JP2009273204A - Polymer flexible actuator - Google Patents

Polymer flexible actuator Download PDF

Info

Publication number
JP2009273204A
JP2009273204A JP2008120060A JP2008120060A JP2009273204A JP 2009273204 A JP2009273204 A JP 2009273204A JP 2008120060 A JP2008120060 A JP 2008120060A JP 2008120060 A JP2008120060 A JP 2008120060A JP 2009273204 A JP2009273204 A JP 2009273204A
Authority
JP
Japan
Prior art keywords
polymer
flexible
actuator
plasticizer
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008120060A
Other languages
Japanese (ja)
Other versions
JP5392669B2 (en
Inventor
Toshihiro Hirai
利博 平井
Kazuomi Hirai
一臣 平井
Midori Takasaki
緑 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2008120060A priority Critical patent/JP5392669B2/en
Publication of JP2009273204A publication Critical patent/JP2009273204A/en
Application granted granted Critical
Publication of JP5392669B2 publication Critical patent/JP5392669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer flexible actuator using a dielectric polymer that is driven by a low electric field. <P>SOLUTION: A polymer flexible actuator contains a dielectric polymer, a plasticizer, and a gel 1 consisting of ion liquid selected from phosphonium based cation and ammonium based cation. Preferably, the dielectric polymer is polyvinyl chloride. Preferably, the plasticizer is adipic acid, sebacic acid, itaconic acid or phthalic ester. Furthermore, the polymer flexible actuator preferably contains 1-50 pts.wt. of dielectric polymer, 50-150 pts.wt. of plasticizer, and 1-30 pts.wt. of ion liquid. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、人工筋肉等に適用することができ、電気刺激により変形可能で、小型かつ柔軟で軽量な高分子柔軟アクチュエータに関する。   The present invention relates to a polymer flexible actuator that can be applied to artificial muscles and the like, can be deformed by electrical stimulation, and is small, flexible, and lightweight.

誘電性高分子材料を用いたアクチュエータは、小型軽量かつ柔軟であり人工筋肉への応用が期待されている。人工筋肉アクチュエータとして期待されている誘電性高分子材料にはポリ塩化ビニルやポリメタクリル酸メチルなどがある。中でも可塑剤を含有させたポリ塩化ビニルゲルは、生体筋肉に類似し、電気刺激によりクリープ変形もしくはベンディング変形を生じる。しかし、一般的にこれらの誘電性高分子を用いたゲルアクチュエータの駆動には数百Vの高電圧の印加で必要である。従って、低電圧で駆動するゲルアクチュエータの開発は、人工筋肉への応用には必要不可欠である。   Actuators using dielectric polymer materials are small, light and flexible, and are expected to be applied to artificial muscles. Examples of dielectric polymer materials expected as artificial muscle actuators include polyvinyl chloride and polymethyl methacrylate. Among them, the polyvinyl chloride gel containing a plasticizer is similar to biological muscles and causes creep deformation or bending deformation by electrical stimulation. However, in general, driving a gel actuator using these dielectric polymers requires application of a high voltage of several hundred volts. Therefore, the development of a gel actuator driven at a low voltage is indispensable for application to artificial muscles.

これらの問題を解決するために、近年は高分子とイオン液体を用いたイオンゲルアクチュエータが注目を浴びている。   In order to solve these problems, in recent years, an ion gel actuator using a polymer and an ionic liquid has attracted attention.

特許文献1に高分子とイオン液体を用いたアクチュエータが開示されている。これは、誘電性高分子とイオン液体、さらにカーボンナノファイバーを使用している。このアクチュエータは3層で形成されており、製造方法も何段階かのステップを必要とされ、使用している試薬も一般的には高価のものである。   Patent Document 1 discloses an actuator using a polymer and an ionic liquid. This uses a dielectric polymer, an ionic liquid, and carbon nanofibers. This actuator is formed of three layers, the manufacturing method requires several steps, and the reagents used are generally expensive.

また、特許文献2のアクチュエータにおいては、誘電性高分子、可塑剤および添加剤を使用したアクチュエータであり、駆動電圧の低下する方法を開示している。この駆動法では、従来に比べ駆動電圧の低下は見られたが100V以上の印加電圧が必要であり、相対的に高い駆動電圧を要する次点がある。
特開2006−288040 特開2005−323482
The actuator of Patent Document 2 is an actuator using a dielectric polymer, a plasticizer, and an additive, and discloses a method for reducing the drive voltage. In this driving method, although the driving voltage is lowered as compared with the conventional method, an applied voltage of 100 V or more is necessary, and there is a second point that requires a relatively high driving voltage.
JP 2006-288040 JP-A-2005-323482

本発明は、低電場で駆動でき、空気中で安定に作動し、製造および加工が極めて簡単であり、幅広い用途への実用化を可能にする柔軟高分子アクチュエータを提供することを目的とする。   An object of the present invention is to provide a flexible polymer actuator that can be driven in a low electric field, operates stably in air, is extremely simple to manufacture and process, and enables practical application to a wide range of applications.

前記の目的を達成するためになされた特許請求の範囲の請求項1に記載の高分子柔軟アクチュエータは、誘電性高分子、可塑剤と、ホスホニウム系カチオンおよびアンモニウム系カチオンから選ばれるオン液体を含むゲルからなることを特徴とする。   The polymer flexible actuator according to claim 1, which has been made to achieve the above object, includes a dielectric polymer, a plasticizer, and an on-liquid selected from a phosphonium cation and an ammonium cation. It consists of a gel.

請求項2に記載の高分子柔軟アクチュエータは、請求項1に記載されたもので、前記誘電性高分子が、ポリ塩化ビニルであることを特徴とする。   A polymer flexible actuator according to a second aspect is the one according to the first aspect, wherein the dielectric polymer is polyvinyl chloride.

請求項3に記載の高分子柔軟アクチュエータは、請求項1に記載されたもので、前記可塑剤がアジピン酸、セバシン酸、イタコン酸およびフタル酸エステルであることを特徴とする。   A flexible polymer actuator according to a third aspect is the polymer flexible actuator according to the first aspect, wherein the plasticizer is adipic acid, sebacic acid, itaconic acid, and phthalic acid ester.

請求項4に記載の高分子柔軟アクチュエータは、請求項1に記載されたもので、前記誘電性高分子1〜50重量部と、前記可塑剤50〜150重量部と、前記イオン液体1〜30重量部とを含んでいることを特徴とする。   The flexible polymer actuator according to claim 4 is the flexible polymer actuator according to claim 1, wherein 1 to 50 parts by weight of the dielectric polymer, 50 to 150 parts by weight of the plasticizer, and 1 to 30 of the ionic liquid. It includes a weight part.

請求項5に記載の高分子柔軟アクチュエータの製造方法は、有機溶媒中に誘電性高分子および可塑剤を溶解し、そこにイオン液体を混合し、有機溶媒を蒸発させ、ゲルを形成することを特徴とする。   The method for producing a flexible polymer actuator according to claim 5 comprises dissolving a dielectric polymer and a plasticizer in an organic solvent, mixing an ionic liquid therein, evaporating the organic solvent, and forming a gel. Features.

請求項6に記載の高分子柔軟アクチュエータの製造方法は、請求項5に記載された製造方法であって、前記有機溶媒が炭化水素系溶媒であることを特徴とする。   A method for producing a flexible polymer actuator according to a sixth aspect is the production method according to the fifth aspect, wherein the organic solvent is a hydrocarbon solvent.

本発明の高分子柔軟アクチュエータは、上記課題が解決したことに加え、従来とは異なる塑性変形を示す。この高分子柔軟アクチュエータは無色透明かつ小型軽量で柔軟であり、印加電圧を反対にすることにより、ゲルの変形は初期段階へと復元する新規なゲルアクチュエータを作製可能である。   The polymer flexible actuator of the present invention exhibits plastic deformation different from the conventional one in addition to solving the above-mentioned problems. This polymer flexible actuator is colorless and transparent, small and light and flexible, and by reversing the applied voltage, a novel gel actuator that restores the gel deformation to the initial stage can be produced.

以下、本発明の実施形態を詳細に説明するが、本発明の範囲はこれらの実施形態に限定されるものではない。   Hereinafter, although embodiment of this invention is described in detail, the scope of the present invention is not limited to these embodiment.

高分子柔軟アクチュエータは、誘電性高分子に電圧を印加して変形させる柔軟高分子アクチュエータにおいて、上記誘電性高分子が可塑剤およびイオン液体を含有することを特徴とするものであり、以下のようにして得られるものである。   A polymer flexible actuator is a flexible polymer actuator that deforms a dielectric polymer by applying a voltage, wherein the dielectric polymer contains a plasticizer and an ionic liquid. Is obtained.

3重量%誘電性高分子の有機溶媒溶液に、可塑剤を70〜100重量%、イオン液体を1〜10重量%加えた後、完全に溶解させる。得られた溶液をポリテトラフルオロエチレン製のシャーレ上でキャストし乾燥させると、厚さ250〜600μmのゲル状で、誘電性高分子3重量部、可塑剤70〜100重量部とイオン液体1〜10重量部とからなる高分子柔軟アクチュエータが得られる。   A plasticizer is added in an amount of 70 to 100% by weight and an ionic liquid is added in an amount of 1 to 10% by weight in an organic solvent solution of a 3% by weight dielectric polymer, followed by complete dissolution. When the obtained solution was cast on a petri dish made of polytetrafluoroethylene and dried, it was gelled with a thickness of 250 to 600 μm, 3 parts by weight of a dielectric polymer, 70 to 100 parts by weight of a plasticizer, and 1 to 1 of an ionic liquid. A polymer flexible actuator consisting of 10 parts by weight is obtained.

図1に本発明の柔軟高分子アクチュエータの作動状態の一例を示す断面模式図を挙げ説明する。本発明の実施における柔軟高分子アクチュエータは、イオン液体を含有した可塑化ポリ塩化ビニルゲル1の両面に、板状の電極2aおよび2bが接し、前記電極2aおよび2bに駆動電源3を接続し構成されている。図1(a)は、駆動電源3からゲル1へ電圧を印加していない状態、図1(b)は、駆動電源3からゲル1へ電圧を印加することにより、ゲル1が陽極方向に折れ曲がる様子を示す。   FIG. 1 is a cross-sectional schematic diagram showing an example of the operating state of the flexible polymer actuator of the present invention. The flexible polymer actuator according to the embodiment of the present invention is configured such that plate-like electrodes 2a and 2b are in contact with both surfaces of a plasticized polyvinyl chloride gel 1 containing an ionic liquid, and a driving power source 3 is connected to the electrodes 2a and 2b. ing. 1A shows a state in which no voltage is applied from the driving power source 3 to the gel 1, and FIG. 1B shows a state in which the gel 1 is bent in the anode direction by applying a voltage from the driving power source 3 to the gel 1. Show the state.

本発明で使用するイオン液体は、常温溶融塩、イオン性液体などとも呼ばれるものであり、陽イオン(カチオン)と陰イオン(アニオン)よりなり、100℃以下で融点を持つ有機塩を指す。また、優れた熱安定性を示し、化学的、電気的にも安定である。   The ionic liquid used in the present invention is also called a room temperature molten salt, an ionic liquid, and the like, and refers to an organic salt composed of a cation (cation) and an anion (anion) and having a melting point at 100 ° C. or lower. In addition, it exhibits excellent thermal stability and is chemically and electrically stable.

本発明のイオン性液体に用いられる陽イオン(カチオン)としては、ホスホニウムカチオン、アンモニウムカチオンが挙げられる。   Examples of the cation (cation) used in the ionic liquid of the present invention include a phosphonium cation and an ammonium cation.

一方、本発明に用いられるイオン液体の陰イオン(アニオン)としては、RSO 、Cl、RCOO、などが挙げられる。本発明に用いられるイオン液体は、上記のカチオンとアニオンの組み合わせからなる塩を含むことが好ましい。 On the other hand, examples of the anion (anion) of the ionic liquid used in the present invention include RSO 3 , Cl , and RCOO . It is preferable that the ionic liquid used for this invention contains the salt which consists of a combination of said cation and an anion.

なお、誘電性高分子は、汎用性に富むポリ塩化ビニルである。   Note that the dielectric polymer is polyvinyl chloride which is highly versatile.

可塑剤には、ポリ塩化ビニルと相溶性を持つアジピン酸、セバシン酸、イタコン酸およびフタル酸エステルが挙げられる。中でも、粘着性や応答速度に優れるアジピン酸ジメチルが好ましい。   Plasticizers include adipic acid, sebacic acid, itaconic acid and phthalic acid esters that are compatible with polyvinyl chloride. Of these, dimethyl adipate, which is excellent in adhesiveness and response speed, is preferable.

有機溶媒は、ポリ塩化ビニル、可塑剤、イオン液体を溶解させたりするものであれば特に限定されないが、テトラヒドロフランのようなエーテル系溶媒が挙げられる。中でも、テトラヒドロフランが好ましい。 The organic solvent is not particularly limited as long as it dissolves polyvinyl chloride, a plasticizer, and an ionic liquid, and examples thereof include ether solvents such as tetrahydrofuran. Of these, tetrahydrofuran is preferred.

溶液中での可塑剤およびイオン液体濃度が低いほど、得られたゲルの初期弾性率が高く加工が容易となるため好ましいが、その濃度が前記範囲より少ないと、高い印加電圧が必要となる。   The lower the concentration of the plasticizer and the ionic liquid in the solution, the higher the initial elastic modulus of the obtained gel and the easier the processing. However, when the concentration is less than the above range, a high applied voltage is required.

溶液中での可塑剤およびイオン液体濃度が高いほど、電荷が蓄積され易くなるため低電圧で駆動するため好ましいが、その濃度が前記範囲より多いと、ゲルの初期弾性率が低下し膜が物理的に脆くなってしまう。   A higher concentration of plasticizer and ionic liquid in the solution is preferable because electric charges are more likely to be accumulated, so that it is driven at a lower voltage. It becomes very brittle.

溶液中での可塑剤濃度が70〜100重量%、イオン液体濃度が約5重量%であると、得られた高分子柔軟アクチュエータは、低電場での駆動が可能であり。粘着性も良く、柔軟かつ加工も容易のため、特に好ましい。   When the plasticizer concentration in the solution is 70 to 100% by weight and the ionic liquid concentration is about 5% by weight, the obtained polymer flexible actuator can be driven with a low electric field. It is particularly preferable because it has good adhesiveness, is flexible and easy to process.

本発明を適用する高分子柔軟アクチュエータを試作した例を実施例1、2に示す。本発明を適用外の例を比較例1に示す。また実施例および比較例の高分子柔軟アクチュエータの物性を調べた。
(実施例1)
Examples 1 and 2 show examples of prototype polymer flexible actuators to which the present invention is applied. An example in which the present invention is not applied is shown in Comparative Example 1. In addition, physical properties of the polymer flexible actuators of Examples and Comparative Examples were examined.
Example 1

ポリ塩化ビニルを10重量部、アジピン酸ジブチルを85重量部、トリヘキシル(テトラデシル)ホスホニウム メタンスルホン酸を5重量部、をテトラヒドロフランに溶解させて、十分に撹拌し完全に溶解させた。得られた溶液をトリテトラフルオロエチレン製シャーレ上に約5日キャストしてテトラヒドロフランを蒸発させ、高分子柔軟アクチュエータとして厚さ約400μmのIL含有可塑化PVCゲルを作製した。
(実施例2)
10 parts by weight of polyvinyl chloride, 85 parts by weight of dibutyl adipate, and 5 parts by weight of trihexyl (tetradecyl) phosphonium methanesulfonic acid were dissolved in tetrahydrofuran and thoroughly stirred to completely dissolve them. The obtained solution was cast on a petri dish made of tritetrafluoroethylene for about 5 days to evaporate tetrahydrofuran, and an IL-containing plasticized PVC gel having a thickness of about 400 μm was produced as a polymer flexible actuator.
(Example 2)

ポリ塩化ビニルを10重量部、アジピン酸ジブチルを88重量部、トリヘキシル(テトラデシル)ホスホニウム メタンスルホン酸を2重量部とし、実施例1と同様の方法で、高分子柔軟アクチュエータとして、イオン液体含有可塑化ポリ塩化ビニルゲルを作製した。
(比較例1)
10 parts by weight of polyvinyl chloride, 88 parts by weight of dibutyl adipate, and 2 parts by weight of trihexyl (tetradecyl) phosphonium methanesulfonic acid were used in the same manner as in Example 1 as a polymer flexible actuator, and the ionic liquid-containing plasticization A polyvinyl chloride gel was prepared.
(Comparative Example 1)

ポリ塩化ビニルを10重量部、アジピン酸ジブチルを90重量部とし、実施例1と同様の方法で、高分子柔軟アクチュエータとしてイオン液体非含有可塑化ポリ塩化ビニルゲルを作製した。
(柔軟高分子アクチュエータの電圧に対する応答性の評価)
10 parts by weight of polyvinyl chloride and 90 parts by weight of dibutyl adipate were used in the same manner as in Example 1 to prepare an ionic liquid-free plasticized polyvinyl chloride gel as a polymer flexible actuator.
(Evaluation of voltage response of flexible polymer actuator)

実施例1および比較例1で得られたゲルを縦10mm×横5mmに切り出した。アルミニウム電極に挟み、空気中で電圧を印加し、レーザー変位計を用いて、ゲルの先端変位量を測定した。   The gels obtained in Example 1 and Comparative Example 1 were cut into 10 mm length × 5 mm width. The electrode was sandwiched between aluminum electrodes, a voltage was applied in air, and the amount of tip displacement of the gel was measured using a laser displacement meter.

得られた柔軟高分子アクチュエータに、正方向の電圧を印加したときの変位量を図2に示す。   FIG. 2 shows the amount of displacement when a positive voltage is applied to the obtained flexible polymer actuator.

電圧印加時の実施例2の挙動を確認したところ、電圧印加停止後も変形を保持することが確認された。
(柔軟高分子アクチュエータの逆電圧に対する応答性の評価)
When the behavior of Example 2 at the time of voltage application was confirmed, it was confirmed that the deformation was maintained even after the voltage application was stopped.
(Evaluation of response to reverse voltage of flexible polymer actuator)

実施例2で得られたゲルを同様の条件で正方向の電圧を印加した後、電圧印加方向を反対にし、電圧を印加したときの高分子柔軟アクチュエータの挙動(変位量)を図3に示す。 FIG. 3 shows the behavior (displacement amount) of the polymer flexible actuator when a voltage in the positive direction is applied to the gel obtained in Example 2 under the same conditions, the voltage application direction is reversed, and the voltage is applied. .

本発明の高分子柔軟アクチュエータのみならずキャパシタ、スイッチング器、センサー等のエレクトロデバイスとして有用である。また、繊維状にして電場駆動する衣料にすることもできる。   It is useful not only as a polymer flexible actuator of the present invention but also as an electronic device such as a capacitor, a switching device and a sensor. Moreover, it can also be set as the clothes which make it fibrous and drive an electric field.

また、この高分子柔軟アクチュエータは、人工筋肉として有用である。   The polymer flexible actuator is useful as an artificial muscle.

本発明を適用する柔軟高分子アクチュエータの作動状態の一例を示す模式断面図である。It is a schematic cross section which shows an example of the operation state of the flexible polymer actuator to which this invention is applied. 本発明を適用する実施例1の柔軟高分子アクチュエータの経過時間あたりの変位量を示すグラフである。It is a graph which shows the displacement amount per elapsed time of the flexible polymer actuator of Example 1 to which this invention is applied. 同じく実施例2の柔軟高分子アクチュエータの経過時間あたりの変位量を示すグラフである。It is a graph which similarly shows the displacement amount per elapsed time of the flexible polymer actuator of Example 2.

符号の説明Explanation of symbols

1はイオン液体含有可塑化ポリ塩化ビニルゲル、2aおよび2bは電極、3は駆動電源である。



1 is an ionic liquid-containing plasticized polyvinyl chloride gel, 2a and 2b are electrodes, and 3 is a driving power source.



Claims (6)

誘電性高分子、可塑剤と、ホスホニウム系カチオンおよびアンモニウム系カチオンから選ばれるイオン液体からなるゲルを含むことを特徴とする高分子柔軟アクチュエータ   A flexible polymer actuator comprising a dielectric polymer, a plasticizer, and a gel comprising an ionic liquid selected from a phosphonium cation and an ammonium cation 前記誘電性高分子が、ポリ塩化ビニルであることを特徴とする請求項1に記載の高分子柔軟アクチュエータ。   The polymer flexible actuator according to claim 1, wherein the dielectric polymer is polyvinyl chloride. 前記可塑剤がアジピン酸、セバシン酸、イタコン酸およびフタル酸エステルの請求項1に記載の高分子柔軟アクチュエータ。   The polymer flexible actuator according to claim 1, wherein the plasticizer is adipic acid, sebacic acid, itaconic acid or phthalic acid ester. 前記誘電性高分子1〜50重量部と、前記可塑剤50〜150重量部と、前記イオン液体1〜30重量部とを含んでいることを特徴とする請求項1に記載の高分子柔軟アクチュエータ。   The flexible polymer actuator according to claim 1, comprising 1 to 50 parts by weight of the dielectric polymer, 50 to 150 parts by weight of the plasticizer, and 1 to 30 parts by weight of the ionic liquid. . ゲルを含む高分子柔軟アクチュエータの製造方法であって、有機溶媒中に誘電性高分子および可塑剤を溶解し、そこにイオン液体を混合し、有機溶媒を蒸発させ、ゲルを形成することを特徴とする高分子柔軟アクチュエータの製造方法。   A method for producing a flexible polymer actuator including a gel, wherein a dielectric polymer and a plasticizer are dissolved in an organic solvent, an ionic liquid is mixed therein, the organic solvent is evaporated, and a gel is formed. A method for producing a polymer flexible actuator. 前記有機溶媒が炭化水素系溶媒であることを特徴とする請求項5に記載の高分子柔軟アクチュエータの製造方法。   The method for producing a flexible polymer actuator according to claim 5, wherein the organic solvent is a hydrocarbon solvent.
JP2008120060A 2008-05-02 2008-05-02 Polymer flexible actuator Active JP5392669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008120060A JP5392669B2 (en) 2008-05-02 2008-05-02 Polymer flexible actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008120060A JP5392669B2 (en) 2008-05-02 2008-05-02 Polymer flexible actuator

Publications (2)

Publication Number Publication Date
JP2009273204A true JP2009273204A (en) 2009-11-19
JP5392669B2 JP5392669B2 (en) 2014-01-22

Family

ID=41439268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120060A Active JP5392669B2 (en) 2008-05-02 2008-05-02 Polymer flexible actuator

Country Status (1)

Country Link
JP (1) JP5392669B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233429A (en) * 2009-03-30 2010-10-14 Institute Of National Colleges Of Technology Japan Polyurethane elastomer actuator
WO2012081314A1 (en) 2010-12-17 2012-06-21 国立大学法人信州大学 Control method for contract-type gel actuator
JP2012125087A (en) * 2010-12-10 2012-06-28 Iai:Kk Polymer actuator and actuator device
JP2013147552A (en) * 2012-01-18 2013-08-01 Shinshu Univ Polyvinyl chloride-based molded article for dielectric, method for producing the same and use of the same
WO2013122047A1 (en) 2012-02-14 2013-08-22 国立大学法人信州大学 Gel actuator and method for producing same
US9231498B2 (en) 2011-02-03 2016-01-05 Shinshu University Gel actuator and gel used therein
JP2017108601A (en) * 2015-12-09 2017-06-15 国立大学法人信州大学 Dielectric actuator
CN109514542A (en) * 2018-12-14 2019-03-26 浙江工业大学 A kind of flexible manipulator
CN109514541A (en) * 2018-12-14 2019-03-26 浙江工业大学 A kind of manipulator
EP4032940A4 (en) * 2019-10-23 2023-09-27 Korea University Research and Business Foundation Organic ionic conductive polymer gel elastomer and method for preparing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020106836A (en) 2018-12-26 2020-07-09 日東電工株式会社 Electric displacement material, optical element using the same, microlens array and production method of optical element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241685A (en) * 1988-07-29 1990-02-09 Toyota Central Res & Dev Lab Inc Mechanochemical actuator
JP2000253682A (en) * 1999-02-26 2000-09-14 Toshihiro Hirai Drive method by charge injection-solvent traction and drive unit using the same
JP2005323482A (en) * 2004-05-11 2005-11-17 Japan Carlit Co Ltd:The Actuator
JP2006120596A (en) * 2004-10-22 2006-05-11 Samsung Electro Mech Co Ltd Electroactive solid-state actuator and its manufacturing method
JP2006288040A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Actuator element and manufacturing method therefor
JP2007300755A (en) * 2006-05-01 2007-11-15 Eamex Co Driving method for macromolecule actuator element, actuator, and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241685A (en) * 1988-07-29 1990-02-09 Toyota Central Res & Dev Lab Inc Mechanochemical actuator
JP2000253682A (en) * 1999-02-26 2000-09-14 Toshihiro Hirai Drive method by charge injection-solvent traction and drive unit using the same
JP2005323482A (en) * 2004-05-11 2005-11-17 Japan Carlit Co Ltd:The Actuator
JP2006120596A (en) * 2004-10-22 2006-05-11 Samsung Electro Mech Co Ltd Electroactive solid-state actuator and its manufacturing method
JP2006288040A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Actuator element and manufacturing method therefor
JP2007300755A (en) * 2006-05-01 2007-11-15 Eamex Co Driving method for macromolecule actuator element, actuator, and manufacturing method therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233429A (en) * 2009-03-30 2010-10-14 Institute Of National Colleges Of Technology Japan Polyurethane elastomer actuator
JP2012125087A (en) * 2010-12-10 2012-06-28 Iai:Kk Polymer actuator and actuator device
US9118262B2 (en) 2010-12-17 2015-08-25 Shinshu University Control method for contract-type gel actuator and control device
WO2012081314A1 (en) 2010-12-17 2012-06-21 国立大学法人信州大学 Control method for contract-type gel actuator
US9231498B2 (en) 2011-02-03 2016-01-05 Shinshu University Gel actuator and gel used therein
JP2013147552A (en) * 2012-01-18 2013-08-01 Shinshu Univ Polyvinyl chloride-based molded article for dielectric, method for producing the same and use of the same
WO2013122047A1 (en) 2012-02-14 2013-08-22 国立大学法人信州大学 Gel actuator and method for producing same
US10096762B2 (en) 2012-02-14 2018-10-09 Shinshu University Gel actuator and method for producing same
JP2017108601A (en) * 2015-12-09 2017-06-15 国立大学法人信州大学 Dielectric actuator
JP2021052586A (en) * 2015-12-09 2021-04-01 国立大学法人信州大学 Dielectric actuator
JP7261424B2 (en) 2015-12-09 2023-04-20 国立大学法人信州大学 dielectric actuator
CN109514542A (en) * 2018-12-14 2019-03-26 浙江工业大学 A kind of flexible manipulator
CN109514541A (en) * 2018-12-14 2019-03-26 浙江工业大学 A kind of manipulator
EP4032940A4 (en) * 2019-10-23 2023-09-27 Korea University Research and Business Foundation Organic ionic conductive polymer gel elastomer and method for preparing same

Also Published As

Publication number Publication date
JP5392669B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5392669B2 (en) Polymer flexible actuator
US20220396672A1 (en) Organic ionic conductive polymer gel elastomer and method for preparing same
Li et al. A sunlight-degradable autonomous self-healing supramolecular elastomer for flexible electronic devices
JP5555407B2 (en) Polymer solid electrolyte, electrochemical device and actuator element
CN1833352B (en) Actuator element and production method therefor
JP5156940B2 (en) Polymer actuator and manufacturing method thereof
Kataoka et al. Highly conductive ionic-liquid gels prepared with orthogonal double networks of a low-molecular-weight gelator and cross-linked polymer
WO2009122466A1 (en) Electroconductive polymer actuator, process for producing the electroconductive polymer actuator, and method for driving the electroconductive polymer actuator
EP1981034A1 (en) Actuator element
JP6128508B2 (en) Carbon nanofiber actuator
JP4691703B2 (en) Actuator element and manufacturing method thereof
JP4982432B2 (en) Dielectric film, manufacturing method thereof, and actuator, sensor, and transducer using the same
JPWO2009150697A1 (en) Conductive polymer actuator and manufacturing method thereof
JP4352128B2 (en) Actuator element
JP2009258008A (en) Transparent flexible deformation sensor
JP6032097B2 (en) Silver nanowire production method, silver nanowire obtained by the method, and coating agent containing the silver nanowire
JP5986402B2 (en) Gel-like polymer device showing electro-optic effect
JP6303495B2 (en) Actuator
JP5946299B2 (en) Gel-like polymer device having colossal dielectric property and manufacturing method thereof
JP4943707B2 (en) Conductive polymer actuator element
JP2020122095A (en) Actuator and gelatinous substance
KR101823081B1 (en) Polymer actuator including chemically doped graphene
KR100921197B1 (en) Electrochromic PANi films and process thereof
JP2010226773A (en) Polymer actuator
Khan et al. Characterization and actuation behavior of SPS/SGO ion exchange polymer actuator based on PEDOT: PSS/SGO composite electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5392669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250