JP2009270856A - Ranging device - Google Patents

Ranging device Download PDF

Info

Publication number
JP2009270856A
JP2009270856A JP2008119705A JP2008119705A JP2009270856A JP 2009270856 A JP2009270856 A JP 2009270856A JP 2008119705 A JP2008119705 A JP 2008119705A JP 2008119705 A JP2008119705 A JP 2008119705A JP 2009270856 A JP2009270856 A JP 2009270856A
Authority
JP
Japan
Prior art keywords
optical system
distance measuring
measuring device
target object
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008119705A
Other languages
Japanese (ja)
Other versions
JP5433976B2 (en
Inventor
Masanobu Kaneko
雅信 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008119705A priority Critical patent/JP5433976B2/en
Publication of JP2009270856A publication Critical patent/JP2009270856A/en
Application granted granted Critical
Publication of JP5433976B2 publication Critical patent/JP5433976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce cost of a ranging device having a vibration isolation function. <P>SOLUTION: This ranging device 1 includes a transmission optical system 10 for projecting laser light L1 toward a target object, and a reception optical system 30 for receiving reflected laser light L2 reflected by the target object by a light receiving element 34. When optical axes 2, 4 are tilted by camera shake or the like, a vibration isolation lens 14 disposed in the transmission optical system 10 is displaced as shown by M1 by a driving mechanism 42, to thereby deflect a beam. A vibration isolation lens 32 disposed in the reception optical system 30 is displaced as shown by M2 by a driving mechanism 43 in linkage with the driving mechanism 42, wherein M2 is a motion rougher than M1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、目標物体までの距離を測定する測距装置、特に手持ちで使用される測距装置に関する。   The present invention relates to a distance measuring device that measures a distance to a target object, and more particularly to a distance measuring device that is used by hand.

測距装置としては、レーザ光を目標物体に投射した時と目標物体からの反射レーザ光を受光した時との時間差から、目標物体までの距離を測定するものが知られている。手持ちの測距装置では、手ブレのために光学系の光軸が傾いてしまい、目標物体に対して継続的にレーザ光を当てることが難しくなる。従来、手ブレによる光軸の傾きを補正するために、送信部および受信部の光学系を構成する光学素子をジンバルを介して装置本体に固定するようにしたレーザレンジファインダが知られている(例えば、特許文献1参照)。   As a distance measuring device, an apparatus for measuring a distance to a target object from a time difference between when a laser beam is projected onto a target object and when a reflected laser beam from the target object is received is known. In a hand-held distance measuring device, the optical axis of the optical system is inclined due to camera shake, making it difficult to continuously apply laser light to a target object. Conventionally, a laser range finder is known in which optical elements constituting an optical system of a transmission unit and a reception unit are fixed to an apparatus main body via a gimbal in order to correct an optical axis tilt due to camera shake ( For example, see Patent Document 1).

特開2004−101342号公報JP 2004-101342 A

特許文献1のレーザレンジファインダでは、一つのジンバルが送信部の光学素子も受信部の光学素子も収納しているため、受信部の防振性能も高いが、ジンバル自体が重く大型化し、且つ製造コストも上昇してしまう。一方、他の方法においても、受信部の防振機構と送信部の防振機構と同等の性能のものを使用すると、防振機構に費やすコストは単純に倍近いものとなってしまう。   In the laser range finder disclosed in Patent Document 1, since one gimbal accommodates both the optical element of the transmitting unit and the optical element of the receiving unit, the vibration isolating performance of the receiving unit is high, but the gimbal itself is heavier and larger and manufactured. Costs will also increase. On the other hand, in other methods, if the same performance as that of the reception unit and the transmission unit is used, the cost of the image stabilization mechanism is simply doubled.

(1)請求項1の発明による測距装置は、目標物体に向け信号光を投射する送信光学系と、信号光が目標物体で反射した反射光を受光素子により受光する受信光学系とを備え、信号光の投射から反射光の受光までの時間に基づいて目標物体までの距離を測定する測距装置において、送信光学系に、目標物体に対する光軸の方向の変動に応じて光線を偏向する防振動作を行う第1の防振機構を設け、受信光学系に、前記第1の防振機構よりも精度の低い防振動作を行う第2の防振機構を設けたことを特徴とする。
(2)請求項2の発明は、請求項1に記載の測距装置において、第2の防振機構は、反射光を受光素子が受光可能な範囲まで精度の低下を許容して動作することを特徴とする。
(3)請求項3の発明は、請求項1または2に記載の測距装置において、目標物体を視準する視準光学系をさらに備え、視準光学系および送信光学系は、これら2つの光学系を分離する分岐光学素子の目標物体側において光軸の一部を共用する合成光学系を構成し、合成光学系に第1の防振機構を設けたことを特徴とする。
(4)請求項4の発明は、請求項1〜3のいずれか1項に記載の測距装置において、第1の防振機構は、送信光学系に配設された第1の光学素子を駆動する第1の駆動機構を有し、第2の防振機構は、受信光学系の光路上に配設された第2の光学素子を駆動する第2の駆動機構を有することを特徴とする。
(5)請求項5の発明は、請求項1〜3のいずれか1項に記載の測距装置において、送信光学系に配設された第1の光学素子と受信光学系に配設された第2の光学素子とを機械的に連結し、第1の防振機構は、第1の光学素子を駆動し、第2の防振機構は、第1の防振機構に機械的に連結されて第2の光学素子を駆動することを特徴とする。
(6)請求項6の発明は、請求項4または5に記載の測距装置において、第1および第2の光学素子は、駆動により光軸と垂直方向に変位する光学素子であることを特徴とする。
(7)請求項7の発明は、請求項4または5に記載の測距装置において、第1および第2の光学素子は、駆動により入射面と射出面とのなす角である頂角の角度を変える可変頂角プリズムであることを特徴とする。
(1) A distance measuring device according to a first aspect of the present invention includes a transmission optical system that projects signal light toward a target object, and a reception optical system that receives reflected light of the signal light reflected by the target object by a light receiving element. In a distance measuring device that measures the distance to a target object based on the time from the projection of the signal light to the reception of the reflected light, the light beam is deflected to the transmission optical system in accordance with the change in the direction of the optical axis with respect to the target object. A first image stabilization mechanism for performing an image stabilization operation is provided, and a second image stabilization mechanism for performing an image stabilization operation with lower accuracy than the first image stabilization mechanism is provided in the reception optical system. .
(2) The invention according to claim 2 is the distance measuring device according to claim 1, wherein the second vibration isolation mechanism operates with a reduction in accuracy to a range where the light receiving element can receive the reflected light. It is characterized by.
(3) The invention of claim 3 is the distance measuring device according to claim 1 or 2, further comprising a collimation optical system for collimating the target object, wherein the collimation optical system and the transmission optical system are A synthesizing optical system that shares part of the optical axis is configured on the target object side of the branching optical element that separates the optical system, and the synthesizing optical system is provided with a first vibration isolation mechanism.
(4) According to a fourth aspect of the present invention, in the distance measuring device according to any one of the first to third aspects, the first vibration isolation mechanism includes the first optical element disposed in the transmission optical system. It has a first drive mechanism for driving, and the second vibration isolation mechanism has a second drive mechanism for driving a second optical element disposed on the optical path of the reception optical system. .
(5) A fifth aspect of the invention is the distance measuring device according to any one of the first to third aspects, wherein the first optical element provided in the transmission optical system and the reception optical system are provided. The second optical element is mechanically coupled, the first vibration isolation mechanism drives the first optical element, and the second vibration isolation mechanism is mechanically coupled to the first vibration isolation mechanism. And driving the second optical element.
(6) The invention according to claim 6 is the distance measuring device according to claim 4 or 5, wherein the first and second optical elements are optical elements that are displaced in a direction perpendicular to the optical axis by driving. And
(7) The invention according to claim 7 is the distance measuring device according to claim 4 or 5, wherein the first and second optical elements are angles of apex angles which are angles formed by the incident surface and the exit surface by driving. It is a variable apex angle prism that changes the angle.

本発明の測距装置によれば、受信光学系の防振動作を送信光学系の防振動作に追随して動作するようにし、一方、受信光学系の防振機構に精度の低いものを使用することで、低コスト化を図ることができる。   According to the distance measuring apparatus of the present invention, the image stabilizing operation of the receiving optical system is operated following the image stabilizing operation of the transmitting optical system, while the image stabilizing mechanism of the receiving optical system is used with low accuracy. By doing so, cost reduction can be achieved.

以下、本発明の実施の形態による測距装置について、図1〜6を参照しながら説明する。
〈第1の実施の形態〉
図1は、本発明の第1の実施の形態による測距装置1を模式的に示す構成図である。図1(a)は光学系の光軸に直交する方向から見た図、図1(b)は、図1(a)のI−I面を光軸方向から見た図である。図1(a)ではXYZ直交座標で方向を表し、図中Z方向に目標物体があるものとする。
Hereinafter, a distance measuring device according to an embodiment of the present invention will be described with reference to FIGS.
<First Embodiment>
FIG. 1 is a configuration diagram schematically showing a distance measuring device 1 according to a first embodiment of the present invention. FIG. 1A is a view as seen from a direction orthogonal to the optical axis of the optical system, and FIG. 1B is a view of the II plane of FIG. 1A as seen from the optical axis direction. In FIG. 1A, it is assumed that the direction is represented by XYZ orthogonal coordinates, and the target object is in the Z direction in the drawing.

図1(a)に示されるように、測距装置1には、Y方向に延びる光軸1およびZ方向に延びる光軸2,3,4に沿って各光学部品が配置されている。光軸1に沿って、近赤外領域の波長のレーザ光を放射するレーザ光源11、レーザ光を集光するコンデンサーレンズ12、近赤外領域の光を反射し可視光を透過させるダイクロイックプリズム13が配置されている。光軸2に沿って、光軸2と垂直方向に動作する防振レンズ14、図中左方に存在する目標物体に対向する対物レンズ15が配置されている。   As shown in FIG. 1A, in the distance measuring device 1, optical components are arranged along an optical axis 1 extending in the Y direction and optical axes 2, 3, and 4 extending in the Z direction. A laser light source 11 that emits laser light having a wavelength in the near infrared region along the optical axis 1, a condenser lens 12 that condenses the laser light, and a dichroic prism 13 that reflects light in the near infrared region and transmits visible light. Is arranged. An anti-vibration lens 14 that operates in a direction perpendicular to the optical axis 2 and an objective lens 15 that faces a target object that is present on the left side of the drawing are disposed along the optical axis 2.

また、光軸3に沿って、ダイクロイックプリズム13からの光を内部で複数回反射させて所定の面から射出する正立プリズム16、対物レンズ15と防振レンズ14による結像位置に置かれるレチクル17、目標物体の像を拡大する接眼レンズ18が配置されている。さらに光軸4に沿って、目標物体に対向する対物レンズ31、光軸4と垂直方向に動作する防振レンズ32、近赤外レーザ光の波長以外の光をカットする狭帯域フィルター33、近赤外レーザ光の入射により電気信号を発生する受光素子34が配置されている。   Further, along the optical axis 3, a reticle placed at an image formation position by an erecting prism 16, an objective lens 15, and an anti-vibration lens 14 that internally reflects the light from the dichroic prism 13 a plurality of times and emits the light from a predetermined surface. 17. An eyepiece 18 for enlarging the image of the target object is disposed. Furthermore, along the optical axis 4, an objective lens 31 that faces the target object, a vibration-proof lens 32 that operates in a direction perpendicular to the optical axis 4, a narrow-band filter 33 that cuts light other than the wavelength of the near-infrared laser beam, A light receiving element 34 that generates an electrical signal by the incidence of infrared laser light is disposed.

レーザ光源11から放射されたレーザ光L1は、コンデンサーレンズ12で集光され、ダイクロイックプリズム13の反射面13AでZ方向に反射され、防振レンズ14、対物レンズ15を通って外部に送信される。ここでは、防振レンズ14として負のパワー(屈折力)を有した発散光学素子の1つである凹レンズが用いられる。レーザ光源11、コンデンサーレンズ12、ダイクロイックプリズム13、防振レンズ14および対物レンズ15は送信光学系10を構成する。   The laser light L1 emitted from the laser light source 11 is collected by the condenser lens 12, reflected by the reflecting surface 13A of the dichroic prism 13 in the Z direction, and transmitted to the outside through the anti-vibration lens 14 and the objective lens 15. . Here, a concave lens which is one of the divergent optical elements having negative power (refractive power) is used as the anti-vibration lens 14. The laser light source 11, the condenser lens 12, the dichroic prism 13, the anti-vibration lens 14 and the objective lens 15 constitute the transmission optical system 10.

レーザ光L1が目標物体に当って反射した反射レーザ光L2は、対物レンズ31、防振レンズ32、狭帯域フィルター33を順次通って受光素子34に入射する。受光素子34は、その入射面が対物レンズ31と防振レンズ32による結像面となるように配置される。受光素子34には反射レーザ光L2のみならず自然光による他の波長の光も入射するので、反射レーザ光L2のS/N比が低下する。そのため、狭帯域フィルター33を設けて反射レーザ光L2以外の光をカットし、反射レーザ光L2のS/N比を向上させている。対物レンズ31、防振レンズ32、狭帯域フィルター33および受光素子34は受信光学系30を構成する。   The reflected laser beam L2 reflected when the laser beam L1 hits the target object is incident on the light receiving element 34 through the objective lens 31, the vibration proof lens 32, and the narrow band filter 33 in order. The light receiving element 34 is arranged so that the incident surface thereof is an image forming surface formed by the objective lens 31 and the image stabilizing lens 32. Since not only the reflected laser beam L2 but also light of other wavelengths due to natural light is incident on the light receiving element 34, the S / N ratio of the reflected laser beam L2 decreases. For this reason, the narrow band filter 33 is provided to cut light other than the reflected laser light L2, thereby improving the S / N ratio of the reflected laser light L2. The objective lens 31, the anti-vibration lens 32, the narrow band filter 33, and the light receiving element 34 constitute a reception optical system 30.

また、目標物体からの光L3は、対物レンズ15、防振レンズ14を順次通ってダイクロイックプリズム13に入射する。光L3には、反射レーザ光L2と自然光が含まれている。反射レーザ光L2は、ダイクロイックプリズム13の反射面13AでY方向に反射され、レーザ光源11へ戻る。光L3に含まれる可視光は、ダイクロイックプリズム13の反射面13Aを透過して正立プリズム16に入射する。   The light L3 from the target object is incident on the dichroic prism 13 through the objective lens 15 and the anti-vibration lens 14 in order. The light L3 includes reflected laser light L2 and natural light. The reflected laser beam L2 is reflected in the Y direction by the reflecting surface 13A of the dichroic prism 13 and returns to the laser light source 11. Visible light contained in the light L3 passes through the reflecting surface 13A of the dichroic prism 13 and enters the upright prism 16.

光L3による像は、対物レンズ15および防振レンズ14を通って倒立像となるが、正立プリズム16によって上下反転された正立像となる。この正立像は、レチクル17上で結像し、接眼レンズ18を通して観察(視準)される。対物レンズ15、防振レンズ14、ダイクロイックプリズム13、レチクル17および接眼レンズ18は視準光学系20を構成する。   The image by the light L3 becomes an inverted image through the objective lens 15 and the anti-vibration lens 14, but becomes an upright image inverted up and down by the erecting prism 16. This erect image is formed on the reticle 17 and observed (collimated) through the eyepiece 18. The objective lens 15, the image stabilizing lens 14, the dichroic prism 13, the reticle 17, and the eyepiece lens 18 constitute a collimating optical system 20.

上述したように、ダイクロイックプリズム13は、近赤外光と可視光とを分離する分岐光学素子として作用する。ダイクロイックプリズム13の目標物体側に配置されている防振レンズ14および対物レンズ15は、送信光学系10と視準光学系20に共通して用いられている。換言すれば、送信光学系10と視準光学系20とは光軸2を共用する合成光学系40を構成する。   As described above, the dichroic prism 13 functions as a branching optical element that separates near-infrared light and visible light. The anti-vibration lens 14 and the objective lens 15 disposed on the target object side of the dichroic prism 13 are used in common for the transmission optical system 10 and the collimation optical system 20. In other words, the transmission optical system 10 and the collimation optical system 20 constitute a synthesis optical system 40 that shares the optical axis 2.

測距装置1においては、レーザ光源11からレーザ光L1が放射された時刻と、受光素子34で反射レーザ光L2が受光された時刻との時間差を計測し、その計測時間から目標物体までの距離を演算する。具体的には、レーザ光L1を毎秒数100回発振するパルス光とし、レーザ光L1のパルスを放射した時刻から反射レーザ光L2のパルスを受光した時刻までの時間を計測し、時間とパルス数とのヒストグラムを作成する。そのヒストグラムにおいてピークを示す時間を決定すれば、上記の時間差が求まり、目標物体までの距離が求まる。上記演算は後述するCPU41にて行われる。   In the distance measuring device 1, the time difference between the time when the laser light L1 is emitted from the laser light source 11 and the time when the reflected laser light L2 is received by the light receiving element 34 is measured, and the distance from the measurement time to the target object Is calculated. Specifically, the laser beam L1 is converted into pulsed light that oscillates several hundred times per second, and the time from the time when the pulse of the laser beam L1 is emitted to the time when the pulse of the reflected laser beam L2 is received is measured. And create a histogram. If the time showing the peak in the histogram is determined, the above time difference is obtained, and the distance to the target object is obtained. The above calculation is performed by the CPU 41 described later.

また、視準光学系20によって計測と同時に目標物体を観察することができる。上述したように、レチクル17上に目標物体の像が形成される。例えば、レチクル17を透過型液晶板とし、液晶画面上に目標物体の像と目標物体までの距離を表示するように構成してもよい。   Further, the target object can be observed simultaneously with the measurement by the collimating optical system 20. As described above, an image of the target object is formed on the reticle 17. For example, the reticle 17 may be a transmissive liquid crystal plate, and the image of the target object and the distance to the target object may be displayed on the liquid crystal screen.

ところで、防振機能を働かせないで測距装置1を振れや揺れのある状態で使用すると、例えば手持ち操作時の手ブレにより、送信光学系10、受信光学系30および視準光学系20の光軸の方向が目標物体のある方向に対して傾き、目標物体に対して継続的にレーザ光を当て続けることが難しくなる。測距においては、目標物体に当たった一瞬の光による反射光が対物レンズ31に入射した場合は、パルス数が少ないため受光素子34上に測距に十分な頻度で測定データが得られず測距エラーとなることがある。また、傾いた光軸の先に目標物体とは距離の異なる物体があった場合には、その物体からの反射光を受信し、誤った測距結果を出すこともある。   By the way, if the distance measuring device 1 is used in a state of shaking or shaking without operating the image stabilization function, the light of the transmission optical system 10, the reception optical system 30, and the collimation optical system 20 is caused by camera shake during hand-held operation, for example. The direction of the axis is inclined with respect to the direction of the target object, and it is difficult to continuously apply the laser beam to the target object. In the distance measurement, when the reflected light by the instantaneous light hitting the target object is incident on the objective lens 31, the number of pulses is so small that measurement data cannot be obtained on the light receiving element 34 with sufficient frequency for distance measurement. A distance error may occur. If there is an object with a different distance from the target object at the tip of the tilted optical axis, the reflected light from the object may be received and an incorrect distance measurement result may be output.

一方、視準においては、目標物体を視準光学系20のレチクル17の中心に継続的に捉えておくことが困難となる。通常、視準光学系20は相応の倍率を有しているため、光軸2,3の傾きが拡大されて目標物体を見失う恐れもある。   On the other hand, in collimation, it is difficult to continuously capture the target object at the center of the reticle 17 of the collimation optical system 20. Usually, the collimating optical system 20 has a corresponding magnification, so that the inclination of the optical axes 2 and 3 may be enlarged, and the target object may be lost.

本実施の形態による測距装置1は、光軸が傾いても光学的な補正を行い、高精度の測距と安定した観察を行うことができる防振作用を有する低コストな装置である。防振機構の構成および防振作用について以下に説明する。   The distance measuring device 1 according to the present embodiment is a low-cost device having an anti-vibration function capable of performing optical correction even when the optical axis is inclined, and performing high-precision distance measurement and stable observation. The configuration of the vibration isolation mechanism and the vibration isolation function will be described below.

測距装置1には、中央演算装置(CPU)41、防振レンズ14を光軸2と垂直方向に駆動する駆動機構42、防振レンズ32を光軸4と垂直方向に駆動する駆動機構43が設けられている。駆動機構42は接続部44を介して防振レンズ14を駆動し、駆動機構43は接続部45を介して防振レンズ32を駆動する。駆動機構42は、図1(b)に示されるように、水平方向の駆動を行う駆動部42aと垂直方向の駆動を行う駆動部42bとを有する。同様に、駆動機構43は、水平方向の駆動を行う駆動部43aと垂直方向の駆動を行う駆動部43bとを有する。防振機構は、防振レンズ14を駆動する駆動機構42および接続部44を有する第1の防振機構と、防振レンズ32を駆動する駆動機構43および接続部45を有する第2の防振機構とに便宜的に分けることができる。   The distance measuring device 1 includes a central processing unit (CPU) 41, a drive mechanism 42 that drives the image stabilization lens 14 in a direction perpendicular to the optical axis 2, and a drive mechanism 43 that drives the image stabilization lens 32 in a direction perpendicular to the optical axis 4. Is provided. The drive mechanism 42 drives the anti-vibration lens 14 via the connection portion 44, and the drive mechanism 43 drives the anti-vibration lens 32 via the connection portion 45. As shown in FIG. 1B, the drive mechanism 42 includes a drive unit 42a that performs horizontal drive and a drive unit 42b that performs vertical drive. Similarly, the drive mechanism 43 includes a drive unit 43a that performs horizontal drive and a drive unit 43b that performs vertical drive. The anti-vibration mechanism includes a first anti-vibration mechanism having a drive mechanism 42 and a connection 44 for driving the anti-vibration lens 14, and a second anti-vibration mechanism having a drive mechanism 43 and a connection 45 for driving the anti-vibration lens 32. It can be conveniently divided into mechanisms.

また、測距装置1には、垂直軸(X軸)回りの角速度を検出する角速度センサ46A、水平軸(Y軸)回りの角速度を検出する角速度センサ46B、および防振レンズ14のX−Y面上の位置を検出する位置センサ47が設けられている。角速度センサ46A、46Bおよび位置センサ47は、CPU41と電気的に接続されている。   Further, the distance measuring device 1 includes an angular velocity sensor 46A that detects an angular velocity around the vertical axis (X axis), an angular velocity sensor 46B that detects an angular velocity around the horizontal axis (Y axis), and an XY of the anti-vibration lens 14. A position sensor 47 for detecting the position on the surface is provided. The angular velocity sensors 46A and 46B and the position sensor 47 are electrically connected to the CPU 41.

CPU41は、角速度センサ46A,46Bの角速度信号を入力し、その入力信号から光軸の傾き状態(傾斜速度、傾斜方向)を演算する。また、CPU41は、位置センサ47の位置信号を入力し、その入力信号からX−Y面上の現在の座標を演算する。これらの演算結果に基づいてCPU41から駆動機構42,43へ駆動信号が送出され、それぞれ防振レンズ14,32の変位M1,M2が制御される。変位M1,M2は光軸と垂直方向の変位である。なお、防振レンズ32にはX−Y面上の位置を検出する位置センサは設けられていないので、防振レンズ32の座標が必要なときには位置センサ47の位置信号を流用する。   The CPU 41 inputs angular velocity signals from the angular velocity sensors 46A and 46B, and calculates the tilt state (tilt speed and tilt direction) of the optical axis from the input signals. Further, the CPU 41 inputs a position signal of the position sensor 47, and calculates the current coordinates on the XY plane from the input signal. Based on these calculation results, a drive signal is sent from the CPU 41 to the drive mechanisms 42 and 43, and the displacements M1 and M2 of the anti-vibration lenses 14 and 32 are controlled. The displacements M1 and M2 are displacements in the direction perpendicular to the optical axis. In addition, since the position sensor for detecting the position on the XY plane is not provided in the image stabilizing lens 32, the position signal of the position sensor 47 is used when the coordinates of the image stabilizing lens 32 are necessary.

図2は、第1の実施の形態による測距装置1が傾斜したときの光学系を模式的に示す図である。図3は、第1の実施の形態による測距装置1が傾斜したときおよび防振機構が作動したときの光学系を模式的に示す図である。図2,3においても図1と同じ構成部品には同一符号を付す。   FIG. 2 is a diagram schematically showing the optical system when the distance measuring device 1 according to the first embodiment is tilted. FIG. 3 is a diagram schematically showing an optical system when the distance measuring device 1 according to the first embodiment is tilted and when the image stabilization mechanism is operated. 2 and 3, the same components as those in FIG.

図2,3を参照しながら、先ず測距装置1が傾斜していない場合を説明する。これは、図1について説明した内容を光学的視点から再説明するものである。実線で示す光軸1〜4のうち、光軸1はY方向、光軸2〜4はZ方向(水平線Hと同じ方向)を向いている。目標物体Oは、図中左遠方の水平線H上にある。したがって、光軸2〜4は水平線Hに平行であり、レーザ光源11から目標物体Oに向けて投射された光は常に光軸1、2に沿って進行する。目標物体Oを基準に考えると、目標物体Oからの光は、常に光軸1〜4に沿って進行する。   First, a case where the distance measuring device 1 is not inclined will be described with reference to FIGS. This re-explains the content described with reference to FIG. 1 from an optical viewpoint. Of the optical axes 1 to 4 indicated by solid lines, the optical axis 1 is in the Y direction, and the optical axes 2 to 4 are in the Z direction (the same direction as the horizontal line H). The target object O is on the horizontal line H far left in the figure. Therefore, the optical axes 2 to 4 are parallel to the horizontal line H, and the light projected from the laser light source 11 toward the target object O always travels along the optical axes 1 and 2. Considering the target object O as a reference, light from the target object O always travels along the optical axes 1 to 4.

レーザ光源11の点Qから発した光は光軸1に沿って進み、ダイクロイックプリズム13の反射面13Aにより反射されて防振レンズ14、対物レンズ15を通って目標物体Oに向かう。目標物体Oで反射された反射レーザ光L2は、受信光学系30の対物レンズ31に入射し、防振レンズ32を通過して受光素子34の点Rに至るとともに、対物レンズ15にも入射し、ダイクロイックプリズム13の反射面13Aで反射されてレーザ光源11の点Qへ戻る。一方、目標物体Oからの光L3に含まれる可視光は、光軸2に沿って対物レンズ15、防振レンズ14、ダイクロイックプリズム13、正立プリズム16を通り、目標物体Oの像面で光軸3上の点Pを通過して接眼レンズ18から外部へ射出する。   The light emitted from the point Q of the laser light source 11 travels along the optical axis 1, is reflected by the reflecting surface 13 </ b> A of the dichroic prism 13, and travels toward the target object O through the anti-vibration lens 14 and the objective lens 15. The reflected laser light L2 reflected by the target object O enters the objective lens 31 of the receiving optical system 30, passes through the vibration-proof lens 32, reaches the point R of the light receiving element 34, and also enters the objective lens 15. Then, the light is reflected by the reflecting surface 13A of the dichroic prism 13 and returns to the point Q of the laser light source 11. On the other hand, the visible light included in the light L3 from the target object O passes through the objective lens 15, the anti-vibration lens 14, the dichroic prism 13, and the erecting prism 16 along the optical axis 2 and is emitted on the image plane of the target object O. The light passes through a point P on the axis 3 and exits from the eyepiece 18 to the outside.

次に、図2,3を参照しながら、手ブレなどにより測距装置1が傾斜し、光軸が角度θだけ傾いた場合を説明する。目標物体Oからの光は図中破線で示すように進む。送信光学系10に関しては、対物レンズ15に入射した光L3に含まれる反射レーザ光L2は、ダイクロイックプリズム13の反射面13Aで反射されてレーザ光源11の点Q´へ到達する。すなわち、対物レンズ15に入射した反射レーザ光L2は、光線A、光線Bの経路を進む。対物レンズ15に入射した可視光は、防振レンズ14、ダイクロイックプリズム13、正立プリズム16を通り、目標物体Oの像面で光軸3から外れた点P´を通過し、接眼レンズ18から外部へ射出する。すなわち、対物レンズ15に入射した可視光は、光線A、光線A’の経路を進む。   Next, a case where the distance measuring device 1 is tilted due to camera shake or the like and the optical axis is tilted by an angle θ will be described with reference to FIGS. Light from the target object O travels as indicated by a broken line in the figure. Regarding the transmission optical system 10, the reflected laser light L 2 included in the light L 3 incident on the objective lens 15 is reflected by the reflecting surface 13 A of the dichroic prism 13 and reaches the point Q ′ of the laser light source 11. That is, the reflected laser light L2 incident on the objective lens 15 travels along the path of the light beam A and the light beam B. Visible light incident on the objective lens 15 passes through the anti-vibration lens 14, the dichroic prism 13, and the erecting prism 16, passes through the point P ′ off the optical axis 3 on the image plane of the target object O, and passes through the eyepiece 18. Inject outside. That is, the visible light that has entered the objective lens 15 travels along the path of the light rays A and A ′.

このとき、視準光学系20の角倍率をγとすると、接眼レンズ18から射出する光線A´の光軸とのなす角度は、式(1)となる。
θ’=γθ ・・・(1)
つまり、測距装置1が傾斜していない状態に比較して角度θ’だけ光線が偏向する。γは通常6倍から20倍程度であるため、対物側での僅かな角度変化に対しても接眼側では大きな角度変化となり、手ブレ感が増幅される。
At this time, when the angular magnification of the collimating optical system 20 is γ, the angle formed by the optical axis of the light beam A ′ emitted from the eyepiece lens 18 is expressed by Expression (1).
θ ′ = γθ (1)
That is, the light beam is deflected by the angle θ ′ as compared with the state in which the distance measuring device 1 is not inclined. Since γ is usually about 6 to 20 times, a slight angle change on the object side results in a large angle change on the eyepiece side, and a camera shake feeling is amplified.

受信光学系30に関しては、対物レンズ31に入射した目標物体Oからの反射レーザ光L2は、光軸が角度θだけ傾くため光線Cのように進み、受光素子34の延長面上の点R’に到達し、受光素子34には入射しない。したがって、目標物体Oからの反射レーザ光L2による距離データを得ることは出来ない。ここで、受光素子34の大きさを大きくすれば、光軸4に対する角度が大きい光も受光できる。しかし、受光素子34の大きさは、目標物体Oに投射した送信光を見込む角に対応する大きさ程度に止めないと、受光素子34に入射する信号光以外の所謂、背景光の影響を受けてS/N比が悪化するため好ましくない。すなわち、受光素子34の大きさには制限があり、この点からも防振手段が必要となる。   With respect to the receiving optical system 30, the reflected laser light L 2 from the target object O incident on the objective lens 31 travels like a light beam C because the optical axis is inclined by the angle θ, and the point R ′ on the extended surface of the light receiving element 34. And does not enter the light receiving element 34. Therefore, it is not possible to obtain distance data from the reflected laser beam L2 from the target object O. Here, if the size of the light receiving element 34 is increased, light having a large angle with respect to the optical axis 4 can also be received. However, the size of the light receiving element 34 is affected by so-called background light other than the signal light incident on the light receiving element 34 unless it is stopped to a size corresponding to the angle at which the transmitted light projected onto the target object O is viewed. This is not preferable because the S / N ratio deteriorates. That is, the size of the light receiving element 34 is limited, and from this point, a vibration isolating means is necessary.

図3は、防振機構が作動したときの光学系を説明する図である。図3には、図2に示した各光線に加え、防振機構が作動したときの光線A’’、B’’、C’’が描かれている。目標物体Oから対物レンズ15に入射した光L3に含まれている反射レーザ光L2は、防振レンズ14に到達するまでは光線Aのように進み、防振レンズ14の変位Δ1により補正されて光路が曲がる。
変位Δ1は、光軸2と垂直方向の移動である。反射レーザ光L2は、さらにダイクロイックプリズム13で反射されて光線B’’のように進み、レーザ光源11の点Qに戻る。このことは、光軸が角度θだけ傾いても目標物体Oを外さずにレーザ光を投射できることを意味する。
FIG. 3 is a diagram for explaining the optical system when the image stabilization mechanism is activated. FIG. 3 shows the light beams A ″, B ″, and C ″ when the vibration isolation mechanism is activated in addition to the light beams shown in FIG. The reflected laser light L2 included in the light L3 incident on the objective lens 15 from the target object O travels as a light beam A until reaching the anti-vibration lens 14, and is corrected by the displacement Δ1 of the anti-vibration lens 14. The light path bends.
The displacement Δ1 is a movement in the direction perpendicular to the optical axis 2. The reflected laser light L 2 is further reflected by the dichroic prism 13, travels like a light beam B ″, and returns to the point Q of the laser light source 11. This means that laser light can be projected without removing the target object O even if the optical axis is inclined by an angle θ.

また、目標物体Oから対物レンズ15に入射した光L3に含まれている可視光は、防振レンズ14の変位により補正され、光線A’’のようにダイクロイックプリズム13、正立プリズム16を通り、目標物体Oの像面で光軸3上の点Pを通過し、接眼レンズ18から外部へ射出する。すなわち、対物レンズ15に入射した可視光は、光線A→光線A’’のように進む。光線A’’の光軸3となす角度は0°に近くなり、防振効果が得られる。   Further, the visible light included in the light L3 incident on the objective lens 15 from the target object O is corrected by the displacement of the anti-vibration lens 14 and passes through the dichroic prism 13 and the erecting prism 16 like the light ray A ″. Then, it passes through the point P on the optical axis 3 on the image plane of the target object O, and exits from the eyepiece 18 to the outside. In other words, the visible light incident on the objective lens 15 travels in the order of light ray A → light ray A ″. The angle between the light beam A ″ and the optical axis 3 is close to 0 °, and an anti-vibration effect is obtained.

受信光学系30に関しては、対物レンズ31に入射した目標物体Oからの反射レーザ光L2は、防振レンズ32の変位Δ2により補正されて光路が曲がる。変位Δ2は、光軸4と垂直方向の移動、つまりX−Y面に沿った移動である。反射レーザ光L2は、光線C’’のように進み、受光素子34の中心近くの点Rに到達する。このことは、光軸が角度θだけ傾いても目標物体Oからの反射レーザ光は確実に受光素子34へ入射することを意味する。   With respect to the receiving optical system 30, the reflected laser light L2 from the target object O incident on the objective lens 31 is corrected by the displacement Δ2 of the image stabilizing lens 32 and the optical path is bent. The displacement Δ2 is a movement in the direction perpendicular to the optical axis 4, that is, a movement along the XY plane. The reflected laser light L2 travels like a light beam C ″ and reaches a point R near the center of the light receiving element 34. This means that the reflected laser light from the target object O surely enters the light receiving element 34 even if the optical axis is inclined by the angle θ.

本発明の実施の形態では、防振レンズ14の変位Δ1と防振レンズ32の変位Δ2は等しくはない。但し、対物レンズ15と31、防振レンズ14と32がそれぞれ焦点距離が等しく、対物レンズと防振レンズ相互の主点間隔が等しければ、変位Δ1とΔ2を近くすると、光線A’’と光線C’’を中心に到達させることができる。その結果、部品の共通化を図ることができ、コストを安くすることができる。   In the embodiment of the present invention, the displacement Δ1 of the image stabilizing lens 14 and the displacement Δ2 of the image stabilizing lens 32 are not equal. However, if the objective lenses 15 and 31 and the anti-vibration lenses 14 and 32 have the same focal length and the distance between the principal points of the objective lens and the anti-vibration lens is equal, when the displacements Δ1 and Δ2 are made closer, the light rays A ″ and the light rays C ″ can be centered. As a result, the parts can be shared and the cost can be reduced.

図4は、第1の実施の形態で用いられる防振レンズによる光線の偏向原理を説明する図である。防振レンズ14の焦点距離をf1とした場合、防振レンズ14がΔ1だけ変位することによって防振レンズ14からLだけ離れた像面上でP’からPへ像の移動が可能となる。P’からPへの移動距離をsとすると、式2の関係が成り立つ。
s=L・Δ1/f1 ・・・ (2)
FIG. 4 is a diagram for explaining the principle of deflection of light rays by the anti-vibration lens used in the first embodiment. When the focal length of the image stabilizing lens 14 is f1, the image can be moved from P ′ to P on the image plane separated from the image stabilizing lens 14 by L by displacing the image stabilizing lens 14 by Δ1. When the moving distance from P ′ to P is s, the relationship of Expression 2 is established.
s = L · Δ1 / f1 (2)

今、測距装置1の視準光学系20を構成する対物レンズ15と防振レンズ14の合成焦点距離をfとすると、光軸が角度θだけ傾いた場合、目標物体Oからの光線の像面上での移動距離sは式3で表される。
s=f・tanθ ・・・ (3)
式2,3より、防振レンズ14の変位量Δ1は式4で求められる。
Δ1=f・tanθ・f1/L ・・・ (4)
式4では、角度θ以外は既知量であるため、測距装置1の筐体内に納められた角速度センサ46A,46Bで角度θを検出することにより、変位量Δ1、すなわち防振レンズ14の作動量を求めることができる。
Now, assuming that the combined focal length of the objective lens 15 and the anti-vibration lens 14 constituting the collimation optical system 20 of the distance measuring device 1 is f, an image of a light beam from the target object O when the optical axis is inclined by an angle θ. The moving distance s on the surface is expressed by Equation 3.
s = f · tan θ (3)
From Expressions 2 and 3, the displacement Δ1 of the image stabilizing lens 14 is obtained by Expression 4.
Δ1 = f · tan θ · f1 / L (4)
In Equation 4, since the amount other than the angle θ is a known amount, the amount of displacement Δ1, that is, the operation of the vibration-proof lens 14 is detected by detecting the angle θ with the angular velocity sensors 46A and 46B housed in the casing of the distance measuring device 1. The amount can be determined.

上述した光線の偏向原理を測距装置1の受信光学系30に応用してみる。受信光学系30は、視準光学系20と異なり、目標物体Oの像を眼で観察するものではないので、視準光学系20に比較して光線の偏向の制御はラフにすることができる。すなわち、目標物体Oからの反射レーザ光L2が受光素子34に入射する限度まで許容される。受信光学系30における光線の偏向の制御は、送信光学系10に比べても精度を低くすることができる。   The light beam deflection principle described above will be applied to the receiving optical system 30 of the distance measuring device 1. Unlike the collimating optical system 20, the receiving optical system 30 does not observe the image of the target object O with the eyes, so that the control of the deflection of the light beam can be made rougher than the collimating optical system 20. . In other words, the reflected laser beam L2 from the target object O is allowed to the limit where it enters the light receiving element 34. The control of the deflection of the light beam in the reception optical system 30 can be less accurate than the transmission optical system 10.

今、受光素子34の大きさをY、受信光学系30を構成する対物レンズ31と防振レンズ32の合成焦点距離をFとすると、光軸が角度θだけ傾いたときに、目標物体Oからの光線が受光素子34に入射するためには、補正すべき移動量Sは式5の不等式で表される範囲であればよい。移動量Sは、受光素子34の入射面上での光線の移動距離である。
F・tanθ−Y/2≦S≦F・tanθ+Y/2 ・・・ (5)
Now, assuming that the size of the light receiving element 34 is Y and the combined focal length of the objective lens 31 and the image stabilizing lens 32 constituting the receiving optical system 30 is F, when the optical axis is inclined by an angle θ, In order for the light beam to enter the light receiving element 34, the movement amount S to be corrected may be in the range represented by the inequality of equation (5). The moving amount S is a moving distance of the light beam on the incident surface of the light receiving element 34.
F · tan θ−Y / 2 ≦ S ≦ F · tan θ + Y / 2 (5)

防振レンズ32の焦点距離をf2とした場合、防振レンズ32の変位量Δ2は、式5から導かれる式6の不等式で表される範囲であればよい。ここで,Lは防振レンズ32から像面である受光素子34の入射面までの距離である。
(F・tanθ−Y/2)・f2/L≦Δ2≦(F・tanθ+Y/2)・f2/L
・・・ (6)
このように、防振レンズ32は、式6の範囲で作動すればよく、視準光学系20や送信光学系10に比較してラフな制御で足りる。したがって、駆動機構43は、駆動機構42に較べて作動量を小さくできる。それゆえ、防振レンズ32と防振レンズ14の動きが異なる。したがって、変位M2を、変位M1に比較して量が少なく、変位速度も遅くすることができ、精度的にラフな制御が可能となる。
When the focal length of the image stabilizing lens 32 is f2, the displacement amount Δ2 of the image stabilizing lens 32 may be in a range represented by the inequality of Expression 6 derived from Expression 5. Here, L is the distance from the image stabilizing lens 32 to the incident surface of the light receiving element 34 that is the image plane.
(F · tan θ−Y / 2) · f2 / L ≦ Δ2 ≦ (F · tan θ + Y / 2) · f2 / L
(6)
In this way, the image stabilization lens 32 only needs to operate within the range of Equation 6, and rough control is sufficient as compared with the collimation optical system 20 and the transmission optical system 10. Therefore, the drive mechanism 43 can reduce the operation amount as compared with the drive mechanism 42. Therefore, the movements of the anti-vibration lens 32 and the anti-vibration lens 14 are different. Therefore, the amount of the displacement M2 is smaller than that of the displacement M1, the displacement speed can be slowed, and rough control can be accurately performed.

具体的に数値を用いて検討する。
視準光学系20または送信光学系10の防振精度εを光軸からの像の移動量の許容値とし、防振精度εを分解力の限界以下と設定すれば、各光学系のFナンバーをFとするとき、エアリーディスクの半径から、防振精度εは次のように表される。
ε≦1.22・λ・F ・・・ (7)
一般的な例として、波長λ=555nm、F=5とすれば、防振精度εは式(7)より0.0034mmとなる。
一方、受信光学系30のFナンバーも視準光学系20または送信光学系10と同じであれば、防振精度ε自体は上と同じ値となる。しかし、受光素子34の大きさは、一般的に直径0.5mm程度であり、像はこの範囲での移動が許容されるので、像の移動量は最大0.25mmとなる。したがって、受信光学系30では、視準光学系20または送信光学系10に比較して、約74倍もの大きな許容値となる。
Specifically, we will consider using numerical values.
If the anti-shake accuracy ε of the collimating optical system 20 or the transmission optical system 10 is set as an allowable value of the amount of image movement from the optical axis, and the anti-shake accuracy ε is set to be less than the limit of resolution, the F number of each optical system Is F, the anti-vibration accuracy ε is expressed as follows from the radius of the Airy disk.
ε ≦ 1.22 · λ · F (7)
As a general example, if the wavelength λ = 555 nm and F = 5, the image stabilization accuracy ε is 0.0034 mm from the equation (7).
On the other hand, if the F number of the reception optical system 30 is the same as that of the collimation optical system 20 or the transmission optical system 10, the image stabilization accuracy ε itself is the same value as above. However, the size of the light receiving element 34 is generally about 0.5 mm in diameter, and the image is allowed to move within this range, so the maximum amount of image movement is 0.25 mm. Therefore, the receiving optical system 30 has an allowable value that is about 74 times larger than that of the collimating optical system 20 or the transmitting optical system 10.

本実施の形態による測距装置1は以下の作用効果を奏する。
(1)第1の防振機構で防振レンズ14を変位させ、第2の防振機構で防振レンズ32を変位させるので、それぞれの防振レンズを有する光学系に要求される適切な精度、速度で防振レンズを駆動することができる。具体的には、受信光学系30の防振レンズ32は、送信光学系10、視準光学系20の防振レンズ14に比較してラフな制御で足りる。
(2)第1および第2の防振機構の間で同期をとる必要がないので、すなわち、制御量や制御タイミングを必ずしも一致させる必要がないので、制御が簡単である。
(3)以上の結果、第2の防振機構を簡略化することができ、また、第1と第2の防振機構で厳密に使用パーツの同一性能を保持する必要がなくなるので、パーツ使用の許容範囲が広がり歩留りが向上する。また、制御プログラムの作成コストも低くなる。さらに、第1と第2の防振機構を同一駆動部材で動作させていないため、測距装置1を小型化することもできる。
The distance measuring device 1 according to the present embodiment has the following operational effects.
(1) Since the anti-vibration lens 14 is displaced by the first anti-vibration mechanism and the anti-vibration lens 32 is displaced by the second anti-vibration mechanism, appropriate accuracy required for the optical system having each anti-vibration lens The anti-vibration lens can be driven at a speed. Specifically, the anti-vibration lens 32 of the reception optical system 30 needs rough control as compared with the anti-vibration lens 14 of the transmission optical system 10 and the collimation optical system 20.
(2) Since it is not necessary to synchronize between the first and second vibration isolation mechanisms, that is, it is not necessary to match the control amount and the control timing, the control is simple.
(3) As a result of the above, the second vibration isolation mechanism can be simplified, and the first and second vibration isolation mechanisms do not need to maintain exactly the same performance of the parts used. The allowable range is widened and the yield is improved. Also, the cost for creating the control program is reduced. Furthermore, since the first and second vibration isolation mechanisms are not operated by the same drive member, the distance measuring device 1 can be reduced in size.

〈第2の実施の形態〉
図5は、本発明の第2の実施の形態による測距装置2を模式的に示す構成図である。図5(a)は光学系の光軸に直交する方向から見た図、図5(b)は、図5(a)のII−II面を光軸方向から見た図である。図1と同様に、図5(a)でもXYZ直交座標で方向を表し、図中Z方向に目標物体があるものとする。また、図1と同じ構成部品には同一符号を付し、説明を省略する。
<Second Embodiment>
FIG. 5 is a block diagram schematically showing the distance measuring device 2 according to the second embodiment of the present invention. FIG. 5A is a diagram seen from a direction orthogonal to the optical axis of the optical system, and FIG. 5B is a diagram seen from the II-II plane of FIG. 5A from the optical axis direction. As in FIG. 1, in FIG. 5A, it is assumed that the direction is represented by XYZ orthogonal coordinates, and the target object is in the Z direction in the figure. Also, the same components as those in FIG.

本実施の形態による測距装置2は、第1の実施の形態による測距装置1(図1参照)と光学系は同じである。測距装置2が測距装置1と構成上異なる点は次の2点である。
(a)防振レンズ14と32が機械的に連結されている。
(b)防振レンズ14と32の駆動は駆動機構48のみにて行われる。
すなわち、防振レンズ14と32は、連結部49により機械的に連結されており、駆動機構48は、連結部49を介して防振レンズ14を駆動する。防振レンズ32は、防振レンズ14の動作に追随して駆動される。これは、2つの防振機構が1つの駆動機構を共有しているとも言える。したがって光軸の傾きが生じると、防振レンズ14と32は同時に同じパターンで変位する。なお、駆動機構48は、図5(b)に示されるように、水平方向の駆動を行う駆動部48aと垂直方向の駆動を行う駆動部48bとを有する。
The distance measuring device 2 according to the present embodiment has the same optical system as the distance measuring device 1 according to the first embodiment (see FIG. 1). The distance measuring device 2 is structurally different from the distance measuring device 1 in the following two points.
(A) The vibration-proof lenses 14 and 32 are mechanically connected.
(B) The vibration-proof lenses 14 and 32 are driven only by the drive mechanism 48.
That is, the anti-vibration lenses 14 and 32 are mechanically connected by the connecting portion 49, and the drive mechanism 48 drives the anti-vibration lens 14 via the connecting portion 49. The image stabilization lens 32 is driven following the operation of the image stabilization lens 14. This can be said that the two anti-vibration mechanisms share one drive mechanism. Therefore, when the tilt of the optical axis occurs, the anti-vibration lenses 14 and 32 are simultaneously displaced in the same pattern. As shown in FIG. 5B, the driving mechanism 48 includes a driving unit 48a that performs horizontal driving and a driving unit 48b that performs vertical driving.

このように構成された測距装置2の動作を説明する。CPU41は、角速度センサ46A,46Bの角速度信号を入力し、その入力信号から光軸の傾き状態(傾斜速度、傾斜方向)を演算する。また、CPU41は、位置センサ47の位置信号を入力し、その入力信号から防振レンズ14のX−Y面上の現在の座標を演算する。これらの演算結果に基づいてCPU41から駆動機構48へ駆動信号が送出され、防振レンズ14、32はそれぞれ変位M3、M4となるように制御される。変位M3,M4は光軸と垂直方向の変位である。上述したように、防振レンズ32は、防振レンズ14の動作に追随して駆動されるので、連結部49の振動や撓みなどの影響により変位の精度は低下する。しかし、目標物体からの反射光L2は受光素子34の中心には到達しないが、受光範囲には到達するので測距は可能である。なお、防振レンズ32にはX−Y面上の位置を検出する位置センサは設けられていないので、防振レンズ32の座標が必要なときには位置センサ47の位置信号を流用する。   The operation of the distance measuring device 2 configured in this way will be described. The CPU 41 inputs angular velocity signals from the angular velocity sensors 46A and 46B, and calculates the tilt state (tilt speed and tilt direction) of the optical axis from the input signals. Further, the CPU 41 inputs a position signal of the position sensor 47, and calculates the current coordinates on the XY plane of the image stabilizing lens 14 from the input signal. Based on these calculation results, a driving signal is sent from the CPU 41 to the driving mechanism 48, and the anti-vibration lenses 14 and 32 are controlled to be displaced M3 and M4, respectively. The displacements M3 and M4 are displacements in the direction perpendicular to the optical axis. As described above, since the anti-vibration lens 32 is driven following the operation of the anti-vibration lens 14, the displacement accuracy decreases due to the influence of the vibration and deflection of the connecting portion 49. However, the reflected light L2 from the target object does not reach the center of the light receiving element 34, but reaches the light receiving range, and thus distance measurement is possible. In addition, since the position sensor for detecting the position on the XY plane is not provided in the image stabilizing lens 32, the position signal of the position sensor 47 is used when the coordinates of the image stabilizing lens 32 are necessary.

本実施の形態による測距装置2も第1の実施の形態による測距装置1と同様の作用効果を奏する。さらに、駆動機構は1つあればよいので、より一層の装置の低コスト化と小型化を図ることができる。   The distance measuring device 2 according to the present embodiment also has the same effects as the distance measuring device 1 according to the first embodiment. Furthermore, since only one drive mechanism is required, the cost and size of the apparatus can be further reduced.

〈第3の実施の形態〉
図6は、本発明の第3の実施の形態による測距装置3を模式的に示す構成図である。図6(a)は光学系の光軸に直交する方向から見た図、図6(b)は、図6(a)のIII−III面を光軸方向から見た図である。図1、2と同様に、図6(a)でもXYZ直交座標で方向を表し、図中Z方向に目標物体があるものとする。また、図1、2と同じ構成部品には同一符号を付し、説明を省略する。
<Third Embodiment>
FIG. 6 is a block diagram schematically showing the distance measuring device 3 according to the third embodiment of the present invention. 6A is a diagram viewed from a direction orthogonal to the optical axis of the optical system, and FIG. 6B is a diagram viewed from the III-III plane of FIG. 6A from the optical axis direction. As in FIGS. 1 and 2, in FIG. 6A, it is assumed that the direction is represented by XYZ orthogonal coordinates and the target object is in the Z direction in the figure. In addition, the same components as those in FIGS.

本実施の形態による測距装置3は、第1の実施の形態による測距装置1(図1参照)と光学系の一部および駆動機構が異なるだけで、その他の構成は同じである。測距装置3が測距装置1と構成上異なる点は次の2点である。
(a)防振レンズ14に代えて可変頂角プリズム50を対物レンズ15の前方に配置し、駆動機構51により可変頂角プリズム50の入射面と射出面とのなす角である頂角を変化させる。
(b)防振レンズ32に代えて可変頂角プリズム60を対物レンズ31の前方に配置し、駆動機構52により可変頂角プリズム60の頂角を変化させる。
可変頂角プリズム50,60は、蛇腹を用いて2枚の透明円板を連結し、内部を透明液体で満たしたもので、透明円板の円周にわたって頂角の位置と角度を変化させることができる。図6(b)に示されるように、駆動機構51は、水平方向の頂角の角度変化の駆動を行う駆動部51aと垂直方向の頂角の角度変化の駆動を行う駆動部51bとを有し、駆動機構52も同様に、水平方向の駆動を行う駆動部52aと垂直方向の駆動を行う駆動部52bとを有する。
The distance measuring device 3 according to the present embodiment is the same as the distance measuring device 1 according to the first embodiment (see FIG. 1) except for a part of the optical system and the drive mechanism, and the other configurations. The distance measuring device 3 is structurally different from the distance measuring device 1 in the following two points.
(A) The variable apex angle prism 50 is disposed in front of the objective lens 15 in place of the image stabilizing lens 14, and the apex angle that is an angle formed by the incident surface and the exit surface of the variable apex angle prism 50 is changed by the drive mechanism 51. Let
(B) The variable apex angle prism 60 is disposed in front of the objective lens 31 instead of the image stabilizing lens 32, and the apex angle of the variable apex angle prism 60 is changed by the drive mechanism 52.
The variable apex angle prisms 50 and 60 are formed by connecting two transparent disks using bellows and filling the inside with a transparent liquid, and changing the position and angle of the apex angle over the circumference of the transparent disk. Can do. As shown in FIG. 6B, the drive mechanism 51 includes a drive unit 51a that drives the vertical angle change of the horizontal direction and a drive unit 51b that drives the vertical angle change of the vertical direction. Similarly, the drive mechanism 52 includes a drive unit 52a that performs horizontal drive and a drive unit 52b that performs vertical drive.

本実施の形態による測距装置3においては、手ブレなどにより光軸が傾いた場合は、可変頂角プリズム50の頂角を変えることにより、レーザ光源11から放射されたレーザ光L1を偏向させて目標物体へ向けて投射する。レーザ光源11、コンデンサーレンズ12、ダイクロイックプリズム13、対物レンズ15および可変頂角プリズム50は送信光学系10´を構成する。   In the distance measuring device 3 according to the present embodiment, when the optical axis is inclined due to camera shake or the like, the laser beam L1 emitted from the laser light source 11 is deflected by changing the apex angle of the variable apex angle prism 50. Project toward the target object. The laser light source 11, the condenser lens 12, the dichroic prism 13, the objective lens 15, and the variable apex angle prism 50 constitute a transmission optical system 10 '.

レーザ光L1が目標物体に当って反射した反射レーザ光L2は、可変頂角プリズム60から入射し、対物レンズ31、狭帯域フィルター33を通って受光素子34に到達する。光軸の傾きに応じて可変頂角プリズム60の頂角を変えることにより、反射レーザ光L2は確実に受光素子34へ導かれる。可変頂角プリズム60、対物レンズ31、狭帯域フィルター33および受光素子34は受信光学系30´を構成する。   The reflected laser beam L2 reflected when the laser beam L1 hits the target object is incident from the variable apex angle prism 60 and reaches the light receiving element 34 through the objective lens 31 and the narrow band filter 33. By changing the apex angle of the variable apex angle prism 60 in accordance with the inclination of the optical axis, the reflected laser beam L2 is reliably guided to the light receiving element 34. The variable apex angle prism 60, the objective lens 31, the narrow band filter 33, and the light receiving element 34 constitute a receiving optical system 30 '.

また、目標物体からの光L3は、可変頂角プリズム50、対物レンズ15を通ってダイクロイックプリズム13に入射する。光L3に含まれる反射レーザ光L2はレーザ光源11へ戻る。光L3に含まれる可視光は、ダイクロイックプリズム13の反射面13Aを透過し、正立プリズム16、レチクル17を通って接眼レンズ18により観察(視準)される。可変頂角プリズム50、対物レンズ15、ダイクロイックプリズム13、レチクル17および接眼レンズ18は視準光学系20´を構成する。   The light L3 from the target object is incident on the dichroic prism 13 through the variable apex angle prism 50 and the objective lens 15. The reflected laser light L2 included in the light L3 returns to the laser light source 11. Visible light included in the light L3 passes through the reflecting surface 13A of the dichroic prism 13 and is observed (collimated) by the eyepiece 18 through the erecting prism 16 and the reticle 17. The variable apex angle prism 50, the objective lens 15, the dichroic prism 13, the reticle 17 and the eyepiece lens 18 constitute a collimating optical system 20 '.

可変頂角プリズム50、60は、頂角の角度がそれぞれ角度変化M5、M6となるように制御される。可変頂角プリズム60は、可変頂角プリズム50の頂角変化に倣って駆動されるので、角度変化M6は、角度変化M5に比較して角度変化の精度を低くすることができる。なお、可変頂角プリズム60には頂角の角度を検出する角度センサ55は設けられていないので、可変頂角プリズム60の頂角の角度が必要なときには角度センサ55の角度信号を流用する。   The variable apex angle prisms 50 and 60 are controlled such that the apex angle becomes the angle changes M5 and M6, respectively. Since the variable apex angle prism 60 is driven following the apex angle change of the variable apex angle prism 50, the angle change M6 can reduce the accuracy of the angle change compared to the angle change M5. Since the variable apex angle prism 60 is not provided with the angle sensor 55 for detecting the apex angle, the angle signal of the angle sensor 55 is used when the apex angle of the variable apex angle prism 60 is necessary.

以上のように構成された測距装置3も測距装置1と同様の作用効果を奏する。   The distance measuring device 3 configured as described above has the same effects as the distance measuring device 1.

本発明の測距装置においては、さまざまな変形例が考えられる。
(a)第1〜第3の実施の形態では、正立プリズム16はポロプリズムであったが、正立プリズムであればダハプリズムでもよい。
(b)第1〜第3の実施の形態では、ダイクロイックプリズム13と正立プリズム16とは別部材であったが、ダイクロイックプリズム13と正立プリズム16を一体として両者の機能を併せもつ光学部材を配置してもよい。これにより、部品数が減り、測距装置のさらなる小型化を図ることができる。
(c)第1〜第3の実施の形態では、受信光学系の防振精度を送信光学系あるいは視準光学系の防振精度よりも低下させることができるが、さらに受信光学系の光学部品の寸法精度や光軸調整精度を送信光学系あるいは視準光学系よりも低くすることも可能である。これにより、部品製造、組立てなどのコストダウンを図ることができる。
(d)第3の実施の形態では、可変頂角プリズム50と60は、それぞれ駆動機構51と52により頂角の角度を変化させていたが、可変頂角プリズム50と60を機械的あるいは電気的に連結し、1つの駆動機構で両者を駆動してもよい。これにより、部品数が減り、測距装置のさらなる小型化を図ることができる。
Various modifications can be considered for the distance measuring apparatus of the present invention.
(A) In the first to third embodiments, the erecting prism 16 is a Porro prism, but may be a roof prism if it is an erecting prism.
(B) In the first to third embodiments, the dichroic prism 13 and the erecting prism 16 are separate members. However, the dichroic prism 13 and the erecting prism 16 are integrated into an optical member having both functions. May be arranged. Thereby, the number of parts is reduced, and the distance measuring device can be further reduced in size.
(C) In the first to third embodiments, the anti-shake accuracy of the reception optical system can be lowered than the anti-shake accuracy of the transmission optical system or collimation optical system. It is also possible to make the dimensional accuracy and the optical axis adjustment accuracy lower than that of the transmission optical system or collimation optical system. Thereby, cost reduction, such as component manufacture and an assembly, can be aimed at.
(D) In the third embodiment, the variable apex angle prisms 50 and 60 change the apex angle by the drive mechanisms 51 and 52, respectively. However, the variable apex angle prisms 50 and 60 are mechanically or electrically changed. They may be connected together and driven by a single drive mechanism. Thereby, the number of parts is reduced, and the distance measuring device can be further reduced in size.

本発明は、その特徴を損なわない限り、以上説明した実施の形態に何ら限定されない。
上述した第1〜第3の実施の形態では、視準光学系を有し、目標物体までの測距と目標物体の視準の両方が可能な測距装置1〜3について説明したが、視準光学系を有さず、送信光学系と受信光学系により測距のみを行う測距装置も本発明に含まれる。また、本発明は、目標物体に向け信号光を投射する送信光学系と、信号光が目標物体で反射した反射光を受光素子により受光する受信光学系とを備え、信号光の投射から反射光の受光までの時間に基づいて目標物体までの距離を測定する測距装置において、送信光学系に、目標物体に対する光軸の方向の変動に応じて光線を偏向する防振動作を行う第1の防振機構を設け、受信光学系に、第1の防振機構による動作とは異なる動きの動作を行う第2の防振機構を設けたことを特徴とする測距装置とも言える。
The present invention is not limited to the embodiments described above as long as the characteristics are not impaired.
In the first to third embodiments described above, the distance measuring apparatuses 1 to 3 having the collimation optical system and capable of both the distance measurement to the target object and the collimation of the target object have been described. A distance measuring device that does not have a quasi-optical system and performs only distance measurement using a transmission optical system and a reception optical system is also included in the present invention. The present invention also includes a transmission optical system that projects signal light toward a target object, and a reception optical system that receives reflected light reflected from the target object by a light receiving element, and reflects the reflected light from the projection of the signal light. In the distance measuring apparatus that measures the distance to the target object based on the time until the light is received, the transmission optical system performs a first anti-vibration operation for deflecting the light beam according to the change in the direction of the optical axis with respect to the target object. It can also be said to be a distance measuring device that is provided with an anti-vibration mechanism, and in which a second anti-vibration mechanism that performs an operation different from the operation of the first anti-vibration mechanism is provided in the reception optical system.

本発明の第1の実施の形態に係る測距装置を模式的に示す構成図である。図1(a)は光学系の光軸に直交する方向から見た図、図1(b)は、図1(a)のI−I面を光軸方向から見た図である。1 is a configuration diagram schematically showing a distance measuring apparatus according to a first embodiment of the present invention. FIG. 1A is a view as seen from a direction orthogonal to the optical axis of the optical system, and FIG. 1B is a view of the II plane of FIG. 1A as seen from the optical axis direction. 第1の実施の形態に係る測距装置が傾斜したときの光学系を模式的に示す図である。It is a figure which shows typically an optical system when the ranging apparatus which concerns on 1st Embodiment inclines. 第1の実施の形態による測距装置が傾斜したときおよび防振機構が作動したときの光学系を模式的に示す図である。It is a figure which shows typically an optical system when the distance measuring device by 1st Embodiment inclines and the vibration isolating mechanism act | operates. 第1の実施の形態で用いられる防振レンズによる光線の偏向原理を説明する図である。It is a figure explaining the deflection | deviation principle of the light ray by the vibration proof lens used in 1st Embodiment. 本発明の第2の実施の形態に係る測距装置を模式的に示す構成図である。図5(a)は光学系の光軸に直交する方向から見た図、図5(b)は、図5(a)のII−II面を光軸方向から見た図である。It is a block diagram which shows typically the ranging apparatus which concerns on the 2nd Embodiment of this invention. FIG. 5A is a diagram seen from a direction orthogonal to the optical axis of the optical system, and FIG. 5B is a diagram seen from the II-II plane of FIG. 5A from the optical axis direction. 本発明の第3の実施の形態に係る測距装置を模式的に示す構成図である。図6(a)は光学系の光軸に直交する方向から見た図、図6(b)は、図6(a)のIII−III面を光軸方向から見た図である。It is a block diagram which shows typically the ranging apparatus which concerns on the 3rd Embodiment of this invention. 6A is a diagram viewed from a direction orthogonal to the optical axis of the optical system, and FIG. 6B is a diagram viewed from the III-III plane of FIG. 6A from the optical axis direction.

符号の説明Explanation of symbols

1〜3:測距装置 10:送信光学系
11:レーザ光源 13:ダイクロイックプリズム
14:防振レンズ 16:正立プリズム
17:レチクル 20:視準光学系
30:受信光学系 32:防振レンズ
34:受光素子 40:合成光学系
41:CPU 42,43,48,51,52:駆動機構
49:連結部 50,60:可変頂角プリズム
1-3: Distance measuring device 10: Transmission optical system 11: Laser light source 13: Dichroic prism 14: Anti-vibration lens 16: Erecting prism 17: Reticle 20: Collimation optical system 30: Reception optical system 32: Anti-vibration lens 34 : Light receiving element 40: Synthetic optical system 41: CPU 42, 43, 48, 51, 52: Drive mechanism 49: Connecting part 50, 60: Variable apex angle prism

Claims (7)

目標物体に向け信号光を投射する送信光学系と、
前記信号光が前記目標物体で反射した反射光を受光素子により受光する受信光学系とを備え、
前記信号光の投射から前記反射光の受光までの時間に基づいて前記目標物体までの距離を測定する測距装置において、
前記送信光学系に、前記目標物体に対する光軸の方向の変動に応じて光線を偏向する防振動作を行う第1の防振機構を設け、
前記受信光学系に、前記第1の防振機構よりも精度の低い防振動作を行う第2の防振機構を設けたことを特徴とする測距装置。
A transmission optical system that projects signal light toward a target object;
A receiving optical system that receives the reflected light reflected by the target object by a light receiving element;
In the distance measuring apparatus that measures the distance to the target object based on the time from the projection of the signal light to the reception of the reflected light,
The transmission optical system is provided with a first anti-vibration mechanism that performs an anti-vibration operation for deflecting light according to a change in the direction of the optical axis with respect to the target object,
2. A distance measuring device, wherein the receiving optical system is provided with a second anti-vibration mechanism that performs an anti-vibration operation with lower accuracy than the first anti-vibration mechanism.
請求項1に記載の測距装置において、
前記第2の防振機構は、前記反射光を前記受光素子が受光可能な範囲まで精度の低下を許容して動作することを特徴とする測距装置。
The distance measuring device according to claim 1,
The distance measuring device is characterized in that the second vibration isolation mechanism operates by allowing a decrease in accuracy to a range where the light receiving element can receive the reflected light.
請求項1または2に記載の測距装置において、
前記目標物体を視準する視準光学系をさらに備え、
前記視準光学系および前記送信光学系は、これら2つの光学系を分離する分岐光学素子の前記目標物体側において光軸の一部を共用する合成光学系を構成し、
前記合成光学系に前記第1の防振機構を設けたことを特徴とする測距装置。
The distance measuring device according to claim 1 or 2,
A collimating optical system for collimating the target object;
The collimating optical system and the transmission optical system constitute a combining optical system that shares a part of the optical axis on the target object side of the branching optical element that separates the two optical systems,
A distance measuring device comprising the first vibration isolation mechanism in the synthetic optical system.
請求項1〜3のいずれか1項に記載の測距装置において、
前記第1の防振機構は、前記送信光学系に配設された第1の光学素子を駆動する第1の駆動機構を有し、
前記第2の防振機構は、前記受信光学系の光路上に配設された第2の光学素子を駆動する第2の駆動機構を有することを特徴とする測距装置。
The distance measuring device according to any one of claims 1 to 3,
The first vibration isolation mechanism has a first drive mechanism for driving a first optical element disposed in the transmission optical system,
The distance measuring device, wherein the second vibration isolation mechanism has a second drive mechanism for driving a second optical element disposed on an optical path of the reception optical system.
請求項1〜3のいずれか1項に記載の測距装置において、
前記送信光学系に配設された第1の光学素子と前記受信光学系に配設された第2の光学素子とを機械的に連結し、
前記第1の防振機構は、前記第1の光学素子を駆動し、
前記第2の防振機構は、前記第1の防振機構に機械的に連結されて前記第2の光学素子を駆動することを特徴とする測距装置。
The distance measuring device according to any one of claims 1 to 3,
Mechanically connecting the first optical element disposed in the transmission optical system and the second optical element disposed in the reception optical system;
The first vibration isolation mechanism drives the first optical element,
The distance measuring device, wherein the second vibration isolation mechanism is mechanically coupled to the first vibration isolation mechanism to drive the second optical element.
請求項4または5に記載の測距装置において、
前記第1および第2の光学素子は、駆動により光軸と垂直方向に変位する光学素子であることを特徴とする測距装置。
The distance measuring device according to claim 4 or 5,
The distance measuring apparatus, wherein the first and second optical elements are optical elements that are displaced in a direction perpendicular to the optical axis when driven.
請求項4または5に記載の測距装置において、
前記第1および第2の光学素子は、駆動により入射面と射出面とのなす角である頂角の角度を変える可変頂角プリズムであることを特徴とする測距装置。
The distance measuring device according to claim 4 or 5,
The distance measuring device, wherein the first and second optical elements are variable apex angle prisms that change an apex angle, which is an angle formed by an incident surface and an exit surface, by driving.
JP2008119705A 2008-05-01 2008-05-01 Ranging device Active JP5433976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008119705A JP5433976B2 (en) 2008-05-01 2008-05-01 Ranging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008119705A JP5433976B2 (en) 2008-05-01 2008-05-01 Ranging device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013254949A Division JP2014066724A (en) 2013-12-10 2013-12-10 Distance measuring device

Publications (2)

Publication Number Publication Date
JP2009270856A true JP2009270856A (en) 2009-11-19
JP5433976B2 JP5433976B2 (en) 2014-03-05

Family

ID=41437555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008119705A Active JP5433976B2 (en) 2008-05-01 2008-05-01 Ranging device

Country Status (1)

Country Link
JP (1) JP5433976B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129210A1 (en) * 2013-02-25 2014-08-28 株式会社ニコンビジョン Distance measuring device and calibration method
WO2015166713A1 (en) * 2014-05-02 2015-11-05 富士フイルム株式会社 Distance-measurement device, distance-measurement method, and distance-measurement program
WO2016030924A1 (en) * 2014-08-27 2016-03-03 株式会社ニコンビジョン Rangefinder
WO2016030925A1 (en) * 2014-08-27 2016-03-03 株式会社ニコンビジョン Rangefinder and ranging method
WO2016030926A1 (en) * 2014-08-27 2016-03-03 株式会社ニコンビジョン Shaking correction device and rangefinder
WO2016151926A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151928A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151929A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151930A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151927A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
JP2017049076A (en) * 2015-08-31 2017-03-09 株式会社 ニコンビジョン Range finder
US10101442B2 (en) 2013-02-25 2018-10-16 Nikon Vision Co., Ltd. Distance measuring apparatus and method for calibration
EP3842831A1 (en) * 2016-12-23 2021-06-30 Cepton Technologies, Inc. Scanning lidar system
WO2023096043A1 (en) * 2021-11-23 2023-06-01 마이크로엑츄에이터(주) Portable distance measurement device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192679A (en) * 1987-10-05 1989-04-11 Mitsubishi Electric Corp Distance measuring instrument
JPH02310413A (en) * 1989-05-25 1990-12-26 Canon Inc Range finder
JPH02310414A (en) * 1989-05-25 1990-12-26 Canon Inc Range finder
JPH04261278A (en) * 1991-02-15 1992-09-17 Canon Inc Photographing device
JPH0682685A (en) * 1992-09-03 1994-03-25 Asahi Optical Co Ltd Camera provided with automatic focusing mechanism
JPH06175014A (en) * 1992-12-10 1994-06-24 Asahi Optical Co Ltd Camera provided with autofocusing mechanism
JP2000066113A (en) * 1998-08-20 2000-03-03 Canon Inc Binoculars
JP2000187151A (en) * 1998-12-24 2000-07-04 Canon Inc Distance measuring device used with image blur correcting device
JP2004101342A (en) * 2002-09-09 2004-04-02 Fuji Photo Optical Co Ltd Laser range finder
JP2004198386A (en) * 2002-12-20 2004-07-15 Nikon Vision Co Ltd Range finding device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192679A (en) * 1987-10-05 1989-04-11 Mitsubishi Electric Corp Distance measuring instrument
JPH02310413A (en) * 1989-05-25 1990-12-26 Canon Inc Range finder
JPH02310414A (en) * 1989-05-25 1990-12-26 Canon Inc Range finder
JPH04261278A (en) * 1991-02-15 1992-09-17 Canon Inc Photographing device
JPH0682685A (en) * 1992-09-03 1994-03-25 Asahi Optical Co Ltd Camera provided with automatic focusing mechanism
JPH06175014A (en) * 1992-12-10 1994-06-24 Asahi Optical Co Ltd Camera provided with autofocusing mechanism
JP2000066113A (en) * 1998-08-20 2000-03-03 Canon Inc Binoculars
JP2000187151A (en) * 1998-12-24 2000-07-04 Canon Inc Distance measuring device used with image blur correcting device
JP2004101342A (en) * 2002-09-09 2004-04-02 Fuji Photo Optical Co Ltd Laser range finder
JP2004198386A (en) * 2002-12-20 2004-07-15 Nikon Vision Co Ltd Range finding device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129210A1 (en) * 2013-02-25 2014-08-28 株式会社ニコンビジョン Distance measuring device and calibration method
US10101442B2 (en) 2013-02-25 2018-10-16 Nikon Vision Co., Ltd. Distance measuring apparatus and method for calibration
WO2015166713A1 (en) * 2014-05-02 2015-11-05 富士フイルム株式会社 Distance-measurement device, distance-measurement method, and distance-measurement program
JPWO2015166713A1 (en) * 2014-05-02 2017-04-20 富士フイルム株式会社 Ranging device, ranging method, and ranging program
WO2016030924A1 (en) * 2014-08-27 2016-03-03 株式会社ニコンビジョン Rangefinder
WO2016030925A1 (en) * 2014-08-27 2016-03-03 株式会社ニコンビジョン Rangefinder and ranging method
WO2016030926A1 (en) * 2014-08-27 2016-03-03 株式会社ニコンビジョン Shaking correction device and rangefinder
US10557708B2 (en) 2014-08-27 2020-02-11 Nikon Vision Co., Ltd. Range finder
US9835718B2 (en) 2014-08-27 2017-12-05 Nikon Vision Co., Ltd. Range finder and optical device
JPWO2016030926A1 (en) * 2014-08-27 2017-08-31 株式会社 ニコンビジョン Vibration correction device and rangefinder
JPWO2016030924A1 (en) * 2014-08-27 2017-06-29 株式会社 ニコンビジョン Rangefinder
JPWO2016030925A1 (en) * 2014-08-27 2017-07-20 株式会社 ニコンビジョン Distance meter and distance measuring method
US20170167867A1 (en) * 2014-08-27 2017-06-15 Nikon Vision Co., Ltd. Range finder
JPWO2016151926A1 (en) * 2015-03-20 2017-08-03 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
US20180007275A1 (en) * 2015-03-20 2018-01-04 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
JPWO2016151928A1 (en) * 2015-03-20 2017-06-29 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
WO2016151926A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
JPWO2016151930A1 (en) * 2015-03-20 2017-08-03 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
WO2016151927A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
JPWO2016151927A1 (en) * 2015-03-20 2017-08-17 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
WO2016151930A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151929A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
US20180007270A1 (en) * 2015-03-20 2018-01-04 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US20180007272A1 (en) * 2015-03-20 2018-01-04 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
JPWO2016151929A1 (en) * 2015-03-20 2017-06-29 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
US20180007271A1 (en) * 2015-03-20 2018-01-04 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US20180007273A1 (en) * 2015-03-20 2018-01-04 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US10027892B2 (en) 2015-03-20 2018-07-17 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US10027891B2 (en) 2015-03-20 2018-07-17 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US10051186B2 (en) 2015-03-20 2018-08-14 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US10051185B2 (en) 2015-03-20 2018-08-14 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US10057494B2 (en) 2015-03-20 2018-08-21 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
WO2016151928A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
JP2017049076A (en) * 2015-08-31 2017-03-09 株式会社 ニコンビジョン Range finder
EP3842831A1 (en) * 2016-12-23 2021-06-30 Cepton Technologies, Inc. Scanning lidar system
US11994621B2 (en) 2016-12-23 2024-05-28 Cepton Technologies, Inc. Mounting apparatuses for optical components in a scanning lidar system
WO2023096043A1 (en) * 2021-11-23 2023-06-01 마이크로엑츄에이터(주) Portable distance measurement device

Also Published As

Publication number Publication date
JP5433976B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5433976B2 (en) Ranging device
JP6480943B2 (en) Distance detection device, optical instrument, and distance detection method
JP2004101342A (en) Laser range finder
JPWO2009031550A1 (en) Ranging device
WO2014129210A1 (en) Distance measuring device and calibration method
JP2016095135A (en) Range finding device
WO2016030924A1 (en) Rangefinder
US6580495B2 (en) Surveying instrument having a phase-difference detection type focus detecting device and a beam-splitting optical system
JP2014066724A (en) Distance measuring device
JP4023572B2 (en) Automatic surveying machine
JP2000066113A (en) Binoculars
EP3945283A1 (en) Surveying instrument
US11668567B2 (en) Surveying instrument
JP2000329517A (en) Distance-measuring apparatus
JP2022110635A (en) Surveying device
WO2019116443A1 (en) Binocular telescope and method for manufacturing same
JP2008096197A (en) Device for measuring eccentricity
JP2018146299A (en) Surveying instrument
JP6972311B2 (en) Posture detection method for distance detectors, optical instruments, and distance detectors
US6822732B2 (en) Surveying instrument having an auto-collimating function and a distance measuring function
JP4697776B2 (en) Surveyor automatic collimation device
JP5409580B2 (en) Laser distance meter
JP2002195815A (en) Deflection correction measuring device
JP3154047B2 (en) Surveying instrument with AF function
EP3957951B1 (en) Surveying instrument

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5433976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250