JP2009267089A - Film capacitor - Google Patents

Film capacitor Download PDF

Info

Publication number
JP2009267089A
JP2009267089A JP2008115056A JP2008115056A JP2009267089A JP 2009267089 A JP2009267089 A JP 2009267089A JP 2008115056 A JP2008115056 A JP 2008115056A JP 2008115056 A JP2008115056 A JP 2008115056A JP 2009267089 A JP2009267089 A JP 2009267089A
Authority
JP
Japan
Prior art keywords
film
support
electrode
capacitor
film capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008115056A
Other languages
Japanese (ja)
Other versions
JP5024176B2 (en
Inventor
Taiyo Tsukahara
太陽 塚原
Mitsuru Sasaki
充 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008115056A priority Critical patent/JP5024176B2/en
Publication of JP2009267089A publication Critical patent/JP2009267089A/en
Application granted granted Critical
Publication of JP5024176B2 publication Critical patent/JP5024176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/015Special provisions for self-healing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film capacitor having an excellent dielectric loss (tan δ) characteristic. <P>SOLUTION: In this film capacitor, a long-shaped first support body 11 formed with electrode layers 13a, 13b, 13c, 13d, 13e, 13f insulated each other and extending in a plurality of longitudinal directions, a dielectric film 17 not formed with the electrode layer, and a long-shaped second support body 14 formed with a plurality of electrode layers 16a, 16b, 16c, 16d insulated each other and extending in a longitudinal direction are one over the other wound, and extraction electrodes 18, 19 are formed on both the ends to connect a plurality of capacitor elements in series. In the film capacitor, the electrode layers 13a, 13c, 13d, 13f at both the ends in a width direction of the first support body 11 are connected to the extraction electrodes 18, 19, respectively, and also a thickness of the first support body 11 is thicker than that of the second support body 14, and besides is equal to or more than 6 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数のコンデンサが直列に接続された高耐電圧用のフィルムコンデンサに関するものである。   The present invention relates to a film capacitor for high withstand voltage in which a plurality of capacitors are connected in series.

フィルムコンデンサでは、耐電圧の向上のため、コンデンサ素子内部で複数のコンデンサ要素が直列に接続された回路構成としたいわゆる直列コンデンサが広く用いられている。   In film capacitors, so-called series capacitors having a circuit configuration in which a plurality of capacitor elements are connected in series inside a capacitor element are widely used in order to improve withstand voltage.

従来の直列コンデンサの一例として、その斜視図を図2に示している。   As an example of a conventional series capacitor, a perspective view thereof is shown in FIG.

図2の直列コンデンサでは、上層フィルム22の表面に、フィルムの長さ方向に沿って2本の帯状電極25a、25bを蒸着し、この2本の帯状電極25a、25bの間に絶縁溝部24を設けると共に、2本の帯状電極25a、25bはフィルムの両端側を電極引出部21a、21bに接触させている。また下層フィルム23の表面には、フィルムの長さ方向に沿って中央部に帯状電極27が蒸着され、フィルムの両端側に絶縁溝部26、26が設けられている。この構造により、金属化フィルムコンデンサの等価回路は図3に示すようなコンデンサ要素2個の直列回路で構成されることになる。   In the series capacitor of FIG. 2, two strip electrodes 25a and 25b are vapor-deposited on the surface of the upper film 22 along the length direction of the film, and an insulating groove 24 is formed between the two strip electrodes 25a and 25b. In addition, the two strip electrodes 25a and 25b have both ends of the film in contact with the electrode lead portions 21a and 21b. On the surface of the lower layer film 23, a strip-like electrode 27 is deposited at the center along the length direction of the film, and insulating grooves 26, 26 are provided on both ends of the film. With this structure, the equivalent circuit of the metallized film capacitor is composed of a series circuit of two capacitor elements as shown in FIG.

なお、本出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平7−57955号公報
For example, Patent Document 1 is known as prior art document information relating to the invention of the present application.
Japanese Unexamined Patent Publication No. 7-57955

上記のような直列コンデンサでは、コンデンサを直列に接続することにより、より高い電圧に耐えられるコンデンサとなるが、同時に電流量も増大するため、誘電損失(または誘電正接、tanδ)が小さいことが求められる。   The series capacitor as described above is a capacitor that can withstand a higher voltage by connecting the capacitors in series. However, since the amount of current increases at the same time, the dielectric loss (or dielectric loss tangent, tan δ) is required to be small. It is done.

そして、誘電損失(tanδ)を低減するためには、帯状電極25a、25bと電極引出部21a、21bの接触が十分確保されていることが重要となる。   In order to reduce the dielectric loss (tan δ), it is important that the contact between the strip electrodes 25a and 25b and the electrode lead portions 21a and 21b is sufficiently secured.

ここで、帯状電極25a、25bの厚みは非常に薄いため、電極引出部21a、21bとの接続においては帯状電極25a、25bの表面上で両端側の一部に電極引出部21a、21bが接触するように形成することが必要である。   Here, since the thickness of the strip electrodes 25a and 25b is very thin, the electrode lead portions 21a and 21b are in contact with part of both ends on the surface of the strip electrodes 25a and 25b in connection with the electrode lead portions 21a and 21b. It is necessary to form so as to.

電極引出部21a、21bはメタリコンと呼ばれる金属溶射により形成されるが、上記の理由で帯状電極25a、25bと電極引出部21a、21bとの接触を向上させるため、下層フィルム23の幅を上層フィルム22の幅よりも短くして、帯状電極25a、25bの表面上で両端側の一部分に溶射された金属が付着するようにしている。   The electrode lead portions 21a and 21b are formed by metal spraying called metallicon. For the above reason, the width of the lower film 23 is increased to improve the contact between the strip electrodes 25a and 25b and the electrode lead portions 21a and 21b. It is made shorter than the width | variety 22 and the metal sprayed to the part of both ends on the surface of the strip | belt-shaped electrodes 25a and 25b adheres.

また、下層フィルム23の幅を上層フィルム22の幅より短くすることにより、端面に凹凸を付けて電極引出部21a、21bの接触面積を増やして接着強度を高めることもできる。   Moreover, by making the width of the lower layer film 23 shorter than the width of the upper layer film 22, the contact surface of the electrode lead portions 21a and 21b can be increased by providing irregularities on the end face, thereby increasing the adhesive strength.

このため、図2に明らかに示されてはいないが、上層フィルム22の両端側は隣接する下層フィルム23の両端側よりも突出することになる。   For this reason, although not clearly shown in FIG. 2, both end sides of the upper layer film 22 protrude from both end sides of the adjacent lower layer film 23.

さらに、絶縁溝部26には電極がないため、上層フィルム22と下層フィルム23が巻回されたときに、この電極のない絶縁溝部26により厚みの差が集積され、上層フィルム22の両端側が、より浮いた状態となる。   Furthermore, since there is no electrode in the insulating groove portion 26, when the upper layer film 22 and the lower layer film 23 are wound, the difference in thickness is accumulated by the insulating groove portion 26 without this electrode, and both end sides of the upper layer film 22 are more It will be in a floating state.

このため、金属溶射時の圧力により、上層フィルム22の両端側が倒れ込み、帯状電極25a、25bと電極引出部21a、21bとの間の接触が阻害される結果、直列コンデンサの誘電損失(tanδ)が増大し特性が低下してしまうという課題があった。   For this reason, the pressure at the time of metal spraying causes the both end sides of the upper film 22 to fall down and obstruct the contact between the strip electrodes 25a, 25b and the electrode lead portions 21a, 21b, resulting in a dielectric loss (tan δ) of the series capacitor. There was a problem that the characteristics increased and the characteristics deteriorated.

そこで本発明は、誘電損失(tanδ)の増大を起こしにくく、特性が向上したフィルムコンデンサを提供することを目的とする。   Accordingly, an object of the present invention is to provide a film capacitor that hardly causes an increase in dielectric loss (tan δ) and has improved characteristics.

そしてこの目的を達成するために、本発明のフィルムコンデンサは、互いに絶縁された複数の長手方向に伸びる電極層を形成した長尺状の第1の支持体と、電極層を形成しない誘電体フィルムと、互いに絶縁された複数の長手方向に伸びる電極層を形成した長尺状の第2の支持体と、を重ね合わせて巻回し、その両端面に取出電極を形成して複数のコンデンサ要素が直列に接続されるようにしたフィルムコンデンサであって、前記第1の支持体上の前記電極層のうち支持体の幅方向両端部の電極層が前記取出電極と接続されているとともに、前記第1の支持体の厚みは前記第2の支持体の厚みよりも厚く、かつ6μm以上の厚みであることを特徴とするフィルムコンデンサである。   In order to achieve this object, the film capacitor of the present invention includes a long first support body on which a plurality of longitudinally extending electrode layers that are insulated from each other are formed, and a dielectric film that does not form an electrode layer And a long second support body formed with a plurality of longitudinally extending electrode layers that are insulated from each other, and wound together, forming take-out electrodes on both end faces thereof to form a plurality of capacitor elements. A film capacitor connected in series, wherein the electrode layers on both ends in the width direction of the electrode layer on the first support are connected to the extraction electrode, and the first 1 is a film capacitor characterized in that the thickness of the support is larger than the thickness of the second support and is 6 μm or more.

幅方向両端部が取出電極に接続される電極層を形成する第1の支持体の厚みをもう一方の第2の支持体よりも厚く、かつ6μm以上とすることにより、フィルムコンデンサの形状を大型化することなく、金属溶射時の支持体の倒れ込みが減少し、その結果電極層と取出電極との接続が確保されて誘電損失(tanδ)の増大が抑制されることになり、特性が向上したフィルムコンデンサを得ることができる。   The thickness of the first support that forms the electrode layer whose both ends in the width direction are connected to the extraction electrode is thicker than that of the other second support and is 6 μm or more, thereby increasing the shape of the film capacitor. Without lowering, the falling of the support during metal spraying is reduced. As a result, the connection between the electrode layer and the extraction electrode is secured, and the increase in dielectric loss (tan δ) is suppressed, and the characteristics are improved. A film capacitor can be obtained.

以下、本発明のフィルムコンデンサについて、一実施の形態および図面を用いて説明する。   Hereinafter, the film capacitor of the present invention will be described with reference to one embodiment and the drawings.

(実施の形態)
図1は本実施の形態のフィルムコンデンサの断面図である。
(Embodiment)
FIG. 1 is a cross-sectional view of the film capacitor of the present embodiment.

図1において、第1の支持体11の両面に、電極層がない非蒸着部12により互いに絶縁された帯状の電極層13a、13b、13c、13d、13e、13fがアルミニウムなどの金属蒸着により長手方向に連続して形成されている。   In FIG. 1, strip-like electrode layers 13 a, 13 b, 13 c, 13 d, 13 e, and 13 f that are insulated from each other by a non-deposition portion 12 that does not have an electrode layer are formed on both surfaces of a first support 11 by metal deposition such as aluminum. It is formed continuously in the direction.

また他の第2の支持体14の両面には、同様に電極層がない非蒸着部15により互いに絶縁された帯状の電極層16a、16b、16c、16dが形成されている。   In addition, strip-like electrode layers 16a, 16b, 16c, and 16d that are insulated from each other by the non-deposition portion 15 having no electrode layer are formed on both surfaces of the other second support 14.

そして、第1の支持体11と第2の支持体14の間には、電極層が形成されていない誘電体フィルム17が挟まれ、これら第1の支持体11と誘電体フィルム17と第2の支持体14が重ねられて巻回された後、その両端面に取出電極18、19(従来例の電極引出部に相当)がメタリコンのような金属溶射などの方法により形成されている。   And between the 1st support body 11 and the 2nd support body 14, the dielectric film 17 in which the electrode layer is not formed is pinched | interposed, These 1st support body 11, the dielectric film 17, and 2nd After the support 14 is overlapped and wound, extraction electrodes 18 and 19 (corresponding to electrode extraction portions in the conventional example) are formed on both end surfaces by a method such as metal spraying such as metallicon.

誘電体フィルム17としては、ポリプロピレンフィルム(以下PPフィルム)やポリエチレンテレフタレートフィルム(以下PETフィルム)などの有機フィルムが用いられる。   As the dielectric film 17, an organic film such as a polypropylene film (hereinafter referred to as PP film) or a polyethylene terephthalate film (hereinafter referred to as PET film) is used.

また、支持体11、14は電極層13、16を保持するための基材であり、その材質としては絶縁性の有機フィルムであれば良いが、誘電体フィルムと同じPPフィルムやPETフィルムを用いても良い。   The supports 11 and 14 are base materials for holding the electrode layers 13 and 16 and may be made of an insulating organic film, but the same PP film or PET film as the dielectric film is used. May be.

このような構成により、誘電体フィルム17を介して対向する電極層13dと電極層16a、電極層16aと電極層13e、電極層13eと電極層16b、電極層16bと電極層13fの間に4つの直列接続されたコンデンサ要素が形成される。   With such a configuration, the electrode layer 13d and the electrode layer 16a facing each other with the dielectric film 17 interposed therebetween, the electrode layer 16a and the electrode layer 13e, the electrode layer 13e and the electrode layer 16b, and the electrode layer 16b and the electrode layer 13f between Two series connected capacitor elements are formed.

さらに、図1において、第2の支持体14の下方にも誘電体フィルム17が配されて巻回されるため、全体としては上記の4つの直列接続されたコンデンサ要素が多数並列接続された構成となる。   Further, in FIG. 1, since the dielectric film 17 is also disposed below the second support 14 and wound, the entire four capacitor elements connected in series are connected in parallel as a whole. It becomes.

電極層16a、16b、16c、16dはいわゆる中間電極であり、取出電極18、取出電極19とは接続されないものである。   The electrode layers 16a, 16b, 16c, and 16d are so-called intermediate electrodes, and are not connected to the extraction electrode 18 and the extraction electrode 19.

ここで、図1に示すように、第2の支持体14と誘電体フィルム17は第1の支持体11よりも幅が短くされており、第1の支持体11上の電極層13a、電極層13fの表面の端部20が0.5〜1.0mm程度、突出するように構成されている。   Here, as shown in FIG. 1, the width of the second support 14 and the dielectric film 17 is shorter than that of the first support 11, and the electrode layer 13 a and the electrode on the first support 11. The end 20 on the surface of the layer 13f is configured to protrude by about 0.5 to 1.0 mm.

そしてこの突出した電極層13a、電極層13fの一部に取出電極18、取出電極19が接触するように形成されている。   The extraction electrode 18 and the extraction electrode 19 are formed in contact with part of the protruding electrode layer 13a and electrode layer 13f.

上記のような構成において、第1の支持体11の厚みを6μm以上とすることによって、メタリコンによる取出電極18、取出電極19の形成時の圧力により第1の支持体11上の電極層13a、電極層13fの表面の端部20が倒れ込むことがなく、したがってこの端部20で取出電極18、取出電極19との十分な接続が確保されることになる。   In the above configuration, by setting the thickness of the first support 11 to 6 μm or more, the electrode layer 13a on the first support 11 is formed by the pressure at the time of formation of the extraction electrode 18 and extraction electrode 19 by metallicon, The end portion 20 on the surface of the electrode layer 13f does not fall down, so that sufficient connection with the extraction electrode 18 and the extraction electrode 19 is ensured at the end portion 20.

これにより、取出電極18、取出電極19を設けた後も、誘電損失(tanδ)が増大することなく、特性の良好なフィルムコンデンサとすることができる。   As a result, even after the extraction electrode 18 and the extraction electrode 19 are provided, the dielectric loss (tan δ) does not increase, and a film capacitor with good characteristics can be obtained.

さらに、第2の支持体14の厚みは、6μm以上の第1の支持体11の厚みよりも薄くしているため、フィルムコンデンサの形状を大型化することがない。   Furthermore, since the thickness of the 2nd support body 14 is made thinner than the thickness of the 1st support body 11 6 micrometers or more, the shape of a film capacitor is not enlarged.

以下、具体的な実施例について説明する。   Specific examples will be described below.

以下の実施例では、第2の支持体14の厚みを5μmとし、第1の支持体11の厚みを変え、誘電体フィルム17を介して電極層13、電極層16が対向するように巻回した後、両端面にメタリコンにより取出電極18、取出電極19を形成したフィルムコンデンサを作製し、誘電損失を測定した。   In the following examples, the thickness of the second support 14 is set to 5 μm, the thickness of the first support 11 is changed, and the electrode layer 13 and the electrode layer 16 are wound so as to face each other through the dielectric film 17. After that, a film capacitor in which the extraction electrode 18 and the extraction electrode 19 were formed on both end faces by metallicon was produced, and the dielectric loss was measured.

作製したフィルムコンデンサ試料はいずれも定格電圧が2200Vで静電容量は0.017μFであり、寸法規定値としては巻外径(巻回後の外径)が2.27cm以下である。   Each of the produced film capacitor samples has a rated voltage of 2200 V, an electrostatic capacity of 0.017 μF, and a dimension-defined value of a wound outer diameter (outer diameter after winding) of 2.27 cm or less.

第1、第2の支持体11、14の材質としてはPPフィルムを用い、誘電体フィルム17としては定格電圧の関係から12μmの厚みのPPフィルムを用いている。   A PP film is used as the material of the first and second supports 11 and 14, and a PP film having a thickness of 12 μm is used as the dielectric film 17 because of the rated voltage.

(実施例1)
第1の支持体11の厚みを6μm、第2の支持体14の厚みを5μmとし、12μmの誘電体フィルムとともに図1のように巻回し、両端面に取出電極18、取出電極19を形成したフィルムコンデンサ試料100個を作製した。この試料について、25℃で10kHz1Vの電圧を印加して誘電損失(tanδ)を測定し、tanδが0.03%以上である試料個数の比率を不良率とした。
Example 1
The thickness of the first support 11 was 6 μm, the thickness of the second support 14 was 5 μm, and it was wound together with a 12 μm dielectric film as shown in FIG. 1 to form extraction electrodes 18 and extraction electrodes 19 on both end faces. 100 film capacitor samples were prepared. With respect to this sample, a dielectric loss (tan δ) was measured by applying a voltage of 10 kHz 1 V at 25 ° C., and the ratio of the number of samples having tan δ of 0.03% or more was defined as a defect rate.

実施例1による試料100個の不良率(tanδが0.03%以上の試料個数比率)は10%であった。   The defect rate of 100 samples according to Example 1 (the ratio of the number of samples with tan δ being 0.03% or more) was 10%.

またフィルムコンデンサ試料の巻外径は2.17cmであり、寸法規定値の範囲内であった。   The outer diameter of the film capacitor sample was 2.17 cm, which was within the range of the stipulated value.

(実施例2)
第1の支持体11の厚みを7μmとした以外は実施例1と同様に、フィルムコンデンサ試料100個を作製し、tanδの不良率を測定した結果は、5%であった。
(Example 2)
100 film capacitor samples were produced in the same manner as in Example 1 except that the thickness of the first support 11 was set to 7 μm, and the result of measuring the tan δ defect rate was 5%.

実施例2の試料の巻外径は2.22cmであり、やはり寸法規定値の範囲内であった。   The outer diameter of the sample of Example 2 was 2.22 cm, which was also within the range of the dimension specification value.

(実施例3)
第1の支持体11の厚みを8μmとした以外は実施例1と同様に、フィルムコンデンサ試料100個を作製し、tanδの不良率を測定した結果は2%であった。
(Example 3)
100 film capacitor samples were produced in the same manner as in Example 1 except that the thickness of the first support 11 was 8 μm, and the result of measuring the tan δ defect rate was 2%.

しかし、第1の支持体11の厚みが厚くなるにつれ、フィルムコンデンサの形状が大きくなり、巻外径は2.27cmであり、この実施例3の大きさが寸法規定値の限界であった。   However, as the thickness of the first support 11 is increased, the shape of the film capacitor is increased, the wound outer diameter is 2.27 cm, and the size of Example 3 is the limit of the stipulated dimension value.

(比較例1)
第1の支持体11の厚みを5μmとした以外は実施例1と同様に、フィルムコンデンサ試料100個を作製し、tanδの不良率を測定した結果は40%であった。
(Comparative Example 1)
Except that the thickness of the first support 11 was set to 5 μm, 100 film capacitor samples were produced in the same manner as in Example 1, and the result of measuring the defective rate of tan δ was 40%.

また、実施例1〜3、比較例1のフィルムコンデンサ試料の断面を観察したところ、比較例1の試料で第1の支持体11の倒れ込みが最も大きく、実施例1〜3と第1の支持体11の厚みが厚くなるにつれてその倒れ込みの程度は小さくなっていた。   Moreover, when the cross section of the film capacitor sample of Examples 1-3 and the comparative example 1 was observed, the fall of the 1st support body 11 was the largest in the sample of the comparative example 1, and Examples 1-3 and the 1st support. As the thickness of the body 11 was increased, the degree of the collapse was reduced.

以上の結果から明らかなように、第1の支持体11の厚みを第2の支持体14よりも厚く、6μm以上の厚みとすることにより、フィルムコンデンサの誘電損失(tanδ)の不良率を低減することができ、高耐電圧、大電流に耐え得るフィルムコンデンサとすることができる。   As apparent from the above results, the defect rate of the dielectric loss (tan δ) of the film capacitor is reduced by making the thickness of the first support 11 thicker than that of the second support 14 and 6 μm or more. The film capacitor can withstand high withstand voltage and large current.

ここで、第1の支持体11の厚みが厚いほど、倒れ込みが減少し、tanδの不良率は減少する傾向にあるが、フィルムコンデンサの外径が大きくなってしまう。   Here, as the thickness of the first support 11 is thicker, the collapse is reduced and the defective rate of tan δ tends to be reduced, but the outer diameter of the film capacitor is increased.

これを補うために、第2の支持体14の厚みを薄くすることが考えられるが、厚みが薄くなるほど金属蒸着時の熱に耐えにくくなり、また本実施の形態のように両面に金属蒸着電極を形成する場合は、さらに金属蒸着時の熱による影響が大きくなる。   In order to compensate for this, it is conceivable to reduce the thickness of the second support 14. However, the thinner the thickness, the harder it is to withstand the heat during metal vapor deposition, and the metal vapor deposition electrodes on both sides as in the present embodiment. In the case of forming, the influence of heat during metal deposition is further increased.

このため、第2の支持体14の厚みを薄くすることには限界があり、3〜4μm以上とすることが好ましい。   For this reason, there exists a limit in making the thickness of the 2nd support body 14 thin, and it is preferable to set it as 3-4 micrometers or more.

したがって、第1の支持体11の厚みを6μm以上、8μm以下とし、第2の支持体14の厚みを3μm以上、5μm以下とするのがより好ましい。   Therefore, it is more preferable that the thickness of the first support 11 is 6 μm or more and 8 μm or less, and the thickness of the second support 14 is 3 μm or more and 5 μm or less.

また、本実施の形態では、第1の支持体11上の電極層13a、13c、13d、13fの表面の端部20が0.5〜1.0mm程度、突出するように構成している。   Moreover, in this Embodiment, it is comprised so that the edge part 20 of the surface of the electrode layers 13a, 13c, 13d, and 13f on the 1st support body 11 may protrude about 0.5-1.0 mm.

突出する端部20の幅が0.5mmより短いと、第1の支持体11が隣接する誘電体フィルムや第2の支持体14で支えられやすいため、第1の支持体11が金属溶射時に倒れ込む程度が軽減されるが、端部20の幅が短いため取出電極18、取出電極19との接触部分が少なくなることになる。   When the width of the projecting end portion 20 is shorter than 0.5 mm, the first support 11 is easily supported by the adjacent dielectric film or the second support 14. Although the degree of falling is reduced, since the width of the end portion 20 is short, the contact portions with the extraction electrode 18 and the extraction electrode 19 are reduced.

さらに、巻回した時の両端面の凹凸が小さくなるため、両端面の表面積が減少し、その結果取出電極の接着強度が低下することにもなる。   Furthermore, since the unevenness of both end faces when wound is reduced, the surface area of both end faces is reduced, and as a result, the adhesive strength of the extraction electrode is also lowered.

また、端部20の幅が1mmよりも長いと、取出電極18、取出電極19との接触部分は増加するが、第1の支持体11が隣接する誘電体フィルムや第2の支持体14で支えられにくくなり、第1の支持体11が金属溶射時に倒れ込む程度が増加する。   If the width of the end portion 20 is longer than 1 mm, the contact portion between the extraction electrode 18 and the extraction electrode 19 increases, but the first support 11 is adjacent to the adjacent dielectric film or the second support 14. It becomes difficult to support, and the degree to which the first support 11 falls down during metal spraying increases.

したがって、この端部20の幅は0.5〜1.0mmが好ましい。   Therefore, the width of the end portion 20 is preferably 0.5 to 1.0 mm.

なお、本実施の形態では第1、第2の支持体11、14として、PPフィルムを用いたがPETフィルムなどの他の有機フィルムを用いることもできる。   In the present embodiment, PP films are used as the first and second supports 11 and 14, but other organic films such as PET films can also be used.

PETフィルムは、PPフィルムに比べて強度が高く、金属溶射時の圧力の影響を受けにくいが、フィルム自体の誘電損失(tanδ)が高く、例えば第1の支持体11の両面に対称に形成した金属層16a、金属層16dの位置にズレがあると、このズレの部分でtanδの大きな容量成分が発生し、フィルムコンデンサ全体のtanδ増大につながる場合がある。   The PET film is higher in strength than the PP film and hardly affected by the pressure during metal spraying, but the film itself has a high dielectric loss (tan δ). For example, the PET film is formed symmetrically on both surfaces of the first support 11. If there is a deviation in the positions of the metal layer 16a and the metal layer 16d, a capacitance component having a large tan δ is generated at this deviation portion, which may lead to an increase in tan δ of the entire film capacitor.

このため、第1の支持体11、第2の支持体14としては誘電損失が比較的小さいPPフィルムを用いることが好ましい。   For this reason, it is preferable to use a PP film having a relatively small dielectric loss as the first support 11 and the second support 14.

誘電体フィルム17については、誘電体として機能するフィルムであるため、フィルム自体のtanδが小さなPPフィルムが好ましい。   Since the dielectric film 17 is a film that functions as a dielectric, a PP film having a small tan δ of the film itself is preferable.

また、本実施の形態では支持体の両面に電極層を形成したものと、電極層を形成していない誘電体フィルムとを巻回したが、これに限定されるものではなく、図2の従来例のように、上層フィルム22と下層フィルム23を巻回する場合においても、上層フィルム22の厚みを下層フィルム23よりも厚く、かつ6μm以上とすることにより、同様の効果を得ることができる。   In this embodiment, the electrode layer formed on both sides of the support and the dielectric film not formed with the electrode layer are wound. However, the present invention is not limited to this, and the conventional structure shown in FIG. Even when the upper film 22 and the lower film 23 are wound as in the example, the same effect can be obtained by making the upper film 22 thicker than the lower film 23 and 6 μm or more.

なお、図1では説明のために第1、第2の支持体11、14と誘電体フィルム17間の空隙を誇張して図示しているが、実際のフィルムコンデンサにおいては、これらは極めて接近しているか、もしくは密着しているものである。   In FIG. 1, the gap between the first and second supports 11 and 14 and the dielectric film 17 is exaggerated for the sake of explanation. However, in an actual film capacitor, these are extremely close to each other. Or are in close contact.

本発明のフィルムコンデンサでは、幅方向両端部が取出電極に接続される電極層を形成する第1の支持体の厚みを、もう一方の第2の支持体よりも厚く、かつ6μm以上とすることにより、フィルムコンデンサの形状を大型化することなく、金属溶射時の支持体の倒れ込みを減少することにより、誘電損失(tanδ)の増大が抑制され、特性が向上したフィルムコンデンサを得ることができるため、高耐圧用のフィルムコンデンサ等に有用である。   In the film capacitor of the present invention, the thickness of the first support forming the electrode layer whose both ends in the width direction are connected to the extraction electrode is thicker than the other second support and 6 μm or more. Therefore, the increase in dielectric loss (tan δ) is suppressed and the film capacitor with improved characteristics can be obtained by reducing the collapse of the support during metal spraying without increasing the size of the film capacitor. It is useful for a film capacitor for high withstand voltage.

本発明の実施の形態によるフィルムコンデンサの断面図Sectional drawing of the film capacitor by embodiment of this invention 従来の直列コンデンサの斜視図Perspective view of a conventional series capacitor 従来の金属化フィルムコンデンサの等価回路図Equivalent circuit diagram of conventional metalized film capacitor

符号の説明Explanation of symbols

11 第1の支持体
12、15 非蒸着部
13a、13b、13c、13d、13e、13f 電極層
14 第2の支持体
16a、16b、16c、16d 電極層
17 誘電体フィルム
18、19 取出電極
20 端部
21a、21b 電極引出部
22 上層フィルム
23 下層フィルム
24 絶縁溝部
25a、25b 帯状電極
26 絶縁溝部
27 帯状電極
DESCRIPTION OF SYMBOLS 11 1st support body 12 and 15 Non-deposition part 13a, 13b, 13c, 13d, 13e, 13f Electrode layer 14 2nd support body 16a, 16b, 16c, 16d Electrode layer 17 Dielectric film 18, 19 Extraction electrode 20 End portion 21a, 21b Electrode extraction portion 22 Upper layer film 23 Lower layer film 24 Insulating groove portion 25a, 25b Strip electrode 26 Insulating groove portion 27 Strip electrode

Claims (2)

互いに絶縁された複数の長手方向に伸びる電極層を形成した長尺状の第1の支持体と、電極層を形成しない誘電体フィルムと、互いに絶縁された複数の長手方向に伸びる電極層を形成した長尺状の第2の支持体と、を重ね合わせて巻回し、その両端面に取出電極を形成して複数のコンデンサ要素が直列に接続されるようにしたフィルムコンデンサであって、前記第1の支持体上の前記電極層のうち支持体の幅方向両端部の電極層が前記取出電極と接続されているとともに、前記第1の支持体の厚みは前記第2の支持体の厚みよりも厚く、かつ6μm以上であることを特徴とするフィルムコンデンサ。 Forming a long first support body having a plurality of longitudinally extending electrode layers insulated from each other, a dielectric film not forming an electrode layer, and a plurality of longitudinally extending electrode layers insulated from each other A film capacitor in which a plurality of capacitor elements are connected in series by forming take-out electrodes on both end faces thereof, Among the electrode layers on one support, electrode layers at both ends in the width direction of the support are connected to the extraction electrode, and the thickness of the first support is larger than the thickness of the second support. A film capacitor characterized by being thick and 6 μm or more. 前記第1の支持体、第2の支持体と前記誘電体フィルムがポリプロピレンフィルムである請求項1に記載のフィルムコンデンサ。 The film capacitor according to claim 1, wherein the first support, the second support, and the dielectric film are polypropylene films.
JP2008115056A 2008-04-25 2008-04-25 Film capacitor Active JP5024176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008115056A JP5024176B2 (en) 2008-04-25 2008-04-25 Film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008115056A JP5024176B2 (en) 2008-04-25 2008-04-25 Film capacitor

Publications (2)

Publication Number Publication Date
JP2009267089A true JP2009267089A (en) 2009-11-12
JP5024176B2 JP5024176B2 (en) 2012-09-12

Family

ID=41392559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008115056A Active JP5024176B2 (en) 2008-04-25 2008-04-25 Film capacitor

Country Status (1)

Country Link
JP (1) JP5024176B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222129A (en) * 1989-02-22 1990-09-04 Matsushita Electric Ind Co Ltd Film capacitor and manufacture thereof
JPH0364904A (en) * 1989-08-02 1991-03-20 Nichicon Corp Wound type capacitor
JPH04354317A (en) * 1991-05-31 1992-12-08 Shizuki Denki Seisakusho:Kk Multilayer capacitor
JPH04373113A (en) * 1991-06-24 1992-12-25 Matsushita Electric Ind Co Ltd Metallized film capacitor
JPH0757955A (en) * 1993-08-09 1995-03-03 Shizuki Denki Seisakusho:Kk Metallized film capacitor
JPH09129475A (en) * 1995-10-30 1997-05-16 Okaya Electric Ind Co Ltd Metallized film capacitor and manufacture thereof
JP2005093514A (en) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd Metallized film capacitor and its manufacturing method
JP2009152431A (en) * 2007-12-21 2009-07-09 Panasonic Corp Film capacitor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222129A (en) * 1989-02-22 1990-09-04 Matsushita Electric Ind Co Ltd Film capacitor and manufacture thereof
JPH0364904A (en) * 1989-08-02 1991-03-20 Nichicon Corp Wound type capacitor
JPH04354317A (en) * 1991-05-31 1992-12-08 Shizuki Denki Seisakusho:Kk Multilayer capacitor
JPH04373113A (en) * 1991-06-24 1992-12-25 Matsushita Electric Ind Co Ltd Metallized film capacitor
JPH0757955A (en) * 1993-08-09 1995-03-03 Shizuki Denki Seisakusho:Kk Metallized film capacitor
JPH09129475A (en) * 1995-10-30 1997-05-16 Okaya Electric Ind Co Ltd Metallized film capacitor and manufacture thereof
JP2005093514A (en) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd Metallized film capacitor and its manufacturing method
JP2009152431A (en) * 2007-12-21 2009-07-09 Panasonic Corp Film capacitor

Also Published As

Publication number Publication date
JP5024176B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP4561832B2 (en) Metalized film capacitors and inverter smoothing capacitors for automobiles
JP2007299921A (en) Film capacitor
JP2008016706A (en) Laminated ceramic capacitor and its manufacturing method
JP4487818B2 (en) Metallized film capacitors
JP4869531B2 (en) Capacitor element for power capacitor, power capacitor having the element, and metallized film for power capacitor
JP2010016047A (en) Metallized film capacitor
JP4973543B2 (en) Metallized film capacitors
JP5548343B2 (en) Metallized film capacitors
JP5024176B2 (en) Film capacitor
JP7398445B2 (en) Film capacitor whose interior is coated with an acrylic dielectric layer
JP6211255B2 (en) Metallized film capacitors
JP2010165775A (en) Film capacitor
JP6330139B2 (en) Metallized film capacitors
JP4957308B2 (en) Metallized film capacitors
JP6321414B2 (en) Film capacitor
KR102063782B1 (en) Film capacitor
JP2008235414A (en) Metalized film capacitor
JP2017059612A (en) Metalization film capacitor
US10163567B2 (en) Multi-layered aluminum oxide capacitor
US20120075769A1 (en) High temperature high current metalized film capacitor
JP2009071091A (en) Film capacitor
KR102192947B1 (en) Folding type capacitor comprising aluminium oxide layer
JP2008294431A (en) Metallized film capacitor
JP2012094603A (en) Method for manufacturing film capacitor
JP2006294789A (en) Metallized film capacitor, case molded capacitor employing it, inverter circuit, drive circuit of motor for driving vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110422

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5024176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151