JP2009264671A - スターリングエンジン - Google Patents

スターリングエンジン Download PDF

Info

Publication number
JP2009264671A
JP2009264671A JP2008115444A JP2008115444A JP2009264671A JP 2009264671 A JP2009264671 A JP 2009264671A JP 2008115444 A JP2008115444 A JP 2008115444A JP 2008115444 A JP2008115444 A JP 2008115444A JP 2009264671 A JP2009264671 A JP 2009264671A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
coolant
cooling water
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008115444A
Other languages
English (en)
Inventor
Hideyuki Jinno
秀幸 神野
Hatsuhiko Kawamura
初彦 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2008115444A priority Critical patent/JP2009264671A/ja
Publication of JP2009264671A publication Critical patent/JP2009264671A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】 スターリングエンジンの冷却部に関して、内圧に対する強度の低下を招くことなく、高い熱交換効率を実現する技術を提供する。
【解決手段】 本発明のスターリングエンジンは、円筒形状に形成され、内面に沿って流れる作動ガスと外面に沿って流れる冷媒を熱交換させる熱交換器と、熱交換器の外面に沿って熱交換器の周方向に冷媒を流す冷媒流路と、冷媒流路に冷媒を供給する冷媒入口と、冷媒流路から冷媒を排出する冷媒出口を備え、熱交換器の外面に、冷媒流路を熱交換器の軸方向に区画する円環形状の仕切り壁と、熱交換器の外面からの突出高さが仕切り壁よりも低い円環形状のフィンが形成され、熱交換器の周方向に関して、冷媒入口と冷媒出口が、熱交換器の中心軸を挟んで互いに対向する位置に配置され、熱交換器の軸方向に関して、冷媒入口の中心と冷媒出口の中心が、仕切り壁の中心と略同じ位置となるように配置されている。
【選択図】 図1

Description

本発明はスターリングエンジンに関する。
従来、ガソリンエンジン、ディーゼルエンジン等の原動機に代わるものとして、各種のスターリングエンジンが提案されている。スターリングエンジンは、理論的な効率が高く、燃料の種類に制約がなく、排気、騒音等の公害を発生しない等の利点を備えている。最近では、家庭用の発電装置にスターリングエンジンを組み込んだものについても開発が行われている。
スターリングエンジンは、作動ガスを加熱するための加熱部と、作動ガスを冷却するための冷却部を備えている。冷却部に関して、多くのスターリングエンジンでは、外部から導いた冷却水との熱交換によって作動ガスを冷却する。特許文献1には、ディスプレーサを囲うように二重円筒形状のガス流路を配置し、ガス流路の内部を流れる作動ガスとガス流路の外部を流れる冷却水とを熱交換させることで、作動ガスを冷却するスターリングエンジンが記載されている。
特開平7−158508号公報
特許文献1の技術では、冷却水が作動ガスと熱交換する伝熱面に均等に流れにくく、熱交換効率が低いという問題がある。冷却部の熱交換効率が低いと、作動ガスの冷却が不十分となり、スターリングエンジンの出力低下を招いてしまう。
冷却部の熱交換効率を向上するためには、作動ガスと冷却水の間の伝熱部材を薄肉化したり、伝熱部材を熱伝導性の高い材料とすることが考えられる。しかしながら、スターリングエンジンは、高圧の作動ガスを内部に封止する圧力容器でもあるため、作動ガスの内圧に対して十分な強度を確保しておかなければならない。作動ガスと冷却水の間の伝熱部材を薄肉化したり、あるいは熱伝導性の高い材料に変更すると、内圧に対する強度の低下を招いてしまう。作動ガスの内圧に対する強度を確保しつつ、冷却部の熱交換効率を高める技術が待望されている。
本発明は上記の課題を解決する。本発明は、スターリングエンジンの冷却部に関して、内圧に対する強度の低下を招くことなく、高い熱交換効率を実現する技術を提供する。
本発明のスターリングエンジンは、外部からの加熱と冷却によって動力を生成する。そのスターリングエンジンは、円筒形状に形成されており、内面に沿って流れる作動ガスと、外面に沿って流れる冷媒を熱交換させる冷却用熱交換器と、冷却用熱交換器の外面に沿って冷却用熱交換器の周方向に冷媒を流す冷媒流路と、冷媒流路に冷媒を供給する冷媒入口と、冷媒流路から冷媒を排出する冷媒出口を備えている。そのスターリングエンジンでは、冷却用熱交換器の外面に、冷媒流路を冷却用熱交換器の軸方向に区画する円環形状の仕切り壁と、冷却用熱交換器の外面からの突出高さが仕切り壁よりも低い円環形状のフィンが形成されている。そのスターリングエンジンでは、冷却用熱交換器の周方向に関して、冷媒入口と冷媒出口が、冷却用熱交換器の中心軸を挟んで互いに対向する位置に配置されている。そのスターリングエンジンでは、冷却用熱交換器の軸方向に関して、冷媒入口の中心と冷媒出口の中心が、仕切り壁の中心と略同じ位置となるように配置されている。
このスターリングエンジンでは、冷媒入口と冷媒出口が円筒形状の冷却用熱交換器の中心軸を挟んで互いに対向する位置関係で配置されている。このような構成とすることによって、冷媒入口から供給される冷媒は、冷却用熱交換器の外面に沿って右回りに流れる冷媒流路と、冷却用熱交換器の外面に沿って左回りに流れる冷媒流路に均等に分岐する。冷却用熱交換器の伝熱面に冷媒が均等に流れるので、高い熱交換効率を実現することができる。
このスターリングエンジンでは、冷却用熱交換器の外面に、冷媒流路を冷却用熱交換器の軸方向に区画する円環形状の仕切り壁が形成されている。また、冷却用熱交換器の軸方向に関して、冷媒入口の中心と冷媒出口の中心が、仕切り壁の中心と略同じ位置となるように配置されている。このような構成とすることによって、冷媒入口から供給された冷媒が、仕切り壁によって区画された各流路に均等に分岐して流れ、その後に冷媒出口から排出される。冷却用熱交換器の伝熱面に冷媒が均等に流れるので、高い熱交換効率を実現することができる。
このスターリングエンジンでは、冷却用熱交換器の外面に、冷媒流路を区画する仕切り壁のほかに、仕切り壁よりも突出高さの低い円環形状のフィンが形成されている。このように、仕切り壁とフィンを組み合わせた構成とすることで、冷媒が冷媒通路を流れる際の圧力損失の増大を抑制しつつ、高い熱交換効率を実現することができる。
このスターリングエンジンでは、冷媒流路に形成された円環形状の仕切り壁が、作動ガスの内圧に対する補強部材の役割も果たす。このような仕切り壁を設けたことによって、作動ガスの内圧に対する強度を確保しつつ、冷却用熱交換器の板厚を薄くして、高い熱交換効率を実現することができる。あるいは、冷却用熱交換器として熱伝導性の優れた材料を用いて、作動ガスの内圧に対する強度を確保しつつ、高い熱交換効率を実現することができる。
上記のスターリングエンジンでは、前記仕切り壁が、冷媒入口と冷媒出口に対向する個所で切り欠かれていることが好ましい。
このスターリングエンジンでは、冷媒入口と冷媒出口の近傍で仕切り壁が切り欠かれているので、冷媒入口から冷媒出口へ冷媒を流す際の圧力損失をさらに低減することができる。
本発明のスターリングエンジンによれば、作動ガスの内圧に対する強度の低下を招くことなく、冷却部における高い熱交換効率を実現することができる。
以下、本発明の好適な実施形態を説明する。
(形態1)スターリングエンジンはフリーピストン形スターリングエンジンである。
図面を参照しながら、本発明のスターリングエンジンを具現化した実施例を説明する。図1は本実施例のスターリングエンジン100の構成を示している。本実施例のスターリングエンジン100は、家庭用の発電装置に組み込まれており、燃焼加熱器124による加熱を受けて、交流電力を発電する。
スターリングエンジン100は、外形が略円柱形状をしているハウジング102と、ハウジング102内で膨張空間104と圧縮空間106を区画するディスプレーサ108と、ハウジング102内で圧縮空間106とバウンス空間110を区画する出力ピストン112を備えている。膨張空間104、圧縮空間106、バウンス空間110には、作動ガスであるヘリウムガスが充填されている。
ハウジング102は、ディスプレーサ108を収容するエンジンハウジング150と、出力ピストン112を収容する出力ハウジング152から構成されている。エンジンハウジング150は、ドーム形状に形成されたヒータヘッド154と、円筒形状に形成された冷却用熱交換器156と、冷却用熱交換器156を囲うように配置されたクーラハウジング158から構成されている。
ディスプレーサ108は、エンジンハウジング150内に設けられたシリンダ114に収容されているとともに、出力ハウジング152に固定されているシャフト116に摺動可能に支持されている。ディスプレーサ108とシャフト116は2つの板ばね118を介して接続されており、ディスプレーサ108はシリンダ114の内面に沿って往復運動する。ディスプレーサ108の固有振動数は、ディスプレーサ108の重量と板ばね118のバネ定数によって調整される。シャフト116は固定プレート120を介して出力ハウジング152に固定されており、固定プレート120には複数の孔120aが形成されている。
シリンダ114の外面とエンジンハウジング150の内面の間には、膨張空間104と圧縮空間106を連通する経路122が形成される。この経路122には、通過するヘリウムガスを加熱する加熱部126と、蓄熱体が敷設された再生部128と、通過するヘリウムガスを冷却する冷却部132が形成されている。
加熱部126では、ヒータヘッド154の外側に配置された燃焼加熱器124の燃焼によって、ヒータヘッド154の内面に沿って流れるヘリウムガスを加熱する。燃焼加熱器124は、ヒータヘッド154を囲うように配置されたリングバーナである。加熱部126では、経路122に沿ったヘリウムガスの移動を妨げない形状の加熱部フィン127が、ヒータヘッド154から内側に伸びている。
冷却部132では、冷却用熱交換器156とクーラハウジング158の間に形成された冷却水流路160を流れる冷却水との熱交換によって、冷却用熱交換器156の内面に沿って流れるヘリウムガスを冷却する。クーラハウジング158には、冷却水流路160に冷却水を導入する冷却水入口162と、ヘリウムガスから熱を回収した冷却水を冷却水流路160から排出する冷却水出口164が形成されている。冷却水入口162と冷却水出口164は、円筒形状の冷却用熱交換器156の中心軸を挟んで互いに対向する位置関係で配置されている。冷却水入口162に供給された冷却水は、冷却水流路160を周方向に流れて、冷却水出口164へ排出される。冷却部132では、経路122に沿ったヘリウムガスの移動を妨げない形状の冷却部フィン133が、冷却用熱交換器156から内側に伸びている。
再生部128は蓄熱体の吸熱/放熱によって、ヘリウムガスが通過する際に予冷/予熱を行う。膨張空間104の高温のヘリウムガスが圧縮空間106へ移動する際には、ヘリウムガスは再生部128で蓄熱体の吸熱により予冷された後、冷却部132で冷却される。圧縮空間106の低温のヘリウムガスが膨張空間104へ移動する際には、ヘリウムガスは再生部128で蓄熱体の放熱により予熱された後、加熱部126で加熱される。
出力ピストン112にはムーバーロッド134が固定されており、出力ピストン112とムーバーロッド134は一体的に運動する。ムーバーロッド134は2つの板ばね136を介して出力ハウジング152に支持されており、出力ピストン112とムーバーロッド134は、出力ハウジング152の内面に形成されたガイド138に沿って往復運動する。出力ピストン112の固有振動数は、出力ピストン112とムーバーロッド134と磁石140等の重量と、板ばね136のバネ定数によって調整される。本実施例では、ディスプレーサ108の固有振動数を出力ピストン112の固有振動数よりも幾分大きくして、両者に位相差を持たせている。
ムーバーロッド134には複数の磁石140が配設されている。また、出力ハウジング152の磁石140と対向する位置には、鉄心142とコイル144が設けられている。ムーバーロッド134が往復運動することによって、コイル144に誘導起電圧が発生し、交流電力を生成することができる。このときに発電される交流電力の周波数は、出力ピストン112の往復運動の周波数に等しい。この場合、ムーバーロッド134の磁石140と出力ハウジング152の鉄心142およびコイル144は、リニア発電機として機能する。
またムーバーロッド134が停止しているときに、コイル144に交流電圧を印加することで、ムーバーロッド134が加振され、ムーバーロッド134が往復運動させることができる。この場合、ムーバーロッド134の磁石140と出力ハウジング152の鉄心142およびコイル144は、リニア電動機として機能する。
スターリングエンジン100では、ディスプレーサ108が往復運動すると、膨張空間104の容積と圧縮空間106の容積の割合が変化する。例えばディスプレーサ108が膨張空間104側に移動すると、膨張空間104の容積が減少するとともに圧縮空間106の容積が増大する。このとき、膨張空間104内のヘリウムガスは、経路122を通って圧縮空間106へと移動する。逆に、ディスプレーサ108が圧縮空間106側に移動すると、圧縮空間106の容積が減少するとともに膨張空間104の容積が増大する。このとき、圧縮空間106内のヘリウムガスが経路122を通って膨張空間104へと移動する。膨張空間104の容積と圧縮空間106の容積の割合が変化すると、高温状態のヘリウムガスと低温状態のヘリウムガスの割合が変化し、膨張空間104と圧縮空間106の圧力が変化する。圧縮空間106の圧力変化によって、出力ピストン112が加振される。
出力ピストン112は、圧縮空間106に生じる圧力変化によって加振されつつ、往復運動する。このときのディスプレーサ108の往復運動の周波数は出力ピストン112の往復運動の周波数よりも幾分大きくなるように設定されているので、両者の間に位相差が生じて熱力学的仕事を生成する。
スターリングエンジン100は、燃焼加熱器124による連続的な加熱と、冷却水流路160を流れる冷却水による連続的な冷却によって、ディスプレーサ108と出力ピストン112を振動させ、交流電力を発電する。スターリングエンジン100が発電した電力は、図示しないパワーコンディショナによって調整されて、家庭用の電力系統へと供給される。
図2は冷却用熱交換器156とクーラハウジング158の間に形成される冷却水流路160の構造を示している。図2では、冷却水入口162や冷却水出口164の近傍以外における冷却水流路160の構造を示している。冷却水流路160は、冷却用熱交換器156の外面から伸びる仕切り壁202によって、上側冷却水流路204と下側冷却水流路206に均等に区画されている。仕切り壁202は、冷却用熱交換器156の周方向に沿って同一の断面形状を有しており、冷却用熱交換器156の外面に円環形状に形成されている。冷却水流路160を流れる冷却水は、上側冷却水流路204と下側冷却水流路206のそれぞれを流れる。仕切り壁202は、冷却用熱交換器156の軸方向に関して、その中心が冷却水入口162の中心および冷却水出口164の中心と略同じ位置となるように形成されている。
上側冷却水流路204と下側冷却水流路206には、多数のフィン208が形成されている。フィン208は冷却用熱交換器156の外面から伸びており、冷却用熱交換器156の内面に沿って流れるヘリウムガスと、冷却用熱交換器156の外面に沿って流れる冷却水との間の熱交換を促進する。それぞれのフィン208は、冷却用熱交換器156の周方向に沿って同一の断面形状を有しており、冷却用熱交換器156の外面に円環形状に形成されている。それぞれのフィン208は、冷却用熱交換器156の外面からの突出高さが、仕切り壁202よりも低くなるように形成されている。このようなフィン208を配置することによって、冷却水流路160の圧力損失を増大することなく、冷却用熱交換器156の熱交換効率が高められている。
図3は冷却水入口162および冷却水出口164の近傍における冷却水流路160の構造を示している。図3に示すように、冷却水入口162および冷却水出口164の近傍では、冷却水流路160を区画する仕切り壁202が切り欠かれている。従って、冷却水入口162から供給される冷却水は、冷却水流路160に一旦流れ込んだ後、上側冷却水流路204と下側冷却水流路206の双方に分岐する。また、上側冷却水流路204と下側冷却水流路206のそれぞれを流れた冷却水は、一旦合流した後に、冷却水出口164から排出される。
本実施例のスターリングエンジン100では、冷却水入口162と冷却水出口164が円筒形状の冷却用熱交換器156の中心軸を挟んで互いに対向する位置関係で配置されている。このような構成とすることによって、冷却水入口162から供給された冷却水は、冷却用熱交換器156の外面に沿って右回りに流れる冷却水流路160と、冷却用熱交換器156の外面に沿って左回りに流れる冷却水流路160に均等に分岐する。冷却用熱交換器156の伝熱面に冷却水が均等に流れるので、冷却部132における高い熱交換効率を実現することができる。
本実施例のスターリングエンジン100では、冷却用熱交換器156の外面に、冷却水流路160を区画する円環形状の仕切り壁202が形成されている。また、冷却水入口162の中心と冷却水出口の中心が、仕切り壁202の中心と略同じ位置となるように配置されている。このような構成とすることによって、冷却水入口162から供給された冷却水が、上側冷却水流路204と下側冷却水流路206のそれぞれに均等に分岐して流れ、その後に冷却水出口164から排出される。冷却用熱交換器156の伝熱面に冷却水が均等に流れるので、冷却部132における高い熱交換効率を実現することができる。
本実施例のスターリングエンジン100では、冷却水流路160の中央部のみに仕切り壁202が形成されており、上側冷却水流路204と下側冷却水流路206のそれぞれにフィン208が形成されている。このように、仕切り壁202とフィン208を組み合わせた構成とすることで、冷却水が冷却水流路160を流れる際の圧力損失の増大を抑制しつつ、冷却部132における高い熱交換効率を実現することができる。
本実施例のスターリングエンジン100では、冷却水入口162と冷却水出口164の近傍で、仕切り壁202が切り欠かれている。このような構成とすることで、冷却水入口162から冷却水出口へ冷却水を流す際の圧力損失を低減することができる。
本実施例のスターリングエンジン100では、冷却水流路160に形成された仕切り壁202が、ヘリウムガスの内圧に対する補強部材の役割も果たす。このような仕切り壁202を設けたことによって、ヘリウムガスの内圧に対する強度を確保しつつ、冷却用熱交換器156の板厚を薄くして、冷却部132における高い熱交換効率を実現することができる。あるいは、冷却用熱交換器156として熱伝導性の優れた銅製のものを用いることによって、ヘリウムガスの内圧に対する強度を確保しつつ、冷却部132における高い熱交換効率を実現することができる。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書又は図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書又は図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
図1はスターリングエンジン100の構成を示す図である。 図2は冷却水入口162および冷却水出口164の近傍以外での冷却水流路160の構造を示す図である。 図3は冷却水入口162および冷却水出口164の近傍での冷却水流路160の構造を示す図である。
符号の説明
100 スターリングエンジン
102 ハウジング
104 膨張空間
106 圧縮空間
108 ディスプレーサ
110 バウンス空間
112 出力ピストン
114 シリンダ
116 シャフト
120 固定プレート
120a 孔
122 経路
124 燃焼加熱器
126 加熱部
127 加熱部フィン
128 再生部
132 冷却部
133 冷却部フィン
134 ムーバーロッド
138 ガイド
140 磁石
142 鉄心
144 コイル
150 エンジンハウジング
152 出力ハウジング
154 ヒータヘッド
156 冷却用熱交換器
158 クーラハウジング
160 冷却水流路
162 冷却水入口
164 冷却水出口
202 仕切り壁
204 上側冷却水流路
206 下側冷却水流路
208 フィン

Claims (2)

  1. 外部からの加熱と冷却によって動力を生成するスターリングエンジンであって、
    円筒形状に形成されており、内面に沿って流れる作動ガスと、外面に沿って流れる冷媒を熱交換させる冷却用熱交換器と、
    冷却用熱交換器の外面に沿って冷却用熱交換器の周方向に冷媒を流す冷媒流路と、
    冷媒流路に冷媒を供給する冷媒入口と、
    冷媒流路から冷媒を排出する冷媒出口を備えており、
    冷却用熱交換器の外面に、冷媒流路を冷却用熱交換器の軸方向に区画する円環形状の仕切り壁と、冷却用熱交換器の外面からの突出高さが仕切り壁よりも低い円環形状のフィンが形成されており、
    冷却用熱交換器の周方向に関して、冷媒入口と冷媒出口が、冷却用熱交換器の中心軸を挟んで互いに対向する位置に配置されており、
    冷却用熱交換器の軸方向に関して、冷媒入口の中心と冷媒出口の中心が、仕切り壁の中心と略同じ位置となるように配置されている、スターリングエンジン。
  2. 前記仕切り壁が、冷媒入口と冷媒出口に対向する個所で切り欠かれている、請求項1のスターリングエンジン。
JP2008115444A 2008-04-25 2008-04-25 スターリングエンジン Pending JP2009264671A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008115444A JP2009264671A (ja) 2008-04-25 2008-04-25 スターリングエンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008115444A JP2009264671A (ja) 2008-04-25 2008-04-25 スターリングエンジン

Publications (1)

Publication Number Publication Date
JP2009264671A true JP2009264671A (ja) 2009-11-12

Family

ID=41390733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008115444A Pending JP2009264671A (ja) 2008-04-25 2008-04-25 スターリングエンジン

Country Status (1)

Country Link
JP (1) JP2009264671A (ja)

Similar Documents

Publication Publication Date Title
JP3773522B1 (ja) スターリング機関
CN103089480B (zh) 自由活塞斯特林热机
US7152404B2 (en) Power unit with reciprocating linear movement based on stirling motor, and method used in said power plant
JP4048821B2 (ja) 熱音響発電機
US6578359B2 (en) Stirling engine
CN105299946B (zh) 一种自由活塞斯特林热机系统
JP2009236456A (ja) パルス管型蓄熱機関
CN103382902A (zh) 一种用于发电的集成式斯特林发动机
CN116378846A (zh) 一种电磁弹簧斯特林发电机
US8640453B2 (en) Heat engine
CN112303953A (zh) 一种余热驱动制冷机
JP3692506B2 (ja) 自由ピストン型再生スターリング機関
JP5577984B2 (ja) Egrガス冷却装置
CN103573375A (zh) 一种自由活塞内燃发电机振荡驱动式活塞冷却系统
KR101317367B1 (ko) 스털링 엔진 및 하이브리드 스털링 엔진
JP5067260B2 (ja) フリーピストン型のスターリングサイクル機械
JP2009198084A (ja) パルス管型蓄熱機関
JP2009264671A (ja) スターリングエンジン
GB2460221A (en) Free vane Stirling engine
JP5365352B2 (ja) 電気回収エンジン
JP3776276B2 (ja) スターリングサイクルおよび熱交換器
CN212695848U (zh) 一种直线电机冷却结构
CN106762210B (zh) 一种带散热流道的双头斯特林电机设备
CN206503647U (zh) 一种对置双头斯特林电机设备
US20170271950A1 (en) Stirling engine having energy regeneration structure using waste heat recovery