロセス等の後工程を実施する必要がなく製造コストを大幅に低減できる。   According to the method for manufacturing an electro-optic element according to the present invention, a core portion in which microcrystals having an electro-optic effect and a non-linear optical effect are dispersed only at the focusing point by the focused irradiation of pulsed laser light can be formed. The core portion can be formed at the location. Further, by scanning the condensing point of the pulse laser beam two-dimensionally or three-dimensionally, an optical waveguide having a complicated two-dimensional or three-dimensional structure in the core portion can be easily formed. Furthermore, according to the composition of the glass used for this invention, a microcrystal can be disperse | distributed and precipitated inside a glass body only by condensing irradiation of a pulsed laser beam. Therefore, no heat treatment is required, the dimensions of the glass body and the core portion are not distorted, and no heat treatment is performed, so that the refractive index of portions other than the microcrystals of the core portion can be kept high. Further, since a heat treatment process is not required, the manufacturing cost can be reduced. Further, in the manufacture of an electro-optic element, a core portion can be formed at a portion scanned with a condensing point of laser light, and the periphery of the core portion becomes a cladding portion. Therefore, a processing process and film formation for forming a cladding layer There is no need to carry out post-processes such as processes, and the manufacturing cost can be greatly reduced.

本発明に係る電気光学素子は、光導波路の伝搬光の波長λ=800nm〜1,550nmよりも小さい粒径の電気光学結晶を分散析出させた光導波路を備えたものである。具体的には、微結晶の粒子径aと前記光導波路を伝搬させる光の波長λとに関するミー散乱パラメータq(=2πa/λ)は、次式、1/5π<q<2πを満たす。そこで、ミー散乱を抑制した電気光学素子が得られる。   The electro-optical element according to the present invention includes an optical waveguide in which an electro-optic crystal having a particle diameter smaller than the wavelength λ = 800 nm to 1,550 nm of propagation light in the optical waveguide is dispersed and deposited. Specifically, the Mie scattering parameter q (= 2πa / λ) relating to the particle diameter a of the microcrystal and the wavelength λ of the light propagating through the optical waveguide satisfies the following expression: 1 / 5π <q <2π. Therefore, an electro-optic element that suppresses Mie scattering is obtained.

以下、本発明の実施の形態に係る電気光学素子及びその製造方法について図面に基づいて説明する。なお、図面において実質的に同一の部材には同一の符号を付している。   Hereinafter, an electro-optical element and a manufacturing method thereof according to embodiments of the present invention will be described with reference to the drawings. In the drawings, substantially the same members are denoted by the same reference numerals.

実施の形態1.
本発明の実施の形態1に係る電気光学素子の製造方法を図1及び図2を用いて説明する。この電気光学素子の製造方法は、以下の過程を含んでいる。
(i)(a)LiO、KOのうち少なくとも1種の成分と、Nb、Taのうち少なくとも1種の成分と、SiO、GeO、TeOのうち少なくとも1種の成分とを含んだガラス成分と、(b)MgO、CaO、SrO、BaOのうち少なくとも1種の成分と、TiO、ZrOのうち少なくとも1種の成分と、SiO、GeOのうち少なくとも1種の成分とを含んだガラス成分との内、いずれか一方のガラス成分を主体として含むガラス体を用意する。
なお、ガラス組成(a)は、M(1) O−M(2) −M(3)の複合酸化物組成で表すことができる。ここで、M(1)はLi,Kのうち少なくとも一つの元素、M(2)はNb,Taのうち少なくとも一つの元素、M(3)はSi,Ge,Teのうち少なくとも一つの元素をそれぞれ表している。また、ガラス組成(b)は、M(1)O−M(2)−M(3)の複合酸化物組成で表すことができる。ここで、M(1)はMg,Ca,Sr,Baのうち少なくとも一つの元素、M(2)はTi,Zrのうち少なくとも一つの元素、M(3)はSi,Geのうち少なくとも一つの元素をそれぞれ表している。
(ii)上記ガラス成分の基礎吸収端波長より長波長のパルスレーザ光を上記ガラス体の内部に集光照射して微結晶が分散したコア部を形成する。
(iii)パルスレーザ光を集光照射しながら、レーザ光の集光点をガラス体の内部について2次元的又は3次元的に走査してコア部が2次元的又は3次元的に連続する光導波路を形成する。
Embodiment 1 FIG.
A method for manufacturing an electro-optical element according to Embodiment 1 of the present invention will be described with reference to FIGS. This method of manufacturing an electro-optical element includes the following steps.
(I) (a) At least one component of Li 2 O and K 2 O, at least one component of Nb 2 O 5 and Ta 2 O 5 , and SiO 2 , GeO 2 , and TeO 2 A glass component containing at least one component, (b) at least one component of MgO, CaO, SrO, BaO, at least one component of TiO 2 , ZrO 2 , SiO 2 , GeO A glass body mainly containing any one of the glass components containing at least one of the two components is prepared.
The glass composition (a) can be represented by a composite oxide composition of M (1) 2 O-M (2) 2 O 5 -M (3) O 2 . Here, M (1) is at least one element of Li and K, M (2) is at least one element of Nb and Ta, and M (3) is at least one element of Si, Ge, and Te. Represents each. The glass composition (b) can be represented by a composite oxide composition of M (1) OM ( 2) O 2 -M (3) O 2 . Here, M (1) is at least one element of Mg, Ca, Sr, and Ba, M (2) is at least one element of Ti and Zr, and M (3) is at least one element of Si and Ge. Each element is represented.
(Ii) A pulse laser beam having a wavelength longer than the fundamental absorption edge wavelength of the glass component is focused and irradiated on the inside of the glass body to form a core portion in which microcrystals are dispersed.
(Iii) A light beam in which the core portion is two-dimensionally or three-dimensionally continuous by two-dimensionally or three-dimensionally scanning the inside of the glass body while condensing and irradiating pulsed laser light. A waveguide is formed.

最初に、所定組成のガラス成分を含むガラス体を用意するステップについて説明する。ここでは、ガラス組成(a)として15KO−15Nb−70TeOのガラス基板と、ガラス組成(b)として30BaO−15TiO−55GeOのガラス基板を用意する場合の実施例について具体的に説明する。まず、ガラス基板の製造方法について説明する。組成(a)のガラスの製造には、原料として、KCO:12.031g、Nb:23.138g、TeO:64.832gを使用し、組成(b)のガラスには、原料としてBaCO:45.993g、TiO:9.308g、GeO:44.698gを使用し、それぞれらいかい機により処理して得たそれぞれ総重量100gの混合粉末を使用した。この混合粉末を、組成(a)のガラスでは金坩堝に入れて電気炉内で950℃/30min、組成(b)のガラスでは白金坩堝に入れて電気炉内で1300℃/30minで熱処理し、融液化した。この融液を、予め300℃に加熱した鉄板にキャストしてクエンチし、ガラスを得た。この後、歪点周辺温度で再熱処理してガラス内部の歪を除去した。冷却後、ガラスを、厚さ2mm、25mm角の板型に切断加工し、両面を光学研磨処理して組成(a)及び組成(b)のそれぞれのガラス基板13を得た。 First, a step of preparing a glass body containing a glass component having a predetermined composition will be described. Here, an example in which a glass substrate of 15K 2 O-15Nb 2 O 5 -70TeO 2 as a glass composition (a) and a glass substrate of 30BaO-15TiO 2 -55GeO 2 as a glass composition (b) is prepared I will explain it. First, the manufacturing method of a glass substrate is demonstrated. For the production of the glass having the composition (a), K 2 CO 3 : 12.031 g, Nb 2 O 5 : 23.138 g, TeO 2 : 64.832 g are used as raw materials. As raw materials, BaCO 3 : 45.993 g, TiO 2 : 9.308 g, and GeO 2 : 44.698 g were used, and mixed powders each having a total weight of 100 g obtained by treatment with a milling machine were used. In the glass of composition (a), this mixed powder is put in a gold crucible and heat treated at 950 ° C./30 min in an electric furnace, in the glass of composition (b) in a platinum crucible and heat treated at 1300 ° C./30 min in an electric furnace, It was melted. This melt was cast and quenched on an iron plate previously heated to 300 ° C. to obtain glass. Thereafter, re-heat treatment was performed at a temperature around the strain point to remove the strain inside the glass. After cooling, the glass was cut into a plate having a thickness of 2 mm and a 25 mm square, and both surfaces were optically polished to obtain glass substrates 13 having the compositions (a) and (b).

次に、ガラス基板13にパルスレーザ光11を照射してガラス基板13内部に微結晶が分散析出したコア部15を形成するステップと、パルスレーザ光11を集光照射しながら、レーザ光11の集光点14をガラス体13の内部について2次元的又は3次元的に走査してコア部15が2次元的又は3次元的に連続する光導波路を形成するステップについて説明する。図1の(a)は、パルスレーザ光11をガラス基板13内部に集光照射して微結晶(ナノ結晶)17を内部に分散析出させたコア部15を有する光導波路を作製する過程を示す概略図である。図1の(b)は、コア部15の内部に分散析出しているナノ結晶17を示す概略図である。パルスレーザ光11の光源として、フェムト秒レーザを用いた例を図2に基づいて説明する。図2は、フェムト秒レーザを用いてガラス基板13に光導波路を書き込む基本装置のブロック図である。   Next, the step of irradiating the glass substrate 13 with the pulsed laser light 11 to form the core portion 15 in which the microcrystals are dispersed and precipitated inside the glass substrate 13, A step in which the light condensing point 14 is scanned two-dimensionally or three-dimensionally inside the glass body 13 to form an optical waveguide in which the core portion 15 continues two-dimensionally or three-dimensionally will be described. FIG. 1A shows a process of manufacturing an optical waveguide having a core portion 15 in which a microcrystal (nanocrystal) 17 is dispersed and precipitated inside by condensing and irradiating a pulse laser beam 11 inside a glass substrate 13. FIG. FIG. 1B is a schematic view showing nanocrystals 17 dispersed and precipitated inside the core portion 15. An example in which a femtosecond laser is used as the light source of the pulse laser beam 11 will be described with reference to FIG. FIG. 2 is a block diagram of a basic apparatus for writing an optical waveguide on the glass substrate 13 using a femtosecond laser.

(1)フェムト秒レーザ装置から出射されたパルスレーザ光11は、光軸上に設置した集光レンズ12によって、ガラス基板13の内部領域で、直径数μmのスポットに絞り込まれる。集光用レンズ12は、導波路形状を球形状にするために、40〜100倍率の対物レンズを使用してもよい。この集光照射領域は、ガラス基板13のアブレーションを防ぐため、表面より30μm以上の深さ位置に設定される。具体的には、図2に示すように、YAGレーザ光(波長λ=532nm)21を励起光源として、モードロックTi:Alレーザ21を再生増幅して得た波長810nmのレーザ光は、アンプ23により増幅され、アッテネータ24によって平均出力を数100mWオーダの適正値に調整された後、対物レンズ12を介してガラス基板13内部の領域14に集光照射される。また、フェムト秒レーザ光照射装置によるガラス内部への集光照射において、上記以外の条件としては、パルス幅:170〜220fs、レーザビーム径:3mm、繰り返し周波数:250kHz、パルスエネルギー:4μJ(1パルス分のエネルギー積算値)とした。 (1) The pulsed laser light 11 emitted from the femtosecond laser device is narrowed down to a spot having a diameter of several μm in the inner region of the glass substrate 13 by the condenser lens 12 installed on the optical axis. The condensing lens 12 may use an objective lens having a magnification of 40 to 100 in order to make the waveguide shape spherical. This condensing irradiation region is set at a depth position of 30 μm or more from the surface in order to prevent ablation of the glass substrate 13. Specifically, as shown in FIG. 2, a laser beam having a wavelength of 810 nm obtained by reproducing and amplifying a mode-locked Ti: Al 2 O 3 laser 21 using a YAG laser beam (wavelength λ = 532 nm) 21 as an excitation light source is After being amplified by the amplifier 23, the average output is adjusted to an appropriate value on the order of several hundreds mW by the attenuator 24, and then the condensed light is irradiated onto the region 14 inside the glass substrate 13 through the objective lens 12. Further, in the condensing irradiation inside the glass by the femtosecond laser light irradiation apparatus, the conditions other than the above are as follows: pulse width: 170 to 220 fs, laser beam diameter: 3 mm, repetition frequency: 250 kHz, pulse energy: 4 μJ (one pulse) Energy integrated value).

(2)次に、ガラス内部に集光照射を行うとともに、可動ステージ上に設置したガラス基板13を平行移動させることにより、直線状に連続するコア部15を形成することができる。なお、コア部15のパターンとしては、直線に限られず、曲線、Y字状等の2次元、3次元に連続する様々なパターンを形成できる。具体的には、図2に示すように、コンピュータ27によって可動ステージ26を制御し、ガラス基板13をレーザ光の光軸に対して、2次元的に平行および垂直、曲線、あるいは3次元的に移動させることによって光導波路を形成する。走査速度は、10μm/sec〜500μm/secの範囲で行うことができる。また、光導波路が形成される様子を、CCDカメラ28によって検知し、テレビモニター29で観察できる。 (2) Next, while condensing and irradiating the inside of the glass, the core portion 15 that is linearly continuous can be formed by translating the glass substrate 13 placed on the movable stage. Note that the pattern of the core portion 15 is not limited to a straight line, and various patterns that are two-dimensionally and three-dimensionally continuous such as a curved line or a Y-shape can be formed. Specifically, as shown in FIG. 2, the movable stage 26 is controlled by a computer 27, and the glass substrate 13 is two-dimensionally parallel and perpendicular to the optical axis of the laser beam, curved, or three-dimensionally. An optical waveguide is formed by moving the optical waveguide. The scanning speed can be performed in the range of 10 μm / sec to 500 μm / sec. Further, the appearance of the optical waveguide can be detected by the CCD camera 28 and observed on the television monitor 29.

ここで、上記パルスレーザ光は、用いたガラス基板を構成するガラス材料の基礎吸収端波長より長い波長を有するものを用いている。ガラス材料の組成とレーザ光の吸収との関係について図3を用いて説明する。図3は、作製した組成(a)および組成(b)のガラスの透過率を示すグラフである。組成(a)のTeO系ガラスおよび組成(b)のGeO系ガラスは赤外透過性に優れていることから、非線形光学ガラスの中でも特に通信用ガラス材料に適している。組成(a)のガラスは波長λ=400nm〜500nmに基礎吸収端を持ち、組成(b)のガラスでは波長λ=350nm〜400nmに基礎吸収端を持つ。このため、ガラス内部への集光照射に用いるレーザ光には、この基礎吸収端波長よりも長波長のレーザ光を使用する必要がある。今回行った実験では、波長λ=810nmのレーザ光を使用したので、ガラス表面および内部における吸収を最小にすることができる。なお、ここでは、レーザ光源にフェムト秒レーザを用いた場合について説明したが、ピコ秒レーザであってもよく、上記と同様の効果が得られる。 Here, the pulse laser beam having a wavelength longer than the fundamental absorption edge wavelength of the glass material constituting the used glass substrate is used. The relationship between the composition of the glass material and the absorption of laser light will be described with reference to FIG. FIG. 3 is a graph showing the transmittance of the glass having the composition (a) and the composition (b) produced. The TeO 2 -based glass having the composition (a) and the GeO 2 -based glass having the composition (b) are excellent in infrared transmittance, and are therefore particularly suitable for communication glass materials among nonlinear optical glasses. The glass of composition (a) has a fundamental absorption edge at a wavelength λ = 400 nm to 500 nm, and the glass of composition (b) has a fundamental absorption edge at a wavelength λ = 350 nm to 400 nm. For this reason, it is necessary to use a laser beam having a wavelength longer than the fundamental absorption edge wavelength as the laser beam used for condensing irradiation inside the glass. In the experiment conducted this time, laser light having a wavelength λ = 810 nm was used, so that absorption on the glass surface and inside can be minimized. Although the case where a femtosecond laser is used as the laser light source has been described here, a picosecond laser may be used, and the same effect as described above can be obtained.

上述の製造方法によって、図1に示すように、所定組成のガラス基板の内部に微結晶が分散析出したコア部が2次元的又は3次元的に連続する光導波路が得られる。表1は、実施例1(組成(a))および実施例2(組成(b))のガラス基板に、光導波路書き込み条件としてパルスレーザ光の平均出力:400mW、走査速度:30μm/sec、および、平均出力:650mW、走査速度30μm/secで作製した光導波路に、波長λ=1,550nmの赤外光を伝搬させて伝搬特性を測定した評価結果である。   By the above-described manufacturing method, as shown in FIG. 1, an optical waveguide in which a core part in which microcrystals are dispersed and precipitated inside a glass substrate having a predetermined composition is obtained two-dimensionally or three-dimensionally is obtained. Table 1 shows that, on the glass substrates of Example 1 (composition (a)) and Example 2 (composition (b)), the average output of pulsed laser light as the optical waveguide writing conditions: 400 mW, scanning speed: 30 μm / sec, and The average output is 650 mW, and the evaluation results are obtained by measuring the propagation characteristics by propagating infrared light having a wavelength of λ = 1,550 nm to an optical waveguide manufactured at a scanning speed of 30 μm / sec.

Figure 2005132693
Figure 2005132693

また、上記組成(a)、組成(b)のガラス基板内部に形成した光導波路のコア部の断面を、透過電子顕微鏡を用いて観察した結果、500nm以下の微粒子がコア部断面内に分散していることを確認した。この微粒子は、透過電子顕微鏡による格子像観察およびEDX分析の結果、組成(a)のガラスのコア部内部に析出した微粒子はK−Nb−Te−O系の組成から成るナノ結晶であることが判明した。一方、組成(b)のガラスのコア部内部に析出した微粒子はBa−Ti−Ge−O系の組成から成るナノ結晶であることが判明した。   Moreover, as a result of observing the cross section of the core part of the optical waveguide formed in the glass substrate of the said composition (a) and the composition (b) using the transmission electron microscope, 500 nm or less microparticles | fine-particles disperse | distribute in the core part cross section. Confirmed that. As a result of observation of a lattice image by a transmission electron microscope and EDX analysis, the fine particles deposited inside the glass core of the composition (a) are nanocrystals having a K—Nb—Te—O composition. found. On the other hand, it was found that the fine particles deposited inside the glass core of the composition (b) were nanocrystals having a Ba-Ti-Ge-O-based composition.

以上の実験結果より、この電気光学素子の製造方法では、ポーリング法に代わってガラス内部にナノ結晶を分散析出させて電気光学効果や非線形光学効果を誘起させている。結晶化に用いられるガラスは、非線形光学効果の大きい強誘電体結晶(例えばLiNbO、KNbO、BaTiOなど)の構成元素を含んだ組成から成り、このようなガラス材料から発現した電気光学効果や非線形光学効果は、析出した結晶相が起源であることから、その性能をほぼ永久的に持続させることが出来る。また、パルスレーザ光の集光照射のみでガラス内部にナノ結晶を分散析出させることができ、従来例のような500℃以上の熱処理を行う必要がない。また、パルスレーザ光の照射により形成した光導波路は、レーザ光のエネルギーによって形成したガラス構造の欠陥や密度変化に伴う高屈折率領域を有し、この領域内にナノ結晶が分散析出する。コア部は、この高屈折率領域によって構成されている。通常、コア部の形成後に500℃以上の熱処理を行えば、コア部の高屈折率領域のガラス構造が緩和され、これに伴って屈折率低下や導波路形状変化が生じてしまい、光伝搬特性に悪影響を与える。本発明によれば、パルスレーザ光を集光照射することによってナノ結晶を分散析出させることができ、熱処理が不要であるため、熱処理によるコア部の屈折率低下および導波路形状変化を抑えることができる。また、熱処理工程を要しないので製造コストを低減できる。 From the above experimental results, in this electro-optic element manufacturing method, instead of the poling method, nanocrystals are dispersed and precipitated in the glass to induce the electro-optic effect and the nonlinear optical effect. Glass used for crystallization is composed of a composition containing a constituent element of a ferroelectric crystal having a large nonlinear optical effect (for example, LiNbO 3 , KNbO 3 , BaTiO 3, etc.), and the electro-optic effect developed from such a glass material In addition, since the nonlinear optical effect originates from the precipitated crystal phase, its performance can be maintained almost permanently. In addition, nanocrystals can be dispersed and precipitated in the glass only by focused irradiation with pulsed laser light, and it is not necessary to perform a heat treatment at 500 ° C. or higher as in the conventional example. In addition, an optical waveguide formed by irradiation with pulsed laser light has a high refractive index region accompanying a defect or density change of the glass structure formed by the energy of the laser light, and nanocrystals are dispersed and precipitated in this region. The core part is constituted by this high refractive index region. Usually, if a heat treatment at 500 ° C. or higher is performed after the core portion is formed, the glass structure in the high refractive index region of the core portion is relaxed, resulting in a decrease in refractive index and a change in the shape of the waveguide. Adversely affects. According to the present invention, nanocrystals can be dispersed and deposited by condensing and irradiating pulsed laser light, and no heat treatment is required, so that a decrease in the refractive index of the core and a change in waveguide shape due to the heat treatment can be suppressed. it can. Further, since a heat treatment process is not required, the manufacturing cost can be reduced.

さらに、この電気光学素子の特性及びその応用例について説明する。組成(a)および組成(b)のガラスから作製した光導波路の光路長を0.1mmにして、一方の導波路断面からYAGレーザ光(波長λ=1,064nm)を入射させ、出射端より第2高調波(波長λ=532nm)の光を検出するメーカフリンジ法によって出力値から非線形光学定数dを算出した結果、LiNbO単結晶とほぼ同等の電気光学特性が得られた。さらに、これらの光導波路を用いて位相変調器を作製し、石英系PLC3dBカプラを導波路の両側に結合して構成したマッハツェンダ型光スイッチを作製した。これらの動作特性から電気光学定数rを算出した結果、組成(a)のガラスから作製した光導波路では最大10pm/V、組成(b)のガラスから作製した光導波路では最大30pm/Vが得ら、LiNbO単結晶とほぼ同等の特性が得られた。なお、コア部の一部を挟む一対の電極に電界を印加することによって電気光学効果が得られる。 Further, the characteristics of this electro-optical element and its application examples will be described. The optical path length of the optical waveguide made from the glass of the composition (a) and the composition (b) is set to 0.1 mm, and YAG laser light (wavelength λ = 1,064 nm) is incident from one waveguide cross section. As a result of calculating the nonlinear optical constant d from the output value by the maker fringe method for detecting light of the second harmonic (wavelength λ = 532 nm), electro-optical characteristics almost equivalent to those of the LiNbO 3 single crystal were obtained. Further, a phase modulator was manufactured using these optical waveguides, and a Mach-Zehnder type optical switch constituted by coupling a silica-based PLC 3 dB coupler on both sides of the waveguide was manufactured. As a result of calculating the electro-optic constant r from these operating characteristics, a maximum of 10 pm / V was obtained for an optical waveguide made from glass of composition (a), and a maximum of 30 pm / V was obtained for an optical waveguide made from glass of composition (b). As a result, almost the same characteristics as those of LiNbO 3 single crystal were obtained. An electro-optic effect can be obtained by applying an electric field to a pair of electrodes sandwiching a part of the core portion.

実施の形態2.
本発明の実施の形態2に係る電気光学素子の製造方法について説明する。この電気光学素子の製造方法では、用いられるガラス基板の組成(a)の組成範囲について図4を用いて説明する。本発明者が鋭意検討した結果、M(1) Oの成分を5mol%〜20mol%の割合で含み、M(2)Oの成分を5mol%〜20mol%の割合で含み、M(3)の成分を60〜90mol%の割合で含む図4の斜線部の組成範囲で作製したガラス材料がナノ結晶析出に好ましいガラス組成であることが判明した。図4は、ガラス組成としてM(1) O−M(2) −M(3)、[M(1):LiあるいはKの少なくとも1種の成分、M(2):NbあるいはTaの少なくとも1種の成分、M(3):TeあるいはSi、Geのうち少なくとも1種の成分]の3元相図であり、ナノ結晶が析出する組成範囲を示している。この斜線部の組成範囲は、クエンチ処理によってガラスが得られる組成範囲であると同時に、パルスレーザ光の集光照射によってナノ結晶が析出する組成範囲である。図中、白丸はナノ結晶が多く析出したガラス組成、斜線模様の丸はナノ結晶の析出が少なかったガラス組成、黒丸はナノ結晶が析出しなかったガラス組成であることを示す。上記組成範囲のガラス材料を主体とするガラス基板は、パルスレーザ光の集光照射のみでガラス内部にナノ結晶を分散析出させることができ、従来例のような熱処理を必要としない。なお、本実施の形態2では、組成(a)のそれぞれのM(1)、M(2)、M(3)は1種類の成分に制限されず、2種類以上の成分が含まれてもよい。
Embodiment 2. FIG.
A method for manufacturing an electro-optical element according to Embodiment 2 of the present invention will be described. In this electro-optical element manufacturing method, the composition range of the composition (a) of the glass substrate used will be described with reference to FIG. As a result of intensive studies by the present inventor, M (1) 2 O is contained in a proportion of 5 to 20 mol%, M (2) O is contained in a proportion of 5 to 20 mol%, and M (3) glass material manufactured in the composition range of the shaded portion in FIG. 4, including the components of O 2 at a rate of 60~90Mol% was found to be preferred glass composition nanocrystals precipitated. FIG. 4 shows M (1) 2 O-M (2) 2 O 5 -M (3) O 2 , [M (1) : at least one component of Li or K, M (2) : 3 is a ternary phase diagram of at least one component of Nb or Ta, M (3) : at least one component of Te, Si, or Ge], and shows a composition range in which nanocrystals are precipitated. The composition range of the shaded portion is a composition range in which glass is obtained by quenching treatment, and at the same time, a composition range in which nanocrystals are precipitated by focused irradiation of pulsed laser light. In the figure, white circles indicate a glass composition in which a large amount of nanocrystals are deposited, hatched circles indicate a glass composition in which the precipitation of nanocrystals is small, and black circles indicate a glass composition in which nanocrystals are not precipitated. A glass substrate mainly composed of a glass material having the above composition range can disperse and precipitate nanocrystals inside the glass only by focused irradiation of pulsed laser light, and does not require heat treatment as in the conventional example. In the second embodiment, each M (1) , M (2) , M (3) of the composition (a) is not limited to one type of component, and may include two or more types of components. Good.

実施の形態3.
本発明の実施の形態3に係る電気光学素子の製造方法について説明する。この電気光学素子の製造方法では、用いられるガラス基板の組成(b)の組成範囲について図5を用いて説明する。本発明者が鋭意検討した結果、M(1)Oの成分を25mol%〜40mol%の割合で含み、M(2)の成分を10mol%〜20mol%の割合で含み、M(3)の成分を45〜60mol%の割合で含む図5の斜線部の組成範囲で作製したガラス材料がナノ結晶析出に好ましいガラス組成であることが判明した。図5は、ガラス組成(b)としてM(1)O−M(2)−M(3)、[M(1):MgあるいはCa、Sr、Baの少なくとも1種の成分、M(2):TiあるいはZrの少なくとも1種の成分、M(3):SiあるいはGeのうち少なくとも1種の成分]の3元相図であり、ナノ結晶が析出する組成範囲を示している。この斜線部の組成範囲は、クエンチ処理によってガラスが得られる組成範囲であると同時に、パルスレーザ光の集光照射によってナノ結晶が析出する組成範囲である。図中、白丸はナノ結晶が多く析出したガラス組成、斜線模様の丸はナノ結晶の析出が少なかったガラス組成、黒丸はナノ結晶が析出しなかったガラス組成であることを示す。上記組成範囲のガラス材料を主体とするガラス基板は、パルスレーザ光の集光照射のみでガラス内部にナノ結晶を分散析出させることができ、従来例のような熱処理を必要としない。なお、本実施の形態3では、M(1)、M(2)、M(3)は1種類の成分に制限されず、2種類以上の成分が含まれていてもよい。
Embodiment 3 FIG.
A method for manufacturing an electro-optic element according to Embodiment 3 of the present invention will be described. In this electro-optic element manufacturing method, the composition range of the composition (b) of the glass substrate used will be described with reference to FIG. The present inventors have studied intensively, wherein M a (1) O component in a proportion of 25 mol% 40 mol%, wherein the components of the M (2) O 2 at a ratio of 10mol% ~20mol%, M (3 ) glass material manufactured in the composition range of the shaded portion of Figure 5 comprising the components of O 2 at a rate of 45~60Mol% was found to be preferred glass composition nanocrystals precipitated. FIG. 5 shows M (1) OM ( 2) O 2 -M (3) O 2 as the glass composition (b), [M (1) : at least one component of Mg, Ca, Sr, Ba, M (2) : At least one component of Ti or Zr, M (3) : At least one component of Si or Ge], showing a composition range in which nanocrystals are precipitated. . The composition range of the shaded portion is a composition range in which glass is obtained by quenching treatment, and at the same time, a composition range in which nanocrystals are precipitated by focused irradiation of pulsed laser light. In the figure, white circles indicate a glass composition in which a large amount of nanocrystals are deposited, hatched circles indicate a glass composition in which the precipitation of nanocrystals is small, and black circles indicate a glass composition in which nanocrystals are not precipitated. A glass substrate mainly composed of a glass material having the above composition range can disperse and precipitate nanocrystals inside the glass only by focused irradiation of pulsed laser light, and does not require heat treatment as in the conventional example. In the third embodiment, M (1) , M (2) , and M (3) are not limited to one type of component, and two or more types of components may be included.

実施の形態4.
本発明の実施の形態4に係る電気光学素子について図6を用いて説明する。図6の(a)は、この実施の形態4に係る電気光学素子のナノ結晶17が分散した構造を備えたコア部15を含む光導波路を有する電気光学素子10の概略図である。また図6の(b)は、コア部15の断面構造を示す断面図である。コア部15は、レーザ光照射によって形成されたガラス構造の欠陥や密度変化に伴う高屈折率領域16と、この領域内に分散したナノ結晶17とから構成される。
Embodiment 4 FIG.
An electro-optical element according to Embodiment 4 of the present invention will be described with reference to FIG. FIG. 6A is a schematic view of the electro-optical element 10 having an optical waveguide including a core portion 15 having a structure in which nanocrystals 17 of the electro-optical element according to the fourth embodiment are dispersed. FIG. 6B is a cross-sectional view showing a cross-sectional structure of the core portion 15. The core portion 15 is composed of a glass structure defect formed by laser light irradiation and a high refractive index region 16 that accompanies density change, and nanocrystals 17 dispersed in this region.

以下に、ガラス組成(a)として15KO−15Nb−70TeOの場合のガラス基板を用いた電気光学素子を例に挙げて具体的に説明する。表2は、ガラス内部にフェムト秒レーザ光を6通り(実施例3〜8)の集光照射条件によってナノ結晶を分散析出させて形成したコア部を含む光導波路を有する電気光学素子の、結晶粒径および散乱光強度等の評価結果である。 Hereinafter, an electro-optic element using a glass substrate in the case of 15K 2 O-15Nb 2 O 5 -70TeO 2 as the glass composition (a) will be specifically described. Table 2 shows the crystal of an electro-optic element having an optical waveguide including a core part formed by dispersing and precipitating nanocrystals under six condensing irradiation conditions of femtosecond laser light (Examples 3 to 8) inside the glass. It is evaluation results, such as a particle size and scattered light intensity.

Figure 2005132693
Figure 2005132693

ここで、表2中の、各光導波路の内部に析出した結晶の粒径は、透過電子顕微鏡にて導波路断面を観察することにより測定した。また光導波路の散乱光強度は、直線状のコア部を有する光導波路に波長λ=1,550nmの光信号を伝搬させ、光ファイバをプローブに用いて導波路に接近させた先端を角度と導波路からの距離を一定に保ちながら導波光伝搬に沿って散乱光強度分布を測定して検出した。表中の結果より、伝搬光の波長よりも大きい粒径の結晶が析出した場合(実施例6)には、散乱光強度は大きくなった。この他の照射条件(実施例3〜5、実施例7、8)においては、概ね散乱光強度が低い結果となった。また、実施例4は粒子径が伝搬光の波長の1/10以下となりレイリー散乱領域であったが、導波路の光路長が短いため、その影響は小さかった。以上の結果より、光導波路の内部に形成する結晶の粒径を、光導波路を伝搬する光の波長λ=800nm〜1,550nmよりも小さくすることによって、伝搬光の散乱を極めて小さくすることができる。そこで、ナノ結晶17の直径aは、光導波路に伝搬させる光信号の波長λ=800〜1,550nmよりも小さく、ミー散乱が発生しない粒子サイズ範囲に粒度分布をもつことが好ましい。具体的には、ナノ結晶の粒子径aと光導波路に伝搬させる光の波長λとに関するミー散乱パラメータq(=2πa/λ)について次式、1/5π<q<2πを満たすことが好ましい。   Here, the grain size of the crystals precipitated in each optical waveguide in Table 2 was measured by observing the waveguide cross section with a transmission electron microscope. The scattered light intensity of the optical waveguide is such that an optical signal having a wavelength λ = 1, 550 nm is propagated through an optical waveguide having a linear core portion, and the tip that is close to the waveguide using an optical fiber as a probe is guided with an angle. The scattered light intensity distribution was measured and detected along the propagation of the guided light while keeping the distance from the waveguide constant. From the results in the table, when crystals having a particle size larger than the wavelength of propagating light were deposited (Example 6), the scattered light intensity increased. In other irradiation conditions (Examples 3 to 5, Examples 7 and 8), the scattered light intensity was generally low. Further, in Example 4, the particle diameter was 1/10 or less of the wavelength of propagating light and was in the Rayleigh scattering region, but the influence was small because the optical path length of the waveguide was short. From the above results, it is possible to extremely reduce the scattering of propagating light by making the grain size of the crystal formed inside the optical waveguide smaller than the wavelength λ = 800 nm to 1,550 nm of the light propagating through the optical waveguide. it can. Therefore, the diameter “a” of the nanocrystal 17 is preferably smaller than the wavelength λ = 800 to 1,550 nm of the optical signal propagated through the optical waveguide, and has a particle size distribution in a particle size range in which Mie scattering does not occur. Specifically, it is preferable that the following formula, 1 / 5π <q <2π, is satisfied with respect to the Mie scattering parameter q (= 2πa / λ) regarding the particle diameter a of the nanocrystal and the wavelength λ of the light propagating through the optical waveguide.

実施の形態5.
本発明の実施の形態5に係る電気光学素子について図7を用いて説明する。この電気光学素子は、実施の形態1から4に係る電気光学素子の応用例である。図7の(a)及び(b)は、それぞれこの実施の形態に係る電気光学素子の例を示す概略図である。図7(a)は、ガラス基板13の内部に作製した2つの方向性結合型3dBカプラ31a、31bから成るマッハツェンダ構造の光回路30である。この光回路30は、2本のアーム32a、32bが2箇所で互いに近接して形成された方向性結合型3dBカプラ31a、31bを有している。さらに、2つの3dBカプラ31a、31bの間のそれぞれのアーム32a、32bの一部に電界を印加する制御用電極33a,33b,33c,33dを備えている。この光回路30の特性は、素子損失は1.0dB以下、分岐比は3dB±0.5dBであった。
Embodiment 5 FIG.
An electro-optic element according to Embodiment 5 of the present invention will be described with reference to FIG. This electro-optical element is an application example of the electro-optical element according to the first to fourth embodiments. FIGS. 7A and 7B are schematic views showing examples of the electro-optical element according to this embodiment. FIG. 7A shows an optical circuit 30 having a Mach-Zehnder structure composed of two directional coupling type 3 dB couplers 31 a and 31 b fabricated inside the glass substrate 13. The optical circuit 30 includes directional coupling type 3 dB couplers 31 a and 31 b in which two arms 32 a and 32 b are formed close to each other at two locations. Furthermore, control electrodes 33a, 33b, 33c, and 33d for applying an electric field to a part of each of the arms 32a and 32b between the two 3 dB couplers 31a and 31b are provided. The characteristics of the optical circuit 30 were an element loss of 1.0 dB or less and a branching ratio of 3 dB ± 0.5 dB.

また、図7(b)は同様に上記ガラス基板13の内部に作製した2つのY分岐型3dBカプラ41a、41bを有するマッハツェンダ構造の光回路40である。この光回路40は、1本のアームが一方のY分岐型3dBカプラ41aで2本のアーム42a、42bに分岐し、2本のアーム42a、42bが他方のY分岐型3dBカプラ41bで1本のアームに結合されている。さらに、2つの3dBカプラ41a、41bの間のそれぞれのアーム42a、42bの一部に電界を印加する制御用電極43a,43b,43c,43dを備えている。この光回路40の特性は、伝搬損失1.0dB以下、分岐比は3dB±0.5dBであった。   FIG. 7B similarly shows an optical circuit 40 having a Mach-Zehnder structure having two Y-branch type 3 dB couplers 41 a and 41 b fabricated inside the glass substrate 13. In this optical circuit 40, one arm is branched to two arms 42a and 42b by one Y-branch type 3dB coupler 41a, and two arms 42a and 42b are one by another Y-branch type 3dB coupler 41b. Is coupled to the arm. Furthermore, control electrodes 43a, 43b, 43c, and 43d for applying an electric field to a part of each of the arms 42a and 42b between the two 3 dB couplers 41a and 41b are provided. The characteristics of this optical circuit 40 were a propagation loss of 1.0 dB or less and a branching ratio of 3 dB ± 0.5 dB.

なお、上記マッハツェンダ構造の光回路は、アーム32a、32b、42a、42b部分に形成した制御用電極33a、33b、33c、33d、43a、43b、43c、43dから制御用電気信号を印加して光信号を制御する光変調器、光スイッチ、さらにグレーティングによる波長可変グレーティング、Add−Drop型光フィルターなどの電気光学素子に適用することができる。また、この実施の形態5では、マッハツェンダ型光回路を作製した場合について説明したが、ガラス基板内に光回路を3次元的に形成することもでき、さらに上記電気光学素子の機能を集積化した構造を作製することも出来る。   The optical circuit having the Mach-Zehnder structure applies a control electrical signal from the control electrodes 33a, 33b, 33c, 33d, 43a, 43b, 43c, and 43d formed on the arms 32a, 32b, 42a, and 42b. The present invention can be applied to an electro-optic element such as an optical modulator that controls a signal, an optical switch, a wavelength tunable grating using a grating, and an Add-Drop type optical filter. In the fifth embodiment, the case where the Mach-Zehnder type optical circuit is manufactured has been described. However, the optical circuit can be formed three-dimensionally in the glass substrate, and the functions of the electro-optical element are further integrated. A structure can also be made.

(a)は、本発明の実施の形態1に係る電気光学素子の製造方法の概略図であり(b)は、コア部の断面図である。(A) is the schematic of the manufacturing method of the electro-optic element which concerns on Embodiment 1 of this invention, (b) is sectional drawing of a core part. 本発明の実施の形態1に係る電気光学素子の製造方法で用いるレーザ照射装置のブロック図である。1 is a block diagram of a laser irradiation apparatus used in a method for manufacturing an electro-optic element according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る電気光学素子に用いるガラス材料の透過率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the transmittance | permeability of the glass material used for the electro-optic element which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る電気光学素子の製造方法で用いるガラス材料の組成(a)の組成範囲を示す3元相図である。It is a ternary phase diagram showing the composition range of the composition (a) of the glass material used in the method for manufacturing an electro-optic element according to Embodiment 2 of the present invention. 本発明の実施の形態3に係る電気光学素子の製造方法で用いるガラス材料の組成(b)の組成範囲を示す3元相図である。It is a ternary phase diagram showing the composition range of the composition (b) of the glass material used in the method for manufacturing an electro-optic element according to Embodiment 3 of the present invention. (a)は、本発明の実施の形態4に係る電気光学素子の光導波路構造を示す概略図であり、(b)は、コア部の断面図である。(A) is the schematic which shows the optical waveguide structure of the electro-optic element which concerns on Embodiment 4 of this invention, (b) is sectional drawing of a core part. (a)は、本発明の実施の形態5に係る電気光学素子である方向性結合型3dBカプラを備えた光回路の概略図であり、(b)は、Y分岐型3dBカプラを備えた光回路の概略図である。(A) is the schematic of the optical circuit provided with the directional coupling type 3 dB coupler which is an electro-optical element which concerns on Embodiment 5 of this invention, (b) is the light provided with the Y branch type 3 dB coupler. It is the schematic of a circuit.

符号の説明Explanation of symbols

10 電気光学素子、11 パルスレーザ光、12 集光レンズ、13 ガラス基板、14 集光点、15 コア部、16 高屈折率領域、17 ナノ結晶、20 パルスレーザ照射システム、21 YAGレーザ、22 Ti:Alレーザ、23 アンプ、24 アッテネータ、25 ミラー、26 可動ステージ、27 コンピュータ、28 CCDカメラ、29 テレビモニタ、30 方向性結合器、31a、31b 方向性結合型3dBカプラ、32a、32b アーム、33a、33b、33c、33d 制御用電極
40 マッハツエンダ型光回路、41a、41b Y分岐型3dBカプラ、42a、42b アーム、43a、43b、43c、43d 制御用電極
DESCRIPTION OF SYMBOLS 10 Electro-optical element, 11 Pulse laser beam, 12 Condensing lens, 13 Glass substrate, 14 Condensing point, 15 Core part, 16 High refractive index area | region, 17 Nanocrystal, 20 Pulse laser irradiation system, 21 YAG laser, 22 Ti : Al 2 O 3 laser, 23 amplifier, 24 attenuator, 25 mirror, 26 movable stage, 27 computer, 28 CCD camera, 29 TV monitor, 30 directional coupler, 31a, 31b directional coupled 3 dB coupler, 32a, 32b Arm, 33a, 33b, 33c, 33d Control electrode 40 Mach-Zehnder type optical circuit, 41a, 41b Y-branch type 3 dB coupler, 42a, 42b Arm, 43a, 43b, 43c, 43d Control electrode

Claims (9)

(a)LiO、KOのうち少なくとも1種の成分と、Nb、Taのうち少なくとも1種の成分と、SiO、GeO、TeOのうち少なくとも1種の成分とを含んだガラス成分と、(b)MgO、CaO、SrO、BaOのうち少なくとも1種の成分と、TiO、ZrOのうち少なくとも1種の成分と、SiO、GeOのうち少なくとも1種の成分とを含んだガラス成分との内、いずれか一方のガラス成分を主体として含むガラス体を用意するステップと、
前記ガラス成分の基礎吸収端波長より長波長のパルスレーザ光を前記ガラス体の内部に集光照射して微結晶が分散したコア部を形成するステップと、
前記パルスレーザ光を集光照射しながら、前記レーザ光の集光点を前記ガラス体の内部について2次元的又は3次元的に走査して前記コア部が2次元的又は3次元的に連続する光導波路を形成するステップと
を含む、電気光学素子の製造方法。
(A) At least one component of Li 2 O and K 2 O, at least one component of Nb 2 O 5 and Ta 2 O 5 , and at least one of SiO 2 , GeO 2 , and TeO 2 (B) at least one component of MgO, CaO, SrO, BaO, at least one component of TiO 2 , ZrO 2 , and SiO 2 , GeO 2 A step of preparing a glass body mainly comprising any one of the glass components including at least one component; and
A step of forming a core part in which fine crystals are dispersed by condensing and irradiating a pulse laser beam having a wavelength longer than the fundamental absorption edge wavelength of the glass component inside the glass body;
While condensing and irradiating the pulsed laser beam, the laser beam condensing point is scanned two-dimensionally or three-dimensionally inside the glass body, and the core portion is two-dimensionally or three-dimensionally continuous. Forming an optical waveguide. A method for manufacturing an electro-optical element.
前記ガラス成分(a)は、LiO、KOのうち少なくとも1種の成分を5〜20mol%の割合で含有し、Nb、Taのうち少なくとも1種の成分を5〜20mol%の割合で含有し、SiO、GeO、TeOのうち少なくとも1種の成分を60〜90mol%の割合で含有することを特徴とする請求項1に記載の電気光学素子の製造方法。 The glass component (a) contains at least one component of Li 2 O and K 2 O at a ratio of 5 to 20 mol%, and contains at least one component of Nb 2 O 5 and Ta 2 O 5. 2. The electro-optic element according to claim 1, wherein the electro-optic element is contained at a rate of 5 to 20 mol% and contains at least one component of SiO 2 , GeO 2 , and TeO 2 at a rate of 60 to 90 mol%. Production method. 前記ガラス成分(b)は、MgO、CaO、SrO、BaOのうち少なくとも1種の成分を25〜40mol%の割合で含有し、TiO、ZrOのうち少なくとも1種の成分を10〜20mol%の割合で含有し、SiO、GeOのうち少なくとも1種の成分を45〜60mol%の割合で含有することを特徴とする請求項1に記載の電気光学素子の製造方法。 The glass component (b) is, MgO, CaO, SrO, at least one component of BaO in a proportion of 25~40mol%, TiO 2, at least one component of the ZrO 2 10 to 20% 2. The method of manufacturing an electro-optic element according to claim 1, wherein at least one component of SiO 2 and GeO 2 is contained in a proportion of 45 to 60 mol%. 前記コア部の一部を挟む一対の電極を設けるステップをさらに備えることを特徴とする請求項1に記載の電気光学素子の製造方法。   The method of manufacturing an electro-optical element according to claim 1, further comprising providing a pair of electrodes sandwiching a part of the core portion. 請求項1から4のいずれか一項に記載の製造方法により製造された電気光学素子であって、
前記微結晶の粒子径aと前記光導波路を伝搬させる光の波長λとに関するミー散乱パラメータq(=2πa/λ)は、下記式、
1/5π<q<2π
を満たすことを特徴とする電気光学素子。
An electro-optic element manufactured by the manufacturing method according to any one of claims 1 to 4,
The Mie scattering parameter q (= 2πa / λ) relating to the particle diameter a of the microcrystal and the wavelength λ of light propagating through the optical waveguide is expressed by the following equation:
1 / 5π <q <2π
An electro-optic element characterized by satisfying
(a)LiO、KOのうち少なくとも1種の成分と、Nb、Taのうち少なくとも1種の成分と、SiO、GeO、TeOのうち少なくとも1種の成分とを含んだガラス成分と、(b)MgO、CaO、SrO、BaOのうち少なくとも1種の成分と、TiO、ZrOのうち少なくとも1種の成分と、SiO、GeOのうち少なくとも1種の成分とを含んだガラス成分との内、いずれか一方のガラス成分を主体として含むガラス体をクラッド部として、前記ガラス体の内部に微結晶が分散したコア部が2次元的又は3次元的に連続する光導波路を備え、
前記コア部の前記微結晶以外の部分の屈折率は、前記クラッド部の屈折率よりも高い、電気光学素子。
(A) At least one component of Li 2 O and K 2 O, at least one component of Nb 2 O 5 and Ta 2 O 5 , and at least one of SiO 2 , GeO 2 , and TeO 2 (B) at least one component of MgO, CaO, SrO, BaO, at least one component of TiO 2 , ZrO 2 , and SiO 2 , GeO 2 Of the glass component containing at least one component, a glass body mainly containing any one of the glass components is used as a cladding portion, and a core portion in which microcrystals are dispersed inside the glass body is two-dimensional or Comprising a three-dimensional continuous optical waveguide;
The electro-optic element, wherein a refractive index of a portion other than the microcrystal of the core portion is higher than a refractive index of the cladding portion.
前記微結晶の粒子径aと前記光導波路を伝搬させる光の波長λとに関するミー散乱パラメータq(=2πa/λ)は、下記式
1/5π<q<2π
を満たすことを特徴とする請求項6に記載の電気光学素子。
The Mie scattering parameter q (= 2πa / λ) related to the particle diameter a of the microcrystal and the wavelength λ of the light propagating through the optical waveguide is expressed by the following formula 1 / 5π <q <2π.
The electro-optic element according to claim 6, wherein:
前記コア部が直線、曲線、カプラ又はY分岐の少なくとも一つを含むパターンを備えていることを特徴とする請求項6又は7に記載の電気光学素子。   The electro-optical element according to claim 6, wherein the core portion includes a pattern including at least one of a straight line, a curve, a coupler, and a Y branch. 前記コア部の一部を挟んで電界を印加する一対の電極をさらに備えることを特徴とする請求項6から8のいずれか一項に記載の電気光学素子。   The electro-optic element according to claim 6, further comprising a pair of electrodes that apply an electric field across a part of the core portion.
JP2003372097A 2003-10-31 2003-10-31 Electro-optical element and its manufacturing method Pending JP2005132693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372097A JP2005132693A (en) 2003-10-31 2003-10-31 Electro-optical element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372097A JP2005132693A (en) 2003-10-31 2003-10-31 Electro-optical element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005132693A true JP2005132693A (en) 2005-05-26

Family

ID=34648563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372097A Pending JP2005132693A (en) 2003-10-31 2003-10-31 Electro-optical element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005132693A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091483A1 (en) 2006-02-09 2007-08-16 Nagaoka University Of Technology Optical component and method for manufacturing the same
JP2009274882A (en) * 2008-05-12 2009-11-26 Tohoku Univ Glass, crystallized glass, manufacturing method for crystallized glass, and optical component
CN110171801A (en) * 2019-05-15 2019-08-27 浙江大学 The preparation method of glass and the alternately arranged self-organizing periodicity micro-nano structure of crystal
JP2020160260A (en) * 2019-03-26 2020-10-01 株式会社フジクラ Method for manufacturing optical input-output device and optical input-output device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091483A1 (en) 2006-02-09 2007-08-16 Nagaoka University Of Technology Optical component and method for manufacturing the same
US8201421B2 (en) 2006-02-09 2012-06-19 Asahi Glass Company, Limited Optical component and method for its production
JP2009274882A (en) * 2008-05-12 2009-11-26 Tohoku Univ Glass, crystallized glass, manufacturing method for crystallized glass, and optical component
JP2020160260A (en) * 2019-03-26 2020-10-01 株式会社フジクラ Method for manufacturing optical input-output device and optical input-output device
CN110171801A (en) * 2019-05-15 2019-08-27 浙江大学 The preparation method of glass and the alternately arranged self-organizing periodicity micro-nano structure of crystal
CN110171801B (en) * 2019-05-15 2022-01-07 浙江大学 Preparation method of self-organized periodic micro-nano structure with alternately arranged glass and crystals

Similar Documents

Publication Publication Date Title
Krol Femtosecond laser modification of glass
Tan et al. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications
Bhardwaj et al. Femtosecond laser-induced refractive index modification in multicomponent glasses
Qiu et al. Femtosecond laser-induced microfeatures in glasses and their applications
Ams et al. Investigation of ultrafast laser--photonic material interactions: challenges for directly written glass photonics
Gattass et al. Femtosecond laser micromachining in transparent materials
JP3649835B2 (en) Optical waveguide fabrication method
Lipatiev et al. Direct laser writing of LaBGeO5 crystal-in-glass waveguide enabling frequency conversion
Ebendorff-Heidepriem Laser writing of waveguides in photosensitive glasses
Teng et al. Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses
Ferreira et al. Transparent glass-ceramic waveguides made by femtosecond laser writing
JP2004196585A (en) Method for forming heterogeneous phase within material with laser beam, structure and optical parts
Vázquez et al. Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass
Sola et al. Stress-induced buried waveguides in the 0.8 CaSiO3–0.2 Ca3 (PO4) 2 eutectic glass doped with Nd3+ ions
JP2005132693A (en) Electro-optical element and its manufacturing method
JPH11167036A (en) Optical waveguide circuit and nonlinear optical device
JP3657164B2 (en) Non-metallic particle precipitated glass and method for producing the same
Bai et al. Ridge waveguides in Yb3+-doped silicate glass fabricated by combination of proton implantation and femtosecond laser ablation
Fukuda et al. Low-loss optical waveguides written by femtosecond laser pulses for three-dimensional photonic devices
CN113176628A (en) Large-scale photonic integrated chip rapid manufacturing method based on thin film material
JP2003321252A (en) Process for forming phase-separated region inside glass
Zhao et al. Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses
JP2003215376A (en) Method for manufacturing waveguide
JPH10288799A (en) Optical waveguide circuit and nonlinear optical device
Sotillo et al. Raman spectroscopy of femtosecond laser written low propagation loss optical waveguides in Schott N-SF8 glass