JP4845217B2 - High-voltage metal-deposited electrode oil-filled capacitor - Google Patents
High-voltage metal-deposited electrode oil-filled capacitor Download PDFInfo
- Publication number
- JP4845217B2 JP4845217B2 JP2007200220A JP2007200220A JP4845217B2 JP 4845217 B2 JP4845217 B2 JP 4845217B2 JP 2007200220 A JP2007200220 A JP 2007200220A JP 2007200220 A JP2007200220 A JP 2007200220A JP 4845217 B2 JP4845217 B2 JP 4845217B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- vapor deposition
- capacitor
- metal
- metal vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 title claims description 63
- 239000002184 metal Substances 0.000 claims description 62
- 229910052751 metal Inorganic materials 0.000 claims description 62
- 238000007740 vapor deposition Methods 0.000 claims description 56
- 239000004743 Polypropylene Substances 0.000 claims description 46
- 238000004804 winding Methods 0.000 claims description 8
- -1 polyethylene terephthalate Polymers 0.000 claims description 7
- 229920001155 polypropylene Polymers 0.000 claims description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 4
- 238000001465 metallisation Methods 0.000 claims description 3
- 239000010408 film Substances 0.000 description 106
- 229920002799 BoPET Polymers 0.000 description 25
- 230000015556 catabolic process Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 7
- 230000008602 contraction Effects 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000007788 roughening Methods 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 239000011104 metalized film Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
本発明は、ポリエチレンテレフタレートフィルム(以下、PETフィルムという)またはポリプロピレンフィルム(以下、PPフィルムという)の両面に金属蒸着膜が設けられたフィルムと、表面に金属蒸着膜が設けられていないPPフィルムとを共に巻回して形成されたコンデンサ素子に、絶縁油が含浸された高電圧金属蒸着電極油入式コンデンサに関する。 The present invention relates to a film in which a metal vapor deposition film is provided on both surfaces of a polyethylene terephthalate film (hereinafter referred to as PET film) or a polypropylene film (hereinafter referred to as PP film), and a PP film in which the metal vapor deposition film is not provided on the surface. The present invention relates to a high voltage metal vapor deposition electrode oil-filled capacitor in which a capacitor element formed by winding together is impregnated with an insulating oil.
油入式コンデンサとしては、一般的に金属化フィルムを巻回した金属化フィルムコンデンサ(特許文献1)や、図4に示される、両面金属化紙電極とPPフィルムを巻回した金属化紙電極コンデンサ(特許文献2)がある。
これらのコンデンサはいずれも電極として蒸着電極を、誘電体としてプラスチックフィルムを用いたものであり、直列蒸着電極を採用し、素子を直列結線して高電圧コンデンサとしていた。
As an oil-filled capacitor, generally a metallized film capacitor (Patent Document 1) in which a metallized film is wound, or a metallized paper electrode in which a double-sided metallized paper electrode and a PP film are wound as shown in FIG. There is a capacitor (Patent Document 2).
Each of these capacitors uses a vapor deposition electrode as an electrode and a plastic film as a dielectric, employs a serial vapor deposition electrode, and connects the elements in series to form a high voltage capacitor.
しかしながら、上記の金属化フィルムコンデンサは、絶縁油の含浸性が悪いために部分放電開始電圧が低く、通電時の容量減少等特性変化が大きく、信頼性に欠けるという問題を有していた。
また、上記の金属化紙電極コンデンサは金属化紙電極を用いているために絶縁油の含浸性は良いが、上記金属化紙電極の表面突起が影響してtanδが高く、特性の安定性に欠けるという問題を有していた。
However, the metallized film capacitor has a problem that since the impregnation property of the insulating oil is poor, the partial discharge start voltage is low, the characteristic change such as capacity reduction during energization is large, and the reliability is lacking.
In addition, since the metallized paper electrode capacitor uses a metallized paper electrode, the impregnation property of the insulating oil is good. However, the surface protrusion of the metallized paper electrode has an effect and tan δ is high, resulting in stable characteristics. Had the problem of lacking.
本発明は、上述の従来の油入式コンデンサにおける問題点を解決し、含浸性の向上および、tanδの安定化を図り、部分放電開始電圧が安定し、かつ、安定した耐用性を有する高電圧金属蒸着電極油入式コンデンサを提供することを課題とする。 The present invention solves the problems in the above-described conventional oil-filled capacitors, improves impregnation and stabilizes tan δ, stabilizes the partial discharge start voltage, and has a high voltage with stable durability. An object is to provide a metal-deposited electrode oil-filled capacitor.
上記課題を解決可能な本発明の高電圧金属蒸着電極油入式コンデンサは、PETフィルムまたはPPフィルムの両面に金属蒸着膜が設けられたフィルムと、表面に金属蒸着膜が設けられていないPPフィルムとを巻回した後、巻回した両端面からメタリコン部を介して電極を引き出すコンデンサ素子を複数個外装ケース内に収納した構造を有するコンデンサであって、
前記金属蒸着膜が設けられたフィルムは、表面の中心線平均粗さが0.5〜1.5μmであり、前記メタリコン部を構成するメタリコン金属と接触する近傍部分の前記金属蒸着膜の抵抗値が2.0〜10.0Ω/□であり、前記近傍部分以外の静電容量寄与部分における前記金属蒸着膜の抵抗値が5.0〜20.0Ω/□であり、前記金属蒸着膜が設けられていないPPフィルムは、120±1℃で15分間加熱処理した後の幅方向の熱収縮率が0.5〜2.0%であり、該PPフィルムの少なくとも片面の中心線平均粗さが1.0〜3.0μmであり、前記コンデンサ素子が絶縁油に含浸されて前記外装ケース内に収納されていることを特徴とする。
The high-voltage metal-deposited electrode oil-filled capacitor of the present invention capable of solving the above-mentioned problems is a film in which a metal vapor-deposited film is provided on both sides of a PET film or PP film, and a PP film in which no metal vapor-deposited film is provided on the surface A capacitor having a structure in which a plurality of capacitor elements that draw electrodes from both end faces wound through the metallicon part are housed in an outer case,
The film provided with the metal vapor deposition film has a surface centerline average roughness of 0.5 to 1.5 μm, and the resistance value of the metal vapor deposition film in the vicinity of the metallicon metal constituting the metallicon part. Is 2.0 to 10.0 Ω / □, and the resistance value of the metal vapor deposition film in the portion that contributes to the capacitance other than the vicinity is 5.0 to 20.0 Ω / □, and the metal vapor deposition film is provided. The PP film that has not been subjected to heat treatment at 120 ± 1 ° C. for 15 minutes has a thermal shrinkage in the width direction of 0.5 to 2.0%, and the center line average roughness of at least one side of the PP film is It is 1.0-3.0 micrometers, The said capacitor | condenser element is impregnated with insulating oil, and is accommodated in the said exterior case, It is characterized by the above-mentioned.
本発明では、PETフィルムまたはPPフィルムの両面を適度に粗面化して、金属蒸着膜を設けることにより、含浸性の向上とtanδの安定化を達成でき、また、金属蒸着膜が設けられていないPPフィルムの幅方向の熱収縮率と表面粗さを規定することにより部分放電開始電圧の安定化を図ることができ、蒸着膜抵抗値を前記のように規定することにより耐用性の安定化を図ることができる。
以上のことから、高品質で特性の安定した高電圧金属蒸着電極油入式コンデンサの生産が可能となる。
In the present invention, both surfaces of the PET film or PP film are appropriately roughened to provide a metal vapor deposition film, thereby improving impregnation and stabilizing tan δ, and no metal vapor deposition film is provided. By defining the thermal shrinkage rate and surface roughness in the width direction of the PP film, it is possible to stabilize the partial discharge start voltage, and by stabilizing the vapor deposition film resistance value as described above, it is possible to stabilize the durability. Can be planned.
From the above, it is possible to produce a high-quality metal-deposited electrode oil-filled capacitor with high quality and stable characteristics.
本発明の高電圧金属蒸着電極油入式コンデンサにおける最良の形態について、図1〜3に基づき説明する。
図1は、本発明の高電圧金属蒸着電極油入式コンデンサにおける電極および誘電体の構成を示す図であり、図2は、コンデンサ素子を示す図であり、図3は、コンデンサ素子が外装ケース内に収納された本発明の高電圧蒸着電極油入式コンデンサの構造を示す図である。
The best mode of the high voltage metal deposition electrode oil-filled capacitor of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing the configuration of electrodes and dielectrics in a high-voltage metal-deposited electrode oil-filled capacitor according to the present invention, FIG. 2 is a diagram showing a capacitor element, and FIG. It is a figure which shows the structure of the high voltage vapor deposition electrode oil-filled type | mold capacitor | condenser of this invention accommodated in the inside.
本発明の高電圧金属蒸着電極油入式コンデンサにおけるコンデンサ素子は、図1に示されるような、両面が粗面化されたPETフィルムまたはPPフィルムの両面に金属(一般的にはアルミニウム)を蒸着して金属蒸着膜2が設けられた両面蒸着電極3と、金属蒸着膜が設けられておらず、少なくとも片面が粗面化されたPPフィルム4とが重なり合った状態で巻回されることにより形成されている。
そして、本発明においては、上記コンデンサ素子を構成するPETフィルム1の表面の平均粗さが0.5〜1.5μmで、メタリコン部を構成しているメタリコン金属と接触する近傍部分の金属蒸着膜2の抵抗値が2.0〜10.0Ω/□、当該近傍部分以外の静電容量に寄与する部分における金属蒸着膜2の抵抗値が5.0〜20.0Ω/□となるように、メタリコン部近傍部分の金属蒸着膜の厚さを厚くし、該近傍部分以外の金属蒸着膜の厚さを薄くしている。
そして、金属蒸着膜が設けられていないPPフィルム4は、120±1℃で15分間加熱処理した後の幅方向の熱収縮率(JIS C 2330に従って測定)が0.5〜2.0%で、該PPフィルムの少なくとも片面の平均粗さが1.0〜3.0μmである。
なお、本願明細書において使用されている「平均粗さ」とは、JIS B 0601に基づき測定された中心線平均粗さ(Ra)をいい、「静電容量寄与部分における金属蒸着膜の抵抗値」とは、上記コンデンサ素子を構成するPETフィルム1のメタリコン部近傍以外の、静電容量に寄与する部分16(図5)上の金属蒸着膜の抵抗値をいい、「メタリコン金属と接触する近傍部分の金属蒸着膜の抵抗値」とは、上記コンデンサ素子を構成するPETフィルム1のメタリコン部近傍の、厚肉部分17(図5)の金属蒸着膜の抵抗値をいう。そして、本発明では、上記PETフィルムに代えて、PPフィルムも利用することができる。
The capacitor element in the high-voltage metal-deposited electrode oil-filled capacitor of the present invention is a metal (generally aluminum) vapor-deposited on both sides of a PET film or PP film whose surfaces are roughened as shown in FIG. The double-sided vapor deposition electrode 3 provided with the metal
And in this invention, the average roughness of the surface of the
And PP film 4 in which the metal vapor deposition film is not provided is 0.5-2.0% in the thermal contraction rate (measured according to JIS C 2330) of the width direction after heat-processing for 15 minutes at 120 +/- 1 degreeC. The average roughness of at least one side of the PP film is 1.0 to 3.0 μm.
The “average roughness” used in the specification of the present application refers to the centerline average roughness (Ra) measured based on JIS B 0601, and “the resistance value of the metal vapor deposition film in the capacitance contribution portion”. "Means the resistance value of the metal deposition film on the portion 16 (Fig. 5) that contributes to the capacitance other than the vicinity of the metallicon portion of the
更に、本発明にあっては、表裏両面に金属蒸着膜が設けられた上記PETフィルムまたはPPフィルムと、少なくとも片面が粗面化された、金属蒸着膜が設けられていないPPフィルムとが重なり合った状態で巻回されて形成されたコンデンサ素子の両端面に、図2に示されるように、メタリコン金属を溶射してメタリコン部5が形成され、このメタリコン部5に引出電極7が接続されてコンデンサ素子6が形成されている。
Furthermore, in the present invention, the PET film or PP film provided with the metal vapor deposition film on both front and back surfaces overlapped with the PP film having at least one surface roughened and not provided with the metal vapor deposition film. As shown in FIG. 2, the metallicon metal is sprayed on both end faces of the capacitor element wound in a state to form a
図3に示されるように、本発明の高電圧金属蒸着電極油入式コンデンサは、図2のコンデンサ素子を複数個締め付け固定してコンデンサユニット8とし、各コンデンサ素子の引出電極7を各々リード線11に接続した後、外装ケース9内に収納して、外部端子10にリード線11で接続して高温真空乾燥した後、高温下で絶縁油12を含浸し、外装ケース9を密封することにより製造される。
以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
As shown in FIG. 3, the high-voltage metal-deposited electrode oil-filled capacitor of the present invention has a plurality of capacitor elements of FIG. 2 fastened and fixed to form a capacitor unit 8, and the
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.
〔実施例1-1、1-5、1-9、比較例1-1、1-6〕PETフィルム表面粗さの比較
図1に示される電極および誘電体構成にて、厚さ9μm、幅310mm、平均粗さが0.25、0.5、1.0、1.5、2.0μmの5種類の表面粗面化PETフィルム1(以下の表1参照)それぞれについて、静電容量寄与部分の蒸着膜抵抗値10.0Ω/□、メタリコン金属と接触する近傍部分の蒸着膜抵抗値5.0Ω/□とした蒸着金属2を蒸着して両面蒸着PET電極3を得た。
上記両面蒸着PET電極3と、厚さ20μm、幅300mm、120℃での幅方向の熱収縮率が1.5%、平均粗さが1.5μmの金属蒸着膜が設けられていない粗面PPフィルム4とを重なり合った状態で巻回して巻回素子を形成した。
この巻回素子の両端面にメタリコン金属を溶射してメタリコン部5を形成し、このメタリコン部5に引出電極7を接続することによって、図2に示されるコンデンサ素子6を得、このコンデンサ素子6を複数個締め付け固定してコンデンサユニット8とし、外装ケース9内に収納して外部端子10とリード線11で結線して高温真空乾燥した後、高温下で絶縁油12を含浸し、密封して本発明の高電圧蒸着電極油入式コンデンサとした。
上記コンデンサの静電容量は30μFで、各5個作製した。
[Examples 1-1, 1-5, 1-9, Comparative Examples 1-1, 1-6] Comparison of PET Film Surface Roughness With the electrode and dielectric configuration shown in FIG. Capacitance contribution for each of five types of surface-roughened PET films 1 (see Table 1 below) of 310 mm and average roughness of 0.25, 0.5, 1.0, 1.5, and 2.0 μm A vapor-deposited
The double-sided vapor-deposited PET electrode 3 and a rough surface PP not provided with a metal vapor-deposited film having a thickness of 20 μm, a width of 300 mm, a thermal shrinkage in the width direction at 120 ° C. of 1.5%, and an average roughness of 1.5 μm. The film 4 was wound in an overlapping state to form a winding element.
The capacitor had a capacitance of 30 μF, and five capacitors were produced.
(比較例2-1)PPフィルムと金属化紙との比較
図4に示される電極および誘電体構成にて、厚さ9μm、幅310mm、平均粗さ2.5μmのコンデンサ紙13に蒸着金属2を蒸着して得られた両面蒸着電極紙14と、金属蒸着膜が設けられていないPPフィルム15(厚さ22μm、平均粗さ0.2、1.5μm、熱収縮率1.5%)とを重なり合った状態で巻回して巻回素子を形成した。
この巻回素子の両端面にメタリコン金属を溶射してメタリコン部5を形成し、このメタリコン部5に引出電極7を接続することによって、図2に示されるコンデンサ素子6を得、このコンデンサ素子6を複数個締め付け固定してコンデンサユニット8とし、外装ケース9内に収納して外部端子10と内部引出端子11で結線して高温真空乾燥した後、高温下で絶縁油12を含浸し、密封して高電圧蒸着電極油入式コンデンサ(従来品)を得た。
ここで、コンデンサの静電容量は30μFで、各5個作製した。
(Comparative Example 2-1) Comparison between PP film and metallized paper With the electrode and dielectric configuration shown in FIG. 4, the deposited
Here, the capacitance of the capacitor was 30 μF, and five capacitors were produced.
試験条件として、20℃定格電圧のtanδ、20℃定格電圧×2倍、1分の耐電圧試験を行った後、部分放電開始電圧およびAC破壊電圧を測定した。
この試験結果を、以下の表1に示す。なお、総合評価における良否の判定基準は、tanδ値0.05%以下、部分放電開始電圧(定格電圧に対する倍率):1.5以上、およびAC破壊電圧(定格電圧に対する倍率):3.0以上、素子巻取評価「○」の条件を全て満足する場合は「○」、満足しない場合は「×」とした。
As test conditions, a tan δ of a 20 ° C. rated voltage, a 20 ° C. rated voltage × 2 times, and a 1 minute withstand voltage test were performed, and then a partial discharge start voltage and an AC breakdown voltage were measured.
The test results are shown in Table 1 below. In addition, the judgment criteria of pass / fail in comprehensive evaluation are tan δ value of 0.05% or less, partial discharge start voltage (magnification with respect to rated voltage): 1.5 or more, and AC breakdown voltage (magnification with respect to rated voltage): 3.0 or more In addition, when all the conditions of the element winding evaluation “◯” are satisfied, “◯” is indicated, and when not satisfied, “×” is indicated.
表1の試験結果から明らかなように、従来品(金属化紙電極コンデンサ)(比較例2-1)では両面蒸着電極紙の平均粗さが大きいため、tanδ値が本発明と比べて7.2〜7.7倍の高い値を示し、特性の安定性に欠ける。
これに対して、両面蒸着電極が用いられた高電圧蒸着電極油入式コンデンサの場合には、PETフィルムの平均粗さが1.5μm以下では、tanδ値は安定しているが、これを超えると平均粗さが大きいために微小部分放電が多くなることにより、tanδ値が3.8〜3.9倍の高い値となるため(比較例1-6)、特性の安定性に欠ける。
As is apparent from the test results in Table 1, in the conventional product (metallized paper electrode capacitor) (Comparative Example 2-1), the average roughness of the double-sided vapor-deposited electrode paper is large, so the tan δ value is 7. The value is 2 to 7.7 times higher and the stability of the characteristics is lacking.
In contrast, in the case of a high voltage vapor deposition electrode oil-filled capacitor using a double-sided vapor deposition electrode, the tan δ value is stable when the average roughness of the PET film is 1.5 μm or less, but exceeds this value. Since the average roughness is large and the minute partial discharge increases, the tan δ value becomes a high value of 3.8 to 3.9 times (Comparative Example 1-6), and the stability of characteristics is lacking.
また、20℃での耐電圧試験後、部分放電開始電圧とAC破壊電圧を測定した結果、PETフィルムの平均粗さが0.5μm以上では、含浸剤量が多いため、耐電圧試験で部分放電が発生しても、この時のガスが含浸剤に吸収されるので、試験後の部分放電開始電圧、AC破壊電圧が安定している。
これに対して、PETフィルムの平均粗さが0.5μm未満では、耐電圧試験時の部分放電で発生したガスが含浸剤に十分吸収されないため、部分放電時のガス吸収性が劣り、部分放電開始電圧、AC破壊電圧が低下するので、好ましくない。
In addition, after the withstand voltage test at 20 ° C., the partial discharge start voltage and the AC breakdown voltage were measured. As a result, when the average roughness of the PET film was 0.5 μm or more, the amount of the impregnating agent was large. Even if this occurs, the gas at this time is absorbed by the impregnating agent, so that the partial discharge start voltage and the AC breakdown voltage after the test are stable.
On the other hand, when the average roughness of the PET film is less than 0.5 μm, the gas generated in the partial discharge during the withstand voltage test is not sufficiently absorbed by the impregnating agent, so the gas absorbency during the partial discharge is inferior, and the partial discharge Since the starting voltage and the AC breakdown voltage are lowered, it is not preferable.
〔実施例1-3〜1-6、比較例1-3、1-4〕PPフィルムの熱収縮率比較
図1に示される、電極および誘電体構成にて、厚さ9μm、幅310mm、平均粗さが1.0μmの粗面化PETフィルム1に、静電容量寄与部分の蒸着膜抵抗値10.0Ω/□、メタリコン金属と接触する近傍部分の蒸着膜抵抗値5.0Ω/□とした蒸着金属2を蒸着した両面金属化PETフィルム3と、厚さ20μm、幅300mm、120℃での幅方向の熱収縮率が0.25、0.5、1.0、1.5、2.0、2.5%、平均粗さが1.5μmの金属蒸着膜が設けられていない粗面化PPフィルム4とを重なり合った状態で巻回してコンデンサ素子を形成した。
以下、実施例1-5と同様の手順にて、コンデンサ試料を作製した。
[Examples 1-3 to 1-6, Comparative Examples 1-3, 1-4] Comparison of heat shrinkage rates of PP film With the electrode and dielectric structure shown in FIG. A roughened
Thereafter, a capacitor sample was produced in the same procedure as in Example 1-5.
上記実施例1-5と同様の試験条件にて、部分放電開始電圧およびAC破壊電圧を測定し、同様の評価を行った。
その結果を表1に示す。
The partial discharge start voltage and AC breakdown voltage were measured under the same test conditions as in Example 1-5, and the same evaluation was performed.
The results are shown in Table 1.
表1の試験結果から明らかなように、金属蒸着膜が設けられていない粗面化PPフィルム4の熱収縮率が2.0%以下の場合、PPフィルムの熱収縮率が低いために素子の収縮が少なくなり、電極とPPフィルム間の含浸剤量が確保されるため、耐電圧試験で部分放電により発生したガスが含浸剤に吸収され、試験後の部分放電開始電圧、AC破壊電圧が安定している。
しかし、金属蒸着膜が設けられていない粗面化PPフィルム4の熱収縮率が過度に小さい場合(熱収縮率0.25%の場合)、前記金属蒸着膜が設けられていないPPフィルムにかかる熱処理温度が高くなるため、前記PPフィルムのスリット端面のカール現象が生じて素子巻回時に皺が発生するので、120℃での幅方向の熱収縮率は0.5%以上が好ましい。
As apparent from the test results in Table 1, when the heat shrinkage ratio of the roughened PP film 4 not provided with the metal vapor deposition film is 2.0% or less, the heat shrinkage ratio of the PP film is low. Since shrinkage is reduced and the amount of impregnating agent between the electrode and PP film is secured, the gas generated by partial discharge in the withstand voltage test is absorbed by the impregnating agent, and the partial discharge starting voltage and AC breakdown voltage after the test are stable. is doing.
However, when the thermal contraction rate of the roughened PP film 4 not provided with the metal vapor deposition film is excessively small (when the thermal contraction rate is 0.25%), the PP film not provided with the metal vapor deposition film is applied. Since the heat treatment temperature becomes high, curling phenomenon of the slit end face of the PP film occurs and wrinkles are generated when the element is wound. Therefore, the thermal contraction rate in the width direction at 120 ° C. is preferably 0.5% or more.
〔実施例1-2、1-5、1-7、1-8、比較例1-2、1-5〕PPフィルム平均粗さの比較
図1に示される電極および誘電体構成にて、厚さ9μm、幅310mm、平均粗さが1.0μmの粗面化PETフィルム1に、静電容量寄与部分の蒸着膜抵抗値10.0Ω/□、メタリコン金属と接触する近傍部分の蒸着膜抵抗値5.0Ω/□とした蒸着金属2を蒸着した両面金属化PETフィルム3と、厚さ20μm、幅300mm、120℃での幅方向の熱収縮率が1.5%、平均粗さが0.5、1.0、1.5、2.0、3.0、4.0μmの金属蒸着膜が設けられていない粗面化PPフィルム4とを、重なり合った状態で巻回してコンデンサ素子を形成した。
以下、実施例1-5と同様の手順にて、コンデンサ試料を作製した。
[Examples 1-2, 1-5, 1-7, 1-8, Comparative Examples 1-2, 1-5] Comparison of PP film average roughness Thickness in the electrode and dielectric configuration shown in FIG. A roughened
Thereafter, a capacitor sample was produced in the same procedure as in Example 1-5.
実施例1-5と同様の試験条件にて、部分放電開始電圧およびAC破壊電圧を測定し、同様の評価を行った。
その結果を表1に示す。
The partial discharge start voltage and the AC breakdown voltage were measured under the same test conditions as in Example 1-5, and the same evaluation was performed.
The results are shown in Table 1.
表1の試験結果から明らかなように、金属蒸着膜が設けられていない粗面化PPフィルム4の平均粗さが1.0〜3.0μmの場合、電極と金属蒸着膜が設けられていないPPフィルム間の含浸剤量が確保されるため、耐電圧試験の部分放電により発生したガスが含浸剤に吸収され、試験後の部分放電開始電圧、AC破壊電圧は安定している。
しかし、金属蒸着膜が設けられていない粗面化PPフィルム4の平均粗さが小さい場合(平均粗さが0.5μm)、耐電圧試験の影響で部分放電時のガス吸収性が劣り、部分放電開始電圧、AC破壊電圧が低下するので、好ましくない。
また金属蒸着膜が設けられていない粗面化PPフィルムの表面粗さが3.0μmを超えると、PPフィルムの厚さばらつきが拡大されて破壊電圧が低下するので、好ましくない。
As is clear from the test results in Table 1, when the average roughness of the roughened PP film 4 not provided with the metal vapor deposition film is 1.0 to 3.0 μm, the electrode and the metal vapor deposition film are not provided. Since the amount of the impregnating agent between the PP films is secured, the gas generated by the partial discharge in the withstand voltage test is absorbed by the impregnating agent, and the partial discharge starting voltage and the AC breakdown voltage after the test are stable.
However, when the average roughness of the roughened PP film 4 not provided with the metal vapor-deposited film is small (average roughness is 0.5 μm), the gas absorptivity at the time of partial discharge is inferior due to the withstand voltage test. This is not preferable because the discharge start voltage and the AC breakdown voltage are lowered.
Further, if the surface roughness of the roughened PP film not provided with the metal vapor deposition film exceeds 3.0 μm, the thickness variation of the PP film is enlarged and the breakdown voltage is lowered, which is not preferable.
〔実施例1-10〜1-14、比較例1-7〜1-10〕蒸着膜抵抗値の比較
図1に示される電極および誘電体構成にて、厚さ9μm、幅310mm、平均粗さが1.0μmの粗面化PETフィルム1に蒸着金属2を蒸着して静電容量寄与部分の蒸着膜抵抗値を3.0、5.0、10.0、15.0、20.0、25.0Ω/□、メタリコン金属と接触する近傍部分の蒸着膜抵抗値を1.0、2.0、5.0、10.0、13.0Ω/□とした両面金属化PETフィルム3と、厚さ20μm、幅300mm、120℃での幅方向の熱収縮率1.5%、平均粗さ1.5μmの金属蒸着膜が設けられていない粗面化PPフィルム4とを重なり合った状態で巻回してコンデンサ素子を形成した。
以下、実施例1-5と同様の手順にて、コンデンサ試料を作製した。
[Examples 1-10 to 1-14, Comparative Examples 1-7 to 1-10] Comparison of Deposition Film Resistance Values 9 μm in thickness, 310 mm in width, and average roughness in the electrode and dielectric configuration shown in FIG. Is deposited on the roughened
Thereafter, a capacitor sample was produced in the same procedure as in Example 1-5.
試験条件として、常温で定格電圧×1.4倍の電圧を2000時間通電して静電容量変化率とtanδ値の変化を測定した。
その結果を表2に示す。なお、良否の判定基準は静電容量変化率が−5%以下、tanδが0.05%以下を満足する場合は「○」、満足しない場合は「×」とした。
As test conditions, a rated voltage × 1.4 times the voltage was applied for 2000 hours at room temperature, and the change in capacitance and the change in tan δ value were measured.
The results are shown in Table 2. In addition, the judgment criteria of pass / fail were “◯” when the capacitance change rate was −5% or less and tan δ was 0.05% or less, and “X” when it was not satisfied.
表2の試験結果から、蒸着電極のメタリコン部近傍の膜抵抗値が5.0Ω/□、静電容量寄与部の膜抵抗値が5.0〜20.0Ω/□の場合は、2000時間の通電試験で静電容量変化率、tanδ変化が少なく良好であるが(実施例1-5、1-11〜1-13)、静電容量寄与部の膜抵抗値が20Ωを超えると通電時の微小部分放電の影響で蒸着端部の膜後退による静電容量減少が大きくなるので、好ましくない(比較例1-9)。
これに対して、静電容量寄与部の膜抵抗値が5.0Ω/□未満では誘電体の局部的破壊時に蒸着膜の飛散が大きくなって静電容量減少が大きくなる。
From the test results in Table 2, when the film resistance value in the vicinity of the metallicon part of the vapor deposition electrode is 5.0Ω / □ and the film resistance value of the capacitance contributing part is 5.0 to 20.0Ω / □, 2000 hours In the current test, the capacitance change rate and tan δ change are small and good (Examples 1-5, 1-11 to 1-13). However, when the film resistance value of the capacitance contributing part exceeds 20Ω, It is not preferable because the capacitance decrease due to the film receding at the deposition end is increased due to the influence of the minute partial discharge (Comparative Example 1-9).
On the other hand, when the film resistance value of the electrostatic capacity contributing portion is less than 5.0Ω / □, the deposited film is greatly scattered at the time of local breakdown of the dielectric, and the electrostatic capacity decrease is increased.
静電容量寄与部の膜抵抗値が10.0Ω/□、メタリコン近傍の膜抵抗値が2.0〜10.0Ω/□の場合は2000時間の通電試験で静電容量変化率、tanδ変化が少なく良好であるが(実施例1-10、1-5、1-14)、メタリコン近傍の膜抵抗値が10.0Ω/□を超えると通電時の電流でメタリコンとの接合部の接触状態が低下してtanδが高くなる(比較例1-10)。
これに対して、メタリコン部近傍の膜抵抗値が2Ω/□未満では、この部分の膜厚さが厚いために蒸着時の熱の影響でフィルムの変形を起こしやすく、通電時の電流でメタリコンとの接合部の接触状態が低下してtanδが高くなるので、好ましくない(比較例1-7)。
When the membrane resistance value of the capacitance contributing portion is 10.0 Ω / □ and the membrane resistance value near the metallicon is 2.0-10.0 Ω / □, the change rate of capacitance and the change in tan δ are observed in a 2000 hour energization test. Although it is small and good (Examples 1-10, 1-5, 1-14), when the film resistance value near the metallicon exceeds 10.0Ω / □, the contact state of the joint with the metallicon is caused by the current during energization. It decreases and tan δ increases (Comparative Example 1-10).
On the other hand, if the film resistance value near the metallicon part is less than 2Ω / □, the film thickness of this part is so thick that the film is likely to be deformed due to the heat during vapor deposition. This is not preferable because the contact state of the joint portion decreases and tan δ increases (Comparative Example 1-7).
上記の試験結果から、本発明の高電圧金属蒸着電極油入式コンデンサでは、PETフィルムの表面を適度に粗面化することにより、含浸性の向上とtanδの安定化を達成することができ、また、金属蒸着膜が設けられていないPPフィルムの幅方向の熱収縮率と表面粗さを規定することにより部分放電開始電圧の安定化を図ることができ、蒸着膜抵抗値を規定することにより耐用性の安定化を図ることができることが確認された。
なお、上記実施例では、PETフィルムの表面を粗面化することで、上記の効果が得られたが、PETフィルムに代えてPPフィルムを用いても、同様の効果を得ることができる。
From the above test results, in the high voltage metal vapor deposition electrode oil-filled capacitor of the present invention, by appropriately roughening the surface of the PET film, improvement of impregnation and stabilization of tan δ can be achieved, Moreover, by regulating the thermal contraction rate and surface roughness in the width direction of the PP film not provided with the metal vapor deposition film, the partial discharge start voltage can be stabilized, and by defining the vapor deposition film resistance value It was confirmed that the durability could be stabilized.
In addition, in the said Example, said effect was acquired by roughening the surface of PET film, However Even if it replaces with PET film and uses PP film, the same effect can be acquired.
1 粗面化PETフィルム
2 金属蒸着膜
3 両面蒸着電極
4 粗面化PPフィルム
5 メタリコン部
6 コンデンサ素子
7 引出電極
8 コンデンサユニット
9 外装ケース
10 外部端子
11 リード線
12 絶縁油
13 コンデンサ紙
14 両面蒸着電極紙
15 PPフィルム
16 静電容量に寄与する部分
17 厚肉部
DESCRIPTION OF
Claims (1)
前記金属蒸着膜が設けられたフィルムは、表面の中心線平均粗さが0.5〜1.5μmであり、
前記メタリコン部を構成するメタリコン金属と接触する近傍部分の前記金属蒸着膜の抵抗値が2.0〜10.0Ω/□であり、
前記近傍部分以外の静電容量寄与部分における前記金属蒸着膜の抵抗値が5.0〜20.0Ω/□であり、
前記金属蒸着膜が設けられていないポリプロピレンフィルムは、120±1℃で15分間加熱処理した後の幅方向の熱収縮率が0.5〜2.0%であり、
該金属蒸着膜が設けられていないポリプロピレンフィルムの少なくとも片面の中心線平均粗さが1.0〜3.0μmであり、
前記コンデンサ素子が絶縁油に含浸されて前記外装ケース内に収納されていることを特徴とする高電圧金属蒸着電極油入式コンデンサ。 After winding a film with a metal vapor-deposited film on both sides of a polyethylene terephthalate film or a polypropylene film and a polypropylene film without a metal vapor-deposited film on the surface, an electrode is passed through the metallicon part from the wound both end faces A capacitor having a structure in which a plurality of capacitor elements for drawing out are housed in an outer case,
The film provided with the metal deposition film has a surface centerline average roughness of 0.5 to 1.5 μm,
The resistance value of the metal vapor deposition film in the vicinity of the metallicon metal constituting the metallicon part is 2.0 to 10.0Ω / □,
The resistance value of the metal vapor deposition film in the capacitance contribution portion other than the vicinity portion is 5.0 to 20.0 Ω / □,
The polypropylene film not provided with the metal vapor deposition film has a heat shrinkage in the width direction of 0.5 to 2.0% after being heat-treated at 120 ± 1 ° C. for 15 minutes,
The center line average roughness of at least one side of the polypropylene film not provided with the metal vapor deposition film is 1.0 to 3.0 μm,
A high-voltage metal-deposited electrode oil-filled capacitor, wherein the capacitor element is impregnated with insulating oil and stored in the outer case.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007200220A JP4845217B2 (en) | 2007-07-31 | 2007-07-31 | High-voltage metal-deposited electrode oil-filled capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007200220A JP4845217B2 (en) | 2007-07-31 | 2007-07-31 | High-voltage metal-deposited electrode oil-filled capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009038158A JP2009038158A (en) | 2009-02-19 |
JP4845217B2 true JP4845217B2 (en) | 2011-12-28 |
Family
ID=40439803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007200220A Active JP4845217B2 (en) | 2007-07-31 | 2007-07-31 | High-voltage metal-deposited electrode oil-filled capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4845217B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07192964A (en) * | 1993-12-27 | 1995-07-28 | Nichicon Corp | Oil-impregnated metallized film capacitor |
JPH08157613A (en) * | 1994-12-07 | 1996-06-18 | Toray Ind Inc | Polypropylene-based biaxially orientated film for condenser |
JP3752747B2 (en) * | 1996-10-17 | 2006-03-08 | 東レ株式会社 | condenser |
JP3446523B2 (en) * | 1997-03-18 | 2003-09-16 | 松下電器産業株式会社 | Capacitor and manufacturing method thereof |
-
2007
- 2007-07-31 JP JP2007200220A patent/JP4845217B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009038158A (en) | 2009-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5131193B2 (en) | Metallized film capacitors | |
JP2004134561A (en) | Metallized film capacitor, smoothing capacitor for inverter using the same, and capacitor for automobile | |
JP4487818B2 (en) | Metallized film capacitors | |
JP4915947B2 (en) | Metallized film capacitors | |
JP2013219094A (en) | Metalization film capacitor | |
JP2015201527A (en) | Metalized film capacitor | |
JP6211255B2 (en) | Metallized film capacitors | |
JP4973543B2 (en) | Metallized film capacitors | |
JP4366930B2 (en) | Metallized film capacitors | |
JP4845217B2 (en) | High-voltage metal-deposited electrode oil-filled capacitor | |
JP4770935B2 (en) | Metallized film capacitors | |
JP2009277830A (en) | Metallized film capacitor | |
JPH08288171A (en) | Metallized film capacitor | |
JP2920240B2 (en) | Metallized film capacitors | |
JP5912795B2 (en) | Metallized film capacitors | |
JP4876649B2 (en) | DC metallized film capacitor | |
JP2016100578A (en) | Capacitor and manufacturing method for the same | |
JP2009277829A (en) | Metallized film capacitor | |
JP5934881B2 (en) | Metallized film capacitors | |
JP7143674B2 (en) | metallized film and film capacitors | |
JP2008294431A (en) | Metallized film capacitor | |
JP2004241456A (en) | Metallized film capacitor | |
JP2009239175A (en) | Film capacitor | |
JP2629414B2 (en) | All film capacitors | |
JPH10261541A (en) | Capacitor and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110915 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111005 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111007 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141021 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4845217 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |