JP2009264211A - Prime mover rotational speed control device of construction machine - Google Patents

Prime mover rotational speed control device of construction machine Download PDF

Info

Publication number
JP2009264211A
JP2009264211A JP2008113639A JP2008113639A JP2009264211A JP 2009264211 A JP2009264211 A JP 2009264211A JP 2008113639 A JP2008113639 A JP 2008113639A JP 2008113639 A JP2008113639 A JP 2008113639A JP 2009264211 A JP2009264211 A JP 2009264211A
Authority
JP
Japan
Prior art keywords
engine
traveling
rotational speed
travel
speed control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008113639A
Other languages
Japanese (ja)
Other versions
JP4974957B2 (en
Inventor
Yoichi Kowatari
陽一 古渡
Hiroji Ishikawa
広二 石川
Kazunori Nakamura
和則 中村
Nobue Ariga
修栄 有賀
Hideo Karasawa
英男 柄澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2008113639A priority Critical patent/JP4974957B2/en
Publication of JP2009264211A publication Critical patent/JP2009264211A/en
Application granted granted Critical
Publication of JP4974957B2 publication Critical patent/JP4974957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suitably control an engine speed while preventing excessive rotation of a traveling motor. <P>SOLUTION: The prime mover rotational speed control device of the construction machine includes hydraulic pumps 11 and 12 driven by an engine 10, traveling motors 5a and 5b rotated by pressure oil from the hydraulic pumps 11 and 12, a hydraulic actuator for working driven by the pressure oil from the hydraulic pumps 11 and 12, control valves 13 and 14 for controlling flow of the pressure oil from the hydraulic pumps 11 and 12 to the traveling motors 5a and 5b, control valves 17 and 18 for controlling flow of the pressure oil from the hydraulic pumps 11 and 12 to the hydraulic actuator for working, operation members 15 and 16 for operating the control valves 13 and 14, and operation members 17a and 18a for controlling the control valves 17 and 18, and determines whether the state is the traveling single operation state or not by a signal from a traveling detector 22 and a work detector 23. During traveling single operation, larger the traveling operation amount is, more largely the engine speed is reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、油圧ショベル等の建設機械の原動機回転数制御装置に関する。   The present invention relates to a motor speed control device for a construction machine such as a hydraulic excavator.

この種の建設機械では、近年、効率やコストなどの面から走行モータを小型化する傾向にあるが、走行モータを小型化すると、走行モータの速度上昇が問題となる。この点につき従来、走行のみの単独操作時に、走行と作業の複合操作時よりもエンジン回転数の上限を低くし、走行モータの過回転を防止するようにした装置が知られている(例えば特許文献1参照)。   In this type of construction machine, in recent years, there is a tendency to reduce the travel motor in terms of efficiency and cost. However, if the travel motor is reduced in size, an increase in the speed of the travel motor becomes a problem. Conventionally, there has been known an apparatus in which the upper limit of the engine speed is set lower in single operation only for traveling than in combined operation of traveling and work to prevent over-rotation of the traveling motor (for example, patents). Reference 1).

特開2002−130003号公報JP 2002-130003 A

しかしながら、上記特許文献1記載の装置は、走行単独操作時にエンジン回転数の上限を一律に所定回転数に制限するため、エンジン回転数を最適に制御することができなかった。   However, since the apparatus described in Patent Document 1 uniformly restricts the upper limit of the engine speed to a predetermined speed during a single traveling operation, the engine speed cannot be optimally controlled.

本発明による建設機械の原動機回転数制御装置は、エンジンにより駆動される油圧ポンプと、油圧ポンプからの圧油により回転する走行用油圧モータと、油圧ポンプからの圧油により駆動する作業用油圧アクチュエータと、油圧ポンプから走行用油圧モータへの圧油の流れを制御する走行用制御弁と、油圧ポンプから作業用油圧アクチュエータへの圧油の流れを制御する作業用制御弁と、走行用制御弁を操作する走行用操作部材と、作業用制御弁を操作する作業用操作部材と、走行用操作部材が操作され、かつ、作業用操作部材が非操作された走行単独操作状態か否かを判定する第1の判定手段と、走行用油圧モータの回転エネルギと相関関係を有する物理量を検出する検出手段と、エンジンの目標回転数を設定する回転数設定手段と、第1の判定手段により走行単独操作状態と判定されると、検出手段により検出された物理量に応じてエンジン回転数を前記目標回転数よりも低減する回転数制御手段とを備えることを特徴とする。
検出手段を、走行用操作部材の操作量を検出する操作量検出手段として構成し、検出された走行用操作部材の操作量が所定値より大きいと、所定値以下のときよりもエンジン回転数を大きく低減することもできる。
検出手段を、油圧ポンプの吐出圧を検出する吐出圧検出手段として構成し、検出された油圧ポンプの吐出圧が所定値より大きいと、所定値以下のときよりもエンジン回転数を大きく低減することもできる。
走行用油圧モータを、容量変更可能な可変モータとするとともに、検出手段を、走行用油圧モータの容量を検出する容量検出手段として構成し、検出された走行用油圧モータの容量が所定値より大きいと、所定値以下のときよりもエンジン回転数を大きく低減することもできる。
A prime mover rotation speed control device for a construction machine according to the present invention includes a hydraulic pump driven by an engine, a traveling hydraulic motor rotating by pressure oil from the hydraulic pump, and a working hydraulic actuator driven by pressure oil from the hydraulic pump. A travel control valve that controls the flow of pressure oil from the hydraulic pump to the travel hydraulic motor, a work control valve that controls the flow of pressure oil from the hydraulic pump to the work hydraulic actuator, and a travel control valve It is determined whether or not the traveling operation member for operating the operation control member for operating the work control valve, the traveling operation member is operated, and the traveling operation member is not operated and the traveling operation member is not operated. First detecting means for detecting, detecting means for detecting a physical quantity having a correlation with the rotational energy of the traveling hydraulic motor, rotational speed setting means for setting a target rotational speed of the engine, If it is determined that the traveling alone operation state by determining means, characterized in that it comprises a rotational speed control means for reducing the engine rotational speed than the target rotational speed according to a physical quantity detected by the detecting means.
The detection means is configured as an operation amount detection means for detecting an operation amount of the travel operation member. When the detected operation amount of the travel operation member is larger than a predetermined value, the engine speed is more than when it is less than the predetermined value. It can also be greatly reduced.
The detection means is configured as a discharge pressure detection means for detecting the discharge pressure of the hydraulic pump, and when the detected discharge pressure of the hydraulic pump is larger than a predetermined value, the engine speed is greatly reduced than when it is lower than the predetermined value. You can also.
The travel hydraulic motor is a variable motor whose capacity can be changed, and the detection means is configured as a capacity detection means for detecting the capacity of the travel hydraulic motor, and the detected capacity of the travel hydraulic motor is larger than a predetermined value. And engine speed can also be reduced significantly rather than the time below a predetermined value.

本発明によれば、走行単独操作時にエンジン回転数を所定の物理量に応じて低減するので、エンジン回転数を最適に制御できる。   According to the present invention, since the engine speed is reduced according to the predetermined physical quantity during the single traveling operation, the engine speed can be optimally controlled.

−第1の実施の形態−
以下、図1〜図4を参照して本発明による建設機械の原動機回転数制御装置の第1の実施の形態について説明する。
図1は、第1の実施の形態に係る原動機回転数制御装置が適用される建設機械の一例である油圧ショベルの斜視図である。この油圧ショベルは、走行体1と、走行体上に旋回可能に搭載された旋回体2と、旋回体2に回動可能に設けられたブームBM、アームAM、バケットBCからなる作業装置3とを有する。
-First embodiment-
A first embodiment of a prime mover rotation speed control device for a construction machine according to the present invention will be described below with reference to FIGS.
FIG. 1 is a perspective view of a hydraulic excavator that is an example of a construction machine to which the prime mover rotation speed control device according to the first embodiment is applied. This hydraulic excavator includes a traveling body 1, a revolving body 2 that is turnably mounted on the traveling body, and a work device 3 that includes a boom BM, an arm AM, and a bucket BC that are rotatably provided on the revolving body 2. Have

ブームBMはブームシリンダ3aにより駆動され、アームAMはアームシリンダ3bにより駆動され、バケットBCはバケットシリンダ3cにより駆動される。走行体1の左右両側にはそれぞれ履帯4が装着されている。各履帯4はそれぞれ走行用油圧モータ5により駆動され、油圧ショベルが走行する。なお、左右の走行用油圧モータ5をそれぞれ5a,5bで表すこともある。   The boom BM is driven by the boom cylinder 3a, the arm AM is driven by the arm cylinder 3b, and the bucket BC is driven by the bucket cylinder 3c. A crawler belt 4 is attached to each of the left and right sides of the traveling body 1. Each crawler belt 4 is driven by a traveling hydraulic motor 5, and a hydraulic excavator travels. The left and right traveling hydraulic motors 5 may be represented by 5a and 5b, respectively.

図2は、図1の油圧ショベルの主に走行用油圧回路を示す図である。エンジン10の出力軸には、一対の可変容量型油圧ポンプ11,12が連結され、これら油圧ポンプ11,12はエンジン10により駆動される。各油圧ポンプ11,12からの圧油は、それぞれ方向制御弁13,14を介して左右の油圧モータ5a,5bに供給される。油圧ポンプ11,12の傾転角は、それぞれレギュレータ11a,12aの駆動により制御される。   FIG. 2 is a diagram mainly showing a traveling hydraulic circuit of the hydraulic excavator in FIG. 1. A pair of variable displacement hydraulic pumps 11, 12 are connected to the output shaft of the engine 10, and these hydraulic pumps 11, 12 are driven by the engine 10. The pressure oil from the hydraulic pumps 11 and 12 is supplied to the left and right hydraulic motors 5a and 5b via the direction control valves 13 and 14, respectively. The tilt angles of the hydraulic pumps 11 and 12 are controlled by driving the regulators 11a and 12a, respectively.

方向制御弁13,14には、それぞれ走行用操作部材15,16の操作量に応じたパイロット圧a〜dが作用し、このパイロット圧a〜dにより方向制御弁13,14が切り換えられる。操作部材15,16の非操作時には方向制御弁13,14は中立位置に切り換えられ、油圧モータ5a,5bへの圧油の供給が阻止される。操作部材15,16が操作されると、方向制御弁13,14の切換により油圧モータ5a,5bへ圧油が供給され、油圧モータ5a,5bが回転する。   Pilot pressures a to d corresponding to the operation amounts of the travel operation members 15 and 16 act on the direction control valves 13 and 14, respectively, and the direction control valves 13 and 14 are switched by the pilot pressures a to d. When the operation members 15 and 16 are not operated, the directional control valves 13 and 14 are switched to the neutral position, and supply of pressure oil to the hydraulic motors 5a and 5b is blocked. When the operation members 15 and 16 are operated, pressure oil is supplied to the hydraulic motors 5a and 5b by switching the direction control valves 13 and 14, and the hydraulic motors 5a and 5b rotate.

油圧ポンプ11,12からの圧油は、方向制御弁17,18を介して他の作業用油圧アクチュエータにも供給される。例えば油圧ポンプ11からの圧油はブームシリンダ3a、アームシリンダ3bおよびバケットシリンダ3cに供給され、油圧ポンプ12からの圧油はブームシリンダ3a、アームシリンダ3bおよび旋回用油圧モータに供給される。なお、実際にはより多くの作業用方向制御弁が設けられるが、図示は省略する。方向制御弁17,18はそれぞれ操作部材17a,18aにより操作される。   Pressure oil from the hydraulic pumps 11 and 12 is also supplied to other working hydraulic actuators via the direction control valves 17 and 18. For example, the pressure oil from the hydraulic pump 11 is supplied to the boom cylinder 3a, the arm cylinder 3b, and the bucket cylinder 3c, and the pressure oil from the hydraulic pump 12 is supplied to the boom cylinder 3a, the arm cylinder 3b, and the turning hydraulic motor. In practice, more working direction control valves are provided, but the illustration is omitted. The direction control valves 17 and 18 are operated by operation members 17a and 18a, respectively.

コントローラ20は、CPU、ROM,RAM、その他の周辺回路を有する演算処理装置を含んで構成される。コントローラ20には、乗員のダイヤル操作によりエンジン回転数を設定する回転数設定ダイヤル(ECダイヤル)21と、走行操作の有無を検出する走行検出器22と、作業操作の有無を検出する作業検出器23と、圧力センサ24が接続されている。   The controller 20 includes an arithmetic processing unit having a CPU, ROM, RAM, and other peripheral circuits. The controller 20 includes a rotation speed setting dial (EC dial) 21 for setting the engine rotation speed by a passenger's dial operation, a travel detector 22 for detecting the presence or absence of a travel operation, and a work detector for detecting the presence or absence of a work operation. 23 and a pressure sensor 24 are connected.

圧力センサ24は、方向制御弁13,14へのパイロット圧の供給回路に設けられ、圧力センサ24により操作部材15,16の操作量が検出される。走行検出器22は、例えば方向制御弁13,14に走行用パイロット圧が作用したときにオンする圧力スイッチであり、作業検出器23は、方向制御弁17,18に作業用パイロット圧が作用したときにオンする圧力スイッチである。   The pressure sensor 24 is provided in a pilot pressure supply circuit to the direction control valves 13 and 14, and the operation amount of the operation members 15 and 16 is detected by the pressure sensor 24. The travel detector 22 is a pressure switch that is turned on when, for example, the travel pilot pressure is applied to the direction control valves 13 and 14, and the work detector 23 is the work pilot pressure that is applied to the direction control valves 17 and 18. Sometimes it is a pressure switch that turns on.

コントローラ20は、後述の処理によりエンジン回転数制御部25に制御信号を出力し、エンジン回転数を制御する。エンジン回転数制御部25は、ガバナレバーを駆動するモータ等により構成される。機械的にガバナレバーを駆動する方式に代え、いわゆる電子ガバナによってエンジン回転数制御部25を構成することもできる。   The controller 20 controls the engine speed by outputting a control signal to the engine speed control unit 25 by a process described later. The engine speed control unit 25 includes a motor that drives a governor lever. Instead of mechanically driving the governor lever, the engine speed control unit 25 can be configured by a so-called electronic governor.

図3は、第1の実施の形態に係る原動機回転数制御装置の構成を示すブロック図である。回転数設定回路201では、予め定められた図示の特性f1に基づき、ECダイヤル21の操作量Sに応じた目標回転数Nが設定される。特性f1によれば、操作量Sの増加に伴い目標回転数Nが最小回転数N0(アイドル回転数)から最大回転数N1まで徐々に増加する。   FIG. 3 is a block diagram showing the configuration of the prime mover rotational speed control apparatus according to the first embodiment. In the rotational speed setting circuit 201, a target rotational speed N corresponding to the operation amount S of the EC dial 21 is set based on a predetermined characteristic f1 shown in the figure. According to the characteristic f1, as the manipulated variable S increases, the target rotational speed N gradually increases from the minimum rotational speed N0 (idle rotational speed) to the maximum rotational speed N1.

係数設定回路202では、予め定められた図示の特性f2に基づき、目標回転数Nに応じた係数α1を設定する。特性f2によれば、目標回転数Nが所定値N2以下では係数α1は0、目標回転数Nが所定値N3以上では係数α1は1であり、目標回転数NがN2からN3の範囲では、目標回転数Nの増加に伴い係数α1が0から1にかけて直線的に増加する。所定値N2は例えばN0に等しく、所定値N3は例えばN1に等しい。なお、N2をN0より大きく、N3をN1より小さく設定してもよい。   The coefficient setting circuit 202 sets a coefficient α1 corresponding to the target rotational speed N based on a predetermined characteristic f2 shown in the figure. According to the characteristic f2, the coefficient α1 is 0 when the target rotational speed N is equal to or smaller than the predetermined value N2, the coefficient α1 is 1 when the target rotational speed N is equal to or larger than the predetermined value N3, and the target rotational speed N is in the range from N2 to N3. As the target rotational speed N increases, the coefficient α1 increases linearly from 0 to 1. The predetermined value N2 is equal to N0, for example, and the predetermined value N3 is equal to N1, for example. N2 may be set larger than N0 and N3 may be set smaller than N1.

回転数設定回路203では、予め定められた図示の特性f3に基づき、圧力センサ24の検出値Pに応じた減速回転数ΔNを設定する。特性f3によれば、検出値Pが所定値P1以下では減速回転数ΔNは0,検出値Pが所定値P2以上では減速回転数ΔNは所定値ΔN1であり、検出値PがP1からP2の範囲で、検出値Pの増加に伴い減速回転数ΔNが0からΔN1にかけて直線的に増加する。例えば検出値がP3のとき、減速回転数はΔN1/2となる。所定値ΔN1は、係数設定回路202のN2とN3の差(N3−N2)に等しく設定されている。所定値P1は操作部材15,16の最小操作に、所定値P2は最大操作に、所定値P3はハーフ操作にそれぞれ相当する。   The rotation speed setting circuit 203 sets a deceleration rotation speed ΔN corresponding to the detection value P of the pressure sensor 24 based on a predetermined characteristic f3 shown in the figure. According to the characteristic f3, when the detected value P is equal to or smaller than the predetermined value P1, the deceleration rotational speed ΔN is 0, and when the detected value P is equal to or larger than the predetermined value P2, the rotational speed ΔN is the predetermined value ΔN1, and the detected value P is from P1 to P2. Within the range, as the detection value P increases, the deceleration rotational speed ΔN increases linearly from 0 to ΔN1. For example, when the detected value is P3, the deceleration rotational speed is ΔN1 / 2. The predetermined value ΔN1 is set equal to the difference (N3−N2) between N2 and N3 of the coefficient setting circuit 202. The predetermined value P1 corresponds to the minimum operation of the operation members 15 and 16, the predetermined value P2 corresponds to the maximum operation, and the predetermined value P3 corresponds to the half operation.

判定回路204では、走行検出器22と作業検出器23からの信号により、走行用操作部材15,16が操作され、かつ、作業用操作部材17a,18aが非操作であるか否か、すなわち走行単独操作状態であるか否かを判定する。走行単独操作と判定されると、判定回路204はタイマをオンし、係数設定回路205は係数α2を設定する。この場合、係数設定回路205は、タイマオン後の時間経過に伴い、0から1にかけて係数α2を徐々に大きくする。   The determination circuit 204 determines whether or not the traveling operation members 15 and 16 are operated by the signals from the traveling detector 22 and the work detector 23 and the working operation members 17a and 18a are not operated, that is, traveling. It is determined whether or not it is in a single operation state. When it is determined that the vehicle is operating alone, the determination circuit 204 turns on the timer, and the coefficient setting circuit 205 sets the coefficient α2. In this case, the coefficient setting circuit 205 gradually increases the coefficient α2 from 0 to 1 as time elapses after the timer is turned on.

判定回路204からの信号は切換回路206とスイッチ回路210にも出力される。走行単独操作と判定されると、切換回路206は接点a側に端子を切り換え、スイッチ回路210は端子を閉じる。走行単独操作以外と判定されると、切換回路206は接点b側に端子を切り換え、スイッチ回路210は端子を開く。   A signal from the determination circuit 204 is also output to the switching circuit 206 and the switch circuit 210. When it is determined that the vehicle is operating alone, the switching circuit 206 switches the terminal to the contact a side, and the switch circuit 210 closes the terminal. When it is determined that the operation is other than the traveling single operation, the switching circuit 206 switches the terminal to the contact b side, and the switch circuit 210 opens the terminal.

乗算回路208では、回転数設定回路203で設定した減速回転数ΔNに係数α2を乗算する。設定回路207には、予め係数α2=1が設定されており、切換回路206が接点b側に切り換われば、乗算回路208でΔNに1が乗算される。切換回路206が接点a側に切り換われば、ΔNに係数設定回路205で設定した係数α2が乗算される。乗算回路209では、減速回転数ΔNに係数α2を乗算した値に、さらに係数設定回路202で設定した係数α1を乗算し、減速回転数ΔN’(=ΔN×α2×α1)を演算する。   The multiplication circuit 208 multiplies the deceleration rotation speed ΔN set by the rotation speed setting circuit 203 by a coefficient α2. In the setting circuit 207, the coefficient α2 = 1 is set in advance, and when the switching circuit 206 is switched to the contact b side, the multiplication circuit 208 multiplies ΔN by 1. When the switching circuit 206 is switched to the contact a side, ΔN is multiplied by the coefficient α2 set by the coefficient setting circuit 205. The multiplication circuit 209 multiplies the value obtained by multiplying the deceleration rotational speed ΔN by the coefficient α2 and the coefficient α1 set by the coefficient setting circuit 202 to calculate the deceleration rotational speed ΔN ′ (= ΔN × α2 × α1).

減算回路211では、回転数設定回路201で設定された目標回転数Nからスイッチ回路210の開閉に応じて減速回転数ΔN’を減算する。この場合、スイッチ回路210が閉じていれば、目標回転数NからΔN’を減算した値(N−ΔN’)を最終的な目標回転数Nとして出力する。スイッチ回路210が開いていれば、回転数設定回路201で設定された目標回転数Nをそのまま最終的な目標回転数Nとして出力する。エンジン回転数制御部25では、エンジン10の実回転数がこの最終的な目標回転数Nと等しくなるようにエンジン回転数を制御(フィードバック制御)する。   The subtraction circuit 211 subtracts the deceleration rotation speed ΔN ′ from the target rotation speed N set by the rotation speed setting circuit 201 in accordance with the opening / closing of the switch circuit 210. In this case, if the switch circuit 210 is closed, a value (N−ΔN ′) obtained by subtracting ΔN ′ from the target rotational speed N is output as the final target rotational speed N. If the switch circuit 210 is open, the target rotational speed N set by the rotational speed setting circuit 201 is output as it is as the final target rotational speed N. The engine speed control unit 25 controls (feedback control) the engine speed so that the actual speed of the engine 10 becomes equal to the final target speed N.

第1の実施の形態に係る原動機制御装置の主要な動作を図4のタイムチャートにより説明する。
まず、回転数設定ダイヤル21を最大回転数N1に設定した状態で、走行用操作部材15,16を最大に操作し、かつ、作業用操作部材17a,18aも併せて操作(複合操作)した場合を想定する。このとき、圧力センサ24の検出値はP2である。複合操作時には、スイッチ回路210が開放され、エンジン回転数は回転数設定回路201で設定された最大回転数N1に制御される(時点t0)。
The main operation of the prime mover control device according to the first embodiment will be described with reference to the time chart of FIG.
First, in a state where the rotation speed setting dial 21 is set to the maximum rotation speed N1, the traveling operation members 15 and 16 are operated to the maximum, and the operation operation members 17a and 18a are also operated together (combined operation). Is assumed. At this time, the detection value of the pressure sensor 24 is P2. During the composite operation, the switch circuit 210 is opened, and the engine speed is controlled to the maximum speed N1 set by the speed setting circuit 201 (time t0).

この状態から時点t1で作業用操作部材17a,18aの操作をやめると、走行単独操作となってタイマがオンし、スイッチ回路210が閉じられる。このとき時間経過に伴い係数設定回路205で設定される係数α2が徐々に大きくなる。このため、減速回転数ΔN’が徐々に大きくなって、エンジン回転数が徐々に減少し、最終的には回転数設定回路203で設定された所定回転数ΔN1だけエンジン回転数が減少する(時点t2)。これによりポンプ吐出量が抑えられ、走行モータ5a,5bの過回転を防止することができる。   When the operation of the work operation members 17a and 18a is stopped at time t1 from this state, the operation becomes a traveling single operation, the timer is turned on, and the switch circuit 210 is closed. At this time, the coefficient α2 set by the coefficient setting circuit 205 gradually increases with time. For this reason, the deceleration rotational speed ΔN ′ gradually increases, the engine rotational speed gradually decreases, and finally the engine rotational speed decreases by the predetermined rotational speed ΔN1 set by the rotational speed setting circuit 203 (time point). t2). As a result, the pump discharge amount is suppressed, and overrunning of the traveling motors 5a and 5b can be prevented.

その後、時点t3で作業用操作部材17a,18aが操作され、走行単独操作が終了すると、スイッチ回路210が開く。これによりエンジン回転数が所定回転数ΔN1だけ増加し、回転数設定回路201で設定された設定回転数にエンジン回転数が制御される。この場合、走行単独操作開始時と同様、走行単独操作終了時にもタイマをオンし、点線で示すようにエンジン回転数を徐々に増加させるようにしてもよい。   Thereafter, at time t3, the operation operation members 17a and 18a are operated, and when the traveling single operation is finished, the switch circuit 210 is opened. As a result, the engine speed is increased by a predetermined speed ΔN1, and the engine speed is controlled to the set speed set by the speed setting circuit 201. In this case, the timer may be turned on at the end of the traveling single operation similarly to the start of the traveling single operation, and the engine speed may be gradually increased as indicated by the dotted line.

一方、走行単独操作時に走行用操作部材15,16がハーフ操作されると、圧力センサ24の検出値はP3(<P2)となる。この場合は、エンジン回転数は時点t1で図の点線に示すように時間経過に伴い徐々に減少し、最終的にはΔN1/2だけ減少する。その結果、走行操作量が小さいときは、エンジン回転数の減少量が抑えられ、走行操作に合致した走行フィーリングが得られる。この場合、ハーフ操作時には方向制御弁13,14の切換量が小さいため、エンジン回転数の減少量を少なくしても走行モータ5a,5bへの圧油供給量は過剰とならず、走行モータ5a,5bは過回転することがない。   On the other hand, when the traveling operation members 15 and 16 are half-operated during the traveling single operation, the detected value of the pressure sensor 24 becomes P3 (<P2). In this case, the engine speed gradually decreases with time as indicated by the dotted line in the figure at time t1, and finally decreases by ΔN1 / 2. As a result, when the travel operation amount is small, the decrease amount of the engine speed is suppressed, and a travel feeling that matches the travel operation is obtained. In this case, since the switching amount of the directional control valves 13 and 14 is small during the half operation, the amount of pressure oil supplied to the traveling motors 5a and 5b does not become excessive even if the amount of decrease in the engine speed is reduced, and the traveling motor 5a. , 5b does not over-rotate.

回転数設定ダイヤル21による設定回転数を小さくすると、係数設定回路202で設定される係数α1が小さくなる。これにより設定回転数Nが小さいときは減速回転数ΔN’が減少するので、エンジン実回転数と設定回転数Nとの乖離が小さく、走行単独操作時の走行フィーリングが向上する。この場合、設定回転数Nが小さいため、エンジン回転数の減少量を少なくしても走行モータ5a,5bへの圧油供給量は過剰とならず、走行モータ5a,5bは過回転することがない。   When the set rotational speed by the rotational speed setting dial 21 is decreased, the coefficient α1 set by the coefficient setting circuit 202 is decreased. As a result, when the set rotational speed N is small, the deceleration rotational speed ΔN ′ decreases, so that the difference between the actual engine rotational speed and the set rotational speed N is small, and the traveling feeling at the time of traveling independent operation is improved. In this case, since the set rotational speed N is small, the amount of pressure oil supplied to the traveling motors 5a and 5b does not become excessive even if the amount of decrease in the engine rotational speed is reduced, and the traveling motors 5a and 5b may overrotate. Absent.

第1の実施の形態によれば以下のような作用効果を奏することができる。
(1)走行単独操作時に走行用操作部材15,16の操作量に応じてエンジン回転数を低減するようにしたので、ポンプ吐出量が抑えられ、走行モータ5a,5bを小型化した場合であっても走行モータ5,5bの過回転を防止することができる。この場合、走行用操作部材15,16の操作量が大きいほど、エンジン10の減速回転数ΔN’を大きくするので、エンジン回転数の減少量が大きくなりすぎず、エンジン回転数を最適に制御することができる。
(2)走行単独操作時に時間経過に伴いエンジン回転数を徐々に減少させるようにしたので、走行単独操作開始時のショックを低減できる。
(3)回転数設定ダイヤル21の設定回転数が小さいときは、エンジン10の減速回転数ΔN’を小さくするので、走行モータ5a,5bの過回転が問題とならない低速回転領域では、オペレータの意図したエンジン回転数の下で走行できる。また、エンジン回転数が最小回転数N0より小さくなることを防ぐことができる。
According to 1st Embodiment, there can exist the following effects.
(1) Since the engine speed is reduced in accordance with the amount of operation of the travel operation members 15 and 16 during single travel operation, the pump discharge amount is suppressed and the travel motors 5a and 5b are downsized. Even so, overrunning of the traveling motors 5 and 5b can be prevented. In this case, the larger the operation amount of the travel operation members 15 and 16 is, the larger the deceleration rotational speed ΔN ′ of the engine 10 is. Therefore, the reduction amount of the engine rotational speed is not excessively increased, and the engine rotational speed is optimally controlled. be able to.
(2) Since the engine speed is gradually decreased with the passage of time during the traveling single operation, the shock at the start of the traveling single operation can be reduced.
(3) When the set speed of the speed setting dial 21 is small, the decelerating speed ΔN ′ of the engine 10 is made small. Therefore, in the low speed range where the overspeed of the travel motors 5a and 5b does not matter, the operator's intention It can run under the engine speed. Further, it is possible to prevent the engine speed from becoming smaller than the minimum speed N0.

−第2の実施の形態−
図5を参照して本発明による建設機械の原動機回転数制御装置の第2の実施の形態について説明する。
第1の実施の形態では、走行用操作部材15,16の操作量に応じてエンジン回転数の減少量を変更するようにしたが、第2の実施の形態では、走行モータ5a,5bを可変容量型の油圧モータとして構成し、モータ傾転に応じてエンジン回転数の減少量を変更する。なお、以下では第1の実施の形態との相違点を主に説明する。
-Second Embodiment-
With reference to FIG. 5, a second embodiment of a prime mover rotation speed control device for a construction machine according to the present invention will be described.
In the first embodiment, the reduction amount of the engine speed is changed in accordance with the operation amount of the travel operation members 15 and 16, but in the second embodiment, the travel motors 5a and 5b are variable. It is configured as a capacity type hydraulic motor, and the amount of decrease in engine speed is changed according to the motor tilt. In the following description, differences from the first embodiment will be mainly described.

走行モータ5a,5bは、小傾転と大傾転の間で傾転変更可能な2速可変モータであり、モータレギュレータに走行モータ5a,5bの駆動圧がフィードバックされ、モータ傾転が変更される。すなわち、モータ駆動圧が所定値Paより大きいときはモータ傾転qmは大、モータ駆動圧が所定値Pa以下ではモータ傾転qmは小となる。   The travel motors 5a and 5b are two-speed variable motors that can change the tilt between a small tilt and a large tilt, and the driving pressure of the travel motors 5a and 5b is fed back to the motor regulator to change the motor tilt. The That is, the motor tilt qm is large when the motor drive pressure is greater than the predetermined value Pa, and the motor tilt qm is small when the motor drive pressure is equal to or less than the predetermined value Pa.

図5は、第2の実施の形態に係る原動機回転数制御装置の構成を示すブロック図である。なお、図3と同一の箇所には同一の符号を付している。モータ傾転qmは傾転角検出器220により検出され、この傾転角検出器220からの信号は回転数設定回路221に入力される。回転数設定回路221では、予め定められた図示の特性f4に基づき、モータ傾転qmに応じた減速回転数ΔNを設定する。特性f4によれば、モータ傾転qmが小のときは減速回転数ΔNはΔN1であり、モータ傾転qmの増加に伴い減速回転数は減少し、モータ傾転qmが大のときは減速回転数ΔNは0になる。   FIG. 5 is a block diagram showing the configuration of the prime mover rotational speed control apparatus according to the second embodiment. In addition, the same code | symbol is attached | subjected to the location same as FIG. The motor tilt qm is detected by the tilt angle detector 220, and a signal from the tilt angle detector 220 is input to the rotation speed setting circuit 221. The rotation speed setting circuit 221 sets a deceleration rotation speed ΔN corresponding to the motor tilt qm based on a predetermined characteristic f4 shown in the figure. According to the characteristic f4, when the motor tilt qm is small, the deceleration rotational speed ΔN is ΔN1, the deceleration rotational speed decreases as the motor tilt qm increases, and when the motor tilt qm is large, the rotational speed decreases. The number ΔN becomes zero.

第2の実施の形態では、走行単独操作時において、モータ傾転qmが小さいときは減速回転数ΔN’は大きく、モータ傾転qmが大きいときは減速回転数ΔN’は小さくなる。これによりエンジン回転数の減少量が大きくなりすぎず、走行モータ5a,5bの過回転を防止しつつ、走行状況に合わせてエンジン回転数を最適に制御することができる。   In the second embodiment, during the traveling single operation, the deceleration rotational speed ΔN ′ is large when the motor tilt qm is small, and the deceleration rotational speed ΔN ′ is small when the motor tilt qm is large. As a result, the amount of decrease in the engine speed does not become too large, and the engine speed can be optimally controlled in accordance with the travel situation while preventing the travel motors 5a and 5b from over-rotating.

なお、上記実施の形態では、走行用操作部材15,16の操作量あるいはモータ傾転角qmに応じてエンジン回転数の減少量を変更するようにしたが、走行用操作部材15,16とモータ傾転角qmの両方を考慮してエンジン回転数の減少量を変更するようにしてもよい。その一例を図6に示す。   In the above-described embodiment, the reduction amount of the engine speed is changed according to the operation amount of the traveling operation members 15 and 16 or the motor tilt angle qm, but the traveling operation members 15 and 16 and the motor The reduction amount of the engine speed may be changed in consideration of both the tilt angle qm. An example is shown in FIG.

図6において、係数設定回路222では、予め定められた図示の特性f5に基づき、モータ傾転qmに応じた係数α3を設定する。特性f5によれば、モータ傾転が小のときは係数α3は1であり、モータ傾転の増加に伴い係数α3が減少し、モータ傾転が大のときは係数α3は0.5になる。乗算回路223では、回転数設定回路203で設定した減速回転数ΔNに係数α3を乗算する。これにより走行操作量が大きいほど、かつ、モータ傾転qmが小さいほど、減速回転数ΔN’は大きくなり、走行モータ5a,5bの過回転を確実に防止できる。   In FIG. 6, a coefficient setting circuit 222 sets a coefficient α3 corresponding to the motor tilt qm based on a predetermined characteristic f5 shown in the figure. According to the characteristic f5, the coefficient α3 is 1 when the motor tilt is small, the coefficient α3 decreases as the motor tilt increases, and the coefficient α3 becomes 0.5 when the motor tilt is large. . The multiplication circuit 223 multiplies the deceleration speed ΔN set by the speed setting circuit 203 by a coefficient α3. As a result, the greater the travel operation amount and the smaller the motor tilt qm, the greater the decelerating speed ΔN ′, and it is possible to reliably prevent the travel motors 5a and 5b from over-rotating.

走行モータ5a,5bの回転は、モータ5a,5bに作用する油圧ポンプ11,12の吐出圧によっても影響を受ける。そこで、圧力センサによりポンプ吐出圧Ppを検出し、このポンプ吐出圧Ppに応じて減速回転数ΔN’を変更するようにしてもよい。その一例を図7に示す。   The rotation of the traveling motors 5a and 5b is also affected by the discharge pressure of the hydraulic pumps 11 and 12 acting on the motors 5a and 5b. Therefore, the pump discharge pressure Pp may be detected by a pressure sensor, and the deceleration rotational speed ΔN ′ may be changed according to the pump discharge pressure Pp. An example is shown in FIG.

図7において、ポンプ吐出圧Ppは圧力センサ24により検出される。回転数設定回路225では、予め定められた図示の特性f6に従い、ポンプ吐出圧Ppに応じた減速回転数ΔNを演算する。特性f6によれば、ポンプ吐出圧Ppが所定値Pp1以下では減速回転数ΔNは0,ポンプ吐出圧Ppが所定値Pp2以上では減速回転数ΔNは所定値ΔN1であり、ポンプ吐出圧PpがPp1からPp2の範囲では、ポンプ吐出圧Ppの増加に伴い減速回転数ΔNが0からΔN1にかけて直線的に増加している。これによりポンプ吐出圧ppが大きいほどエンジン回転数の減少量は大きくなり、エンジン回転数を最適に制御することができる。   In FIG. 7, the pump discharge pressure Pp is detected by the pressure sensor 24. The rotation speed setting circuit 225 calculates a decelerating rotation speed ΔN corresponding to the pump discharge pressure Pp according to a predetermined characteristic f6 shown in the figure. According to the characteristic f6, when the pump discharge pressure Pp is equal to or less than the predetermined value Pp1, the deceleration rotational speed ΔN is 0, and when the pump discharge pressure Pp is equal to or greater than the predetermined value Pp2, the deceleration rotational speed ΔN is the predetermined value ΔN1 and the pump discharge pressure Pp is Pp1. In the range from to Pp2, the deceleration rotational speed ΔN increases linearly from 0 to ΔN1 as the pump discharge pressure Pp increases. As a result, as the pump discharge pressure pp increases, the amount of decrease in engine speed increases, and the engine speed can be optimally controlled.

なお、上記実施の形態では、走行単独操作時に走行操作量やモータ傾転qm、ポンプ吐出圧Ppに応じてエンジン回転数を設定回転数Nより低減するようにしたが、走行単独操作時だけでなく、非走行かつ非作業の場合にも、エンジン回転数を設定回転数Nより低減するようにしてもよい。この場合、走行検出器22と作業検出器23からの信号により、非走行かつ非作業の非操作状態であるか否かを判定し、非操作状態と判定されるとエンジン回転数を所定回転数Naに制御すればよい。これにより燃費および騒音を低減することができる。   In the above-described embodiment, the engine speed is reduced from the set speed N according to the travel operation amount, the motor tilt qm, and the pump discharge pressure Pp during the single travel operation, but only during the single travel operation. Alternatively, the engine speed may be reduced below the set speed N even when the vehicle is not running and not working. In this case, it is determined based on signals from the travel detector 22 and the work detector 23 whether or not the vehicle is in a non-running and non-working non-operating state. What is necessary is just to control to Na. Thereby, fuel consumption and noise can be reduced.

この場合、エンジン回転数の低減量(N−Na)は、上述のΔN1と同じまたはΔN1より大きくすることが好ましい。これにより走行単独操作時には非操作時よりもエンジン回転数が高くなるため、複合操作による作業開始時(図4の時点t3)に、エンジン回転数を速やかに設定回転数Nに戻すことができ、作業効率が向上する。なお、判定回路204以外で非操作状態を判定してもよく、第2の判定手段の構成は上述したものに限らない。   In this case, it is preferable that the reduction amount (N-Na) of the engine speed is equal to or larger than ΔN1 described above. As a result, the engine speed is higher at the time of traveling single operation than at the time of non-operation, so that the engine speed can be quickly returned to the set speed N at the start of work by the combined operation (time t3 in FIG. 4). Work efficiency is improved. Note that the non-operation state may be determined by other than the determination circuit 204, and the configuration of the second determination unit is not limited to that described above.

上記実施の形態では、走行検出器22および作業検出器23によりそれぞれ走行用操作部材15,16の操作および作業用操作部材17a,18aの操作を検出し、走行単独操作状態を判定したが、第1の判定手段としての判定回路204の構成はこれに限らない。操作部材15,16により走行用制御弁としての方向制御弁13,14を操作し、操作部材17a,18aにより作業用制御弁としての方向制御弁17,18を操作するようにしたが、これら操作部材15,16,17a,18aはレバーやペダルにより構成できる。   In the above embodiment, the travel detector 22 and the work detector 23 detect the operation of the travel operation members 15 and 16 and the operation of the work operation members 17a and 18a, respectively, and determine the travel single operation state. The configuration of the determination circuit 204 as one determination unit is not limited to this. The operation members 15 and 16 operate the direction control valves 13 and 14 as travel control valves, and the operation members 17a and 18a operate the direction control valves 17 and 18 as work control valves. The members 15, 16, 17a, 18a can be constituted by levers or pedals.

回転数設定ダイヤル21によりエンジン10の目標回転数Nを設定したが、回転数設定手段はこれに限らない。例えば目標回転数Nを手動操作により可変とするのではなく、固定値として予めコントローラ20に設定しておくこともできる。検出手段としての圧力センサ24、傾転角検出器220,および圧力センサ224によりそれぞれ走行操作量、モータ傾転qm、およびポンプ吐出圧Ppを検出し、これらの検出値に応じてエンジン回転数を低減するようにしたが、他の検出手段により走行モータ5a,5bの回転エネルギ(モータ回転数やモータ圧力)と相関関係を有する他の物理量を検出してもよい。走行単独操作時に、この回転エネルギと相関関係を有する物理量に応じてエンジン回転数を目標回転数Nよりも低減するのであれば、回転数制御手段としてのコントローラ20および回転数制御部25の構成は上述したものに限らない。走行単独操作開始時にエンジン回転数を徐々に低減するようにしたが、エンジン回転数の低減パターンはこれに限らない。   Although the target rotational speed N of the engine 10 is set by the rotational speed setting dial 21, the rotational speed setting means is not limited to this. For example, the target rotational speed N can be set in advance in the controller 20 as a fixed value instead of being made variable by manual operation. The pressure sensor 24, the tilt angle detector 220, and the pressure sensor 224 as detection means detect the travel operation amount, the motor tilt qm, and the pump discharge pressure Pp, respectively, and the engine speed is determined according to these detected values. However, other physical quantities having a correlation with the rotational energy (motor rotational speed and motor pressure) of the traveling motors 5a and 5b may be detected by other detection means. If the engine speed is reduced below the target speed N according to a physical quantity having a correlation with the rotational energy at the time of traveling alone operation, the configuration of the controller 20 and the speed control unit 25 as the speed control means is as follows. It is not restricted to what was mentioned above. Although the engine speed is gradually reduced at the start of the traveling single operation, the engine speed reduction pattern is not limited to this.

上記実施の形態では、圧力センサ24により操作部材15,16の操作量を検出したが(図3)、操作部材15,16の操作部にポテンショメータ等を設けて操作量を直接検出してもよく、操作量検出手段は上述したものに限らない。上記実施の形態では、圧力センサ224によりポンプ吐出圧Ppを検出し(図7)、傾転角検出器220によりモータ傾転qmを検出したが(図5)、吐出圧検出手段および容量検出手段の構成はこれに限らない。   In the above embodiment, the operation amount of the operation members 15 and 16 is detected by the pressure sensor 24 (FIG. 3). However, the operation amount may be directly detected by providing a potentiometer or the like in the operation portion of the operation members 15 and 16. The operation amount detection means is not limited to that described above. In the above embodiment, the pump discharge pressure Pp is detected by the pressure sensor 224 (FIG. 7), and the motor tilt qm is detected by the tilt angle detector 220 (FIG. 5). However, the discharge pressure detection means and the capacity detection means The configuration is not limited to this.

走行操作量の増加に伴い減速回転数ΔNを大きくしたが、少なくとも走行操作量が所定値(例えば図3の所定パイロット圧P2に対応する操作)より大きいと、所定値以下のときよりもエンジン回転数を大きく低減するのであれば、コントローラ20の構成は図3のものに限らない。モータ傾転qmの増加に伴い減速回転数ΔNを大きくしたが、少なくともモータ容量が所定値(例えば図5の小傾転)より大きいと、所定値以下のときよりもエンジン回転数を大きく低減するのであれば、コントローラ20の構成は図5のものに限らない。ポンプ吐出圧Ppの増加に伴い減速回転数ΔNを大きくしたが、少なくともポンプ吐出圧が所定値(例えば図7のPp1)より大きいと、所定値以下のときよりもエンジン回転数を大きく低減するのであれば、コントローラ20の構成は図7のものに限らない。   Although the deceleration rotational speed ΔN is increased as the travel operation amount increases, at least when the travel operation amount is greater than a predetermined value (for example, an operation corresponding to the predetermined pilot pressure P2 in FIG. 3), the engine speed is lower than when the travel operation amount is less than the predetermined value. If the number is greatly reduced, the configuration of the controller 20 is not limited to that shown in FIG. As the motor tilt qm increases, the deceleration rotational speed ΔN is increased. However, at least when the motor capacity is larger than a predetermined value (for example, a small tilt in FIG. 5), the engine rotational speed is greatly reduced compared to when the motor rotational speed is less than the predetermined value. In this case, the configuration of the controller 20 is not limited to that shown in FIG. As the pump discharge pressure Pp is increased, the deceleration rotational speed ΔN is increased. However, at least when the pump discharge pressure is greater than a predetermined value (for example, Pp1 in FIG. 7), the engine speed is greatly reduced compared to when the pump discharge pressure Pp is lower than the predetermined value. If so, the configuration of the controller 20 is not limited to that shown in FIG.

以上では、本実施の形態に係る原動機回転数制御装置を油圧ショベルに適用する例を説明したが、クローラクレーン等、走行モータ5a,5bを有する他の建設機械にも同様に適用可能である。すなわちブームシリンダ3a、アームシリンダ3b、バケットシリンダ3c以外の作業用油圧アクチュエータを有する建設機械にも本発明は適用可能であり、本発明の特徴、機能を実現できる限り、本発明は実施の形態の建設機械の原動機回転数制御装置に限定されない。   The example in which the prime mover rotational speed control device according to the present embodiment is applied to a hydraulic excavator has been described above, but the present invention can be similarly applied to other construction machines having traveling motors 5a and 5b such as a crawler crane. That is, the present invention is applicable to construction machines having working hydraulic actuators other than the boom cylinder 3a, the arm cylinder 3b, and the bucket cylinder 3c, and the present invention is not limited to the embodiment as long as the features and functions of the present invention can be realized. It is not limited to the prime mover rotation speed control device for construction machinery.

本発明の実施の形態に係る原動機回転数制御装置が適用される油圧ショベルの斜視図。1 is a perspective view of a hydraulic excavator to which a prime mover rotation speed control device according to an embodiment of the present invention is applied. 第1の実施の形態に係る原動機回転数制御装置の概略構成を示す油圧回路図。1 is a hydraulic circuit diagram showing a schematic configuration of a prime mover rotational speed control device according to a first embodiment. 第1の実施の形態に係る原動機回転数制御装置の要部構成を示すブロック図。The block diagram which shows the principal part structure of the motor | power_engine rotational speed control apparatus which concerns on 1st Embodiment. 第1の実施の形態に係る原動機回転数制御装置の動作の一例を示す図。The figure which shows an example of operation | movement of the motor | power_engine rotation speed control apparatus which concerns on 1st Embodiment. 第2の実施の形態に係る原動機回転数制御装置の要部構成を示すブロック図。The block diagram which shows the principal part structure of the motor | power_engine rotational speed control apparatus which concerns on 2nd Embodiment. 図5の変形例を示す図。The figure which shows the modification of FIG. 本発明の実施の形態に係る原動機回転数制御装置の他の構成を示すブロック図。The block diagram which shows the other structure of the motor | power_engine rotational speed control apparatus which concerns on embodiment of this invention.

符号の説明Explanation of symbols

11,12 油圧ポンプ
5a,5b 油圧モータ
3a ブームシリンダ
3b アームシリンダ
3c バケットシリンダ
13,14,17,18 方向制御弁
15,16 走行用操作部材
17a,18a 作業用操作部材
20 コントローラ
21 回転数設定ダイヤル
22 走行検出器
23 作業検出器
24 圧力センサ
25 回転数制御部
220 傾転角検出器
224 圧力センサ
11, 12 Hydraulic pumps 5a, 5b Hydraulic motor 3a Boom cylinder 3b Arm cylinder 3c Bucket cylinders 13, 14, 17, 18 Directional control valves 15, 16 Traveling operation members 17a, 18a Work operation members 20 Controller 21 Speed setting dial 22 Traveling detector 23 Work detector 24 Pressure sensor 25 Rotational speed control unit 220 Tilt angle detector 224 Pressure sensor

Claims (5)

エンジンにより駆動される油圧ポンプと、
前記油圧ポンプからの圧油により回転する走行用油圧モータと、
前記油圧ポンプからの圧油により駆動する作業用油圧アクチュエータと、
前記油圧ポンプから前記走行用油圧モータへの圧油の流れを制御する走行用制御弁と、
前記油圧ポンプから前記作業用油圧アクチュエータへの圧油の流れを制御する作業用制御弁と、
前記走行用制御弁を操作する走行用操作部材と、
前記作業用制御弁を操作する作業用操作部材と、
前記走行用操作部材が操作され、かつ、前記作業用操作部材が非操作された走行単独操作状態か否かを判定する第1の判定手段と、
前記走行用油圧モータの回転エネルギと相関関係を有する物理量を検出する検出手段と、
前記エンジンの目標回転数を設定する回転数設定手段と、
前記第1の判定手段により走行単独操作状態と判定されると、前記検出手段により検出された物理量に応じてエンジン回転数を前記目標回転数よりも低減する回転数制御手段とを備えることを特徴とする建設機械の原動機回転数制御装置。
A hydraulic pump driven by an engine;
A traveling hydraulic motor that is rotated by pressure oil from the hydraulic pump;
A working hydraulic actuator driven by pressure oil from the hydraulic pump;
A travel control valve that controls the flow of pressure oil from the hydraulic pump to the travel hydraulic motor;
A work control valve for controlling the flow of pressure oil from the hydraulic pump to the work hydraulic actuator;
A travel operation member for operating the travel control valve;
An operation member for operating the operation control valve;
First determination means for determining whether or not the traveling operation member is operated and the working operation member is not operated;
Detecting means for detecting a physical quantity having a correlation with rotational energy of the traveling hydraulic motor;
A rotational speed setting means for setting a target rotational speed of the engine;
And a rotation speed control means for reducing the engine rotation speed from the target rotation speed in accordance with the physical quantity detected by the detection means when the first determination means determines that the vehicle is operating alone. A prime mover speed control device for construction machinery.
請求項1に記載の建設機械の原動機回転数制御装置において、
前記検出手段は、前記走行用操作部材の操作量を検出する操作量検出手段であり、
前記回転数制御手段は、検出された前記走行用操作部材の操作量が所定値より大きいと、所定値以下のときよりもエンジン回転数を大きく低減することを特徴とする建設機械の原動機回転数制御装置。
In the prime mover rotation speed control device for the construction machine according to claim 1,
The detection means is an operation amount detection means for detecting an operation amount of the travel operation member,
When the detected operation amount of the traveling operation member is greater than a predetermined value, the rotation speed control means significantly reduces the engine rotation speed than when it is less than or equal to a predetermined value. Control device.
請求項1に記載の建設機械の原動機回転数制御装置において、
前記検出手段は、前記油圧ポンプの吐出圧を検出する吐出圧検出手段であり、
前記回転数制御手段は、検出された前記油圧ポンプの吐出圧が所定値より大きいと、所定値以下のときよりもエンジン回転数を大きく低減することを特徴とする建設機械の原動機回転数制御装置。
In the prime mover rotation speed control device for the construction machine according to claim 1,
The detecting means is a discharge pressure detecting means for detecting a discharge pressure of the hydraulic pump;
When the detected discharge pressure of the hydraulic pump is larger than a predetermined value, the rotational speed control means greatly reduces the engine rotational speed than when it is lower than the predetermined value. .
請求項1に記載の建設機械の原動機回転数制御装置において、
前記走行用油圧モータは、容量変更可能な可変モータであり、
前記検出手段は、前記走行用油圧モータの容量を検出する容量検出手段であって、
前記回転数制御手段は、検出された前記走行用油圧モータの容量が所定値より大きいと、所定値以下のときよりもエンジン回転数を大きく低減することを特徴とする建設機械の原動機回転数制御装置。
In the prime mover rotation speed control device for the construction machine according to claim 1,
The traveling hydraulic motor is a variable motor whose capacity can be changed,
The detection means is a capacity detection means for detecting the capacity of the traveling hydraulic motor,
The engine speed control for the construction machine is characterized in that the engine speed is greatly reduced when the detected capacity of the traveling hydraulic motor is larger than a predetermined value, when the detected capacity is larger than a predetermined value. apparatus.
請求項1〜4のいずれか1項に記載の建設機械の原動機回転数制御装置において、
前記走行用操作部材が非操作され、かつ、前記作業用操作部材が非操作された非操作状態か否かを判定する第2の判定手段を有し、
前記回転数制御手段は、前記第2の判定手段により非操作状態と判定されると、前記走行単独操作状態と判定されたとき以上にエンジン回転数を低減することを特徴とする建設機械の原動機回転数制御装置。
In the motor | power_engine rotation speed control apparatus of the construction machine of any one of Claims 1-4,
A second determination means for determining whether or not the travel operation member is non-operated and the work operation member is non-operated;
When the second determination means determines that the engine speed is in a non-operating state, the engine speed control unit reduces the engine speed more than when the engine is determined to be in the travel-only operation state. Rotational speed control device.
JP2008113639A 2008-04-24 2008-04-24 Motor speed control device for construction machinery Active JP4974957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008113639A JP4974957B2 (en) 2008-04-24 2008-04-24 Motor speed control device for construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008113639A JP4974957B2 (en) 2008-04-24 2008-04-24 Motor speed control device for construction machinery

Publications (2)

Publication Number Publication Date
JP2009264211A true JP2009264211A (en) 2009-11-12
JP4974957B2 JP4974957B2 (en) 2012-07-11

Family

ID=41390360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008113639A Active JP4974957B2 (en) 2008-04-24 2008-04-24 Motor speed control device for construction machinery

Country Status (1)

Country Link
JP (1) JP4974957B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012048588A1 (en) * 2010-10-12 2012-04-19 湖南三一智能控制设备有限公司 Vehicle crane, energy-saving control method and energy-saving control system thereof
JP2021050653A (en) * 2019-09-25 2021-04-01 株式会社竹内製作所 Crawler-type working machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225727A (en) * 1986-03-26 1987-10-03 Komatsu Ltd Low idle rotation speed automatic control device for engine for construction vehicle
JPH04143428A (en) * 1990-10-05 1992-05-18 Komatsu Ltd Controller for construction machinery
JP2002130003A (en) * 2000-10-20 2002-05-09 Hitachi Constr Mach Co Ltd Hydraulic traveling vehicle
JP2003220884A (en) * 2002-01-31 2003-08-05 Kayaba Ind Co Ltd Driving control system of concrete mixing drum
JP2004116706A (en) * 2002-09-27 2004-04-15 Hitachi Constr Mach Co Ltd Travelling controller for hydraulic driven vehicle and hydraulic driven vehicle
JP2005106170A (en) * 2003-09-30 2005-04-21 Hitachi Constr Mach Co Ltd Running control unit of hydraulic drive vehicle and hydraulic drive vehicle
JP2006242110A (en) * 2005-03-04 2006-09-14 Hitachi Constr Mach Co Ltd Hydraulic drive system for construction machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225727A (en) * 1986-03-26 1987-10-03 Komatsu Ltd Low idle rotation speed automatic control device for engine for construction vehicle
JPH04143428A (en) * 1990-10-05 1992-05-18 Komatsu Ltd Controller for construction machinery
JP2002130003A (en) * 2000-10-20 2002-05-09 Hitachi Constr Mach Co Ltd Hydraulic traveling vehicle
JP2003220884A (en) * 2002-01-31 2003-08-05 Kayaba Ind Co Ltd Driving control system of concrete mixing drum
JP2004116706A (en) * 2002-09-27 2004-04-15 Hitachi Constr Mach Co Ltd Travelling controller for hydraulic driven vehicle and hydraulic driven vehicle
JP2005106170A (en) * 2003-09-30 2005-04-21 Hitachi Constr Mach Co Ltd Running control unit of hydraulic drive vehicle and hydraulic drive vehicle
JP2006242110A (en) * 2005-03-04 2006-09-14 Hitachi Constr Mach Co Ltd Hydraulic drive system for construction machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012048588A1 (en) * 2010-10-12 2012-04-19 湖南三一智能控制设备有限公司 Vehicle crane, energy-saving control method and energy-saving control system thereof
JP2021050653A (en) * 2019-09-25 2021-04-01 株式会社竹内製作所 Crawler-type working machine
JP7074734B2 (en) 2019-09-25 2022-05-24 株式会社竹内製作所 Crawler type work vehicle

Also Published As

Publication number Publication date
JP4974957B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5064160B2 (en) Engine control device
JP4675320B2 (en) Hydraulic drive device for work machine
JP5689531B2 (en) Hydraulic pump control system for construction machinery
JP4188902B2 (en) Control equipment for hydraulic construction machinery
JP3819699B2 (en) Hydraulic traveling vehicle
JP4732126B2 (en) Engine control device
JP2006169974A (en) Control device of traveling work vehicle
KR101945436B1 (en) Construction Machinery
JPWO2004029435A1 (en) Motor controller for construction machinery
KR20110046529A (en) Engine Lugdown Suppression Device of Hydraulic Work Machine
JP4407619B2 (en) Engine and hydraulic pump control device
JP2006348889A (en) Engine control device for travelling working machine
WO2014084213A1 (en) Hydraulic drive device of electric hydraulic machinery
JP4993575B2 (en) Steering system for work vehicle
JP4115994B2 (en) Construction machine control device and input torque calculation method
JP2006242110A (en) Hydraulic drive system for construction machine
JP5250145B2 (en) Engine control device
JP4974957B2 (en) Motor speed control device for construction machinery
JP3686324B2 (en) Hydraulic traveling vehicle
JP2011226491A (en) Turning hydraulic circuit of hydraulic shovel
JP2007298130A (en) Hydraulic system of construction machine
JP2001329883A (en) Engine control device for construction machine
JP2013181286A (en) Construction machine
JP2008002505A (en) Energy saving device for construction machine
JP4064019B2 (en) Engine control device for construction machinery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Ref document number: 4974957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3